the dark gods have been sated, and redpajama is integrated... but at what cost?

This commit is contained in:
Concedo 2023-05-08 20:58:00 +08:00
parent b9904c3093
commit 2f2eff6e13
4 changed files with 57 additions and 23 deletions

View file

@ -128,11 +128,17 @@ extern "C"
return true; return true;
} }
} }
else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2) else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2 || file_format==FileFormat::NEOX_3)
{ {
printf("\n---\nIdentified as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format); printf("\n---\nIdentified as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format); ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::RETRY_LOAD) if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::NEOX_3;
printf("\n---\nRetrying as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
if (lr == ModelLoadResult::RETRY_LOAD)
{ {
file_format = FileFormat::NEOX_1; file_format = FileFormat::NEOX_1;
printf("\n---\nRetrying as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format); printf("\n---\nRetrying as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);

View file

@ -369,7 +369,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
return ModelLoadResult::SUCCESS; return ModelLoadResult::SUCCESS;
} }
else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2) else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2 || file_format==FileFormat::NEOX_3)
{ {
ModelLoadResult res = stablelm_model_load(params.model, neox_ctx, vocab, file_format); ModelLoadResult res = stablelm_model_load(params.model, neox_ctx, vocab, file_format);
if(res==ModelLoadResult::FAIL) if(res==ModelLoadResult::FAIL)
@ -383,7 +383,23 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
return res; return res;
} }
// determine the required inference memory per token: // determine the required inference memory per token:
stablelm_eval(neox_ctx, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); stablelm_eval(neox_ctx, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
if(logits.size()>0 && file_format==FileFormat::NEOX_2 && !IsNanCheck(logits[0]))
{
//run the black magic eval to determine if it's redpajama. VERY UGLY HACK!
std::vector<int> test_embd = ::gpt_tokenize(vocab, "1 2 3 4 5 6 7");
stablelm_eval(neox_ctx, params.n_threads, 0, test_embd, logits, mem_per_token, FileFormat::NEOX_3);
int topid = std::max_element(logits.begin(),logits.end())-logits.begin();
std::string predicted = vocab.id_to_token[topid].c_str();
if(predicted.find("8") != std::string::npos)
{
printf("\n---\nRedPajama NeoX Detected! Switching to new format! (use_parallel_residual=False)\n");
ggml_free(neox_ctx.ctx);
return ModelLoadResult::RETRY_LOAD;
}
}
return ModelLoadResult::SUCCESS; return ModelLoadResult::SUCCESS;
} }
else else
@ -514,13 +530,11 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
} }
//if using BLAS and prompt is big enough, switch to single thread and use a huge batch //if using BLAS and prompt is big enough, switch to single thread and use a huge batch
bool approved_format = (file_format == FileFormat::GGML || bool approved_format = !(file_format == FileFormat::BADFORMAT ||
file_format == FileFormat::GGHF || file_format == FileFormat::GPT2_1 ||
file_format == FileFormat::GGJT || file_format == FileFormat::GPTJ_1 ||
file_format == FileFormat::GPT2_2 || file_format == FileFormat::GPTJ_2 ||
file_format == FileFormat::GPTJ_3 || file_format == FileFormat::RWKV_1);
file_format == FileFormat::NEOX_1 ||
file_format == FileFormat::NEOX_2);
bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas()); bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas());
// bool blasmode = false; // bool blasmode = false;
int original_batch = params.n_batch; int original_batch = params.n_batch;
@ -579,7 +593,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
{ {
n_vocab = gpt2_ctx_v2.hparams.n_vocab; n_vocab = gpt2_ctx_v2.hparams.n_vocab;
} }
else if(file_format == FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2) else if(file_format == FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2 || file_format == FileFormat::NEOX_3)
{ {
n_vocab = neox_ctx.hparams.n_vocab; n_vocab = neox_ctx.hparams.n_vocab;
} }
@ -614,14 +628,14 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
{ {
for (auto id : embd_inp) for (auto id : embd_inp)
{ {
printf("'%s', ",llama_token_to_str(llama_ctx_v1, id)); printf("'%s (%d)', ",llama_token_to_str(llama_ctx_v1, id),id);
} }
} }
else else
{ {
for (auto id : embd_inp) for (auto id : embd_inp)
{ {
printf("'%s', ",vocab.id_to_token[id].c_str()); printf("'%s (%d)', ",vocab.id_to_token[id].c_str(),id);
} }
} }
printf("\n"); printf("\n");
@ -665,9 +679,9 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
{ {
evalres = gpt2_eval(gpt2_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token, file_format); evalres = gpt2_eval(gpt2_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
} }
else if(file_format==FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2) else if(file_format==FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2 || file_format == FileFormat::NEOX_3)
{ {
evalres = stablelm_eval(neox_ctx, params.n_threads, n_past, embd, logits, mem_per_token); evalres = stablelm_eval(neox_ctx, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
} }
else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2) else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2)
{ {

View file

@ -31,6 +31,7 @@ enum FileFormat
NEOX_1=400, NEOX_1=400,
NEOX_2=401, NEOX_2=401,
NEOX_3=402,
}; };
enum ModelLoadResult enum ModelLoadResult

View file

@ -345,7 +345,8 @@ bool stablelm_eval(
const int n_past, const int n_past,
const std::vector<gpt_vocab::id> & embd_inp, const std::vector<gpt_vocab::id> & embd_inp,
std::vector<float> & embd_w, std::vector<float> & embd_w,
size_t & mem_per_token) { size_t & mem_per_token,
FileFormat file_format) {
const int N = embd_inp.size(); const int N = embd_inp.size();
const auto & hparams = model.hparams; const auto & hparams = model.hparams;
@ -494,6 +495,12 @@ bool stablelm_eval(
} }
} }
if(file_format==FileFormat::NEOX_3)
{
// layer input + Attn
cur = ggml_add(ctx0, cur, inpL);
}
struct ggml_tensor * inpFF = cur; struct ggml_tensor * inpFF = cur;
// feed-forward network // feed-forward network
@ -502,7 +509,7 @@ bool stablelm_eval(
// post attention layer norm // post attention layer norm
// note here we pass inpL instead of cur // note here we pass inpL instead of cur
{ {
cur = ggml_norm(ctx0, inpL); cur = ggml_norm(ctx0, (file_format==FileFormat::NEOX_3?cur:inpL));
cur = ggml_add(ctx0, cur = ggml_add(ctx0,
ggml_mul(ctx0, ggml_mul(ctx0,
@ -533,11 +540,17 @@ bool stablelm_eval(
cur); cur);
} }
// layer input + FF if (file_format == FileFormat::NEOX_3)
cur = ggml_add(ctx0, cur, inpFF); {
// layer input + FF
// input for next layer inpL = ggml_add(ctx0, cur, inpFF);
inpL = ggml_add(ctx0, cur, inpL); }
else
{
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
inpL = ggml_add(ctx0, cur, inpL);
}
} }
// norm // norm