Simple mul_mat_f16 for speed and removal of unused mul_mat_f32

This commit is contained in:
niansa 2023-07-05 10:59:38 +02:00
parent f0e1429d7f
commit 2fc8249ba3

View file

@ -976,6 +976,42 @@ void main() {
} }
); );
static const std::string program_fast_mul_mat_f16 =
MULTILINE_QUOTE(
layout(local_size_x = 32, local_size_y = 32, local_size_z = 1) in;
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
layout (binding = 1) readonly buffer tensorInB { float16_t inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
int M;
int N;
int K;
int inAStride;
int inBStride;
int outStride;
uint inAOff;
uint inBOff;
uint outOff;
} pcs;
void main() {
int row = int(gl_GlobalInvocationID.x);
int col = int(gl_GlobalInvocationID.y);
if (row < pcs.M && col < pcs.N) {
float sum = 0.0f;
for (int i = 0; i < pcs.K; i++) {
sum += float(inA[row * pcs.inAStride + i]) * float(inB[col * pcs.inBStride + i]);
}
out_[col * pcs.outStride + row] = sum;
}
}
);
void ggml_vk_mul_mat_f16(kp::Sequence& seq, void ggml_vk_mul_mat_f16(kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& inA, uint32_t inAOff, const std::shared_ptr<kp::Tensor>& inA, uint32_t inAOff,
const std::shared_ptr<kp::Tensor>& inB, uint32_t inBOff, const std::shared_ptr<kp::Tensor>& inB, uint32_t inBOff,
@ -984,7 +1020,7 @@ void ggml_vk_mul_mat_f16(kp::Sequence& seq,
int64_t ne10, int64_t ne11, int64_t ne10, int64_t ne11,
int nb10, int nb11, int nb12, int nb13, int nb10, int nb11, int nb12, int nb13,
int nb2, int nb3) { int nb2, int nb3) {
const static auto spirv = glsl_compile_source(program_source_head+program_mul_mat_f16, __func__); const static auto spirv = glsl_compile_source(program_source_head+program_fast_mul_mat_f16, __func__);
const bool inB_cont_rows = nb10 == sizeof(float); const bool inB_cont_rows = nb10 == sizeof(float);
const bool inB_cont_cols = (size_t)nb11 == ne11 * sizeof(float); const bool inB_cont_cols = (size_t)nb11 == ne11 * sizeof(float);
@ -1025,131 +1061,6 @@ void ggml_vk_mul_mat_f16(kp::Sequence& seq,
} }
static const std::string program_mul_mat_f32 =
MULTILINE_QUOTE(
layout(local_size_x = (BM * BN) / (TM * TN), local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer tensorInA { float inA[]; };
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
int M;
int N;
int K;
int inAStride;
int inBStride;
int outStride;
uint inAOff;
uint inBOff;
uint outOff;
} pcs;
shared float bufA[BM * (BK+1)];
shared float bufB[BN * (BK+1)];
void main() {
const int ir = int(gl_WorkGroupID.x);
const int ic = int(gl_WorkGroupID.y);
const int rstride = BM / TM;
const int lr = int(gl_WorkGroupID.x % rstride);
const int lc = int(gl_WorkGroupID.x / rstride);
const int loadr = int(gl_WorkGroupID.x % BK);
const int loadc = int(gl_WorkGroupID.x / BK);
const int loadstride = int(gl_WorkGroupSize.x);
int posA = ir * BM * pcs.inAStride;
int posB = ic * BN * pcs.inBStride;
float sums[TM * TN];
float cacheA[TM];
float cacheB[TN];
[[unroll]] for (int i = 0; i < TM*TN; i++) {
sums[i] = 0.0f;
}
[[unroll]] for (int block = 0; block < pcs.K; block += BK) {
[[unroll]] for (int l = 0; l < BM * BK; l += loadstride) {
const int lr = l % BK;
const int lc = l / BK;
bufA[(loadc + lc) * (BK+1) + loadr + lr] = inA[posA + (loadc + lc) * pcs.inAStride + loadr + lr + pcs.inAOff];
}
[[unroll]] for (int l = 0; l < BN * BK; l += loadstride) {
const int lr = l % BK;
const int lc = l / BK;
bufB[(loadc + lc) * (BK+1) + loadr + lr] = inB[posB + (loadc + lc) * pcs.inBStride + loadr + lr + pcs.inBOff];
}
barrier();
memoryBarrierShared();
posA += BK;
posB += BK;
[[unroll]] for (int i = 0; i < BK; i++) {
// Load from shared into cache
[[unroll]] for (int j = 0; j < BM; j++) {
cacheA[j] = bufA[(lr + j*rstride) * (BK+1) + i];
}
[[unroll]] for (int j = 0; j < TN; j++) {
cacheB[j] = bufB[(lc * TN + j) * (BK+1) + i];
}
[[unroll]] for (int cc = 0; cc < TN; cc++) {
[[unroll]] for (int cr = 0; cr < TM; cr++) {
sums[cc * TM + cr] += cacheA[cr] * cacheB[cc];
}
}
}
barrier();
}
const int dr = ir * BM + lr;
const int dc = ic * BN + lc * TN;
[[unroll]] for (int cc = 0; cc < TN; cc++) {
[[unroll]] for (int cr = 0; cr < TM; cr++) {
out_[(dc + cc) * pcs.outStride + dr + cr*rstride + pcs.outOff] = sums[cc * TM + cr];
}
}
}
);
void ggml_vk_mul_mat_f32(kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& inA, uint32_t inAOff,
const std::shared_ptr<kp::Tensor>& inB, uint32_t inBOff,
const std::shared_ptr<kp::Tensor>& out, uint32_t outOff,
int64_t ne00, int64_t ne01, int64_t ne02, uint64_t ne03,
int64_t ne10, int64_t ne11,
int nb2, int nb3) {
const static auto spirv = glsl_compile_source(program_source_head+program_mul_mat_f32, __func__);
struct PushConstants {
int32_t M, N, K, inAStride, inBStride, outStride;
uint32_t inAOff, inBOff, outOff;
} pushConsts {
(int)ne01, (int)ne11, (int)ne10, (int)ne00, (int)ne10, (int)ne01,
inAOff, inBOff, outOff
};
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
auto off = i02*nb2 + i03*nb3;
pushConsts.inAOff = inAOff + off;
pushConsts.inBOff = inBOff + off;
pushConsts.outOff = outOff + off;
seq.record<kp::OpAlgoDispatch>(mgr.algorithm<float, PushConstants>({inA, inB, out}, spirv, {uint32_t(ne01/128), uint32_t(ne11/128)}, {}, {pushConsts}));
}
}
}
void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) { void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
printf("%s: evaluating graph\n", __func__); printf("%s: evaluating graph\n", __func__);
@ -1266,11 +1177,7 @@ void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph
} break; } break;
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
{ {
if (src0->type == GGML_TYPE_F32 if (src0->type == GGML_TYPE_F16
&& src1->type == GGML_TYPE_F32) {
ggml_vk_mul_mat_f32(seq, id_src0, offs_src0, id_src1, offs_src1, id_dst, offs_dst, ne00, ne01, ne02, ne03, ne10, ne11, nb2, nb3);
break;
} else if (src0->type == GGML_TYPE_F16
&& src1->type == GGML_TYPE_F32) { && src1->type == GGML_TYPE_F32) {
ggml_vk_mul_mat_f16(seq, id_src0, offs_src0, id_src1, offs_src1, id_dst, offs_dst, ne00, ne01, ne02, ne03, ne10, ne11, nb10, nb11, nb12, nb13, nb2, nb3); ggml_vk_mul_mat_f16(seq, id_src0, offs_src0, id_src1, offs_src1, id_dst, offs_dst, ne00, ne01, ne02, ne03, ne10, ne11, nb10, nb11, nb12, nb13, nb2, nb3);
break; break;