We could use std::unordered_map over std::map (#305)

* Improve performance by changing std::map to std::unordered_map and std::map<id, token> id_to_token; to std::vector<token> id_to_token;

* fix last commit on gpt_vocab_init add vocab.id_to_token.resize(vocab.token_to_id.size());

* Removed include <map>

* Nest struct token score inside gpt_vocab

* renamed token to tok
This commit is contained in:
Fabio R. Sluzala 2023-03-21 14:21:50 -03:00 committed by GitHub
parent 89d5d90f3b
commit 353ec251a4
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 36 additions and 24 deletions

View file

@ -9,7 +9,6 @@
#include <cstring>
#include <fstream>
#include <iostream>
#include <map>
#include <string>
#include <vector>
@ -69,7 +68,7 @@ void set_console_state(console_state new_st)
static const int EOS_TOKEN_ID = 2;
// determine number of model parts based on the dimension
static const std::map<int, int> LLAMA_N_PARTS = {
static const std::unordered_map<int, int> LLAMA_N_PARTS = {
{ 4096, 1 },
{ 5120, 2 },
{ 6656, 4 },
@ -123,7 +122,7 @@ struct llama_model {
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
std::unordered_map<std::string, struct ggml_tensor *> tensors;
};
// load the model's weights from a file
@ -208,6 +207,7 @@ bool llama_model_load(const std::string & fname, llama_model & model, llama_voca
// load vocab
{
std::string word;
vocab.id_to_token.resize(model.hparams.n_vocab);
std::vector<char> tmp(64);
for (int i = 0; i < model.hparams.n_vocab; i++) {
@ -227,8 +227,10 @@ bool llama_model_load(const std::string & fname, llama_model & model, llama_voca
fin.read((char *) &score, sizeof(score));
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
vocab.score[i] = score;
auto &tok_score = vocab.id_to_token[i];
tok_score.tok = word;
tok_score.score = score;
}
}
@ -1028,7 +1030,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).tok.c_str());
}
fprintf(stderr, "\n");
if (params.interactive) {
@ -1154,7 +1156,7 @@ int main(int argc, char ** argv) {
// display text
if (!input_noecho) {
for (auto id : embd) {
printf("%s", vocab.id_to_token[id].c_str());
printf("%s", vocab.id_to_token[id].tok.c_str());
}
fflush(stdout);
}
@ -1169,7 +1171,7 @@ int main(int argc, char ** argv) {
// check for reverse prompt
std::string last_output;
for (auto id : last_n_tokens) {
last_output += vocab.id_to_token[id];
last_output += vocab.id_to_token[id].tok;
}
// Check if each of the reverse prompts appears at the end of the output.