From 35c6887f78f0323b341c19d436e934d7fc49d320 Mon Sep 17 00:00:00 2001 From: XingXing Qiao Date: Thu, 16 May 2024 11:42:53 +0800 Subject: [PATCH] optimize convert-hf-to-gguf.py for chatglm model Signed-off-by: XingXing Qiao --- convert-hf-to-gguf.py | 18 ++++++++---------- 1 file changed, 8 insertions(+), 10 deletions(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index a47f478e2..c18400a95 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -2752,13 +2752,15 @@ class ChatGLMModel(Model): text = piece.encode("utf-8") score = 0.0 - if len(piece) != 0 and token_id < 64789: + # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py), + # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size() + if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size(): score = tokenizer.tokenizer.sp_model.get_score(token_id) if len(piece) == 0: text = f"[PAD{token_id}]".encode("utf-8") - if token_id >= 64789: + if token_id >= tokenizer.tokenizer.sp_model.vocab_size(): toktype = SentencePieceTokenTypes.UNKNOWN tokens.append(text) scores.append(score) @@ -2788,7 +2790,7 @@ class ChatGLMModel(Model): special_vocab.add_to_gguf(self.gguf_writer) def set_gguf_parameters(self): - self.gguf_writer.add_name("ChatGLM-6b-chat") + self.gguf_writer.add_name(self.dir_model.name) n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) n_head_kv = self.hparams.get("multi_query_group_num", n_head) @@ -2804,16 +2806,12 @@ class ChatGLMModel(Model): self.gguf_writer.add_add_bos_token(False) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + if name.endswith(".rotary_pos_emb.inv_freq"): return [] - del bid # unused - - name = re.sub(r'transformer\.', '', name) - - if name == "word_embeddings.weight": - assert self.tensor_names is not None - + name = name.removeprefix("transformer.") return [(self.map_tensor_name(name), data_torch)]