Merge branch 'ggerganov:master' into server-chat-templates-custom
This commit is contained in:
commit
33761375d2
11 changed files with 792 additions and 471 deletions
161
.clang-format
Normal file
161
.clang-format
Normal file
|
@ -0,0 +1,161 @@
|
|||
---
|
||||
Language: Cpp
|
||||
AlignAfterOpenBracket: Align
|
||||
AlignArrayOfStructures: Left
|
||||
AlignConsecutiveAssignments: AcrossComments
|
||||
AlignConsecutiveBitFields: AcrossComments
|
||||
AlignConsecutiveDeclarations: AcrossComments
|
||||
AlignConsecutiveMacros: AcrossComments
|
||||
# AlignConsecutiveShortCaseStatements: AcrossComments
|
||||
AlignEscapedNewlines: Left # LeftWithLastLine
|
||||
AlignOperands: Align
|
||||
AlignTrailingComments:
|
||||
Kind: Always
|
||||
OverEmptyLines: 1
|
||||
AllowAllArgumentsOnNextLine: true
|
||||
AllowAllParametersOfDeclarationOnNextLine: false
|
||||
# AllowBreakBeforeNoexceptSpecifier: OnlyWithParen
|
||||
AllowShortBlocksOnASingleLine: Never
|
||||
AllowShortCaseLabelsOnASingleLine: false
|
||||
AllowShortFunctionsOnASingleLine: Inline
|
||||
AllowShortIfStatementsOnASingleLine: Never
|
||||
AllowShortLambdasOnASingleLine: Inline
|
||||
AllowShortLoopsOnASingleLine: false
|
||||
AlwaysBreakBeforeMultilineStrings: true
|
||||
BinPackArguments: true
|
||||
BinPackParameters: true # OnePerLine
|
||||
BitFieldColonSpacing: Both
|
||||
BreakBeforeBraces: Custom # Attach
|
||||
BraceWrapping:
|
||||
AfterCaseLabel: true
|
||||
AfterClass: false
|
||||
AfterControlStatement: false
|
||||
AfterEnum: false
|
||||
AfterFunction: false
|
||||
AfterNamespace: false
|
||||
AfterObjCDeclaration: false
|
||||
AfterStruct: false
|
||||
AfterUnion: false
|
||||
AfterExternBlock: false
|
||||
BeforeCatch: false
|
||||
BeforeElse: false
|
||||
BeforeLambdaBody: false
|
||||
BeforeWhile: false
|
||||
IndentBraces: false
|
||||
SplitEmptyFunction: false
|
||||
SplitEmptyRecord: false
|
||||
SplitEmptyNamespace: false
|
||||
# BreakAdjacentStringLiterals: true
|
||||
BreakAfterAttributes: Never
|
||||
BreakBeforeBinaryOperators: None
|
||||
BreakBeforeInlineASMColon: OnlyMultiline
|
||||
BreakBeforeTernaryOperators: false
|
||||
# BreakBinaryOperations: Never
|
||||
BreakConstructorInitializers: AfterColon
|
||||
# BreakFunctionDefinitionParameters: false
|
||||
BreakInheritanceList: AfterComma
|
||||
BreakStringLiterals: true
|
||||
# BreakTemplateDeclarations: Yes
|
||||
ColumnLimit: 120
|
||||
CommentPragmas: '^ IWYU pragma:'
|
||||
CompactNamespaces: false
|
||||
ConstructorInitializerIndentWidth: 4
|
||||
ContinuationIndentWidth: 4
|
||||
Cpp11BracedListStyle: false
|
||||
DerivePointerAlignment: false
|
||||
DisableFormat: false
|
||||
EmptyLineBeforeAccessModifier: Leave
|
||||
EmptyLineAfterAccessModifier: Never
|
||||
ExperimentalAutoDetectBinPacking: false
|
||||
FixNamespaceComments: true
|
||||
IncludeBlocks: Regroup
|
||||
IncludeCategories:
|
||||
- Regex: '^<.*\.h>'
|
||||
Priority: 1
|
||||
SortPriority: 0
|
||||
- Regex: '^<.*'
|
||||
Priority: 2
|
||||
SortPriority: 0
|
||||
- Regex: '.*'
|
||||
Priority: 3
|
||||
SortPriority: 0
|
||||
IncludeIsMainRegex: '([-_](test|unittest))?$'
|
||||
IncludeIsMainSourceRegex: ''
|
||||
IndentAccessModifiers: false
|
||||
IndentCaseBlocks: true
|
||||
IndentCaseLabels: true
|
||||
IndentExternBlock: NoIndent
|
||||
IndentGotoLabels: false
|
||||
IndentPPDirectives: AfterHash
|
||||
IndentWidth: 4
|
||||
IndentWrappedFunctionNames: false
|
||||
InsertBraces: true # NOTE: may lead to incorrect formatting
|
||||
InsertNewlineAtEOF: true
|
||||
JavaScriptQuotes: Leave
|
||||
JavaScriptWrapImports: true
|
||||
KeepEmptyLinesAtTheStartOfBlocks: false
|
||||
LambdaBodyIndentation: Signature
|
||||
LineEnding: LF
|
||||
MacroBlockBegin: ''
|
||||
MacroBlockEnd: ''
|
||||
MaxEmptyLinesToKeep: 1
|
||||
NamespaceIndentation: None
|
||||
ObjCBinPackProtocolList: Auto
|
||||
ObjCBlockIndentWidth: 4
|
||||
ObjCSpaceAfterProperty: true
|
||||
ObjCSpaceBeforeProtocolList: true
|
||||
PPIndentWidth: -1
|
||||
PackConstructorInitializers: CurrentLine
|
||||
PenaltyBreakAssignment: 2
|
||||
PenaltyBreakBeforeFirstCallParameter: 1
|
||||
PenaltyBreakComment: 300
|
||||
PenaltyBreakFirstLessLess: 120
|
||||
PenaltyBreakString: 1000
|
||||
PenaltyBreakTemplateDeclaration: 10
|
||||
PenaltyExcessCharacter: 1000000
|
||||
PenaltyReturnTypeOnItsOwnLine: 200
|
||||
PointerAlignment: Middle
|
||||
QualifierAlignment: Left
|
||||
#QualifierOrder: ['static', 'inline', 'friend', 'constexpr', 'const', 'volatile', 'type', 'restrict']
|
||||
RawStringFormats:
|
||||
- Language: Cpp
|
||||
Delimiters:
|
||||
- cc
|
||||
- CC
|
||||
- cpp
|
||||
- Cpp
|
||||
- CPP
|
||||
- 'c++'
|
||||
- 'C++'
|
||||
CanonicalDelimiter: ''
|
||||
ReferenceAlignment: Middle
|
||||
ReflowComments: false # IndentOnly
|
||||
SeparateDefinitionBlocks: Always
|
||||
SortIncludes: CaseInsensitive
|
||||
SortUsingDeclarations: LexicographicNumeric
|
||||
SpaceAfterCStyleCast: true
|
||||
SpaceAfterLogicalNot: false
|
||||
SpaceAfterTemplateKeyword: true
|
||||
SpaceBeforeAssignmentOperators: true
|
||||
SpaceBeforeCpp11BracedList: false
|
||||
SpaceBeforeCtorInitializerColon: true
|
||||
SpaceBeforeInheritanceColon: true
|
||||
SpaceBeforeParens: ControlStatements
|
||||
SpaceBeforeRangeBasedForLoopColon: true
|
||||
SpaceInEmptyBlock: false
|
||||
SpaceInEmptyParentheses: false
|
||||
SpacesBeforeTrailingComments: 2
|
||||
SpacesInAngles: Never
|
||||
SpacesInContainerLiterals: true
|
||||
SpacesInLineCommentPrefix:
|
||||
Minimum: 1
|
||||
Maximum: -1
|
||||
SpacesInParentheses: false
|
||||
SpacesInSquareBrackets: false
|
||||
SpaceBeforeSquareBrackets: false
|
||||
Standard: c++17
|
||||
TabWidth: 4
|
||||
UseTab: Never
|
||||
WhitespaceSensitiveMacros: ['STRINGIZE']
|
||||
...
|
||||
|
|
@ -3,12 +3,60 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
|
|||
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
|
||||
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
|
||||
|
||||
set(GGML_STATIC @GGML_STATIC@)
|
||||
set(GGML_NATIVE @GGML_NATIVE@)
|
||||
set(GGML_LTO @GGML_LTO@)
|
||||
set(GGML_CCACHE @GGML_CCACHE@)
|
||||
set(GGML_AVX @GGML_AVX@)
|
||||
set(GGML_AVX2 @GGML_AVX2@)
|
||||
set(GGML_AVX512 @GGML_AVX512@)
|
||||
set(GGML_AVX512_VBMI @GGML_AVX512_VBMI@)
|
||||
set(GGML_AVX512_VNNI @GGML_AVX512_VNNI@)
|
||||
set(GGML_AVX512_BF16 @GGML_AVX512_BF16@)
|
||||
set(GGML_AMX_TILE @GGML_AMX_TILE@)
|
||||
set(GGML_AMX_INT8 @GGML_AMX_INT8@)
|
||||
set(GGML_AMX_BF16 @GGML_AMX_BF16@)
|
||||
set(GGML_FMA @GGML_FMA@)
|
||||
set(GGML_LASX @GGML_LASX@)
|
||||
set(GGML_LSX @GGML_LSX@)
|
||||
set(GGML_RVV @GGML_RVV@)
|
||||
set(GGML_SVE @GGML_SVE@)
|
||||
|
||||
set(GGML_ACCELERATE @GGML_ACCELERATE@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_CPU_HBM @GGML_CPU_HBM@)
|
||||
set(GGML_BLAS_VENDOR @GGML_BLAS_VENDOR@)
|
||||
|
||||
set(GGML_CUDA_FORCE_MMQ @GGML_CUDA_FORCE_MMQ@)
|
||||
set(GGML_CUDA_FORCE_CUBLAS @GGML_CUDA_FORCE_CUBLAS@)
|
||||
set(GGML_CUDA_F16 @GGML_CUDA_F16@)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE @GGML_CUDA_PEER_MAX_BATCH_SIZE@)
|
||||
set(GGML_CUDA_NO_PEER_COPY @GGML_CUDA_NO_PEER_COPY@)
|
||||
set(GGML_CUDA_NO_VMM @GGML_CUDA_NO_VMM@)
|
||||
set(GGML_CUDA_FA_ALL_QUANTS @GGML_CUDA_FA_ALL_QUANTS@)
|
||||
set(GGML_CUDA_GRAPHS @GGML_CUDA_GRAPHS@)
|
||||
|
||||
set(GGML_HIP_UMA @GGML_HIP_UMA@)
|
||||
|
||||
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_SHADER_DEBUG_INFO @GGML_VULKAN_SHADER_DEBUG_INFO@)
|
||||
set(GGML_VULKAN_PERF @GGML_VULKAN_PERF@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_VULKAN_RUN_TESTS @GGML_VULKAN_RUN_TESTS@)
|
||||
|
||||
set(GGML_METAL_USE_BF16 @GGML_METAL_USE_BF16@)
|
||||
set(GGML_METAL_NDEBUG @GGML_METAL_NDEBUG@)
|
||||
set(GGML_METAL_SHADER_DEBUG @GGML_METAL_SHADER_DEBUG@)
|
||||
set(GGML_METAL_EMBED_LIBRARY @GGML_METAL_EMBED_LIBRARY@)
|
||||
set(GGML_METAL_MACOSX_VERSION_MIN @GGML_METAL_MACOSX_VERSION_MIN@)
|
||||
set(GGML_METAL_STD @GGML_METAL_STD@)
|
||||
|
||||
set(GGML_SYCL_F16 @GGML_SYCL_F16@)
|
||||
set(GGML_SYCL_TARGET @GGML_SYCL_TARGET@)
|
||||
set(GGML_SYCL_DEVICE_ARCH @GGML_SYCL_DEVICE_ARCH@)
|
||||
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
|
@ -20,6 +68,7 @@ find_package(Threads REQUIRED)
|
|||
|
||||
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
|
||||
set(_llama_link_deps "")
|
||||
set(_llama_link_opts "")
|
||||
foreach(_ggml_lib ggml ggml-base)
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
|
@ -49,12 +98,26 @@ foreach(backend amx blas cann cpu cuda hip kompute metal musa rpc sycl vulkan)
|
|||
endif()
|
||||
endforeach()
|
||||
|
||||
if (NOT LLAMA_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND _llama_link_deps ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND _llama_link_deps OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND _llama_link_deps memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND _llama_link_deps ${BLAS_LIBRARIES})
|
||||
list(APPEND _llama_link_opts ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
|
@ -65,25 +128,33 @@ if (GGML_METAL)
|
|||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
list(APPEND _llama_link_deps ${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND _llama_link_deps Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND _llama_link_deps hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND _llama_link_deps DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND _llama_link_deps IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
endif()
|
||||
|
||||
find_library(llama_LIBRARY llama
|
||||
|
@ -97,6 +168,7 @@ set_target_properties(llama
|
|||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
||||
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
||||
INTERFACE_LINK_OPTIONS "${_llama_link_opts}"
|
||||
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${llama_LIBRARY}"
|
||||
|
|
|
@ -6,21 +6,21 @@
|
|||
#include <clocale>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <cstdlib>
|
||||
#include <iterator>
|
||||
#include <map>
|
||||
#include <numeric>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
|
@ -36,8 +36,7 @@ static uint64_t get_time_ns() {
|
|||
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
|
||||
}
|
||||
|
||||
template<class T>
|
||||
static std::string join(const std::vector<T> & values, const std::string & delim) {
|
||||
template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
|
||||
std::ostringstream str;
|
||||
for (size_t i = 0; i < values.size(); i++) {
|
||||
str << values[i];
|
||||
|
@ -48,15 +47,13 @@ static std::string join(const std::vector<T> & values, const std::string & delim
|
|||
return str.str();
|
||||
}
|
||||
|
||||
template<typename T, typename F>
|
||||
static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
|
||||
template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
|
||||
std::vector<std::string> str_values;
|
||||
std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
|
||||
return str_values;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static T avg(const std::vector<T> & v) {
|
||||
template <typename T> static T avg(const std::vector<T> & v) {
|
||||
if (v.empty()) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -64,8 +61,7 @@ static T avg(const std::vector<T> & v) {
|
|||
return sum / (T) v.size();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static T stdev(const std::vector<T> & v) {
|
||||
template <typename T> static T stdev(const std::vector<T> & v) {
|
||||
if (v.size() <= 1) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -104,13 +100,20 @@ enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL};
|
|||
|
||||
static const char * output_format_str(output_formats format) {
|
||||
switch (format) {
|
||||
case NONE: return "none";
|
||||
case CSV: return "csv";
|
||||
case JSON: return "json";
|
||||
case JSONL: return "jsonl";
|
||||
case MARKDOWN: return "md";
|
||||
case SQL: return "sql";
|
||||
default: GGML_ABORT("invalid output format");
|
||||
case NONE:
|
||||
return "none";
|
||||
case CSV:
|
||||
return "csv";
|
||||
case JSON:
|
||||
return "json";
|
||||
case JSONL:
|
||||
return "jsonl";
|
||||
case MARKDOWN:
|
||||
return "md";
|
||||
case SQL:
|
||||
return "sql";
|
||||
default:
|
||||
GGML_ABORT("invalid output format");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -135,10 +138,14 @@ static bool output_format_from_str(const std::string & s, output_formats & forma
|
|||
|
||||
static const char * split_mode_str(llama_split_mode mode) {
|
||||
switch (mode) {
|
||||
case LLAMA_SPLIT_MODE_NONE: return "none";
|
||||
case LLAMA_SPLIT_MODE_LAYER: return "layer";
|
||||
case LLAMA_SPLIT_MODE_ROW: return "row";
|
||||
default: GGML_ABORT("invalid split mode");
|
||||
case LLAMA_SPLIT_MODE_NONE:
|
||||
return "none";
|
||||
case LLAMA_SPLIT_MODE_LAYER:
|
||||
return "layer";
|
||||
case LLAMA_SPLIT_MODE_ROW:
|
||||
return "row";
|
||||
default:
|
||||
GGML_ABORT("invalid split mode");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -218,38 +225,59 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||
printf("options:\n");
|
||||
printf(" -h, --help\n");
|
||||
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
|
||||
printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
|
||||
printf(" -pg <pp,tg> (default: %s)\n",
|
||||
join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ub, --ubatch-size <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk, --cache-type-k <t> (default: %s)\n",
|
||||
join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv, --cache-type-v <t> (default: %s)\n",
|
||||
join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
|
||||
join(cmd_params_defaults.cpu_mask, ",").c_str());
|
||||
printf(" --cpu-strict <0|1> (default: %s)\n",
|
||||
join(cmd_params_defaults.cpu_strict, ",").c_str());
|
||||
printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
if (llama_supports_rpc()) {
|
||||
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
|
||||
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
|
||||
join(cmd_params_defaults.rpc_servers, ",").c_str());
|
||||
}
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
|
||||
join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n",
|
||||
join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
|
||||
join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -fa, --flash-attn <0|1> (default: %s)\n",
|
||||
join(cmd_params_defaults.flash_attn, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n",
|
||||
join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
|
||||
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
|
||||
printf(" -embd, --embeddings <0|1> (default: %s)\n",
|
||||
join(cmd_params_defaults.embeddings, ",").c_str());
|
||||
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
|
||||
printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
|
||||
printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
|
||||
printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
|
||||
printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n",
|
||||
output_format_str(cmd_params_defaults.output_format));
|
||||
printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n",
|
||||
output_format_str(cmd_params_defaults.output_format_stderr));
|
||||
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
||||
printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
|
||||
printf("\n");
|
||||
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
|
||||
printf(
|
||||
"Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter "
|
||||
"multiple times.\n");
|
||||
}
|
||||
|
||||
static ggml_type ggml_type_from_name(const std::string & s) {
|
||||
|
@ -281,7 +309,6 @@ static ggml_type ggml_type_from_name(const std::string & s) {
|
|||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
|
||||
|
||||
static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
cmd_params params;
|
||||
std::string arg;
|
||||
|
@ -476,10 +503,16 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
break;
|
||||
} else {
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
|
||||
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
|
||||
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
|
||||
else { invalid_param = true; break; }
|
||||
/**/ if (value == "distribute" || value == "") {
|
||||
params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
|
||||
} else if (value == "isolate") {
|
||||
params.numa = GGML_NUMA_STRATEGY_ISOLATE;
|
||||
} else if (value == "numactl") {
|
||||
params.numa = GGML_NUMA_STRATEGY_NUMACTL;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else if (arg == "-fa" || arg == "--flash-attn") {
|
||||
if (++i >= argc) {
|
||||
|
@ -570,27 +603,69 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// set defaults
|
||||
if (params.model.empty()) { params.model = cmd_params_defaults.model; }
|
||||
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
|
||||
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
|
||||
if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
|
||||
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
|
||||
if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
|
||||
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
||||
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
|
||||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||
if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
|
||||
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
|
||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
|
||||
if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
|
||||
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
||||
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
|
||||
if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
|
||||
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
||||
if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
|
||||
if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
|
||||
if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
|
||||
if (params.model.empty()) {
|
||||
params.model = cmd_params_defaults.model;
|
||||
}
|
||||
if (params.n_prompt.empty()) {
|
||||
params.n_prompt = cmd_params_defaults.n_prompt;
|
||||
}
|
||||
if (params.n_gen.empty()) {
|
||||
params.n_gen = cmd_params_defaults.n_gen;
|
||||
}
|
||||
if (params.n_pg.empty()) {
|
||||
params.n_pg = cmd_params_defaults.n_pg;
|
||||
}
|
||||
if (params.n_batch.empty()) {
|
||||
params.n_batch = cmd_params_defaults.n_batch;
|
||||
}
|
||||
if (params.n_ubatch.empty()) {
|
||||
params.n_ubatch = cmd_params_defaults.n_ubatch;
|
||||
}
|
||||
if (params.type_k.empty()) {
|
||||
params.type_k = cmd_params_defaults.type_k;
|
||||
}
|
||||
if (params.type_v.empty()) {
|
||||
params.type_v = cmd_params_defaults.type_v;
|
||||
}
|
||||
if (params.n_gpu_layers.empty()) {
|
||||
params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
|
||||
}
|
||||
if (params.rpc_servers.empty()) {
|
||||
params.rpc_servers = cmd_params_defaults.rpc_servers;
|
||||
}
|
||||
if (params.split_mode.empty()) {
|
||||
params.split_mode = cmd_params_defaults.split_mode;
|
||||
}
|
||||
if (params.main_gpu.empty()) {
|
||||
params.main_gpu = cmd_params_defaults.main_gpu;
|
||||
}
|
||||
if (params.no_kv_offload.empty()) {
|
||||
params.no_kv_offload = cmd_params_defaults.no_kv_offload;
|
||||
}
|
||||
if (params.flash_attn.empty()) {
|
||||
params.flash_attn = cmd_params_defaults.flash_attn;
|
||||
}
|
||||
if (params.tensor_split.empty()) {
|
||||
params.tensor_split = cmd_params_defaults.tensor_split;
|
||||
}
|
||||
if (params.use_mmap.empty()) {
|
||||
params.use_mmap = cmd_params_defaults.use_mmap;
|
||||
}
|
||||
if (params.embeddings.empty()) {
|
||||
params.embeddings = cmd_params_defaults.embeddings;
|
||||
}
|
||||
if (params.n_threads.empty()) {
|
||||
params.n_threads = cmd_params_defaults.n_threads;
|
||||
}
|
||||
if (params.cpu_mask.empty()) {
|
||||
params.cpu_mask = cmd_params_defaults.cpu_mask;
|
||||
}
|
||||
if (params.cpu_strict.empty()) {
|
||||
params.cpu_strict = cmd_params_defaults.cpu_strict;
|
||||
}
|
||||
if (params.poll.empty()) {
|
||||
params.poll = cmd_params_defaults.poll;
|
||||
}
|
||||
|
||||
return params;
|
||||
}
|
||||
|
@ -633,12 +708,8 @@ struct cmd_params_instance {
|
|||
}
|
||||
|
||||
bool equal_mparams(const cmd_params_instance & other) const {
|
||||
return model == other.model &&
|
||||
n_gpu_layers == other.n_gpu_layers &&
|
||||
rpc_servers == other.rpc_servers &&
|
||||
split_mode == other.split_mode &&
|
||||
main_gpu == other.main_gpu &&
|
||||
use_mmap == other.use_mmap &&
|
||||
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers &&
|
||||
split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
|
||||
tensor_split == other.tensor_split;
|
||||
}
|
||||
|
||||
|
@ -662,6 +733,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
std::vector<cmd_params_instance> instances;
|
||||
|
||||
// this ordering minimizes the number of times that each model needs to be reloaded
|
||||
// clang-format off
|
||||
for (const auto & m : params.model)
|
||||
for (const auto & nl : params.n_gpu_layers)
|
||||
for (const auto & rpc : params.rpc_servers)
|
||||
|
@ -767,6 +839,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
instances.push_back(instance);
|
||||
}
|
||||
}
|
||||
// clang-format on
|
||||
|
||||
return instances;
|
||||
}
|
||||
|
@ -834,28 +907,21 @@ struct test {
|
|||
(void) ctx;
|
||||
}
|
||||
|
||||
uint64_t avg_ns() const {
|
||||
return ::avg(samples_ns);
|
||||
}
|
||||
uint64_t avg_ns() const { return ::avg(samples_ns); }
|
||||
|
||||
uint64_t stdev_ns() const {
|
||||
return ::stdev(samples_ns);
|
||||
}
|
||||
uint64_t stdev_ns() const { return ::stdev(samples_ns); }
|
||||
|
||||
std::vector<double> get_ts() const {
|
||||
int n_tokens = n_prompt + n_gen;
|
||||
std::vector<double> ts;
|
||||
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
|
||||
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
|
||||
[n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
|
||||
return ts;
|
||||
}
|
||||
|
||||
double avg_ts() const {
|
||||
return ::avg(get_ts());
|
||||
}
|
||||
double avg_ts() const { return ::avg(get_ts()); }
|
||||
|
||||
double stdev_ts() const {
|
||||
return ::stdev(get_ts());
|
||||
}
|
||||
double stdev_ts() const { return ::stdev(get_ts()); }
|
||||
|
||||
static std::string get_backend() {
|
||||
std::vector<std::string> backends;
|
||||
|
@ -871,17 +937,11 @@ struct test {
|
|||
|
||||
static const std::vector<std::string> & get_fields() {
|
||||
static const std::vector<std::string> fields = {
|
||||
"build_commit", "build_number",
|
||||
"cpu_info", "gpu_info", "backends",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_ubatch",
|
||||
"n_threads", "cpu_mask", "cpu_strict", "poll",
|
||||
"type_k", "type_v",
|
||||
"n_gpu_layers", "split_mode",
|
||||
"main_gpu", "no_kv_offload", "flash_attn",
|
||||
"tensor_split", "use_mmap", "embeddings",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
|
||||
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
|
||||
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
|
||||
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "use_mmap",
|
||||
"embeddings", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns",
|
||||
"avg_ts", "stddev_ts",
|
||||
};
|
||||
return fields;
|
||||
|
@ -890,17 +950,14 @@ struct test {
|
|||
enum field_type { STRING, BOOL, INT, FLOAT };
|
||||
|
||||
static field_type get_field_type(const std::string & field) {
|
||||
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
|
||||
field == "n_threads" || field == "poll" ||
|
||||
field == "model_size" || field == "model_n_params" ||
|
||||
field == "n_gpu_layers" || field == "main_gpu" ||
|
||||
field == "n_prompt" || field == "n_gen" ||
|
||||
field == "avg_ns" || field == "stddev_ns") {
|
||||
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
|
||||
field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
|
||||
field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "avg_ns" ||
|
||||
field == "stddev_ns") {
|
||||
return INT;
|
||||
}
|
||||
if (field == "f16_kv" || field == "no_kv_offload" ||
|
||||
field == "cpu_strict" ||
|
||||
field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
|
||||
if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
|
||||
field == "use_mmap" || field == "embeddings") {
|
||||
return BOOL;
|
||||
}
|
||||
if (field == "avg_ts" || field == "stddev_ts") {
|
||||
|
@ -925,20 +982,38 @@ struct test {
|
|||
tensor_split_str += "/";
|
||||
}
|
||||
}
|
||||
std::vector<std::string> values = {
|
||||
build_commit, std::to_string(build_number),
|
||||
cpu_info, gpu_info, get_backend(),
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_ubatch),
|
||||
std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
|
||||
ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers), split_mode_str(split_mode),
|
||||
std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
|
||||
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
|
||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
||||
};
|
||||
std::vector<std::string> values = { build_commit,
|
||||
std::to_string(build_number),
|
||||
cpu_info,
|
||||
gpu_info,
|
||||
get_backend(),
|
||||
model_filename,
|
||||
model_type,
|
||||
std::to_string(model_size),
|
||||
std::to_string(model_n_params),
|
||||
std::to_string(n_batch),
|
||||
std::to_string(n_ubatch),
|
||||
std::to_string(n_threads),
|
||||
cpu_mask,
|
||||
std::to_string(cpu_strict),
|
||||
std::to_string(poll),
|
||||
ggml_type_name(type_k),
|
||||
ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers),
|
||||
split_mode_str(split_mode),
|
||||
std::to_string(main_gpu),
|
||||
std::to_string(no_kv_offload),
|
||||
std::to_string(flash_attn),
|
||||
tensor_split_str,
|
||||
std::to_string(use_mmap),
|
||||
std::to_string(embeddings),
|
||||
std::to_string(n_prompt),
|
||||
std::to_string(n_gen),
|
||||
test_time,
|
||||
std::to_string(avg_ns()),
|
||||
std::to_string(stdev_ns()),
|
||||
std::to_string(avg_ts()),
|
||||
std::to_string(stdev_ts()) };
|
||||
return values;
|
||||
}
|
||||
|
||||
|
@ -946,8 +1021,8 @@ struct test {
|
|||
std::map<std::string, std::string> map;
|
||||
auto fields = get_fields();
|
||||
auto values = get_values();
|
||||
std::transform(fields.begin(), fields.end(), values.begin(),
|
||||
std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
|
||||
std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
|
||||
std::make_pair<const std::string &, const std::string &>);
|
||||
return map;
|
||||
}
|
||||
};
|
||||
|
@ -961,8 +1036,11 @@ struct printer {
|
|||
virtual ~printer() {}
|
||||
|
||||
FILE * fout;
|
||||
|
||||
virtual void print_header(const cmd_params & params) { (void) params; }
|
||||
|
||||
virtual void print_test(const test & t) = 0;
|
||||
|
||||
virtual void print_footer() {}
|
||||
};
|
||||
|
||||
|
@ -992,7 +1070,6 @@ struct csv_printer : public printer {
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
static std::string escape_json(const std::string & value) {
|
||||
std::string escaped;
|
||||
for (auto c : value) {
|
||||
|
@ -1033,7 +1110,8 @@ struct json_printer : public printer {
|
|||
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
|
||||
assert(fields.size() == values.size());
|
||||
for (size_t i = 0; i < fields.size(); i++) {
|
||||
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
|
||||
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
|
||||
format_json_value(fields.at(i), values.at(i)).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1051,12 +1129,9 @@ struct json_printer : public printer {
|
|||
fflush(fout);
|
||||
}
|
||||
|
||||
void print_footer() override {
|
||||
fprintf(fout, "\n]\n");
|
||||
}
|
||||
void print_footer() override { fprintf(fout, "\n]\n"); }
|
||||
};
|
||||
|
||||
|
||||
struct jsonl_printer : public printer {
|
||||
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
|
||||
assert(fields.size() == values.size());
|
||||
|
@ -1303,7 +1378,8 @@ struct sql_printer : public printer {
|
|||
std::vector<std::string> fields = test::get_fields();
|
||||
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
|
||||
for (size_t i = 0; i < fields.size(); i++) {
|
||||
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
|
||||
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
|
||||
i < fields.size() - 1 ? "," : "");
|
||||
}
|
||||
fprintf(fout, ");\n");
|
||||
fprintf(fout, "\n");
|
||||
|
@ -1505,13 +1581,15 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if (t.n_prompt > 0) {
|
||||
if (params.progress) {
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps);
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count,
|
||||
i + 1, params.reps);
|
||||
}
|
||||
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
|
||||
}
|
||||
if (t.n_gen > 0) {
|
||||
if (params.progress) {
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps);
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count,
|
||||
i + 1, params.reps);
|
||||
}
|
||||
test_gen(ctx, t.n_gen, t.n_threads);
|
||||
}
|
||||
|
|
|
@ -252,6 +252,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
|
|||
}
|
||||
|
||||
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
if (size == 0) {
|
||||
|
@ -266,6 +267,7 @@ void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, siz
|
|||
}
|
||||
|
||||
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
if (size == 0) {
|
||||
|
@ -884,9 +886,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
// do not overwrite user assignments
|
||||
if (*node_backend_id == -1) {
|
||||
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
|
||||
|
|
|
@ -295,6 +295,9 @@ struct ggml_cgraph {
|
|||
enum ggml_cgraph_eval_order order;
|
||||
};
|
||||
|
||||
// returns a slice of cgraph with nodes [i0, i1)
|
||||
// the slice does not have leafs or gradients
|
||||
// if you need the gradients, get them from the original graph
|
||||
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
|
||||
|
||||
// Memory allocation
|
||||
|
|
|
@ -14,51 +14,51 @@
|
|||
#include <vector>
|
||||
|
||||
struct ggml_opt_dataset {
|
||||
struct ggml_context * ctx;
|
||||
ggml_backend_buffer_t buf;
|
||||
struct ggml_tensor * data;
|
||||
struct ggml_tensor * labels;
|
||||
struct ggml_context * ctx = nullptr;
|
||||
ggml_backend_buffer_t buf = nullptr;
|
||||
struct ggml_tensor * data = nullptr;
|
||||
struct ggml_tensor * labels = nullptr;
|
||||
|
||||
int64_t ndata;
|
||||
int64_t ndata_shard;
|
||||
size_t nbs_data;
|
||||
size_t nbs_labels;
|
||||
int64_t ndata = -1;
|
||||
int64_t ndata_shard = -1;
|
||||
size_t nbs_data = -1;
|
||||
size_t nbs_labels = -1;
|
||||
|
||||
std::vector<int64_t> permutation;
|
||||
};
|
||||
|
||||
struct ggml_opt_context {
|
||||
ggml_backend_sched_t backend_sched;
|
||||
ggml_cgraph * allocated_graph;
|
||||
ggml_cgraph * allocated_graph_copy;
|
||||
struct ggml_context * ctx_static;
|
||||
struct ggml_context * ctx_static_cpu;
|
||||
struct ggml_context * ctx_compute;
|
||||
struct ggml_context * ctx_copy;
|
||||
ggml_backend_buffer_t buf_static;
|
||||
ggml_backend_buffer_t buf_static_cpu;
|
||||
ggml_backend_sched_t backend_sched = nullptr;
|
||||
ggml_cgraph * allocated_graph = nullptr;
|
||||
ggml_cgraph * allocated_graph_copy = nullptr;
|
||||
struct ggml_context * ctx_static = nullptr;
|
||||
struct ggml_context * ctx_static_cpu = nullptr;
|
||||
struct ggml_context * ctx_compute = nullptr;
|
||||
struct ggml_context * ctx_copy = nullptr;
|
||||
ggml_backend_buffer_t buf_static = nullptr;
|
||||
ggml_backend_buffer_t buf_static_cpu = nullptr;
|
||||
std::mt19937 rng;
|
||||
|
||||
struct ggml_tensor * inputs;
|
||||
struct ggml_tensor * outputs;
|
||||
struct ggml_tensor * labels;
|
||||
struct ggml_tensor * inputs = nullptr;
|
||||
struct ggml_tensor * outputs = nullptr;
|
||||
struct ggml_tensor * labels = nullptr;
|
||||
|
||||
struct ggml_tensor * loss;
|
||||
struct ggml_tensor * pred;
|
||||
struct ggml_tensor * ncorrect;
|
||||
struct ggml_tensor * loss = nullptr;
|
||||
struct ggml_tensor * pred = nullptr;
|
||||
struct ggml_tensor * ncorrect = nullptr;
|
||||
|
||||
struct ggml_cgraph * gf;
|
||||
struct ggml_cgraph * gb_grad;
|
||||
struct ggml_cgraph * gb_opt;
|
||||
struct ggml_cgraph * gf = nullptr;
|
||||
struct ggml_cgraph * gb_grad = nullptr;
|
||||
struct ggml_cgraph * gb_opt = nullptr;
|
||||
|
||||
int64_t iter;
|
||||
int32_t opt_period;
|
||||
int32_t opt_i;
|
||||
bool loss_per_datapoint;
|
||||
int64_t iter = 1;
|
||||
int32_t opt_period = 1;
|
||||
int32_t opt_i = 0;
|
||||
bool loss_per_datapoint = false;
|
||||
|
||||
ggml_opt_get_optimizer_params get_opt_pars;
|
||||
void * get_opt_pars_ud;
|
||||
struct ggml_tensor * adamw_params;
|
||||
ggml_opt_get_optimizer_params get_opt_pars = nullptr;
|
||||
void * get_opt_pars_ud = nullptr;
|
||||
struct ggml_tensor * adamw_params = nullptr;
|
||||
};
|
||||
|
||||
struct ggml_opt_result {
|
||||
|
@ -67,8 +67,8 @@ struct ggml_opt_result {
|
|||
std::vector<int32_t> pred;
|
||||
int64_t ncorrect = 0;
|
||||
|
||||
bool loss_per_datapoint = false;
|
||||
int64_t opt_period = -1;
|
||||
bool loss_per_datapoint = false;
|
||||
};
|
||||
|
||||
// ====== Dataset ======
|
||||
|
@ -237,25 +237,33 @@ static ggml_tensor * map_tensor(std::map<ggml_tensor *, ggml_tensor *> & tensor_
|
|||
return new_tensor;
|
||||
}
|
||||
|
||||
static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * graph) {
|
||||
static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * src) {
|
||||
std::map<ggml_tensor *, ggml_tensor *> tensor_map;
|
||||
|
||||
ggml_cgraph * new_graph = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true);
|
||||
ggml_cgraph * dst = ggml_new_graph_custom(ctx, src->size, /*grads =*/ true);
|
||||
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
ggml_build_forward_expand(new_graph, map_tensor(tensor_map, ctx, graph->leafs[i]));
|
||||
for (int i = 0; i < src->n_leafs; i++) {
|
||||
ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->leafs[i]));
|
||||
}
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
ggml_build_forward_expand(new_graph, map_tensor(tensor_map, ctx, graph->nodes[i]));
|
||||
GGML_ASSERT(dst->n_leafs == src->n_leafs);
|
||||
for (int i = 0; i < src->n_nodes; i++) {
|
||||
ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->nodes[i]));
|
||||
}
|
||||
for (int i = 0; i < graph->n_nodes; ++i) {
|
||||
const size_t igrad_src = ggml_hash_find(&graph->visited_hash_set, graph->nodes[i]);
|
||||
const size_t igrad_dst = ggml_hash_find(&new_graph->visited_hash_set, new_graph->nodes[i]);
|
||||
graph->grads[igrad_dst] = new_graph->grads[igrad_src];
|
||||
graph->grad_accs[igrad_dst] = new_graph->grad_accs[igrad_src];
|
||||
GGML_ASSERT(dst->n_nodes == src->n_nodes);
|
||||
for (int i = 0; i < src->n_nodes; ++i) {
|
||||
const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
|
||||
const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);
|
||||
|
||||
GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
|
||||
GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
|
||||
GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
|
||||
GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));
|
||||
|
||||
dst->grads[igrad_dst] = src->grads[igrad_src];
|
||||
dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
|
||||
}
|
||||
|
||||
return new_graph;
|
||||
return dst;
|
||||
}
|
||||
|
||||
static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph) {
|
||||
|
@ -285,15 +293,10 @@ static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph
|
|||
ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
||||
ggml_opt_context_t result = new struct ggml_opt_context;
|
||||
result->backend_sched = params.backend_sched;
|
||||
result->allocated_graph = nullptr;
|
||||
result->allocated_graph_copy = nullptr;
|
||||
result->ctx_compute = params.ctx_compute;
|
||||
result->ctx_copy = nullptr;
|
||||
result->inputs = params.inputs;
|
||||
result->outputs = params.outputs;
|
||||
result->iter = 1;
|
||||
result->opt_period = params.opt_period;
|
||||
result->opt_i = 0;
|
||||
result->get_opt_pars = params.get_opt_pars;
|
||||
result->get_opt_pars_ud = params.get_opt_pars_ud;
|
||||
|
||||
|
@ -348,7 +351,6 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|||
|
||||
switch (params.loss_type) {
|
||||
case GGML_OPT_LOSS_TYPE_MEAN: {
|
||||
result->labels = nullptr;
|
||||
result->loss = ggml_sum(result->ctx_static, result->outputs);
|
||||
ggml_set_name(result->loss, "loss_sum");
|
||||
const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs));
|
||||
|
@ -358,7 +360,6 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|||
break;
|
||||
}
|
||||
case GGML_OPT_LOSS_TYPE_SUM: {
|
||||
result->labels = nullptr;
|
||||
result->loss = ggml_sum(result->ctx_static, result->outputs);
|
||||
ggml_set_name(result->loss, "loss_sum");
|
||||
result->loss_per_datapoint = false;
|
||||
|
@ -413,14 +414,7 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|||
}
|
||||
|
||||
if (params.build_type == GGML_OPT_BUILD_TYPE_FORWARD) {
|
||||
result->gb_grad = nullptr;
|
||||
result->gb_opt = nullptr;
|
||||
|
||||
result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
|
||||
result->buf_static_cpu = nullptr;
|
||||
|
||||
ggml_opt_alloc_graph(result, result->gf);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -429,14 +423,8 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|||
ggml_build_backward_expand(result->ctx_static, result->ctx_compute, result->gb_grad, accumulate);
|
||||
|
||||
if (params.build_type == GGML_OPT_BUILD_TYPE_GRAD) {
|
||||
result->gb_opt = nullptr;
|
||||
|
||||
result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
|
||||
result->buf_static_cpu = nullptr;
|
||||
|
||||
ggml_opt_alloc_graph(result, result->gb_grad);
|
||||
ggml_graph_reset(result->gb_grad);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -466,7 +454,6 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|||
|
||||
result->buf_static_cpu = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx_static_cpu, ggml_backend_cpu_buffer_type());
|
||||
|
||||
ggml_opt_alloc_graph(result, result->gb_opt);
|
||||
ggml_graph_reset(result->gb_opt);
|
||||
|
||||
return result;
|
||||
|
|
|
@ -73,7 +73,9 @@ void soft_max(uint num_iters) {
|
|||
|
||||
FLOAT_TYPE v = a * p.scale + slope * b;
|
||||
|
||||
if (col < p.KX) {
|
||||
max_val = max(max_val, v);
|
||||
}
|
||||
|
||||
if (idx < DATA_CACHE_SIZE) {
|
||||
data_cache[idx] = v;
|
||||
|
|
|
@ -5019,8 +5019,10 @@ static void ggml_hash_map_free(struct hash_map * map) {
|
|||
}
|
||||
|
||||
// utility functions to change gradients
|
||||
// if a is in acc_table, modify gradients in-place and mark result as gradient accumulator
|
||||
// else if a is in zero_table, replace a
|
||||
// isrc is the index of tensor in cgraph->visited_has_set.keys
|
||||
// the corresponding gradient (accumulators) are also at position isrc
|
||||
// if tensor has a gradient accumulator, modify that accumulator in-place
|
||||
// else if there is no gradient for tensor, set the corresponding value
|
||||
// else, just add/subtract/etc. the gradients
|
||||
|
||||
static void ggml_add_or_set(
|
||||
|
@ -5028,11 +5030,14 @@ static void ggml_add_or_set(
|
|||
struct ggml_cgraph * cgraph,
|
||||
size_t isrc,
|
||||
struct ggml_tensor * tensor) {
|
||||
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
|
||||
GGML_ASSERT(src);
|
||||
if (cgraph->grads[isrc]) {
|
||||
cgraph->grads[isrc] = ggml_add_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
|
||||
cgraph->grads[isrc] = ggml_add_impl(ctx, cgraph->grads[isrc], tensor, /*inplace =*/ cgraph->grad_accs[isrc]);
|
||||
} else {
|
||||
cgraph->grads[isrc] = tensor;
|
||||
}
|
||||
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
|
||||
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
|
||||
}
|
||||
|
||||
|
@ -5040,18 +5045,20 @@ static void ggml_acc_or_set(
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * cgraph,
|
||||
size_t isrc,
|
||||
struct ggml_tensor * src,
|
||||
struct ggml_tensor * tensor,
|
||||
const size_t nb1,
|
||||
const size_t nb2,
|
||||
const size_t nb3,
|
||||
const size_t offset) {
|
||||
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
|
||||
GGML_ASSERT(src);
|
||||
if (cgraph->grads[isrc]) {
|
||||
cgraph->grads[isrc] = ggml_acc_impl(ctx, cgraph->grads[isrc], tensor, nb1, nb2, nb3, offset, cgraph->grad_accs[isrc]);
|
||||
} else {
|
||||
struct ggml_tensor * a_zero = ggml_scale(ctx, src, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
|
||||
cgraph->grads[isrc] = ggml_acc_impl(ctx, a_zero, tensor, nb1, nb2, nb3, offset, false);
|
||||
}
|
||||
ggml_format_name(cgraph->grads[isrc], "grad for %s", cgraph->visited_hash_set.keys[isrc]->name);
|
||||
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
|
||||
}
|
||||
|
||||
|
@ -5059,13 +5066,15 @@ static void ggml_add1_or_set(
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * cgraph,
|
||||
size_t isrc,
|
||||
struct ggml_tensor * src,
|
||||
struct ggml_tensor * tensor) {
|
||||
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
|
||||
GGML_ASSERT(src);
|
||||
if (cgraph->grads[isrc]) {
|
||||
cgraph->grads[isrc] = ggml_add1_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
|
||||
} else {
|
||||
cgraph->grads[isrc] = ggml_repeat(ctx, tensor, src);
|
||||
}
|
||||
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
|
||||
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
|
||||
}
|
||||
|
||||
|
@ -5074,11 +5083,14 @@ static void ggml_sub_or_set(
|
|||
struct ggml_cgraph * cgraph,
|
||||
size_t isrc,
|
||||
struct ggml_tensor * tensor) {
|
||||
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
|
||||
GGML_ASSERT(src);
|
||||
if (cgraph->grads[isrc]) {
|
||||
cgraph->grads[isrc] = ggml_sub_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
|
||||
} else {
|
||||
cgraph->grads[isrc] = ggml_neg(ctx, tensor);
|
||||
}
|
||||
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
|
||||
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
|
||||
}
|
||||
|
||||
|
@ -5095,12 +5107,12 @@ static void ggml_compute_backward(
|
|||
struct ggml_tensor * src1 = tensor->src[1];
|
||||
struct ggml_tensor * src2 = tensor->src[2];
|
||||
struct ggml_hash_set * hash_set = &cgraph->visited_hash_set;
|
||||
const size_t isrc0 = ggml_hash_find(hash_set, src0);
|
||||
const size_t isrc1 = ggml_hash_find(hash_set, src1);
|
||||
const size_t isrc2 = ggml_hash_find(hash_set, src2);
|
||||
const bool src0_needs_grads = isrc0 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc0) && grads_needed[isrc0];
|
||||
const bool src1_needs_grads = isrc1 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc1) && grads_needed[isrc1];
|
||||
const bool src2_needs_grads = isrc2 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc2) && grads_needed[isrc2];
|
||||
const size_t isrc0 = src0 ? ggml_hash_find(hash_set, src0) : (size_t) -1;
|
||||
const size_t isrc1 = src1 ? ggml_hash_find(hash_set, src1) : (size_t) -1;
|
||||
const size_t isrc2 = src2 ? ggml_hash_find(hash_set, src2) : (size_t) -1;
|
||||
const bool src0_needs_grads = src0 && isrc0 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc0) && grads_needed[isrc0];
|
||||
const bool src1_needs_grads = src1 && isrc1 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc1) && grads_needed[isrc1];
|
||||
const bool src2_needs_grads = src2 && isrc2 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc2) && grads_needed[isrc2];
|
||||
|
||||
switch (tensor->op) {
|
||||
case GGML_OP_DUP: {
|
||||
|
@ -5200,7 +5212,7 @@ static void ggml_compute_backward(
|
|||
} break;
|
||||
case GGML_OP_SUM: {
|
||||
if (src0_needs_grads) {
|
||||
ggml_add1_or_set(ctx, cgraph, isrc0, src0, grad);
|
||||
ggml_add1_or_set(ctx, cgraph, isrc0, grad);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_SUM_ROWS: {
|
||||
|
@ -5210,7 +5222,7 @@ static void ggml_compute_backward(
|
|||
} break;
|
||||
case GGML_OP_MEAN: {
|
||||
if (src0_needs_grads) {
|
||||
ggml_add1_or_set(ctx, cgraph, isrc0, src0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], false));
|
||||
ggml_add1_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], false));
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_REPEAT: {
|
||||
|
@ -5363,7 +5375,7 @@ static void ggml_compute_backward(
|
|||
nb3 = (nb3 / n0) * ng;
|
||||
}
|
||||
|
||||
ggml_acc_or_set(ctx, cgraph, isrc0, src0, grad, nb1, nb2, nb3, offset);
|
||||
ggml_acc_or_set(ctx, cgraph, isrc0, grad, nb1, nb2, nb3, offset);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_PERMUTE: {
|
||||
|
@ -5597,10 +5609,9 @@ void ggml_build_backward_expand(
|
|||
|
||||
const int n_nodes_f = cgraph->n_nodes;
|
||||
|
||||
const size_t hash_size = ggml_hash_size(2*cgraph->size);
|
||||
memset(cgraph->grads, 0, hash_size*sizeof(struct ggml_tensor *));
|
||||
memset(cgraph->grad_accs, 0, hash_size*sizeof(struct ggml_tensor *));
|
||||
bool * grads_needed = calloc(hash_size, sizeof(bool));
|
||||
memset(cgraph->grads, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
|
||||
memset(cgraph->grad_accs, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
|
||||
bool * grads_needed = calloc(cgraph->visited_hash_set.size, sizeof(bool));
|
||||
|
||||
{
|
||||
bool any_params = false;
|
||||
|
@ -5621,7 +5632,7 @@ void ggml_build_backward_expand(
|
|||
continue;
|
||||
}
|
||||
|
||||
bool node_needs_grad = node->flags & GGML_TENSOR_FLAG_PARAM;
|
||||
bool node_needs_grad = (node->flags & GGML_TENSOR_FLAG_PARAM) || (node->flags & GGML_TENSOR_FLAG_LOSS);
|
||||
bool ignore_src[GGML_MAX_SRC] = {false};
|
||||
switch (node->op) {
|
||||
// gradients in node->src[0] for one reason or another have no effect on output gradients
|
||||
|
@ -5665,9 +5676,12 @@ void ggml_build_backward_expand(
|
|||
node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);
|
||||
|
||||
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
|
||||
GGML_ASSERT(igrad != GGML_HASHSET_FULL);
|
||||
GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, igrad));
|
||||
if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) {
|
||||
cgraph->grads[igrad] = ggml_dup_tensor(ctx_static, node);
|
||||
cgraph->grad_accs[igrad] = cgraph->grads[igrad];
|
||||
cgraph->grad_accs[igrad] = ggml_dup_tensor(ctx_static, node);
|
||||
cgraph->grads[igrad] = cgraph->grad_accs[igrad];
|
||||
ggml_format_name(cgraph->grad_accs[igrad], "grad acc for %s", node->name);
|
||||
}
|
||||
grads_needed[igrad] = true;
|
||||
}
|
||||
|
@ -5765,10 +5779,10 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1)
|
|||
/*.n_nodes =*/ i1 - i0,
|
||||
/*.n_leafs =*/ 0,
|
||||
/*.nodes =*/ cgraph0->nodes + i0,
|
||||
/*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
|
||||
/*.grad_accs =*/ cgraph0->grad_accs ? cgraph0->grad_accs + i0 : NULL,
|
||||
/*.grads =*/ NULL, // gradients would need visited_hash_set
|
||||
/*.grad_accs =*/ NULL,
|
||||
/*.leafs =*/ NULL,
|
||||
/*.hash_table =*/ { 0, NULL, NULL },
|
||||
/*.visited_hash_set =*/ { 0, NULL, NULL },
|
||||
/*.order =*/ cgraph0->order,
|
||||
};
|
||||
|
||||
|
@ -5799,12 +5813,22 @@ void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
|
|||
}
|
||||
}
|
||||
|
||||
if (dst->grads) {
|
||||
memset(dst->grads, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
|
||||
memset(dst->grad_accs, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
|
||||
}
|
||||
if (src->grads) {
|
||||
GGML_ASSERT(dst->grads != NULL);
|
||||
GGML_ASSERT(dst->grad_accs != NULL);
|
||||
for (int i = 0; i < src->n_nodes; ++i) {
|
||||
const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
|
||||
const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);
|
||||
|
||||
GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
|
||||
GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
|
||||
GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
|
||||
GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));
|
||||
|
||||
dst->grads[igrad_dst] = src->grads[igrad_src];
|
||||
dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
|
||||
}
|
||||
|
@ -5839,13 +5863,9 @@ void ggml_graph_reset(struct ggml_cgraph * cgraph) {
|
|||
|
||||
if (node->op == GGML_OP_OPT_STEP_ADAMW) {
|
||||
// clear momenta
|
||||
if (node->src[2]->data) {
|
||||
ggml_set_zero(node->src[2]);
|
||||
}
|
||||
if (node->src[3]->data) {
|
||||
ggml_set_zero(node->src[3]);
|
||||
}
|
||||
}
|
||||
|
||||
// initial gradients of loss should be 1, 0 otherwise
|
||||
if (grad_acc) {
|
||||
|
|
|
@ -1 +1 @@
|
|||
2884dd72fea8922910fe53387c3d17ab928d3a8e
|
||||
6fcbd60bc72ac3f7ad43f78c87e535f2e6206f58
|
||||
|
|
|
@ -18211,13 +18211,13 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|||
static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
||||
bool need_reserve = false;
|
||||
|
||||
// apply K-shift if needed
|
||||
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
|
||||
if (lctx.kv_self.has_shift) {
|
||||
if (!llama_kv_cache_can_shift(&lctx)) {
|
||||
GGML_ABORT("Deepseek2 does not support K-shift");
|
||||
GGML_ABORT("The current context does not support K-shift");
|
||||
}
|
||||
|
||||
{
|
||||
// apply K-shift if needed
|
||||
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
|
||||
ggml_backend_sched_reset(lctx.sched.get());
|
||||
|
||||
ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
|
||||
|
@ -20463,7 +20463,7 @@ void llama_kv_cache_update(struct llama_context * ctx) {
|
|||
}
|
||||
|
||||
bool llama_kv_cache_can_shift(struct llama_context * ctx) {
|
||||
return ctx->model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
||||
return !ctx->kv_self.recurrent && ctx->model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
||||
}
|
||||
|
||||
// deprecated
|
||||
|
|
|
@ -819,7 +819,6 @@ struct test_case {
|
|||
}
|
||||
}
|
||||
|
||||
// TODO: refactor so that this check is only needed once
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (!ggml_backend_supports_op(backend, t)) {
|
||||
printf("not supported [%s] ", ggml_backend_name(backend));
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue