Merge remote-tracking branch 'origin/master' into json-additional

This commit is contained in:
ochafik 2024-06-24 21:31:03 +01:00
commit 35bbac1e45
25 changed files with 2473 additions and 2569 deletions

View file

@ -33,15 +33,13 @@ jobs:
- { tag: "light", dockerfile: ".devops/llama-cli.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server", dockerfile: ".devops/llama-server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
# have disabled them for now until the reason why
# is understood.
- { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# Note: the full-rocm image is failing due to a "no space left on device" error. It is disabled for now to allow the workflow to complete.
#- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light-intel", dockerfile: ".devops/llama-cli-intel.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-intel", dockerfile: ".devops/llama-server-intel.Dockerfile", platforms: "linux/amd64" }
steps:

View file

@ -102,7 +102,8 @@ option(LLAMA_LLAMAFILE "llama: use llamafile SGEMM"
option(LLAMA_CUDA "llama: use CUDA" OFF)
option(LLAMA_CUBLAS "llama: use CUDA (deprecated, use LLAMA_CUDA)" OFF)
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
option(LLAMA_CUDA_FORCE_MMQ "llama: use mmq kernels instead of cuBLAS" OFF)
option(LLAMA_CUDA_FORCE_MMQ "llama: always use mmq kernels instead of cuBLAS" OFF)
option(LLAMA_CUDA_FORCE_CUBLAS "llama: always use cuBLAS instead of mmq kernels" OFF)
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some calculations" OFF)
@ -144,9 +145,6 @@ option(LLAMA_BUILD_SERVER "llama: build server example"
option(LLAMA_LASX "llama: enable lasx" ON)
option(LLAMA_LSX "llama: enable lsx" ON)
# add perf arguments
option(LLAMA_PERF "llama: enable perf" OFF)
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
@ -419,13 +417,14 @@ if (LLAMA_CUDA)
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
# 52 == lowest CUDA 12 standard
# 60 == f16 CUDA intrinsics
# 60 == FP16 CUDA intrinsics
# 61 == integer CUDA intrinsics
# 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
# 70 == FP16 tensor cores
# 75 == int8 tensor cores
if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16)
set(CMAKE_CUDA_ARCHITECTURES "60;61;70") # needed for f16 CUDA intrinsics
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75")
else()
set(CMAKE_CUDA_ARCHITECTURES "52;61;70") # lowest CUDA 12 standard + lowest for integer intrinsics
set(CMAKE_CUDA_ARCHITECTURES "52;61;70;75")
#set(CMAKE_CUDA_ARCHITECTURES "OFF") # use this to compile much faster, but only F16 models work
endif()
endif()
@ -450,6 +449,9 @@ if (LLAMA_CUDA)
if (LLAMA_CUDA_FORCE_MMQ)
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
endif()
if (LLAMA_CUDA_FORCE_CUBLAS)
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
endif()
if (LLAMA_CUDA_NO_VMM)
add_compile_definitions(GGML_CUDA_NO_VMM)
endif()
@ -870,10 +872,6 @@ if (LLAMA_CPU_HBM)
target_link_libraries(ggml PUBLIC memkind)
endif()
if (LLAMA_PERF)
add_compile_definitions(GGML_PERF)
endif()
function(get_flags CCID CCVER)
set(C_FLAGS "")
set(CXX_FLAGS "")

View file

@ -344,9 +344,6 @@ ifdef LLAMA_GPROF
MK_CFLAGS += -pg
MK_CXXFLAGS += -pg
endif
ifdef LLAMA_PERF
MK_CPPFLAGS += -DGGML_PERF
endif
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
@ -540,6 +537,9 @@ endif # LLAMA_CUDA_FORCE_DMMV
ifdef LLAMA_CUDA_FORCE_MMQ
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_MMQ
endif # LLAMA_CUDA_FORCE_MMQ
ifdef LLAMA_CUDA_FORCE_CUBLAS
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_CUBLAS
endif # LLAMA_CUDA_FORCE_CUBLAS
ifdef LLAMA_CUDA_DMMV_X
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
else

View file

@ -511,7 +511,8 @@ Building the program with BLAS support may lead to some performance improvements
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| LLAMA_CUDA_FORCE_MMQ | Boolean | false | Force the use of dequantization + matrix multiplication kernels instead of leveraging Math libraries. | |
| LLAMA_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). Speed for large batch sizes will be worse but VRAM consumption will be lower. |
| LLAMA_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |

File diff suppressed because it is too large Load diff

View file

@ -152,7 +152,6 @@ struct gpt_params {
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
bool embedding = false; // get only sentence embedding
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
@ -179,6 +178,12 @@ struct gpt_params {
std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s)
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std::string embd_sep = "\n"; // separator of embendings
// server params
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
@ -377,7 +382,7 @@ void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_siz
// Embedding utils
//
void llama_embd_normalize(const float * inp, float * out, int n);
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);

View file

@ -65,7 +65,8 @@ class Model:
# subclasses should define this!
model_arch: gguf.MODEL_ARCH
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool, model_name: str | None):
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool,
model_name: str | None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
self.dir_model = dir_model
@ -80,7 +81,7 @@ class Model:
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = Model.load_hparams(self.dir_model)
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
self.tensor_names = None
if self.ftype == gguf.LlamaFileType.GUESSED:
@ -96,7 +97,8 @@ class Model:
ftype_lw: str = ftype_up.lower()
# allow templating the file name with the output ftype, useful with the "auto" ftype
self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
@classmethod
def __init_subclass__(cls):
@ -332,6 +334,8 @@ class Model:
self.gguf_writer.close()
def write_vocab(self):
if len(self.gguf_writer.tensors) != 1:
raise ValueError('Splitting the vocabulary is not supported')
self.gguf_writer.write_header_to_file(self.fname_out)
self.gguf_writer.write_kv_data_to_file()
self.gguf_writer.close()
@ -2771,6 +2775,124 @@ class DeepseekV2Model(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("T5ForConditionalGeneration")
@Model.register("T5WithLMHeadModel")
class T5Model(Model):
model_arch = gguf.MODEL_ARCH.T5
def set_vocab(self):
# to avoid TypeError: Descriptors cannot be created directly
# exception when importing sentencepiece_model_pb2
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
from sentencepiece import SentencePieceProcessor
from sentencepiece import sentencepiece_model_pb2 as model
tokenizer_path = self.dir_model / 'spiece.model'
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
sentencepiece_model = model.ModelProto()
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
added_tokens_file = self.dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
token_id = added_tokens_json[key]
if (token_id >= vocab_size):
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
tokens[token_id] = key.encode("utf-8")
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)
self.gguf_writer.add_tokenizer_model("t5")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_add_space_prefix(add_prefix)
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
if precompiled_charsmap:
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
self.gguf_writer.add_add_bos_token(False)
self.gguf_writer.add_add_eos_token(True)
def set_gguf_parameters(self):
self.gguf_writer.add_name("T5")
self.gguf_writer.add_context_length(self.hparams["n_positions"])
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
self.gguf_writer.add_block_count(self.hparams["num_layers"])
self.gguf_writer.add_head_count(self.hparams["num_heads"])
self.gguf_writer.add_key_length(self.hparams["d_kv"])
self.gguf_writer.add_value_length(self.hparams["d_kv"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
# Sometimes T5 and Flan-T5 based models contain "encoder.embed_tokens.weight" tensor or
# "decoder.embed_tokens.weight" tensors that are duplicates of "shared.weight" tensor
# To prevent errors caused by an unnecessary unmapped tensor, skip both of them and use only "shared.weight".
if name == "decoder.embed_tokens.weight" or name == "encoder.embed_tokens.weight":
logger.debug(f"Skipping tensor {name!r} in safetensors so that convert can end normally.")
return []
return [(self.map_tensor_name(name), data_torch)]
###### CONVERSION LOGIC ######
@ -2856,10 +2978,44 @@ def parse_args() -> argparse.Namespace:
"--verbose", action="store_true",
help="increase output verbosity",
)
parser.add_argument(
"--split-max-tensors", type=int, default=0,
help="max tensors in each split",
)
parser.add_argument(
"--split-max-size", type=str, default="0",
help="max size per split N(M|G)",
)
parser.add_argument(
"--dry-run", action="store_true",
help="only print out a split plan and exit, without writing any new files",
)
parser.add_argument(
"--no-tensor-first-split", action="store_true",
help="do not add tensors to the first split (disabled by default)"
)
return parser.parse_args()
def split_str_to_n_bytes(split_str: str) -> int:
if split_str.endswith("K"):
n = int(split_str[:-1]) * 1000
elif split_str.endswith("M"):
n = int(split_str[:-1]) * 1000 * 1000
elif split_str.endswith("G"):
n = int(split_str[:-1]) * 1000 * 1000 * 1000
elif split_str.isnumeric():
n = int(split_str)
else:
raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
if n < 0:
raise ValueError(f"Invalid split size: {split_str}, must be positive")
return n
def main() -> None:
args = parse_args()
@ -2892,6 +3048,10 @@ def main() -> None:
"auto": gguf.LlamaFileType.GUESSED,
}
if args.use_temp_file and (args.split_max_tensors > 0 or args.split_max_size != "0"):
logger.error("Error: Cannot use temp file when splitting")
sys.exit(1)
if args.outfile is not None:
fname_out = args.outfile
else:
@ -2909,7 +3069,10 @@ def main() -> None:
logger.error(f"Model {hparams['architectures'][0]} is not supported")
sys.exit(1)
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy, args.model_name)
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file,
args.no_lazy, args.model_name, split_max_tensors=args.split_max_tensors,
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
small_first_shard=args.no_tensor_first_split)
logger.info("Set model parameters")
model_instance.set_gguf_parameters()
@ -2920,13 +3083,13 @@ def main() -> None:
model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
if args.vocab_only:
logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
logger.info("Exporting model vocab...")
model_instance.write_vocab()
logger.info("Model vocab successfully exported.")
else:
logger.info(f"Exporting model to '{model_instance.fname_out}'")
logger.info("Exporting model...")
model_instance.write()
logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
logger.info("Model successfully exported.")
if __name__ == '__main__':

View file

@ -19,3 +19,43 @@ llama-embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null
```
The above command will output space-separated float values.
## extra parameters
### --embd-normalize $integer$
| $integer$ | description | formula |
|-----------|---------------------|---------|
| $-1$ | none |
| $0$ | max absolute int16 | $\Large{{32760 * x_i} \over\max \lvert x_i\rvert}$
| $1$ | taxicab | $\Large{x_i \over\sum \lvert x_i\rvert}$
| $2$ | euclidean (default) | $\Large{x_i \over\sqrt{\sum x_i^2}}$
| $>2$ | p-norm | $\Large{x_i \over\sqrt[p]{\sum \lvert x_i\rvert^p}}$
### --embd-output-format $'string'$
| $'string'$ | description | |
|------------|------------------------------|--|
| '' | same as before | (default)
| 'array' | single embeddings | $[[x_1,...,x_n]]$
| | multiple embeddings | $[[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]]$
| 'json' | openai style |
| 'json+' | add cosine similarity matrix |
### --embd-separator $"string"$
| $"string"$ | |
|--------------|-|
| "\n" | (default)
| "<#embSep#>" | for exemple
| "<#sep#>" | other exemple
## examples
### Unix-based systems (Linux, macOS, etc.):
```bash
./embedding -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
```
### Windows:
```powershell
embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
```

View file

@ -7,13 +7,19 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static std::vector<std::string> split_lines(const std::string & s) {
std::string line;
static std::vector<std::string> split_lines(const std::string & s, const std::string & separator = "\n") {
std::vector<std::string> lines;
std::stringstream ss(s);
while (std::getline(ss, line)) {
lines.push_back(line);
size_t start = 0;
size_t end = s.find(separator);
while (end != std::string::npos) {
lines.push_back(s.substr(start, end - start));
start = end + separator.length();
end = s.find(separator, start);
}
lines.push_back(s.substr(start)); // Add the last part
return lines;
}
@ -24,7 +30,7 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
}
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
@ -44,13 +50,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
float * out = output + batch.seq_id[i][0] * n_embd;
//TODO: I would also add a parameter here to enable normalization or not.
/*fprintf(stdout, "unnormalized_embedding:");
for (int hh = 0; hh < n_embd; hh++) {
fprintf(stdout, "%9.6f ", embd[hh]);
}
fprintf(stdout, "\n");*/
llama_embd_normalize(embd, out, n_embd);
llama_embd_normalize(embd, out, n_embd, embd_norm);
}
}
@ -110,7 +110,7 @@ int main(int argc, char ** argv) {
}
// split the prompt into lines
std::vector<std::string> prompts = split_lines(params.prompt);
std::vector<std::string> prompts = split_lines(params.prompt, params.embd_sep);
// max batch size
const uint64_t n_batch = params.n_batch;
@ -170,7 +170,7 @@ int main(int argc, char ** argv) {
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
llama_batch_clear(batch);
p += s;
s = 0;
@ -183,15 +183,20 @@ int main(int argc, char ** argv) {
// final batch
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
if (params.embd_out.empty()) {
// print the first part of the embeddings or for a single prompt, the full embedding
fprintf(stdout, "\n");
for (int j = 0; j < n_prompts; j++) {
fprintf(stdout, "embedding %d: ", j);
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
if (params.embd_normalize == 0) {
fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
} else {
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
}
}
fprintf(stdout, "\n");
}
@ -199,14 +204,58 @@ int main(int argc, char ** argv) {
if (n_prompts > 1) {
fprintf(stdout, "\n");
printf("cosine similarity matrix:\n\n");
for (int i = 0; i < n_prompts; i++) {
fprintf(stdout, "%6.6s ", prompts[i].c_str());
}
fprintf(stdout, "\n");
for (int i = 0; i < n_prompts; i++) {
for (int j = 0; j < n_prompts; j++) {
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
fprintf(stdout, "%6.2f ", sim);
}
fprintf(stdout, "%1.10s", prompts[i].c_str());
fprintf(stdout, "\n");
}
}
}
if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") {
const bool notArray = params.embd_out != "array";
fprintf(stdout, notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "[");
for (int j = 0;;) { // at least one iteration (one prompt)
if (notArray) fprintf(stdout, " {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j);
fprintf(stdout, "[");
for (int i = 0;;) { // at least one iteration (n_embd > 0)
fprintf(stdout, params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
i++;
if (i < n_embd) fprintf(stdout, ","); else break;
}
fprintf(stdout, notArray ? "]\n }" : "]");
j++;
if (j < n_prompts) fprintf(stdout, notArray ? ",\n" : ","); else break;
}
fprintf(stdout, notArray ? "\n ]" : "]\n");
if (params.embd_out == "json+" && n_prompts > 1) {
fprintf(stdout, ",\n \"cosineSimilarity\": [\n");
for (int i = 0;;) { // at least two iteration (n_prompts > 1)
fprintf(stdout, " [");
for (int j = 0;;) { // at least two iteration (n_prompts > 1)
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
fprintf(stdout, "%6.2f", sim);
j++;
if (j < n_prompts) fprintf(stdout, ", "); else break;
}
fprintf(stdout, " ]");
i++;
if (i < n_prompts) fprintf(stdout, ",\n"); else break;
}
fprintf(stdout, "\n ]");
}
if (notArray) fprintf(stdout, "\n}\n");
}
// clean up
llama_print_timings(ctx);

View file

@ -152,16 +152,16 @@ static ggml_cuda_device_info ggml_cuda_init() {
GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
int64_t total_vram = 0;
#if defined(GGML_CUDA_FORCE_MMQ)
#ifdef GGML_CUDA_FORCE_MMQ
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
#else
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
#endif
#if defined(CUDA_USE_TENSOR_CORES)
GGML_CUDA_LOG_INFO("%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
#endif // GGML_CUDA_FORCE_MMQ
#ifdef GGML_CUDA_FORCE_CUBLAS
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n", __func__);
#else
GGML_CUDA_LOG_INFO("%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
#endif
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__);
#endif // GGML_CUDA_FORCE_CUBLAS
GGML_CUDA_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
for (int id = 0; id < info.device_count; ++id) {
int device_vmm = 0;
@ -1873,9 +1873,17 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
int64_t min_compute_capability = INT_MAX;
bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
bool use_mul_mat_q = ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
bool any_gpus_with_slow_fp16 = false;
bool any_pascal_with_slow_fp16 = false;
if (split) {
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
auto & tensor_split = buft_ctx->tensor_split;
@ -1885,55 +1893,18 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
continue;
}
if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
min_compute_capability = ggml_cuda_info().devices[id].cc;
}
if (ggml_cuda_info().devices[id].cc == 610) {
any_pascal_with_slow_fp16 = true;
}
const int cc = ggml_cuda_info().devices[id].cc;
use_mul_mat_vec_q = use_mul_mat_vec_q && cc >= MIN_CC_DP4A;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
}
} else {
min_compute_capability = ggml_cuda_info().devices[ctx.device].cc;
any_pascal_with_slow_fp16 = ggml_cuda_info().devices[ctx.device].cc == 610;
const int cc = ggml_cuda_info().devices[ctx.device].cc;
use_mul_mat_vec_q = use_mul_mat_vec_q && cc >= MIN_CC_DP4A;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
}
// check data types and tensor shapes for custom matrix multiplication kernels:
bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
bool use_mul_mat_q = ggml_cuda_supports_mmq(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
#ifdef CUDA_USE_TENSOR_CORES
use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
#endif // CUDA_USE_TENSOR_CORES
#else
// fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
// mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
use_mul_mat_q = use_mul_mat_q && min_compute_capability >= MIN_CC_DP4A;
#ifdef CUDA_USE_TENSOR_CORES
// when tensor cores are available, use them for large batch size
// ref: https://github.com/ggerganov/llama.cpp/pull/3776
use_mul_mat_q = use_mul_mat_q && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
#endif // CUDA_USE_TENSOR_CORES
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
// if mmvq is available it's a better choice than dmmv:
#ifndef GGML_CUDA_FORCE_DMMV
use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
@ -1947,21 +1918,22 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// KQ single-batch
if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// FP32 precision KQ single-batch for batch size 1 without FlashAttention
ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
} else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
} else if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// FP32 precision KQV single-batch for batch size 1 without FlashAttention
ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || fp16_performance_good) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// KQ + KQV multi-batch
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
} else if (use_dequantize_mul_mat_vec) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, nullptr);
} else if (use_mul_mat_vec_q) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
} else if (use_mul_mat_q) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, quantize_mmq_q8_1_cuda);
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16)
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// KQ + KQV multi-batch without FlashAttention
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
} else {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, nullptr);
}

View file

@ -146,23 +146,6 @@
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
// - 7B quantum model: +100-200 MB
// - 13B quantum model: +200-400 MB
//
//#define GGML_CUDA_FORCE_MMQ
// TODO: improve this to be correct for more hardware
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
#if !defined(GGML_CUDA_FORCE_MMQ)
#define CUDA_USE_TENSOR_CORES
#endif
#define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
#define MMQ_MAX_BATCH_SIZE 64 // max batch size to use MMQ kernels when tensor cores are available
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
#if defined(_MSC_VER)
@ -343,15 +326,15 @@ static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int
#define INT8_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
static bool fast_fp16_available(const int cc) {
static constexpr bool fast_fp16_available(const int cc) {
return cc >= CC_PASCAL && cc != 610;
}
static bool fp16_mma_available(const int cc) {
static constexpr bool fp16_mma_available(const int cc) {
return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
}
static bool int8_mma_available(const int cc) {
static constexpr bool int8_mma_available(const int cc) {
return cc < CC_OFFSET_AMD && cc >= CC_TURING;
}
@ -643,19 +626,6 @@ struct ggml_cuda_type_traits<GGML_TYPE_IQ3_S> {
static constexpr int qi = QI3_S;
};
static int get_mmq_x_max_host(const int cc) {
#ifdef CUDA_USE_TENSOR_CORES
return cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_MAX_BATCH_SIZE : 64;
#else
return cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64;
#endif // CUDA_USE_TENSOR_CORES
}
// Round rows to this value for --split-mode row:
static int get_mmq_y_host(const int cc) {
return cc >= CC_VOLTA ? 128 : 64;
}
//////////////////////
struct ggml_cuda_device_info {

View file

@ -20,6 +20,20 @@ struct mma_int_A_I16K4 {
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
#if defined(INT8_MMA_AVAILABLE)
const int * xs = xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
: "+r"(x[0]), "+r"(x[1])
: "l"(xs));
#else
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_i(l)*stride + get_k(l)];
}
#endif // defined(INT8_MMA_AVAILABLE)
}
};
struct mma_int_A_I16K8 {
@ -42,6 +56,20 @@ struct mma_int_A_I16K8 {
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
#if defined(INT8_MMA_AVAILABLE)
const int * xs = xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
asm("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
: "l"(xs));
#else
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_i(l)*stride + get_k(l)];
}
#endif // defined(INT8_MMA_AVAILABLE)
}
};
struct mma_int_B_J8K4 {
@ -64,6 +92,20 @@ struct mma_int_B_J8K4 {
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
#if defined(INT8_MMA_AVAILABLE) && false // Loading as 4 byte values is faster
const int * xs = xs0 + (threadIdx.x%J)*stride;
asm("ldmatrix.sync.aligned.m8n8.x1.b16 {%0}, [%1];"
: "+r"(x[0])
: "l"(xs));
#else
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_j(l)*stride + get_k(l)];
}
#endif // defined(INT8_MMA_AVAILABLE)
}
};
struct mma_int_B_J8K8 {
@ -86,6 +128,20 @@ struct mma_int_B_J8K8 {
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
#if defined(INT8_MMA_AVAILABLE) && false // Loading as 4 byte values is faster
const int * xs = xs0 + (threadIdx.x%J)*stride + ((threadIdx.x/J)*(K/2)) % K;
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
: "+r"(x[0]), "+r"(x[1])
: "l"(xs));
#else
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_j(l)*stride + get_k(l)];
}
#endif // defined(INT8_MMA_AVAILABLE)
}
};
struct mma_int_C_I16J8 {

View file

@ -69,7 +69,13 @@ void ggml_cuda_op_mul_mat_q(
GGML_UNUSED(src1_ddf_i);
}
bool ggml_cuda_supports_mmq(enum ggml_type type) {
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
#ifdef GGML_CUDA_FORCE_CUBLAS
return false;
#endif // GGML_CUDA_FORCE_CUBLAS
bool mmq_supported;
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
@ -81,8 +87,32 @@ bool ggml_cuda_supports_mmq(enum ggml_type type) {
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
return true;
mmq_supported = true;
break;
default:
mmq_supported = false;
break;
}
if (!mmq_supported) {
return false;
}
if (int8_mma_available(cc)) {
return true;
}
if (cc < MIN_CC_DP4A) {
return false;
}
#ifdef GGML_CUDA_FORCE_MMQ
return true;
#endif //GGML_CUDA_FORCE_MMQ
if (cc < CC_OFFSET_AMD) {
return cc < CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
return cc < CC_RDNA3 || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

File diff suppressed because it is too large Load diff

View file

@ -1,5 +1,7 @@
#include "common.cuh"
#define MMVQ_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVQ kernels.
void ggml_cuda_op_mul_mat_vec_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,

View file

@ -513,8 +513,8 @@ static size_t vk_skip_checks;
static size_t vk_output_tensor;
static void ggml_vk_print_tensor(ggml_backend * ctx, const ggml_tensor * tensor, const char * name);
static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor);
static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor);
static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * tensor);
static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor * tensor);
#endif
typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
@ -5644,7 +5644,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
}
}
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor){
ggml_tensor_extra_gpu * extra = nullptr;
switch (tensor->op) {
@ -5697,17 +5697,10 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_
return false;
}
if (params->ith != 0) {
return true;
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return true;
}
VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")");
#ifdef GGML_VULKAN_CHECK_RESULTS
ggml_vk_check_results_0(ctx, params, tensor);
ggml_vk_check_results_0(ctx, tensor);
#endif
vk_context& subctx = ctx->gc.contexts[extra->ctx_idx];
@ -6214,9 +6207,6 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen
ggml_vk_build_graph(ctx,cgraph->nodes[i], i == last_node);
}
ggml_compute_params params = {};
params.type = GGML_TASK_TYPE_COMPUTE;
params.ith = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@ -6224,13 +6214,13 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen
continue;
}
bool ok = ggml_vk_compute_forward(ctx, &params, node);
bool ok = ggml_vk_compute_forward(ctx, node);
if (!ok) {
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
#ifdef GGML_VULKAN_CHECK_RESULTS
else {
ggml_vk_check_results_1(ctx, &params, node);
ggml_vk_check_results_1(ctx, node);
}
#endif
GGML_ASSERT(ok);
@ -6600,11 +6590,8 @@ void * comp_result;
size_t comp_size;
size_t comp_nb[GGML_MAX_DIMS];
size_t check_counter = 0;
static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor) {
if (params->ith != 0) {
return;
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * tensor) {
if (tensor->op == GGML_OP_TRANSPOSE) {
return;
}
@ -6908,11 +6895,8 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
ggml_free(ggml_ctx);
}
static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor) {
if (params->ith != 0) {
return;
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor * tensor) {
if (tensor->op == GGML_OP_TRANSPOSE) {
return;
}
if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {

1266
ggml.c

File diff suppressed because it is too large Load diff

35
ggml.h
View file

@ -591,11 +591,7 @@ extern "C" {
struct ggml_tensor * grad;
struct ggml_tensor * src[GGML_MAX_SRC];
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
// source tensor and offset for views
struct ggml_tensor * view_src;
size_t view_offs;
@ -605,7 +601,7 @@ extern "C" {
void * extra; // extra things e.g. for ggml-cuda.cu
char padding[8];
// char padding[4];
};
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
@ -652,11 +648,6 @@ extern "C" {
struct ggml_hash_set visited_hash_table;
enum ggml_cgraph_eval_order order;
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
};
// scratch buffer
@ -673,28 +664,6 @@ extern "C" {
bool no_alloc; // don't allocate memory for the tensor data
};
// compute types
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
enum ggml_task_type {
GGML_TASK_TYPE_INIT = 0,
GGML_TASK_TYPE_COMPUTE,
GGML_TASK_TYPE_FINALIZE,
};
struct ggml_compute_params {
enum ggml_task_type type;
// ith = thread index, nth = number of threads
int ith, nth;
// work buffer for all threads
size_t wsize;
void * wdata;
};
// numa strategies
enum ggml_numa_strategy {
GGML_NUMA_STRATEGY_DISABLED = 0,

View file

@ -49,6 +49,7 @@ class Keys:
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
@ -62,6 +63,7 @@ class Keys:
CAUSAL = "{arch}.attention.causal"
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
@ -73,6 +75,11 @@ class Keys:
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
class Split:
LLM_KV_SPLIT_NO = "split.no"
LLM_KV_SPLIT_COUNT = "split.count"
LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
class SSM:
CONV_KERNEL = "{arch}.ssm.conv_kernel"
INNER_SIZE = "{arch}.ssm.inner_size"
@ -97,6 +104,8 @@ class Keys:
ADD_BOS = "tokenizer.ggml.add_bos_token"
ADD_EOS = "tokenizer.ggml.add_eos_token"
ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
HF_JSON = "tokenizer.huggingface.json"
RWKV = "tokenizer.rwkv.world"
CHAT_TEMPLATE = "tokenizer.chat_template"
@ -150,6 +159,7 @@ class MODEL_ARCH(IntEnum):
ARCTIC = auto()
DEEPSEEK2 = auto()
BITNET = auto()
T5 = auto()
class MODEL_TENSOR(IntEnum):
@ -203,6 +213,34 @@ class MODEL_TENSOR(IntEnum):
ATTN_KV_A_NORM = auto()
FFN_SUB_NORM = auto()
ATTN_SUB_NORM = auto()
DEC_ATTN_NORM = auto()
DEC_ATTN_Q = auto()
DEC_ATTN_K = auto()
DEC_ATTN_V = auto()
DEC_ATTN_OUT = auto()
DEC_ATTN_REL_B = auto()
DEC_CROSS_ATTN_NORM = auto()
DEC_CROSS_ATTN_Q = auto()
DEC_CROSS_ATTN_K = auto()
DEC_CROSS_ATTN_V = auto()
DEC_CROSS_ATTN_OUT = auto()
DEC_CROSS_ATTN_REL_B = auto()
DEC_FFN_NORM = auto()
DEC_FFN_GATE = auto()
DEC_FFN_DOWN = auto()
DEC_FFN_UP = auto()
DEC_OUTPUT_NORM = auto()
ENC_ATTN_NORM = auto()
ENC_ATTN_Q = auto()
ENC_ATTN_K = auto()
ENC_ATTN_V = auto()
ENC_ATTN_OUT = auto()
ENC_ATTN_REL_B = auto()
ENC_FFN_NORM = auto()
ENC_FFN_GATE = auto()
ENC_FFN_DOWN = auto()
ENC_FFN_UP = auto()
ENC_OUTPUT_NORM = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@ -241,6 +279,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.T5: "t5",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -294,6 +333,34 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -829,6 +896,38 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ATTN_SUB_NORM,
MODEL_TENSOR.FFN_SUB_NORM,
],
MODEL_ARCH.T5: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.DEC_ATTN_NORM,
MODEL_TENSOR.DEC_ATTN_Q,
MODEL_TENSOR.DEC_ATTN_K,
MODEL_TENSOR.DEC_ATTN_V,
MODEL_TENSOR.DEC_ATTN_OUT,
MODEL_TENSOR.DEC_ATTN_REL_B,
MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
MODEL_TENSOR.DEC_CROSS_ATTN_Q,
MODEL_TENSOR.DEC_CROSS_ATTN_K,
MODEL_TENSOR.DEC_CROSS_ATTN_V,
MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
MODEL_TENSOR.DEC_FFN_NORM,
MODEL_TENSOR.DEC_FFN_GATE,
MODEL_TENSOR.DEC_FFN_DOWN,
MODEL_TENSOR.DEC_FFN_UP,
MODEL_TENSOR.DEC_OUTPUT_NORM,
MODEL_TENSOR.ENC_ATTN_NORM,
MODEL_TENSOR.ENC_ATTN_Q,
MODEL_TENSOR.ENC_ATTN_K,
MODEL_TENSOR.ENC_ATTN_V,
MODEL_TENSOR.ENC_ATTN_OUT,
MODEL_TENSOR.ENC_ATTN_REL_B,
MODEL_TENSOR.ENC_FFN_NORM,
MODEL_TENSOR.ENC_FFN_GATE,
MODEL_TENSOR.ENC_FFN_DOWN,
MODEL_TENSOR.ENC_FFN_UP,
MODEL_TENSOR.ENC_OUTPUT_NORM,
],
# TODO
}

View file

@ -7,6 +7,7 @@ import struct
import tempfile
from dataclasses import dataclass
from enum import Enum, auto
from pathlib import Path
from io import BufferedWriter
from typing import IO, Any, Sequence, Mapping
from string import ascii_letters, digits
@ -31,6 +32,9 @@ from .quants import quant_shape_from_byte_shape
logger = logging.getLogger(__name__)
SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf"
@dataclass
class TensorInfo:
shape: Sequence[int]
@ -55,11 +59,11 @@ class WriterState(Enum):
class GGUFWriter:
fout: BufferedWriter | None
path: os.PathLike[str] | str | None
fout: list[BufferedWriter] | None
path: Path | None
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
tensors: dict[str, TensorInfo]
kv_data: dict[str, GGUFValue]
tensors: list[dict[str, TensorInfo]]
kv_data: list[dict[str, GGUFValue]]
state: WriterState
_simple_value_packing = {
GGUFValueType.UINT8: "B",
@ -76,26 +80,38 @@ class GGUFWriter:
}
def __init__(
self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False,
endianess: GGUFEndian = GGUFEndian.LITTLE,
self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
):
self.fout = None
self.path = path
self.path = Path(path) if path else None
self.arch = arch
self.endianess = endianess
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
self.use_temp_file = use_temp_file
self.temp_file = None
self.tensors = dict()
self.kv_data = dict()
self.tensors = [{}]
self.kv_data = [{}]
self.split_max_tensors = split_max_tensors
self.split_max_size = split_max_size
self.dry_run = dry_run
self.small_first_shard = small_first_shard
logger.info("gguf: This GGUF file is for {0} Endian only".format(
"Big" if self.endianess == GGUFEndian.BIG else "Little",
))
self.state = WriterState.NO_FILE
if self.small_first_shard:
self.tensors.append({})
self.add_architecture()
def open_output_file(self, path: os.PathLike[str] | str | None = None) -> None:
def format_shard_names(self, path: Path) -> list[Path]:
if len(self.tensors) == 1:
return [path]
return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))]
def open_output_file(self, path: Path | None = None) -> None:
if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
# allow calling this multiple times as long as the path is the same
return
@ -106,22 +122,58 @@ class GGUFWriter:
self.path = path
if self.path is not None:
if self.fout is not None:
self.fout.close()
self.fout = open(self.path, "wb")
filenames = self.print_plan()
self.fout = [open(filename, "wb") for filename in filenames]
self.state = WriterState.EMPTY
def write_header_to_file(self, path: os.PathLike[str] | str | None = None) -> None:
def print_plan(self) -> list[Path]:
logger.info("Writing the following files:")
assert self.path is not None
filenames = self.format_shard_names(self.path)
assert len(filenames) == len(self.tensors)
for name, tensors in zip(filenames, self.tensors):
logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}")
if self.dry_run:
logger.info("Dry run, not writing files")
exit()
return filenames
def add_shard_kv_data(self) -> None:
if len(self.tensors) == 1:
return
total_tensors = sum(len(t) for t in self.tensors)
assert self.fout is not None
total_splits = len(self.fout)
self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits))
for i, kv_data in enumerate(self.kv_data):
kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16)
kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16)
kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32)
def write_header_to_file(self, path: Path | None = None) -> None:
if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0):
logger.warning("Model fails split requirements, not splitting")
self.open_output_file(path)
if self.state is not WriterState.EMPTY:
raise ValueError(f'Expected output file to be empty, got {self.state}')
self._write_packed("<I", GGUF_MAGIC, skip_pack_prefix = True)
self._write_packed("I", GGUF_VERSION)
self._write_packed("Q", len(self.tensors))
self._write_packed("Q", len(self.kv_data))
self.flush()
assert self.fout is not None
assert len(self.fout) == len(self.tensors)
assert len(self.kv_data) == 1
self.add_shard_kv_data()
for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data):
fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True))
fout.write(self._pack("I", GGUF_VERSION))
fout.write(self._pack("Q", len(tensors)))
fout.write(self._pack("Q", len(kv_data)))
fout.flush()
self.state = WriterState.HEADER
def write_kv_data_to_file(self) -> None:
@ -129,13 +181,15 @@ class GGUFWriter:
raise ValueError(f'Expected output file to contain the header, got {self.state}')
assert self.fout is not None
kv_data = bytearray()
for fout, kv_data in zip(self.fout, self.kv_data):
kv_bytes = bytearray()
for key, val in self.kv_data.items():
kv_data += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
kv_data += self._pack_val(val.value, val.type, add_vtype=True)
for key, val in kv_data.items():
kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
kv_bytes += self._pack_val(val.value, val.type, add_vtype=True)
fout.write(kv_bytes)
self.fout.write(kv_data)
self.flush()
self.state = WriterState.KV_DATA
@ -144,28 +198,29 @@ class GGUFWriter:
raise ValueError(f'Expected output file to contain KV data, got {self.state}')
assert self.fout is not None
for fout, tensors in zip(self.fout, self.tensors):
ti_data = bytearray()
offset_tensor = 0
for name, ti in self.tensors.items():
for name, ti in tensors.items():
ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
n_dims = len(ti.shape)
ti_data += self._pack("I", n_dims)
for i in range(n_dims):
ti_data += self._pack("Q", ti.shape[n_dims - 1 - i])
for j in range(n_dims):
ti_data += self._pack("Q", ti.shape[n_dims - 1 - j])
ti_data += self._pack("I", ti.dtype)
ti_data += self._pack("Q", offset_tensor)
offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)
self.fout.write(ti_data)
self.flush()
fout.write(ti_data)
fout.flush()
self.state = WriterState.TI_DATA
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
if key in self.kv_data:
if any(key in kv_data for kv_data in self.kv_data):
raise ValueError(f'Duplicated key name {key!r}')
self.kv_data[key] = GGUFValue(value=val, type=vtype)
self.kv_data[0][key] = GGUFValue(value=val, type=vtype)
def add_uint8(self, key: str, val: int) -> None:
self.add_key_value(key,val, GGUFValueType.UINT8)
@ -206,9 +261,6 @@ class GGUFWriter:
self.add_key_value(key, val, GGUFValueType.STRING)
def add_array(self, key: str, val: Sequence[Any]) -> None:
if not isinstance(val, Sequence):
raise ValueError("Value must be a sequence for array type")
self.add_key_value(key, val, GGUFValueType.ARRAY)
@staticmethod
@ -222,7 +274,7 @@ class GGUFWriter:
if self.state is not WriterState.NO_FILE:
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
if name in self.tensors:
if any(name in tensors for tensors in self.tensors):
raise ValueError(f'Duplicated tensor name {name!r}')
if raw_dtype is None:
@ -247,7 +299,18 @@ class GGUFWriter:
if tensor_dtype == np.uint8:
tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
self.tensors[name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)
# make sure there is at least one tensor before splitting
if len(self.tensors[-1]) > 0:
if ( # split when over tensor limit
self.split_max_tensors != 0
and len(self.tensors[-1]) >= self.split_max_tensors
) or ( # split when over size limit
self.split_max_size != 0
and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size
):
self.tensors.append({})
self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)
def add_tensor(
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
@ -264,7 +327,7 @@ class GGUFWriter:
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype)
if self.temp_file is None:
self.tensors[name].tensor = tensor
self.tensors[-1][name].tensor = tensor
return
tensor.tofile(self.temp_file)
@ -282,9 +345,24 @@ class GGUFWriter:
if self.endianess == GGUFEndian.BIG:
tensor.byteswap(inplace=True)
self.write_padding(self.fout, self.fout.tell())
tensor.tofile(self.fout)
self.write_padding(self.fout, tensor.nbytes)
file_id = -1
for i, tensors in enumerate(self.tensors):
if len(tensors) > 0:
file_id = i
break
fout = self.fout[file_id]
# pop the first tensor info
# TODO: cleaner way to get the first key
first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0]
ti = self.tensors[file_id].pop(first_tensor_name)
assert ti.nbytes == tensor.nbytes
self.write_padding(fout, fout.tell())
tensor.tofile(fout)
self.write_padding(fout, tensor.nbytes)
self.state = WriterState.WEIGHTS
@ -293,31 +371,43 @@ class GGUFWriter:
assert self.fout is not None
self.write_padding(self.fout, self.fout.tell())
for fout in self.fout:
self.write_padding(fout, fout.tell())
if self.temp_file is None:
shard_bar = None
bar = None
if progress:
from tqdm import tqdm
total_bytes = sum(t.nbytes for t in self.tensors.values())
total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())
if len(self.fout) > 1:
shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
if shard_bar is not None:
shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
total = sum(ti.nbytes for ti in tensors.values())
shard_bar.reset(total=(total if total > 0 else None))
# relying on the fact that Python dicts preserve insertion order (since 3.7)
for ti in self.tensors.values():
for ti in tensors.values():
assert ti.tensor is not None # can only iterate once over the tensors
assert ti.tensor.nbytes == ti.nbytes
ti.tensor.tofile(self.fout)
ti.tensor.tofile(fout)
if shard_bar is not None:
shard_bar.update(ti.nbytes)
if bar is not None:
bar.update(ti.nbytes)
self.write_padding(self.fout, ti.nbytes)
self.write_padding(fout, ti.nbytes)
ti.tensor = None
else:
self.temp_file.seek(0)
shutil.copyfileobj(self.temp_file, self.fout)
shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1])
self.flush()
self.temp_file.close()
@ -325,11 +415,13 @@ class GGUFWriter:
def flush(self) -> None:
assert self.fout is not None
self.fout.flush()
for fout in self.fout:
fout.flush()
def close(self) -> None:
if self.fout is not None:
self.fout.close()
for fout in self.fout:
fout.close()
self.fout = None
def add_architecture(self) -> None:
@ -400,6 +492,9 @@ class GGUFWriter:
def add_parallel_residual(self, use: bool) -> None:
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
def add_decoder_start_token_id(self, id: int) -> None:
self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)
def add_head_count(self, count: int) -> None:
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
@ -448,6 +543,9 @@ class GGUFWriter:
def add_kv_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
def add_relative_attn_buckets_count(self, value: int) -> None:
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
@ -538,6 +636,12 @@ class GGUFWriter:
def add_add_space_prefix(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
def add_remove_extra_whitespaces(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value)
def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None:
self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap)
def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
if not isinstance(value, str):
template_default = None
@ -599,6 +703,9 @@ class GGUFWriter:
kv_data += self._pack("Q", len(encoded_val))
kv_data += encoded_val
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
if isinstance(val, bytes):
ltype = GGUFValueType.UINT8
else:
ltype = GGUFValueType.get_type(val[0])
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
raise ValueError("All items in a GGUF array should be of the same type")
@ -611,6 +718,13 @@ class GGUFWriter:
return kv_data
def _write_packed(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> None:
assert self.fout is not None
self.fout.write(self._pack(fmt, value, skip_pack_prefix))
@staticmethod
def format_n_bytes_to_str(num: int) -> str:
if num == 0:
return "negligible - metadata only"
fnum = float(num)
for unit in ("", "K", "M", "G"):
if abs(fnum) < 1000.0:
return f"{fnum:3.1f}{unit}"
fnum /= 1000.0
return f"{fnum:.1f}T - over 1TB, split recommended"

View file

@ -24,6 +24,7 @@ class TensorNameMap:
"backbone.embedding", # mamba
"backbone.embeddings", # mamba-hf
"transformer.in_out_embed", # Grok
"shared", # t5
),
# Token type embeddings
@ -421,6 +422,120 @@ class TensorNameMap:
MODEL_TENSOR.FFN_SUB_NORM: (
"model.layers.{bid}.mlp.ffn_layernorm", # bitnet
),
MODEL_TENSOR.DEC_ATTN_NORM: (
"decoder.block.{bid}.layer.0.layer_norm", # t5
),
MODEL_TENSOR.DEC_ATTN_Q: (
"decoder.block.{bid}.layer.0.SelfAttention.q", # t5
),
MODEL_TENSOR.DEC_ATTN_K: (
"decoder.block.{bid}.layer.0.SelfAttention.k", # t5
),
MODEL_TENSOR.DEC_ATTN_V: (
"decoder.block.{bid}.layer.0.SelfAttention.v", # t5
),
MODEL_TENSOR.DEC_ATTN_OUT: (
"decoder.block.{bid}.layer.0.SelfAttention.o", # t5
),
MODEL_TENSOR.DEC_ATTN_REL_B: (
"decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
"decoder.block.{bid}.layer.1.layer_norm", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
"decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_K: (
"decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_V: (
"decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
"decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
"decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
),
MODEL_TENSOR.DEC_FFN_NORM: (
"decoder.block.{bid}.layer.2.layer_norm", # t5
),
MODEL_TENSOR.DEC_FFN_GATE: (
"decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
),
MODEL_TENSOR.DEC_FFN_UP: (
"decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
"decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
),
MODEL_TENSOR.DEC_FFN_DOWN: (
"decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
),
MODEL_TENSOR.DEC_OUTPUT_NORM: (
"decoder.final_layer_norm", # t5
),
MODEL_TENSOR.ENC_ATTN_NORM: (
"encoder.block.{bid}.layer.0.layer_norm", # t5
),
MODEL_TENSOR.ENC_ATTN_Q: (
"encoder.block.{bid}.layer.0.SelfAttention.q", # t5
),
MODEL_TENSOR.ENC_ATTN_K: (
"encoder.block.{bid}.layer.0.SelfAttention.k", # t5
),
MODEL_TENSOR.ENC_ATTN_V: (
"encoder.block.{bid}.layer.0.SelfAttention.v", # t5
),
MODEL_TENSOR.ENC_ATTN_OUT: (
"encoder.block.{bid}.layer.0.SelfAttention.o", # t5
),
MODEL_TENSOR.ENC_ATTN_REL_B: (
"encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
),
MODEL_TENSOR.ENC_FFN_NORM: (
"encoder.block.{bid}.layer.1.layer_norm", # t5
),
MODEL_TENSOR.ENC_FFN_GATE: (
"encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
),
MODEL_TENSOR.ENC_FFN_UP: (
"encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
"encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
),
MODEL_TENSOR.ENC_FFN_DOWN: (
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
),
MODEL_TENSOR.ENC_OUTPUT_NORM: (
"encoder.final_layer_norm", # t5
),
}
# architecture-specific block mappings

View file

@ -208,7 +208,9 @@ def translate_tensor_name(name):
'ssm_d': 'State space model skip connection',
'ssm_dt': 'State space model time step',
'ssm_out': 'State space model output projection',
'blk': 'Block'
'blk': 'Block',
'enc': 'Encoder',
'dec': 'Decoder',
}
expanded_words = []
@ -291,6 +293,10 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None
tensor_group_name = "base"
if tensor_components[0] == 'blk':
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk':
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}"
elif tensor_components[0] in ['enc', 'dec']:
tensor_group_name = f"{tensor_components[0]}"
# Check if new Tensor Group
if tensor_group_name not in tensor_groups:

View file

@ -12785,12 +12785,6 @@ static int llama_decode_internal(
}
}
#ifdef GGML_PERF
// print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined
ggml_graph_print(gf);
#endif
// plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) {
// ggml_graph_dump_dot(gf, NULL, "llama.dot");

View file

@ -249,8 +249,7 @@ class tinyBLAS {
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
@ -458,8 +457,7 @@ class tinyBLAS_Q0_ARM {
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
@ -596,8 +594,7 @@ class tinyBLAS_Q0_AVX {
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
@ -829,7 +826,7 @@ class tinyBLAS_Q0_AVX {
* For example, for single-threaded single-precision GEMM you can say
*
* llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
* 0, 1, GGML_TASK_TYPE_COMPUTE,
* 0, 1,
* GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
*
* @param m is rows in `A` and `C`
@ -843,14 +840,13 @@ class tinyBLAS_Q0_AVX {
* @param ldc is row stride of `C`
* @param ith is thread id (must be less than `nth`)
* @param nth is number of threads (must be greater than zero)
* @param task is GGML task type
* @param Atype is GGML data type of `A`
* @param Btype is GGML data type of `B`
* @param Ctype is GGML data type of `C`
* @return true if this function was able to service the matmul request
*/
bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
int64_t ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) {
int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) {
assert(m >= 0);
assert(n >= 0);
@ -877,7 +873,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#elif defined(__AVX__) || defined(__AVX2__)
if (k % 8)
@ -887,7 +883,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#elif defined(__ARM_NEON)
if (n < 4)
@ -899,7 +895,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#else
return false;
@ -917,7 +913,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
if (k % 8)
@ -929,7 +925,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
if (n < 8)
@ -943,7 +939,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const ggml_fp16_t *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
if (k % 4)
@ -955,7 +951,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#else
return false;
@ -971,7 +967,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#elif defined(__ARM_FEATURE_DOTPROD)
tinyBLAS_Q0_ARM<block_q8_0> tb{
@ -979,7 +975,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#else
return false;
@ -995,7 +991,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#elif defined(__ARM_FEATURE_DOTPROD)
tinyBLAS_Q0_ARM<block_q4_0> tb{
@ -1003,7 +999,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
tb.matmul(m, n);
return true;
#else
return false;
@ -1025,7 +1021,6 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(void)ldc;
(void)ith;
(void)nth;
(void)task;
(void)Atype;
(void)Btype;
(void)Ctype;

View file

@ -7,7 +7,7 @@ extern "C" {
bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t,
const void *, int64_t, void *, int64_t, int, int,
int, int, int, int);
int, int, int);
#ifdef __cplusplus
}