We could use std::unordered_map over std::map (#305)
* Improve performance by changing std::map to std::unordered_map and std::map<id, token> id_to_token; to std::vector<token> id_to_token; * fix last commit on gpt_vocab_init add vocab.id_to_token.resize(vocab.token_to_id.size()); * Removed include <map> * Nest struct token score inside gpt_vocab * renamed token to tok
This commit is contained in:
parent
89d5d90f3b
commit
353ec251a4
4 changed files with 36 additions and 24 deletions
18
main.cpp
18
main.cpp
|
@ -9,7 +9,6 @@
|
|||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
|
@ -69,7 +68,7 @@ void set_console_state(console_state new_st)
|
|||
static const int EOS_TOKEN_ID = 2;
|
||||
|
||||
// determine number of model parts based on the dimension
|
||||
static const std::map<int, int> LLAMA_N_PARTS = {
|
||||
static const std::unordered_map<int, int> LLAMA_N_PARTS = {
|
||||
{ 4096, 1 },
|
||||
{ 5120, 2 },
|
||||
{ 6656, 4 },
|
||||
|
@ -123,7 +122,7 @@ struct llama_model {
|
|||
|
||||
//
|
||||
struct ggml_context * ctx;
|
||||
std::map<std::string, struct ggml_tensor *> tensors;
|
||||
std::unordered_map<std::string, struct ggml_tensor *> tensors;
|
||||
};
|
||||
|
||||
// load the model's weights from a file
|
||||
|
@ -208,6 +207,7 @@ bool llama_model_load(const std::string & fname, llama_model & model, llama_voca
|
|||
// load vocab
|
||||
{
|
||||
std::string word;
|
||||
vocab.id_to_token.resize(model.hparams.n_vocab);
|
||||
std::vector<char> tmp(64);
|
||||
|
||||
for (int i = 0; i < model.hparams.n_vocab; i++) {
|
||||
|
@ -227,8 +227,10 @@ bool llama_model_load(const std::string & fname, llama_model & model, llama_voca
|
|||
fin.read((char *) &score, sizeof(score));
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
vocab.score[i] = score;
|
||||
|
||||
auto &tok_score = vocab.id_to_token[i];
|
||||
tok_score.tok = word;
|
||||
tok_score.score = score;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1028,7 +1030,7 @@ int main(int argc, char ** argv) {
|
|||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).tok.c_str());
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
if (params.interactive) {
|
||||
|
@ -1154,7 +1156,7 @@ int main(int argc, char ** argv) {
|
|||
// display text
|
||||
if (!input_noecho) {
|
||||
for (auto id : embd) {
|
||||
printf("%s", vocab.id_to_token[id].c_str());
|
||||
printf("%s", vocab.id_to_token[id].tok.c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
@ -1169,7 +1171,7 @@ int main(int argc, char ** argv) {
|
|||
// check for reverse prompt
|
||||
std::string last_output;
|
||||
for (auto id : last_n_tokens) {
|
||||
last_output += vocab.id_to_token[id];
|
||||
last_output += vocab.id_to_token[id].tok;
|
||||
}
|
||||
|
||||
// Check if each of the reverse prompts appears at the end of the output.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue