bugfixes and support for persistent states

This commit is contained in:
Concedo 2023-03-20 00:59:45 +08:00
parent f952b7c613
commit 356c1b87ba
3 changed files with 66 additions and 22 deletions

View file

@ -28,7 +28,8 @@ extern "C" {
const int top_k;
const float top_p;
const float rep_pen;
const int rep_pen_range;
const int rep_pen_range;
const bool reset_state = true; //determines if we can continue off the previous prompt state
};
struct generation_outputs
{
@ -40,7 +41,10 @@ extern "C" {
gpt_vocab api_vocab;
llama_model api_model;
int api_n_past = 0;
gpt_vocab::id old_embd_id = -1;
std::vector<float> api_logits;
std::vector<gpt_vocab::id> last_n_tokens;
size_t mem_per_token = 0;
bool load_model(const load_model_inputs inputs)
{
@ -69,6 +73,12 @@ extern "C" {
api_params.temp = inputs.temperature;
api_params.repeat_last_n = inputs.rep_pen_range;
api_params.repeat_penalty = inputs.rep_pen;
bool reset_state = inputs.reset_state;
if(api_n_past==0)
{
reset_state = true;
}
if(api_params.repeat_last_n<1)
{
@ -88,42 +98,61 @@ extern "C" {
// char * tst2 = (char*)tst.c_str();
// gpt_print_usage(1,&tst2,api_params);
api_params.prompt.insert(0, 1, ' ');
if(reset_state)
{
api_params.prompt.insert(0, 1, ' ');
mem_per_token = 0;
}
// tokenize the prompt
std::vector<gpt_vocab::id> embd_inp = ::llama_tokenize(api_vocab, api_params.prompt, true);
api_params.n_predict = std::min(api_params.n_predict, api_model.hparams.n_ctx - (int)embd_inp.size());
std::vector<gpt_vocab::id> embd;
size_t mem_per_token = 0;
llama_eval(api_model, api_params.n_threads, 0, {0, 1, 2, 3}, api_logits, mem_per_token);
int last_n_size = api_params.repeat_last_n;
std::vector<gpt_vocab::id> last_n_tokens(last_n_size);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
last_n_tokens.resize(last_n_size);
if(reset_state)
{
llama_eval(api_model, api_params.n_threads, 0, {0, 1, 2, 3}, api_logits, mem_per_token);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
api_n_past = 0;
}else{
//strip out the reset token (1) at the start of the embedding
if(embd_inp.size()>0)
{
embd_inp.erase(embd_inp.begin());
}
if(old_embd_id!=-1)
{
embd.push_back(old_embd_id);
}
}
int remaining_tokens = api_params.n_predict;
int input_consumed = 0;
std::mt19937 api_rng(api_params.seed);
std::string concat_output = "";
std::string concat_output = "";
while (remaining_tokens > 0)
{
gpt_vocab::id id = 0;
gpt_vocab::id id = 0;
// predict
if (embd.size() > 0)
{
// for (auto i: embd) {
// std::cout << i << ',';
// }
//printf("\nnp:%d embd:%d mem:%d",api_n_past,embd.size(),mem_per_token);
if (!llama_eval(api_model, api_params.n_threads, api_n_past, embd, api_logits, mem_per_token))
{
fprintf(stderr, "Failed to predict\n");
_snprintf_s(output.text,sizeof(output.text),_TRUNCATE,"%s","");
snprintf(output.text, sizeof(output.text), "%s", "");
output.status = 0;
return output;
}
}
api_n_past += embd.size();
embd.clear();
embd.clear();
if (embd_inp.size() <= input_consumed)
{
// out of user input, sample next token
@ -148,11 +177,12 @@ extern "C" {
}
// add it to the context
old_embd_id = id;
embd.push_back(id);
// decrement remaining sampling budget
--remaining_tokens;
//printf("\nid:%d word:%s\n",id,api_vocab.id_to_token[id].c_str());
concat_output += api_vocab.id_to_token[id].c_str();
}
else
@ -160,6 +190,7 @@ extern "C" {
// some user input remains from prompt or interaction, forward it to processing
while (embd_inp.size() > input_consumed)
{
old_embd_id = embd_inp[input_consumed];
embd.push_back(embd_inp[input_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[input_consumed]);
@ -175,7 +206,7 @@ extern "C" {
//printf("output: %s",concat_output.c_str());
output.status = 1;
_snprintf_s(output.text,sizeof(output.text),_TRUNCATE,"%s",concat_output.c_str());
snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str());
return output;
}
}

View file

@ -21,7 +21,8 @@ class generation_inputs(ctypes.Structure):
("top_k", ctypes.c_int),
("top_p", ctypes.c_float),
("rep_pen", ctypes.c_float),
("rep_pen_range", ctypes.c_int)]
("rep_pen_range", ctypes.c_int),
("reset_state", ctypes.c_bool)]
class generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
@ -45,7 +46,7 @@ def load_model(model_filename,batch_size=8,max_context_length=512,threads=4,n_pa
ret = handle.load_model(inputs)
return ret
def generate(prompt,max_length=20,temperature=0.8,top_k=100,top_p=0.85,rep_pen=1.1,rep_pen_range=128,seed=-1):
def generate(prompt,max_length=20,temperature=0.8,top_k=100,top_p=0.85,rep_pen=1.1,rep_pen_range=128,seed=-1,reset_state=True):
inputs = generation_inputs()
outputs = generation_outputs()
inputs.prompt = prompt.encode("UTF-8")
@ -56,6 +57,7 @@ def generate(prompt,max_length=20,temperature=0.8,top_k=100,top_p=0.85,rep_pen=1
inputs.rep_pen = rep_pen
inputs.rep_pen_range = rep_pen_range
inputs.seed = seed
inputs.reset_state = reset_state
ret = handle.generate(inputs,outputs)
if(ret.status==1):
return ret.text.decode("UTF-8")
@ -75,6 +77,7 @@ maxctx = 1024
maxlen = 256
modelbusy = False
port = 5001
last_context = ""
class ServerRequestHandler(http.server.BaseHTTPRequestHandler):
@ -120,7 +123,8 @@ class ServerRequestHandler(http.server.BaseHTTPRequestHandler):
content_length = int(self.headers['Content-Length'])
body = self.rfile.read(content_length)
if self.path.endswith('/api/v1/generate/') or self.path.endswith('/api/latest/generate/'):
global modelbusy
global modelbusy
global last_context
if modelbusy:
self.send_response(503)
self.end_headers()
@ -140,17 +144,26 @@ class ServerRequestHandler(http.server.BaseHTTPRequestHandler):
return
print("\nInput: " + json.dumps(genparams))
fresh_state = True
fullprompt = genparams.get('prompt', "")
newprompt = fullprompt
if last_context!="" and newprompt.startswith(last_context):
fresh_state = False
newprompt = newprompt[len(last_context):]
#print("trimmed: " + newprompt)
recvtxt = generate(
prompt=genparams.get('prompt', ""),
prompt=newprompt,
max_length=genparams.get('max_length', 50),
temperature=genparams.get('temperature', 0.8),
top_k=genparams.get('top_k', 100),
top_p=genparams.get('top_p', 0.85),
rep_pen=genparams.get('rep_pen', 1.1),
rep_pen_range=genparams.get('rep_pen_range', 128),
seed=-1
seed=-1,
reset_state=fresh_state
)
print("\nOutput: " + recvtxt)
last_context = fullprompt + recvtxt
res = {"results": [{"text": recvtxt}]}
self.send_response(200)
self.end_headers()
@ -241,7 +254,7 @@ if __name__ == '__main__':
mdl_nparts += 1
modelname = os.path.abspath(sys.argv[1])
print("Loading model: " + modelname)
loadok = load_model(modelname,128,maxctx,4,mdl_nparts)
loadok = load_model(modelname,24,maxctx,4,mdl_nparts)
print("Load Model OK: " + str(loadok))
if loadok:

Binary file not shown.