Merge 739648f3e6
into d2fe216fb2
This commit is contained in:
commit
2f1e248444
1 changed files with 467 additions and 0 deletions
467
convert_grok.py
Normal file
467
convert_grok.py
Normal file
|
@ -0,0 +1,467 @@
|
|||
"""
|
||||
Convert Grok-1 weights to GGUF format.
|
||||
|
||||
Example invocation:
|
||||
|
||||
python -m convert_grok -i path/to/grok-1/ckpt-0 --vocab_dir path/to/grok -o grok.bin -t q4_0 --experts 1,2
|
||||
|
||||
To run:
|
||||
|
||||
./build/bin/main -m grok.bin -p "The answer to life the universe and everything is" -s 1 -n 3 -ngl 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import mmap
|
||||
import os
|
||||
import pathlib
|
||||
import pickletools
|
||||
import sys
|
||||
import time
|
||||
|
||||
import ml_dtypes
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
try:
|
||||
from tabulate import tabulate
|
||||
except ModuleNotFoundError:
|
||||
pass
|
||||
|
||||
from convert import SentencePieceVocab
|
||||
|
||||
if "NO_LOCAL_GGUF" not in os.environ:
|
||||
sys.path.insert(1, str(pathlib.Path(__file__).parent / "gguf-py"))
|
||||
|
||||
import gguf
|
||||
|
||||
QK8_0 = gguf.GGML_QUANT_SIZES[gguf.GGMLQuantizationType.Q8_0][0]
|
||||
QK4_0 = gguf.GGML_QUANT_SIZES[gguf.GGMLQuantizationType.Q4_0][0]
|
||||
QK4_1 = gguf.GGML_QUANT_SIZES[gguf.GGMLQuantizationType.Q4_1][0]
|
||||
|
||||
|
||||
# Heuristic to avoid having to fully parse pickle files.
|
||||
FP32_SHAPES = {805306368: (131072, 6144), 6144: (6144,), 49152: (6144, 8)}
|
||||
BF16_SHAPES = {
|
||||
262144: (8, 1, 32768),
|
||||
393216: (8, 8, 6144),
|
||||
1024: (1, 1024),
|
||||
49152: (8, 6144),
|
||||
6144: (1, 6144),
|
||||
}
|
||||
|
||||
|
||||
class AttributeDict(dict):
|
||||
def __getattr__(self, key):
|
||||
return self.__getitem__(key) if key in self else super().__getattr__(key)
|
||||
|
||||
__setattr__ = dict.__setitem__
|
||||
|
||||
|
||||
def _genops(data):
|
||||
view = memoryview(data)
|
||||
|
||||
code2op = {ord(d.code): d for d in pickletools.opcodes}
|
||||
dataops = {
|
||||
"BINBYTES": pickletools.read_uint4,
|
||||
"BINBYTES8": pickletools.read_uint8,
|
||||
}
|
||||
|
||||
while True:
|
||||
pos = data.tell()
|
||||
code = data.read_byte()
|
||||
opcode = code2op[code]
|
||||
|
||||
arg = None
|
||||
if opcode.arg is not None:
|
||||
if opcode.name not in dataops:
|
||||
arg = opcode.arg.reader(data)
|
||||
else:
|
||||
size = dataops[opcode.name](data)
|
||||
p = data.tell()
|
||||
arg = np.frombuffer(view[p : p + size], dtype=np.uint8)
|
||||
data.seek(size, 1)
|
||||
|
||||
yield opcode, arg, pos
|
||||
if code == ord(b"."):
|
||||
break
|
||||
|
||||
|
||||
def genops(fn):
|
||||
"""Yield (opcode, arg, pos) from for a pickle file.
|
||||
|
||||
Uses mmap to avoid copies of binary data (e.g., np and JAX arrays)."""
|
||||
with open(fn, "rb") as f:
|
||||
yield from _genops(mmap.mmap(f.fileno(), length=0, flags=mmap.MAP_PRIVATE))
|
||||
|
||||
|
||||
def get_weights(fn):
|
||||
"""Returns tensor/array data in Grok pickle files, zero copy."""
|
||||
|
||||
arrays = []
|
||||
for unused_opcode, arg, unused_pos in genops(fn):
|
||||
if isinstance(arg, np.ndarray):
|
||||
arrays.append(arg)
|
||||
|
||||
if len(arrays) == 1:
|
||||
# Plain numpy array.
|
||||
array = arrays[0].view(np.float32)
|
||||
array = array.reshape(FP32_SHAPES[array.size])
|
||||
return array, None
|
||||
elif len(arrays) == 2:
|
||||
weight, scales = arrays
|
||||
|
||||
scales = scales.view(ml_dtypes.bfloat16)
|
||||
scales = scales.reshape(BF16_SHAPES[scales.size])
|
||||
|
||||
weight = weight.view(np.int8)
|
||||
shape = list(scales.shape)
|
||||
shape[-2] = -1
|
||||
weight = weight.reshape(shape)
|
||||
return weight, scales
|
||||
|
||||
assert len(arrays) in (1, 2)
|
||||
|
||||
|
||||
def torch_roundf(t: torch.Tensor) -> torch.Tensor:
|
||||
"""Round halfway cases away from zero like roundf(3). Cf. gguf/quants.py."""
|
||||
a = abs(t)
|
||||
floored = torch.floor(a)
|
||||
b = floored + torch.floor(2 * (a - floored))
|
||||
return torch.sign(t) * b
|
||||
|
||||
|
||||
def quantize_q8_0(tensor: torch.Tensor) -> torch.CharTensor:
|
||||
# Equivalent to gguf.quantize_q8_0 but PyTorch instead of Numpy.
|
||||
assert tensor.shape[1] % QK8_0 == 0
|
||||
tensor = tensor.reshape(-1, QK8_0)
|
||||
scale = tensor.abs().max(dim=-1, keepdim=True).values / ((1 << 7) - 1)
|
||||
iscale = torch.where(scale != 0.0, 1.0 / scale, 0.0)
|
||||
tensor = torch_roundf(tensor * iscale).clamp(min=-128, max=127).char()
|
||||
# add scale into each block
|
||||
tensor = torch.cat((scale.half().view(torch.int8), tensor), dim=-1)
|
||||
return tensor
|
||||
|
||||
|
||||
def quantize_q4_0(tensor: torch.Tensor) -> torch.CharTensor:
|
||||
# equivalent to ggml_quantize_q4_0 in ggml.c (modulo rounding away from zero)
|
||||
assert tensor.shape[1] % QK4_0 == 0
|
||||
tensor = tensor.reshape(-1, QK4_0)
|
||||
abs_max_indices = tensor.abs().max(dim=-1, keepdim=True).indices
|
||||
max_values = torch.take_along_dim(tensor, abs_max_indices, dim=-1)
|
||||
scale = max_values / -8
|
||||
tensor = (tensor / scale + 8).round().clamp(min=0, max=15).char()
|
||||
# compress two int4 weights into a int8
|
||||
tensor = tensor[:, :16] | (tensor[:, 16:] << 4)
|
||||
# add scale into each block
|
||||
tensor = torch.cat((scale.half().view(torch.int8), tensor), dim=-1)
|
||||
return tensor
|
||||
|
||||
|
||||
def quantize_q4_1(tensor: torch.Tensor) -> torch.CharTensor:
|
||||
# equivalent to ggml_quantize_q4_1 in ggml.c (modulo rounding away from zero)
|
||||
assert tensor.shape[1] % QK4_1 == 0
|
||||
tensor = tensor.reshape(-1, QK4_1)
|
||||
abs_max_indices = tensor.max(dim=-1, keepdim=True).indices
|
||||
max_values = torch.take_along_dim(tensor, abs_max_indices, dim=-1)
|
||||
abs_min_indices = tensor.min(dim=-1, keepdim=True).indices
|
||||
min_values = torch.take_along_dim(tensor, abs_min_indices, dim=-1)
|
||||
scale = (max_values - min_values) / 15
|
||||
tensor = ((tensor - min_values) / scale).round().clamp(min=0, max=15).char()
|
||||
# compress two int4 weights into a int8
|
||||
tensor = tensor[:, :16] | (tensor[:, 16:] << 4)
|
||||
# add scale into each block
|
||||
tensor = torch.cat(
|
||||
(scale.half().view(torch.int8), min_values.half().view(torch.int8), tensor), dim=-1
|
||||
)
|
||||
return tensor
|
||||
|
||||
|
||||
def maybe_quantize_tensor(tensor, ggml_type):
|
||||
assert tensor.dtype == torch.float32
|
||||
if ggml_type == gguf.GGMLQuantizationType.F32:
|
||||
return tensor.float()
|
||||
elif ggml_type == gguf.GGMLQuantizationType.F16:
|
||||
return tensor.half()
|
||||
elif ggml_type == gguf.GGMLQuantizationType.Q8_0:
|
||||
return quantize_q8_0(tensor)
|
||||
elif ggml_type == gguf.GGMLQuantizationType.Q4_0:
|
||||
return quantize_q4_0(tensor)
|
||||
elif ggml_type == gguf.GGMLQuantizationType.Q4_1:
|
||||
return quantize_q4_1(tensor)
|
||||
else:
|
||||
raise NotImplementedError(f"Cannot quantize tensor of dtype {tensor.dtype} ({ggml_type})")
|
||||
|
||||
|
||||
def get_dtype_and_ggml_type(name, tensor, ggml_type):
|
||||
if tensor.ndim in (2, 3) and "ffn_gate_inp" not in name:
|
||||
if tensor.shape[1] % QK8_0 == 0:
|
||||
return np.int8, ggml_type
|
||||
else:
|
||||
return np.float16, gguf.GGMLQuantizationType.F16
|
||||
else:
|
||||
return np.float32, gguf.GGMLQuantizationType.F32
|
||||
|
||||
|
||||
def dump_state_dict(f, ggml_type, input_dir, config):
|
||||
weights = {}
|
||||
|
||||
# Load weights in file order (mmap'ed).
|
||||
for idx, name in enumerate(get_weight_names(config.num_hidden_layers)):
|
||||
weights[name] = get_weights(f"{input_dir}/tensor{idx:05}_000")
|
||||
|
||||
logging.debug("Loaded %i files", len(weights))
|
||||
|
||||
# But write in layer order.
|
||||
weight_names = get_weight_names(config.num_hidden_layers, lexicographic=False)
|
||||
|
||||
# Operate on meta tensors to find shapes and dtypes for GGUF header.
|
||||
for name in weight_names:
|
||||
weight, scales = weights[name]
|
||||
meta_tensor = convert_weight(name, weight, scales, config, device="meta")
|
||||
dtype, tensor_ggml_type = get_dtype_and_ggml_type(name, meta_tensor, ggml_type)
|
||||
quantized_meta_tensor = maybe_quantize_tensor(meta_tensor, tensor_ggml_type)
|
||||
f.add_tensor_info(
|
||||
f"{name}.weight",
|
||||
list(meta_tensor.shape),
|
||||
dtype,
|
||||
quantized_meta_tensor.nbytes,
|
||||
tensor_ggml_type,
|
||||
)
|
||||
|
||||
f.write_header_to_file()
|
||||
f.write_kv_data_to_file()
|
||||
f.write_ti_data_to_file()
|
||||
|
||||
# Now write actual tensor data.
|
||||
tensor_info = []
|
||||
|
||||
for name in weight_names:
|
||||
weight, scales = weights.pop(name)
|
||||
tensor = convert_weight(name, weight, scales, config)
|
||||
_, tensor_ggml_type = get_dtype_and_ggml_type(name, tensor, ggml_type)
|
||||
array = maybe_quantize_tensor(tensor, tensor_ggml_type).numpy()
|
||||
|
||||
logging.info(
|
||||
f"dumping {name}:"
|
||||
f"{tensor_ggml_type.name}/{array.dtype}, {list(tensor.shape)}, {array.nbytes} bytes"
|
||||
)
|
||||
f.write_tensor_data(array)
|
||||
|
||||
tensor_info.append((name, list(tensor.shape), tensor_ggml_type.name))
|
||||
|
||||
try:
|
||||
print( # noqa: NP100
|
||||
tabulate(tensor_info, headers=["name", "shape", "dtype"], tablefmt="psql")
|
||||
)
|
||||
except NameError:
|
||||
pass
|
||||
|
||||
if weights:
|
||||
logging.warning("Not all tensors are converted")
|
||||
|
||||
|
||||
def from_numpy(array):
|
||||
"""Like torch.from_numpy, but handle ml_dtypes.bfloat16 too."""
|
||||
|
||||
if array.dtype == ml_dtypes.bfloat16:
|
||||
return torch.from_numpy(array.view(np.uint8)).view(torch.bfloat16)
|
||||
return torch.from_numpy(array)
|
||||
|
||||
|
||||
def convert_weight(name, weight, scales, config, dtype=torch.float32, device=None):
|
||||
# copied from https://gist.github.com/chu-tianxiang/ec310e15d56949fd0f351cb5f65ee7a1
|
||||
weight = from_numpy(weight).to(device=device, dtype=dtype)
|
||||
if scales is not None:
|
||||
scale = from_numpy(scales).to(device=device, dtype=dtype)
|
||||
# row parallel layers have sharded scale
|
||||
if len(scale.shape) >= 2 and scale.shape[-2] != 1:
|
||||
scale = scale[..., None, :]
|
||||
weight = weight.view(*weight.shape[:-2], 8, -1, weight.shape[-1])
|
||||
weight = (weight * scale).view(*weight.shape[:-3], -1, weight.shape[-1])
|
||||
else:
|
||||
weight = weight * scale
|
||||
|
||||
if name != "token_embd" and len(weight.shape) >= 2:
|
||||
# Transpose linear matrix
|
||||
weight = weight.transpose(-1, -2)
|
||||
if name.endswith("ffn_gate_inp") or name.endswith("_exps"):
|
||||
weight = weight[config.experts] # gather.
|
||||
|
||||
return weight
|
||||
|
||||
|
||||
def extract_vocabulary_from_model(vocab):
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
||||
for text, score, toktype in vocab.all_tokens():
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
assert len(tokens) == vocab.vocab_size
|
||||
|
||||
return tokens, scores, toktypes
|
||||
|
||||
|
||||
def get_weight_names(num_hidden_layers=64, lexicographic=True):
|
||||
"""Return Grok-1 weight names.
|
||||
|
||||
If `lexicographic` is set, the order is as in the tensor#####_000 files."""
|
||||
|
||||
weight_names = [
|
||||
gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD],
|
||||
gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT_NORM],
|
||||
]
|
||||
|
||||
layer = (
|
||||
gguf.MODEL_TENSOR.FFN_GATE_EXP,
|
||||
gguf.MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
gguf.MODEL_TENSOR.FFN_UP_EXP,
|
||||
gguf.MODEL_TENSOR.ATTN_K,
|
||||
gguf.MODEL_TENSOR.ATTN_OUT,
|
||||
gguf.MODEL_TENSOR.ATTN_Q,
|
||||
gguf.MODEL_TENSOR.ATTN_V,
|
||||
gguf.MODEL_TENSOR.ATTN_NORM,
|
||||
gguf.MODEL_TENSOR.ATTN_OUT_NORM,
|
||||
gguf.MODEL_TENSOR.FFN_NORM,
|
||||
gguf.MODEL_TENSOR.LAYER_OUT_NORM,
|
||||
gguf.MODEL_TENSOR.FFN_GATE_INP,
|
||||
)
|
||||
|
||||
layers = [str(bid) for bid in range(64)]
|
||||
|
||||
if lexicographic:
|
||||
# Lexicographic sort: 0 < 1 < 10 < 11 ... < 2 < 20 < ...
|
||||
layers.sort()
|
||||
|
||||
for bid in layers[:num_hidden_layers]:
|
||||
for key in layer:
|
||||
weight_names.append(gguf.TENSOR_NAMES[key].format(bid=bid))
|
||||
|
||||
return weight_names
|
||||
|
||||
|
||||
def convert_grok(args, vocab, ggml_type):
|
||||
start = time.time()
|
||||
|
||||
def ffn_size(emb_size, widening_factor):
|
||||
_ffn_size = int(widening_factor * emb_size) * 2 // 3
|
||||
_ffn_size = _ffn_size + (8 - _ffn_size) % 8 # ensure it's a multiple of 8
|
||||
return _ffn_size
|
||||
|
||||
config = {
|
||||
"hidden_act": "gelu",
|
||||
"pad_token_id": 0,
|
||||
"eos_token_id": 2,
|
||||
"max_position_embeddings": 8192,
|
||||
"output_multiplier_scale": 0.5773502691896257,
|
||||
"embedding_multiplier_scale": 78.38367176906169,
|
||||
"hidden_size": 48 * 128,
|
||||
"intermediate_size": -1,
|
||||
"num_attention_heads": 48,
|
||||
"num_key_value_heads": 8,
|
||||
"num_hidden_layers": 64, # Change to 1 for quicker debugging.
|
||||
"num_selected_experts": 2,
|
||||
"rope_theta": 10000,
|
||||
"attn_output_multiplier": 0.08838834764831845,
|
||||
"rms_norm_eps": 1e-5,
|
||||
}
|
||||
|
||||
config = AttributeDict(config)
|
||||
|
||||
config.intermediate_size = ffn_size(config.hidden_size, 8)
|
||||
|
||||
config.experts = list(range(8))
|
||||
if args.experts != "":
|
||||
config.experts = [int(x, 0) for x in args.experts.split(",")]
|
||||
|
||||
config.num_experts = len(config.experts)
|
||||
|
||||
assert config.num_experts >= 2, "need at least 2 experts"
|
||||
logging.info("experts to export: %s", config.experts)
|
||||
|
||||
f = gguf.GGUFWriter(args.save_path, "grok", endianess=gguf.GGUFEndian.LITTLE)
|
||||
|
||||
f.add_name("grok-1")
|
||||
f.add_context_length(config.max_position_embeddings)
|
||||
f.add_embedding_length(config.hidden_size)
|
||||
f.add_block_count(config.num_hidden_layers)
|
||||
f.add_feed_forward_length(config.intermediate_size)
|
||||
f.add_rope_dimension_count(config.hidden_size // config.num_attention_heads)
|
||||
f.add_head_count(config.num_attention_heads)
|
||||
f.add_head_count_kv(config.num_key_value_heads)
|
||||
|
||||
f.add_expert_count(config.num_experts)
|
||||
f.add_expert_used_count(config.num_selected_experts)
|
||||
f.add_layer_norm_rms_eps(config.rms_norm_eps)
|
||||
|
||||
f.add_rope_freq_base(config.rope_theta)
|
||||
|
||||
f.add_tokenizer_model("llama")
|
||||
# Extract model vocabulary for model conversion
|
||||
tokens, scores, toktypes = extract_vocabulary_from_model(vocab)
|
||||
f.add_token_list(tokens)
|
||||
f.add_token_scores(scores)
|
||||
f.add_token_types(toktypes)
|
||||
|
||||
f.add_quantization_version(ggml_type)
|
||||
|
||||
dump_state_dict(f, ggml_type, args.input_dir, config)
|
||||
f.close()
|
||||
|
||||
delta = time.time() - start
|
||||
|
||||
logging.info(f"grok GGUF model saved to {args.save_path}. Total time {delta:.2f} sec")
|
||||
|
||||
|
||||
def load_vocab(path):
|
||||
def load_spm(p):
|
||||
logging.info(f"Loading vocab file {p}")
|
||||
return SentencePieceVocab(p)
|
||||
|
||||
# Be extra-friendly and accept either a file or a directory. Also, if it's
|
||||
# a directory, it might be the model directory, and tokenizer.model might
|
||||
# be in the parent of that.
|
||||
if path.is_dir():
|
||||
path2 = path / "tokenizer.model"
|
||||
# Use `.parent` instead of /.. to handle the symlink case better.
|
||||
path3 = path.parent / "tokenizer.model"
|
||||
|
||||
if path2.exists():
|
||||
return load_spm(path2)
|
||||
elif path3.exists():
|
||||
return load_spm(path3)
|
||||
|
||||
raise FileNotFoundError(
|
||||
f"Could not find tokenizer.model in {path} or its parent; "
|
||||
"if it's in another directory, pass the directory as --vocab-dir"
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser("convert_grok")
|
||||
parser.add_argument("-i", "--input_dir", type=str)
|
||||
parser.add_argument("-o", "--save_path", type=pathlib.Path)
|
||||
parser.add_argument(
|
||||
"-t", "--type", type=str, default="q8_0", choices=["f32", "f16", "q8_0", "q4_0", "q4_1"]
|
||||
)
|
||||
parser.add_argument("--vocab_dir", type=str, default="")
|
||||
parser.add_argument("--experts", type=str, default="")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
vocab = load_vocab(
|
||||
pathlib.Path(args.vocab_dir) if args.vocab_dir else pathlib.Path(args.input_dir)
|
||||
)
|
||||
ggml_type = gguf.GGMLQuantizationType[args.type.upper()]
|
||||
convert_grok(args, vocab, ggml_type)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Add table
Add a link
Reference in a new issue