diff --git a/.github/labeler.yml b/.github/labeler.yml index fca60594f..a67f78044 100644 --- a/.github/labeler.yml +++ b/.github/labeler.yml @@ -62,6 +62,8 @@ server: ggml: - changed-files: - any-glob-to-any-file: + - ggml.c + - ggml.h - ggml-*.c - ggml-*.h - ggml-cuda/** @@ -71,3 +73,6 @@ nix: - "**/*.nix" - .github/workflows/nix-*.yml - .devops/nix/nixpkgs-instances.nix +embedding: + - changed-files: + - any-glob-to-any-file: examples/embedding/ diff --git a/.github/workflows/zig-build.yml b/.github/workflows/zig-build.yml deleted file mode 100644 index 747c35cc0..000000000 --- a/.github/workflows/zig-build.yml +++ /dev/null @@ -1,29 +0,0 @@ -name: Zig CI - -on: - pull_request: - push: - branches: - - master - -concurrency: - group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }} - cancel-in-progress: true - -jobs: - build: - strategy: - fail-fast: false - matrix: - runs-on: [ubuntu-latest, macos-latest, windows-latest] - runs-on: ${{ matrix.runs-on }} - steps: - - uses: actions/checkout@v4 - with: - submodules: recursive - fetch-depth: 0 - - uses: goto-bus-stop/setup-zig@v2 - with: - version: 0.11.0 - - name: Build Summary - run: zig build --summary all -freference-trace diff --git a/CMakeLists.txt b/CMakeLists.txt index 9abf7d91d..cca178890 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -124,7 +124,6 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)") option(LLAMA_KOMPUTE "llama: use Kompute" OFF) option(LLAMA_RPC "llama: use RPC" OFF) -option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF) option(LLAMA_SYCL "llama: use SYCL" OFF) option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF) set(LLAMA_SYCL_TARGET "INTEL" CACHE STRING "llama: sycl target device") @@ -384,10 +383,6 @@ if (LLAMA_LLAMAFILE) set(GGML_SOURCES_LLAMAFILE sgemm.cpp) endif() -if (LLAMA_QKK_64) - add_compile_definitions(GGML_QKK_64) -endif() - if (LLAMA_CUBLAS) message(WARNING "LLAMA_CUBLAS is deprecated and will be removed in the future.\nUse LLAMA_CUDA instead") set(LLAMA_CUDA ON) @@ -505,6 +500,12 @@ if (LLAMA_VULKAN) add_compile_definitions(GGML_USE_VULKAN) + # Workaround to the "can't dereference invalidated vector iterator" bug in clang-cl debug build + # Posssibly relevant: https://stackoverflow.com/questions/74748276/visual-studio-no-displays-the-correct-length-of-stdvector + if (MSVC AND CMAKE_CXX_COMPILER_ID STREQUAL "Clang") + add_compile_definitions(_ITERATOR_DEBUG_LEVEL=0) + endif() + if (LLAMA_VULKAN_CHECK_RESULTS) add_compile_definitions(GGML_VULKAN_CHECK_RESULTS) endif() diff --git a/Makefile b/Makefile index 6b7c853b3..fe63cbd60 100644 --- a/Makefile +++ b/Makefile @@ -389,10 +389,6 @@ else MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d endif -ifdef LLAMA_QKK_64 - MK_CPPFLAGS += -DGGML_QKK_64 -endif - ifndef LLAMA_NO_ACCELERATE # Mac OS - include Accelerate framework. # `-framework Accelerate` works both with Apple Silicon and Mac Intel diff --git a/README.md b/README.md index 7b7eff90d..e44f39d22 100644 --- a/README.md +++ b/README.md @@ -127,6 +127,7 @@ Typically finetunes of the base models below are supported as well. - [x] [SEA-LION](https://huggingface.co/models?search=sea-lion) - [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B) - [x] [OLMo](https://allenai.org/olmo) +- [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia) (instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md)) @@ -140,6 +141,7 @@ Typically finetunes of the base models below are supported as well. - [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL) - [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM) - [x] [Moondream](https://huggingface.co/vikhyatk/moondream2) +- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny) **HTTP server** diff --git a/build.zig b/build.zig deleted file mode 100644 index 96783574f..000000000 --- a/build.zig +++ /dev/null @@ -1,172 +0,0 @@ -// Compatible with Zig Version 0.11.0 -const std = @import("std"); -const ArrayList = std.ArrayList; -const Compile = std.Build.Step.Compile; -const ConfigHeader = std.Build.Step.ConfigHeader; -const Mode = std.builtin.Mode; -const CrossTarget = std.zig.CrossTarget; - -const Maker = struct { - builder: *std.build.Builder, - target: CrossTarget, - optimize: Mode, - enable_lto: bool, - - include_dirs: ArrayList([]const u8), - cflags: ArrayList([]const u8), - cxxflags: ArrayList([]const u8), - objs: ArrayList(*Compile), - - fn addInclude(m: *Maker, dir: []const u8) !void { - try m.include_dirs.append(dir); - } - fn addProjectInclude(m: *Maker, path: []const []const u8) !void { - try m.addInclude(try m.builder.build_root.join(m.builder.allocator, path)); - } - fn addCFlag(m: *Maker, flag: []const u8) !void { - try m.cflags.append(flag); - } - fn addCxxFlag(m: *Maker, flag: []const u8) !void { - try m.cxxflags.append(flag); - } - fn addFlag(m: *Maker, flag: []const u8) !void { - try m.addCFlag(flag); - try m.addCxxFlag(flag); - } - - fn init(builder: *std.build.Builder) !Maker { - const target = builder.standardTargetOptions(.{}); - const zig_version = @import("builtin").zig_version_string; - const commit_hash = try std.ChildProcess.exec( - .{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } }, - ); - try std.fs.cwd().writeFile("common/build-info.cpp", builder.fmt( - \\int LLAMA_BUILD_NUMBER = {}; - \\char const *LLAMA_COMMIT = "{s}"; - \\char const *LLAMA_COMPILER = "Zig {s}"; - \\char const *LLAMA_BUILD_TARGET = "{s}"; - \\ - , .{ 0, commit_hash.stdout[0 .. commit_hash.stdout.len - 1], zig_version, try target.allocDescription(builder.allocator) })); - var m = Maker{ - .builder = builder, - .target = target, - .optimize = builder.standardOptimizeOption(.{}), - .enable_lto = false, - .include_dirs = ArrayList([]const u8).init(builder.allocator), - .cflags = ArrayList([]const u8).init(builder.allocator), - .cxxflags = ArrayList([]const u8).init(builder.allocator), - .objs = ArrayList(*Compile).init(builder.allocator), - }; - - try m.addCFlag("-std=c11"); - try m.addCxxFlag("-std=c++11"); - try m.addProjectInclude(&.{}); - try m.addProjectInclude(&.{"common"}); - return m; - } - - fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile { - const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize }); - if (o.target.getAbi() != .msvc) - o.defineCMacro("_GNU_SOURCE", null); - - if (std.mem.endsWith(u8, src, ".c")) { - o.addCSourceFiles(&.{src}, m.cflags.items); - o.linkLibC(); - } else { - o.addCSourceFiles(&.{src}, m.cxxflags.items); - if (o.target.getAbi() == .msvc) { - o.linkLibC(); // need winsdk + crt - } else { - // linkLibCpp already add (libc++ + libunwind + libc) - o.linkLibCpp(); - } - } - for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i }); - o.want_lto = m.enable_lto; - return o; - } - - fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile { - const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize }); - e.addCSourceFiles(&.{src}, m.cxxflags.items); - for (deps) |d| e.addObject(d); - for (m.objs.items) |o| e.addObject(o); - for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i }); - - // https://github.com/ziglang/zig/issues/15448 - if (e.target.getAbi() == .msvc) { - e.linkLibC(); // need winsdk + crt - } else { - // linkLibCpp already add (libc++ + libunwind + libc) - e.linkLibCpp(); - } - m.builder.installArtifact(e); - e.want_lto = m.enable_lto; - return e; - } -}; - -pub fn build(b: *std.build.Builder) !void { - var make = try Maker.init(b); - make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false; - - const ggml = make.obj("ggml", "ggml.c"); - const sgemm = make.obj("sgemm", "sgemm.cpp"); - const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c"); - const ggml_backend = make.obj("ggml-backend", "ggml-backend.c"); - const ggml_quants = make.obj("ggml-quants", "ggml-quants.c"); - const unicode = make.obj("unicode", "unicode.cpp"); - const unicode_data = make.obj("unicode-data", "unicode-data.cpp"); - const llama = make.obj("llama", "llama.cpp"); - const buildinfo = make.obj("common", "common/build-info.cpp"); - const common = make.obj("common", "common/common.cpp"); - const console = make.obj("console", "common/console.cpp"); - const sampling = make.obj("sampling", "common/sampling.cpp"); - const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp"); - const json_schema_to_grammar = make.obj("json-schema-to-grammar", "common/json-schema-to-grammar.cpp"); - const train = make.obj("train", "common/train.cpp"); - const clip = make.obj("clip", "examples/llava/clip.cpp"); - const llava = make.obj("llava", "examples/llava/llava.cpp"); - - _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, console, grammar_parser }); - _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo }); - _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo }); - _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo }); - _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train }); - _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train }); - - const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, grammar_parser, clip, llava }); - if (server.target.isWindows()) { - server.linkSystemLibrary("ws2_32"); - } - - const server_assets = [_][]const u8{ "index.html", "index.js", "completion.js", "json-schema-to-grammar.mjs" }; - for (server_assets) |asset| { - const input_path = b.fmt("examples/server/public/{s}", .{asset}); - const output_path = b.fmt("examples/server/{s}.hpp", .{asset}); - - // Portable equivalent of `b.addSystemCommand(&.{ "xxd", "-n", asset, "-i", input_path, output_path }) })`: - - const input = try std.fs.cwd().readFileAlloc(b.allocator, input_path, std.math.maxInt(usize)); - defer b.allocator.free(input); - - var buf = std.ArrayList(u8).init(b.allocator); - defer buf.deinit(); - - for (input) |byte| { - try std.fmt.format(buf.writer(), "0x{X:0>2}, ", .{byte}); - } - - var name = try std.mem.replaceOwned(u8, b.allocator, asset, "-", "_"); - defer b.allocator.free(name); - std.mem.replaceScalar(u8, name, '.', '_'); - - try std.fs.cwd().writeFile(output_path, b.fmt( - "unsigned char {s}[] = {{{s}}};\nunsigned int {s}_len = {d};\n", - .{ name, buf.items, name, input.len }, - )); - - std.debug.print("Dumped hex of \"{s}\" ({s}) to {s}\n", .{ input_path, name, output_path }); - } -} diff --git a/ci/run.sh b/ci/run.sh index 059ccf4ad..940299025 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -202,12 +202,15 @@ function gg_sum_test_scripts_release { } function gg_get_model { - local gguf_3b="$MNT/models/open-llama/3B-v2/ggml-model-f16.gguf" - local gguf_7b="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf" - if [[ -s $gguf_3b ]]; then - echo -n "$gguf_3b" - elif [[ -s $gguf_7b ]]; then - echo -n "$gguf_7b" + local gguf_0="$MNT/models/pythia/1.4B/ggml-model-f16.gguf" + local gguf_1="$MNT/models/pythia/2.8B/ggml-model-f16.gguf" + local gguf_2="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf" + if [[ -s $gguf_0 ]]; then + echo -n "$gguf_0" + elif [[ -s $gguf_1 ]]; then + echo -n "$gguf_1" + elif [[ -s $gguf_2 ]]; then + echo -n "$gguf_2" else echo >&2 "No model found. Can't run gg_run_ctest_with_model." exit 1 @@ -256,139 +259,6 @@ function gg_sum_ctest_with_model_release { gg_printf '```\n' } -# open_llama_3b_v2 - -function gg_run_open_llama_3b_v2 { - cd ${SRC} - - gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json - gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model - gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json - gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json - gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin - gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json - - gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip - unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/ - head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw - - path_models="../models-mnt/open-llama/3B-v2" - path_wiki="../models-mnt/wikitext/wikitext-2-raw" - - rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release - - set -e - - (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log - (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log - - python3 ../examples/convert-legacy-llama.py ${path_models} - - model_f16="${path_models}/ggml-model-f16.gguf" - model_q8_0="${path_models}/ggml-model-q8_0.gguf" - model_q4_0="${path_models}/ggml-model-q4_0.gguf" - model_q4_1="${path_models}/ggml-model-q4_1.gguf" - model_q5_0="${path_models}/ggml-model-q5_0.gguf" - model_q5_1="${path_models}/ggml-model-q5_1.gguf" - model_q2_k="${path_models}/ggml-model-q2_k.gguf" - model_q3_k="${path_models}/ggml-model-q3_k.gguf" - model_q4_k="${path_models}/ggml-model-q4_k.gguf" - model_q5_k="${path_models}/ggml-model-q5_k.gguf" - model_q6_k="${path_models}/ggml-model-q6_k.gguf" - - wiki_test_60="${path_wiki}/wiki.test-60.raw" - - ./bin/quantize ${model_f16} ${model_q8_0} q8_0 - ./bin/quantize ${model_f16} ${model_q4_0} q4_0 - ./bin/quantize ${model_f16} ${model_q4_1} q4_1 - ./bin/quantize ${model_f16} ${model_q5_0} q5_0 - ./bin/quantize ${model_f16} ${model_q5_1} q5_1 - ./bin/quantize ${model_f16} ${model_q2_k} q2_k - ./bin/quantize ${model_f16} ${model_q3_k} q3_k - ./bin/quantize ${model_f16} ${model_q4_k} q4_k - ./bin/quantize ${model_f16} ${model_q5_k} q5_k - ./bin/quantize ${model_f16} ${model_q6_k} q6_k - - (time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log - (time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log - (time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log - (time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log - (time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log - (time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log - (time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log - (time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log - (time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log - (time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log - (time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log - - (time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log - (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log - (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log - (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log - (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log - (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log - (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log - (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log - (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log - (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log - (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log - - (time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - - (time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - - function check_ppl { - qnt="$1" - ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1) - - if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then - printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl" - return 20 - fi - - printf ' - %s @ %s OK\n' "$qnt" "$ppl" - return 0 - } - - check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log - - cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log - - set +e -} - -function gg_sum_open_llama_3b_v2 { - gg_printf '### %s\n\n' "${ci}" - - gg_printf 'OpenLLaMA 3B-v2:\n' - gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" - gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)" - gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)" - gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)" - gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)" - gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)" - gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)" - gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)" - gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)" - gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)" - gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)" - gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)" - gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)" - gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)" - gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)" -} - # open_llama_7b_v2 # requires: GG_BUILD_CUDA @@ -417,7 +287,7 @@ function gg_run_open_llama_7b_v2 { (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log - python3 ../examples/convert-legacy-llama.py ${path_models} + python3 ../convert.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf model_f16="${path_models}/ggml-model-f16.gguf" model_q8_0="${path_models}/ggml-model-q8_0.gguf" @@ -526,6 +396,272 @@ function gg_sum_open_llama_7b_v2 { gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)" } +# pythia_1.4b + +function gg_run_pythia_1_4b { + cd ${SRC} + + gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/config.json + gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer.json + gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer_config.json + gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/special_tokens_map.json + gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/resolve/main/pytorch_model.bin + + gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip + unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/ + head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw + + path_models="../models-mnt/pythia/1.4B" + path_wiki="../models-mnt/wikitext/wikitext-2-raw" + + rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release + + set -e + + (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log + (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log + + python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf + + model_f16="${path_models}/ggml-model-f16.gguf" + model_q8_0="${path_models}/ggml-model-q8_0.gguf" + model_q4_0="${path_models}/ggml-model-q4_0.gguf" + model_q4_1="${path_models}/ggml-model-q4_1.gguf" + model_q5_0="${path_models}/ggml-model-q5_0.gguf" + model_q5_1="${path_models}/ggml-model-q5_1.gguf" + model_q2_k="${path_models}/ggml-model-q2_k.gguf" + model_q3_k="${path_models}/ggml-model-q3_k.gguf" + model_q4_k="${path_models}/ggml-model-q4_k.gguf" + model_q5_k="${path_models}/ggml-model-q5_k.gguf" + model_q6_k="${path_models}/ggml-model-q6_k.gguf" + + wiki_test_60="${path_wiki}/wiki.test-60.raw" + + ./bin/quantize ${model_f16} ${model_q8_0} q8_0 + ./bin/quantize ${model_f16} ${model_q4_0} q4_0 + ./bin/quantize ${model_f16} ${model_q4_1} q4_1 + ./bin/quantize ${model_f16} ${model_q5_0} q5_0 + ./bin/quantize ${model_f16} ${model_q5_1} q5_1 + ./bin/quantize ${model_f16} ${model_q2_k} q2_k + ./bin/quantize ${model_f16} ${model_q3_k} q3_k + ./bin/quantize ${model_f16} ${model_q4_k} q4_k + ./bin/quantize ${model_f16} ${model_q5_k} q5_k + ./bin/quantize ${model_f16} ${model_q6_k} q6_k + + (time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + + (time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + + (time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log + + (time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + + function check_ppl { + qnt="$1" + ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1) + + if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then + printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl" + return 20 + fi + + printf ' - %s @ %s OK\n' "$qnt" "$ppl" + return 0 + } + + check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + #check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model + check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + + cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log + + set +e +} + +function gg_sum_pythia_1_4b { + gg_printf '### %s\n\n' "${ci}" + + gg_printf 'Pythia 1.4B:\n' + gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" + gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)" + gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)" + gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)" + gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)" + gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)" + gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)" + gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)" + gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)" + gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)" + gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)" + gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)" + gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)" + gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)" + gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)" +} + +# pythia_2_8b +# requires: GG_BUILD_CUDA + +function gg_run_pythia_2_8b { + cd ${SRC} + + gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/config.json + gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer.json + gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer_config.json + gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/special_tokens_map.json + gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/resolve/main/pytorch_model.bin + + gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip + unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/ + + path_models="../models-mnt/pythia/2.8B" + path_wiki="../models-mnt/wikitext/wikitext-2-raw" + + rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release + + set -e + + (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log + (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log + + python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf + + model_f16="${path_models}/ggml-model-f16.gguf" + model_q8_0="${path_models}/ggml-model-q8_0.gguf" + model_q4_0="${path_models}/ggml-model-q4_0.gguf" + model_q4_1="${path_models}/ggml-model-q4_1.gguf" + model_q5_0="${path_models}/ggml-model-q5_0.gguf" + model_q5_1="${path_models}/ggml-model-q5_1.gguf" + model_q2_k="${path_models}/ggml-model-q2_k.gguf" + model_q3_k="${path_models}/ggml-model-q3_k.gguf" + model_q4_k="${path_models}/ggml-model-q4_k.gguf" + model_q5_k="${path_models}/ggml-model-q5_k.gguf" + model_q6_k="${path_models}/ggml-model-q6_k.gguf" + + wiki_test="${path_wiki}/wiki.test.raw" + + ./bin/quantize ${model_f16} ${model_q8_0} q8_0 + ./bin/quantize ${model_f16} ${model_q4_0} q4_0 + ./bin/quantize ${model_f16} ${model_q4_1} q4_1 + ./bin/quantize ${model_f16} ${model_q5_0} q5_0 + ./bin/quantize ${model_f16} ${model_q5_1} q5_1 + ./bin/quantize ${model_f16} ${model_q2_k} q2_k + ./bin/quantize ${model_f16} ${model_q3_k} q3_k + ./bin/quantize ${model_f16} ${model_q4_k} q4_k + ./bin/quantize ${model_f16} ${model_q5_k} q5_k + ./bin/quantize ${model_f16} ${model_q6_k} q6_k + + (time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + + (time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + + (time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log + + (time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + + function check_ppl { + qnt="$1" + ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1) + + if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then + printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl" + return 20 + fi + + printf ' - %s @ %s OK\n' "$qnt" "$ppl" + return 0 + } + + check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + #check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model + check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + + cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log + + set +e +} + +function gg_sum_pythia_2_8b { + gg_printf '### %s\n\n' "${ci}" + + gg_printf 'Pythia 2.8B:\n' + gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" + gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)" + gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)" + gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)" + gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)" + gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)" + gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)" + gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)" + gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)" + gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)" + gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)" + gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)" + gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)" + gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)" + gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)" +} + # bge-small function gg_run_embd_bge_small { @@ -552,7 +688,7 @@ function gg_run_embd_bge_small { (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log - python3 ../convert-hf-to-gguf.py ${path_models} + python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf model_f16="${path_models}/ggml-model-f16.gguf" model_q8_0="${path_models}/ggml-model-q8_0.gguf" @@ -606,9 +742,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then if [ -z ${GG_BUILD_CUDA} ]; then - test $ret -eq 0 && gg_run open_llama_3b_v2 + test $ret -eq 0 && gg_run pythia_1_4b else - test $ret -eq 0 && gg_run open_llama_7b_v2 + test $ret -eq 0 && gg_run pythia_2_8b + #test $ret -eq 0 && gg_run open_llama_7b_v2 fi test $ret -eq 0 && gg_run ctest_with_model_debug test $ret -eq 0 && gg_run ctest_with_model_release diff --git a/common/common.cpp b/common/common.cpp index e624fc7f3..7500e08ff 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -73,7 +73,11 @@ using json = nlohmann::ordered_json; -int32_t get_num_physical_cores() { +// +// CPU utils +// + +int32_t cpu_get_num_physical_cores() { #ifdef __linux__ // enumerate the set of thread siblings, num entries is num cores std::unordered_set siblings; @@ -142,9 +146,9 @@ static bool is_running_on_efficiency_core(void) { return core_type == intel_atom; } -static int count_math_cpus(int cpu_count) { +static int cpu_count_math_cpus(int n_cpu) { int result = 0; - for (int cpu = 0; cpu < cpu_count; ++cpu) { + for (int cpu = 0; cpu < n_cpu; ++cpu) { if (pin_cpu(cpu)) { return -1; } @@ -162,16 +166,16 @@ static int count_math_cpus(int cpu_count) { /** * Returns number of CPUs on system that are useful for math. */ -int get_math_cpu_count() { +int32_t cpu_get_num_math() { #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__) - int cpu_count = sysconf(_SC_NPROCESSORS_ONLN); - if (cpu_count < 1) { - return get_num_physical_cores(); + int n_cpu = sysconf(_SC_NPROCESSORS_ONLN); + if (n_cpu < 1) { + return cpu_get_num_physical_cores(); } if (is_hybrid_cpu()) { cpu_set_t affinity; if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) { - int result = count_math_cpus(cpu_count); + int result = cpu_count_math_cpus(n_cpu); pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity); if (result > 0) { return result; @@ -179,108 +183,103 @@ int get_math_cpu_count() { } } #endif - return get_num_physical_cores(); + return cpu_get_num_physical_cores(); } -void process_escapes(std::string & input) { - std::size_t input_len = input.length(); - std::size_t output_idx = 0; +// +// CLI argument parsing +// - for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { - if (input[input_idx] == '\\' && input_idx + 1 < input_len) { - switch (input[++input_idx]) { - case 'n': input[output_idx++] = '\n'; break; - case 'r': input[output_idx++] = '\r'; break; - case 't': input[output_idx++] = '\t'; break; - case '\'': input[output_idx++] = '\''; break; - case '\"': input[output_idx++] = '\"'; break; - case '\\': input[output_idx++] = '\\'; break; - case 'x': - // Handle \x12, etc - if (input_idx + 2 < input_len) { - const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 }; - char *err_p = nullptr; - const long val = std::strtol(x, &err_p, 16); - if (err_p == x + 2) { - input_idx += 2; - input[output_idx++] = char(val); - break; - } - } - // fall through - default: input[output_idx++] = '\\'; - input[output_idx++] = input[input_idx]; break; +void gpt_params_handle_model_default(gpt_params & params) { + if (!params.hf_repo.empty()) { + // short-hand to avoid specifying --hf-file -> default it to --model + if (params.hf_file.empty()) { + if (params.model.empty()) { + throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n"); } - } else { - input[output_idx++] = input[input_idx]; + params.hf_file = params.model; + } else if (params.model.empty()) { + std::string cache_directory = fs_get_cache_directory(); + const bool success = fs_create_directory_with_parents(cache_directory); + if (!success) { + throw std::runtime_error("failed to create cache directory: " + cache_directory); + } + params.model = cache_directory + string_split(params.hf_file, '/').back(); + } + } else if (!params.model_url.empty()) { + if (params.model.empty()) { + auto f = string_split(params.model_url, '#').front(); + f = string_split(f, '?').front(); + f = string_split(f, '/').back(); + params.model = "models/" + f; + } + } else if (params.model.empty()) { + params.model = DEFAULT_MODEL_PATH; + } +} + +bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { + bool invalid_param = false; + std::string arg; + const std::string arg_prefix = "--"; + llama_sampling_params & sparams = params.sparams; + + for (int i = 1; i < argc; i++) { + arg = argv[i]; + if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { + std::replace(arg.begin(), arg.end(), '_', '-'); + } + if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) { + throw std::invalid_argument("error: unknown argument: " + arg); + } + if (invalid_param) { + throw std::invalid_argument("error: invalid parameter for argument: " + arg); } } - input.resize(output_idx); + if (params.prompt_cache_all && + (params.interactive || params.interactive_first || + params.instruct)) { + + throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); + } + + gpt_params_handle_model_default(params); + + if (params.escape) { + string_process_escapes(params.prompt); + string_process_escapes(params.input_prefix); + string_process_escapes(params.input_suffix); + string_process_escapes(sparams.cfg_negative_prompt); + for (auto & antiprompt : params.antiprompt) { + string_process_escapes(antiprompt); + } + } + + if (!params.kv_overrides.empty()) { + params.kv_overrides.emplace_back(); + params.kv_overrides.back().key[0] = 0; + } + + return true; } bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { bool result = true; try { if (!gpt_params_parse_ex(argc, argv, params)) { - gpt_print_usage(argc, argv, gpt_params()); + gpt_params_print_usage(argc, argv, gpt_params()); exit(0); } } catch (const std::invalid_argument & ex) { fprintf(stderr, "%s\n", ex.what()); - gpt_print_usage(argc, argv, gpt_params()); + gpt_params_print_usage(argc, argv, gpt_params()); exit(1); } return result; } -bool parse_kv_override(const char * data, std::vector & overrides) { - const char * sep = strchr(data, '='); - if (sep == nullptr || sep - data >= 128) { - fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data); - return false; - } - llama_model_kv_override kvo; - std::strncpy(kvo.key, data, sep - data); - kvo.key[sep - data] = 0; - sep++; - if (strncmp(sep, "int:", 4) == 0) { - sep += 4; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; - kvo.val_i64 = std::atol(sep); - } else if (strncmp(sep, "float:", 6) == 0) { - sep += 6; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; - kvo.val_f64 = std::atof(sep); - } else if (strncmp(sep, "bool:", 5) == 0) { - sep += 5; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; - if (std::strcmp(sep, "true") == 0) { - kvo.val_bool = true; - } else if (std::strcmp(sep, "false") == 0) { - kvo.val_bool = false; - } else { - fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data); - return false; - } - } else if (strncmp(sep, "str:", 4) == 0) { - sep += 4; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; - if (strlen(sep) > 127) { - fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data); - return false; - } - strncpy(kvo.val_str, sep, 127); - kvo.val_str[127] = '\0'; - } else { - fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data); - return false; - } - overrides.emplace_back(std::move(kvo)); - return true; -} - bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) { llama_sampling_params & sparams = params.sparams; @@ -546,7 +545,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa return true; } const auto sampler_names = string_split(argv[i], ';'); - sparams.samplers_sequence = sampler_types_from_names(sampler_names, true); + sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, true); return true; } if (arg == "--sampling-seq") { @@ -554,7 +553,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa invalid_param = true; return true; } - sparams.samplers_sequence = sampler_types_from_chars(argv[i]); + sparams.samplers_sequence = llama_sampling_types_from_chars(argv[i]); return true; } if (arg == "--top-p") { @@ -1240,7 +1239,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa return true; } if (arg == "-h" || arg == "--help") { - gpt_print_usage(argc, argv, gpt_params()); + gpt_params_print_usage(argc, argv, gpt_params()); exit(0); } if (arg == "--version") { @@ -1311,7 +1310,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa invalid_param = true; return true; } - if (!parse_kv_override(argv[i], params.kv_overrides)) { + if (!string_parse_kv_override(argv[i], params.kv_overrides)) { fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]); invalid_param = true; return true; @@ -1345,83 +1344,14 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa return false; } -void gpt_params_handle_model_default(gpt_params & params) { - if (!params.hf_repo.empty()) { - // short-hand to avoid specifying --hf-file -> default it to --model - if (params.hf_file.empty()) { - if (params.model.empty()) { - throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n"); - } - params.hf_file = params.model; - } else if (params.model.empty()) { - params.model = "models/" + string_split(params.hf_file, '/').back(); - } - } else if (!params.model_url.empty()) { - if (params.model.empty()) { - auto f = string_split(params.model_url, '#').front(); - f = string_split(f, '?').front(); - f = string_split(f, '/').back(); - params.model = "models/" + f; - } - } else if (params.model.empty()) { - params.model = DEFAULT_MODEL_PATH; - } -} - -bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { - bool invalid_param = false; - std::string arg; - const std::string arg_prefix = "--"; - llama_sampling_params & sparams = params.sparams; - - for (int i = 1; i < argc; i++) { - arg = argv[i]; - if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { - std::replace(arg.begin(), arg.end(), '_', '-'); - } - if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) { - throw std::invalid_argument("error: unknown argument: " + arg); - } - if (invalid_param) { - throw std::invalid_argument("error: invalid parameter for argument: " + arg); - } - } - - if (params.prompt_cache_all && - (params.interactive || params.interactive_first || - params.instruct)) { - - throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); - } - - gpt_params_handle_model_default(params); - - if (params.escape) { - process_escapes(params.prompt); - process_escapes(params.input_prefix); - process_escapes(params.input_suffix); - process_escapes(sparams.cfg_negative_prompt); - for (auto & antiprompt : params.antiprompt) { - process_escapes(antiprompt); - } - } - - if (!params.kv_overrides.empty()) { - params.kv_overrides.emplace_back(); - params.kv_overrides.back().key[0] = 0; - } - - return true; -} - -void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { +void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { const llama_sampling_params & sparams = params.sparams; std::string sampler_type_chars; std::string sampler_type_names; for (const auto sampler_type : sparams.samplers_sequence) { sampler_type_chars += static_cast(sampler_type); - sampler_type_names += sampler_type_to_name_string(sampler_type) + ";"; + sampler_type_names += llama_sampling_type_to_str(sampler_type) + ";"; } sampler_type_names.pop_back(); @@ -1618,7 +1548,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { #endif // LOG_DISABLE_LOGS } -std::string get_system_info(const gpt_params & params) { +std::string gpt_params_get_system_info(const gpt_params & params) { std::ostringstream os; os << "system_info: n_threads = " << params.n_threads; @@ -1630,7 +1560,52 @@ std::string get_system_info(const gpt_params & params) { return os.str(); } -std::string gpt_random_prompt(std::mt19937 & rng) { +// +// String utils +// + +std::vector string_split(std::string input, char separator) { + std::vector parts; + size_t separator_pos = input.find(separator); + while (separator_pos != std::string::npos) { + std::string part = input.substr(0, separator_pos); + parts.emplace_back(part); + input = input.substr(separator_pos + 1); + separator_pos = input.find(separator); + } + parts.emplace_back(input); + return parts; +} + +std::string string_strip(const std::string & str) { + size_t start = 0; + size_t end = str.size(); + while (start < end && std::isspace(str[start])) { + start++; + } + while (end > start && std::isspace(str[end - 1])) { + end--; + } + return str.substr(start, end - start); +} + +std::string string_get_sortable_timestamp() { + using clock = std::chrono::system_clock; + + const clock::time_point current_time = clock::now(); + const time_t as_time_t = clock::to_time_t(current_time); + char timestamp_no_ns[100]; + std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t)); + + const int64_t ns = std::chrono::duration_cast( + current_time.time_since_epoch() % 1000000000).count(); + char timestamp_ns[11]; + snprintf(timestamp_ns, 11, "%09" PRId64, ns); + + return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); +} + +std::string string_random_prompt(std::mt19937 & rng) { const int r = rng() % 10; switch (r) { case 0: return "So"; @@ -1648,9 +1623,96 @@ std::string gpt_random_prompt(std::mt19937 & rng) { GGML_UNREACHABLE(); } +void string_process_escapes(std::string & input) { + std::size_t input_len = input.length(); + std::size_t output_idx = 0; + + for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { + if (input[input_idx] == '\\' && input_idx + 1 < input_len) { + switch (input[++input_idx]) { + case 'n': input[output_idx++] = '\n'; break; + case 'r': input[output_idx++] = '\r'; break; + case 't': input[output_idx++] = '\t'; break; + case '\'': input[output_idx++] = '\''; break; + case '\"': input[output_idx++] = '\"'; break; + case '\\': input[output_idx++] = '\\'; break; + case 'x': + // Handle \x12, etc + if (input_idx + 2 < input_len) { + const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 }; + char *err_p = nullptr; + const long val = std::strtol(x, &err_p, 16); + if (err_p == x + 2) { + input_idx += 2; + input[output_idx++] = char(val); + break; + } + } + // fall through + default: input[output_idx++] = '\\'; + input[output_idx++] = input[input_idx]; break; + } + } else { + input[output_idx++] = input[input_idx]; + } + } + + input.resize(output_idx); +} + +bool string_parse_kv_override(const char * data, std::vector & overrides) { + const char * sep = strchr(data, '='); + if (sep == nullptr || sep - data >= 128) { + fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data); + return false; + } + llama_model_kv_override kvo; + std::strncpy(kvo.key, data, sep - data); + kvo.key[sep - data] = 0; + sep++; + if (strncmp(sep, "int:", 4) == 0) { + sep += 4; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; + kvo.val_i64 = std::atol(sep); + } else if (strncmp(sep, "float:", 6) == 0) { + sep += 6; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; + kvo.val_f64 = std::atof(sep); + } else if (strncmp(sep, "bool:", 5) == 0) { + sep += 5; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; + if (std::strcmp(sep, "true") == 0) { + kvo.val_bool = true; + } else if (std::strcmp(sep, "false") == 0) { + kvo.val_bool = false; + } else { + fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data); + return false; + } + } else if (strncmp(sep, "str:", 4) == 0) { + sep += 4; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; + if (strlen(sep) > 127) { + fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data); + return false; + } + strncpy(kvo.val_str, sep, 127); + kvo.val_str[127] = '\0'; + } else { + fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data); + return false; + } + overrides.emplace_back(std::move(kvo)); + return true; +} + +// +// Filesystem utils +// + // Validate if a filename is safe to use // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function -bool validate_file_name(const std::string & filename) { +bool fs_validate_filename(const std::string & filename) { if (!filename.length()) { // Empty filename invalid return false; @@ -1719,120 +1781,194 @@ bool validate_file_name(const std::string & filename) { return true; } -// -// String utils -// +// returns true if successful, false otherwise +bool fs_create_directory_with_parents(const std::string & path) { +#ifdef _WIN32 + std::wstring_convert> converter; + std::wstring wpath = converter.from_bytes(path); -std::vector string_split(std::string input, char separator) { - std::vector parts; - size_t separator_pos = input.find(separator); - while (separator_pos != std::string::npos) { - std::string part = input.substr(0, separator_pos); - parts.emplace_back(part); - input = input.substr(separator_pos + 1); - separator_pos = input.find(separator); + // if the path already exists, check whether it's a directory + const DWORD attributes = GetFileAttributesW(wpath.c_str()); + if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { + return true; } - parts.emplace_back(input); - return parts; -} -std::string string_strip(const std::string & str) { - size_t start = 0; - size_t end = str.size(); - while (start < end && std::isspace(str[start])) { - start++; - } - while (end > start && std::isspace(str[end - 1])) { - end--; - } - return str.substr(start, end - start); -} + size_t pos_slash = 0; -std::vector sampler_types_from_names(const std::vector & names, bool allow_alt_names) { - std::unordered_map sampler_canonical_name_map { - {"top_k", llama_sampler_type::TOP_K}, - {"top_p", llama_sampler_type::TOP_P}, - {"typical_p", llama_sampler_type::TYPICAL_P}, - {"min_p", llama_sampler_type::MIN_P}, - {"tfs_z", llama_sampler_type::TFS_Z}, - {"temperature", llama_sampler_type::TEMPERATURE} - }; + // process path from front to back, procedurally creating directories + while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { + const std::wstring subpath = wpath.substr(0, pos_slash); + const wchar_t * test = subpath.c_str(); - // since samplers names are written multiple ways - // make it ready for both system names and input names - std::unordered_map sampler_alt_name_map { - {"top-k", llama_sampler_type::TOP_K}, - {"top-p", llama_sampler_type::TOP_P}, - {"nucleus", llama_sampler_type::TOP_P}, - {"typical-p", llama_sampler_type::TYPICAL_P}, - {"typical", llama_sampler_type::TYPICAL_P}, - {"min-p", llama_sampler_type::MIN_P}, - {"tfs-z", llama_sampler_type::TFS_Z}, - {"tfs", llama_sampler_type::TFS_Z}, - {"temp", llama_sampler_type::TEMPERATURE} - }; + const bool success = CreateDirectoryW(test, NULL); + if (!success) { + const DWORD error = GetLastError(); - std::vector sampler_types; - sampler_types.reserve(names.size()); - for (const auto & name : names) - { - auto sampler_item = sampler_canonical_name_map.find(name); - if (sampler_item != sampler_canonical_name_map.end()) - { - sampler_types.push_back(sampler_item->second); - } - else - { - if (allow_alt_names) - { - sampler_item = sampler_alt_name_map.find(name); - if (sampler_item != sampler_alt_name_map.end()) - { - sampler_types.push_back(sampler_item->second); + // if the path already exists, ensure that it's a directory + if (error == ERROR_ALREADY_EXISTS) { + const DWORD attributes = GetFileAttributesW(subpath.c_str()); + if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { + return false; } + } else { + return false; } } + + pos_slash += 1; } - return sampler_types; -} -std::vector sampler_types_from_chars(const std::string & names_string) { - std::unordered_map sampler_name_map { - {'k', llama_sampler_type::TOP_K}, - {'p', llama_sampler_type::TOP_P}, - {'y', llama_sampler_type::TYPICAL_P}, - {'m', llama_sampler_type::MIN_P}, - {'f', llama_sampler_type::TFS_Z}, - {'t', llama_sampler_type::TEMPERATURE} - }; + return true; +#else + // if the path already exists, check whether it's a directory + struct stat info; + if (stat(path.c_str(), &info) == 0) { + return S_ISDIR(info.st_mode); + } - std::vector sampler_types; - sampler_types.reserve(names_string.size()); - for (const auto & c : names_string) { - const auto sampler_item = sampler_name_map.find(c); - if (sampler_item != sampler_name_map.end()) { - sampler_types.push_back(sampler_item->second); + size_t pos_slash = 1; // skip leading slashes for directory creation + + // process path from front to back, procedurally creating directories + while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { + const std::string subpath = path.substr(0, pos_slash); + struct stat info; + + // if the path already exists, ensure that it's a directory + if (stat(subpath.c_str(), &info) == 0) { + if (!S_ISDIR(info.st_mode)) { + return false; + } + } else { + // create parent directories + const int ret = mkdir(subpath.c_str(), 0755); + if (ret != 0) { + return false; + } } + + pos_slash += 1; } - return sampler_types; + + return true; +#endif // _WIN32 } -std::string sampler_type_to_name_string(llama_sampler_type sampler_type) { - switch (sampler_type) { - case llama_sampler_type::TOP_K: return "top_k"; - case llama_sampler_type::TFS_Z: return "tfs_z"; - case llama_sampler_type::TYPICAL_P: return "typical_p"; - case llama_sampler_type::TOP_P: return "top_p"; - case llama_sampler_type::MIN_P: return "min_p"; - case llama_sampler_type::TEMPERATURE: return "temperature"; - default : return ""; +std::string fs_get_cache_directory() { + std::string cache_directory = ""; + if (getenv("LLAMA_CACHE")) { + cache_directory = std::getenv("LLAMA_CACHE"); + if (cache_directory.back() != DIRECTORY_SEPARATOR) { + cache_directory += DIRECTORY_SEPARATOR; + } + } else { +#ifdef __linux__ + if (std::getenv("XDG_CACHE_HOME")) { + cache_directory = std::getenv("XDG_CACHE_HOME"); + } else { + cache_directory = std::getenv("HOME") + std::string("/.cache/"); + } +#elif defined(__APPLE__) + cache_directory = std::getenv("HOME") + std::string("/Library/Caches/"); +#elif defined(_WIN32) + cache_directory = std::getenv("APPDATA"); +#endif // __linux__ + cache_directory += "llama.cpp"; + cache_directory += DIRECTORY_SEPARATOR; } + return cache_directory; } + // // Model utils // +std::tuple llama_init_from_gpt_params(gpt_params & params) { + auto mparams = llama_model_params_from_gpt_params(params); + + llama_model * model = nullptr; + + if (!params.hf_repo.empty() && !params.hf_file.empty()) { + model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams); + } else if (!params.model_url.empty()) { + model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams); + } else { + model = llama_load_model_from_file(params.model.c_str(), mparams); + } + + if (model == NULL) { + fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); + return std::make_tuple(nullptr, nullptr); + } + + auto cparams = llama_context_params_from_gpt_params(params); + + llama_context * lctx = llama_new_context_with_model(model, cparams); + if (lctx == NULL) { + fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); + llama_free_model(model); + return std::make_tuple(nullptr, nullptr); + } + + if (!params.control_vectors.empty()) { + if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1; + if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model); + + const auto cvec = llama_control_vector_load(params.control_vectors); + if (cvec.n_embd == -1) { + llama_free(lctx); + llama_free_model(model); + return std::make_tuple(nullptr, nullptr); + } + + int err = llama_control_vector_apply(lctx, + cvec.data.data(), + cvec.data.size(), + cvec.n_embd, + params.control_vector_layer_start, + params.control_vector_layer_end); + if (err) { + llama_free(lctx); + llama_free_model(model); + return std::make_tuple(nullptr, nullptr); + } + } + + for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) { + const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]); + float lora_scale = std::get<1>(params.lora_adapter[i]); + int err = llama_model_apply_lora_from_file(model, + lora_adapter.c_str(), + lora_scale, + ((i > 0) || params.lora_base.empty()) + ? NULL + : params.lora_base.c_str(), + params.n_threads); + if (err != 0) { + fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); + llama_free(lctx); + llama_free_model(model); + return std::make_tuple(nullptr, nullptr); + } + } + + if (params.ignore_eos) { + params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY; + } + + if (params.warmup) { + LOG("warming up the model with an empty run\n"); + + std::vector tmp = { llama_token_bos(model), llama_token_eos(model), }; + llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); + llama_kv_cache_clear(lctx); + llama_synchronize(lctx); + llama_reset_timings(lctx); + } + + return std::make_tuple(model, lctx); +} + struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) { auto mparams = llama_model_default_params(); @@ -1918,27 +2054,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param return cparams; } -void llama_batch_clear(struct llama_batch & batch) { - batch.n_tokens = 0; -} - -void llama_batch_add( - struct llama_batch & batch, - llama_token id, - llama_pos pos, - const std::vector & seq_ids, - bool logits) { - batch.token [batch.n_tokens] = id; - batch.pos [batch.n_tokens] = pos; - batch.n_seq_id[batch.n_tokens] = seq_ids.size(); - for (size_t i = 0; i < seq_ids.size(); ++i) { - batch.seq_id[batch.n_tokens][i] = seq_ids[i]; - } - batch.logits [batch.n_tokens] = logits; - - batch.n_tokens++; -} - #ifdef LLAMA_USE_CURL static bool starts_with(const std::string & str, const std::string & prefix) { @@ -2269,90 +2384,29 @@ struct llama_model * llama_load_model_from_hf( #endif // LLAMA_USE_CURL -std::tuple llama_init_from_gpt_params(gpt_params & params) { - auto mparams = llama_model_params_from_gpt_params(params); +// +// Batch utils +// - llama_model * model = nullptr; +void llama_batch_clear(struct llama_batch & batch) { + batch.n_tokens = 0; +} - if (!params.hf_repo.empty() && !params.hf_file.empty()) { - model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams); - } else if (!params.model_url.empty()) { - model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams); - } else { - model = llama_load_model_from_file(params.model.c_str(), mparams); +void llama_batch_add( + struct llama_batch & batch, + llama_token id, + llama_pos pos, + const std::vector & seq_ids, + bool logits) { + batch.token [batch.n_tokens] = id; + batch.pos [batch.n_tokens] = pos; + batch.n_seq_id[batch.n_tokens] = seq_ids.size(); + for (size_t i = 0; i < seq_ids.size(); ++i) { + batch.seq_id[batch.n_tokens][i] = seq_ids[i]; } + batch.logits [batch.n_tokens] = logits; - if (model == NULL) { - fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); - return std::make_tuple(nullptr, nullptr); - } - - auto cparams = llama_context_params_from_gpt_params(params); - - llama_context * lctx = llama_new_context_with_model(model, cparams); - if (lctx == NULL) { - fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); - llama_free_model(model); - return std::make_tuple(nullptr, nullptr); - } - - if (!params.control_vectors.empty()) { - if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1; - if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model); - - const auto cvec = llama_control_vector_load(params.control_vectors); - if (cvec.n_embd == -1) { - llama_free(lctx); - llama_free_model(model); - return std::make_tuple(nullptr, nullptr); - } - - int err = llama_control_vector_apply(lctx, - cvec.data.data(), - cvec.data.size(), - cvec.n_embd, - params.control_vector_layer_start, - params.control_vector_layer_end); - if (err) { - llama_free(lctx); - llama_free_model(model); - return std::make_tuple(nullptr, nullptr); - } - } - - for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) { - const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]); - float lora_scale = std::get<1>(params.lora_adapter[i]); - int err = llama_model_apply_lora_from_file(model, - lora_adapter.c_str(), - lora_scale, - ((i > 0) || params.lora_base.empty()) - ? NULL - : params.lora_base.c_str(), - params.n_threads); - if (err != 0) { - fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); - llama_free(lctx); - llama_free_model(model); - return std::make_tuple(nullptr, nullptr); - } - } - - if (params.ignore_eos) { - params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY; - } - - if (params.warmup) { - LOG("warming up the model with an empty run\n"); - - std::vector tmp = { llama_token_bos(model), llama_token_eos(model), }; - llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); - llama_kv_cache_clear(lctx); - llama_synchronize(lctx); - llama_reset_timings(lctx); - } - - return std::make_tuple(model, lctx); + batch.n_tokens++; } // @@ -2440,321 +2494,11 @@ bool llama_should_add_bos_token(const llama_model * model) { return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); } -// -// YAML utils -// - -// returns true if successful, false otherwise -bool create_directory_with_parents(const std::string & path) { -#ifdef _WIN32 - std::wstring_convert> converter; - std::wstring wpath = converter.from_bytes(path); - - // if the path already exists, check whether it's a directory - const DWORD attributes = GetFileAttributesW(wpath.c_str()); - if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { - return true; - } - - size_t pos_slash = 0; - - // process path from front to back, procedurally creating directories - while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { - const std::wstring subpath = wpath.substr(0, pos_slash); - const wchar_t * test = subpath.c_str(); - - const bool success = CreateDirectoryW(test, NULL); - if (!success) { - const DWORD error = GetLastError(); - - // if the path already exists, ensure that it's a directory - if (error == ERROR_ALREADY_EXISTS) { - const DWORD attributes = GetFileAttributesW(subpath.c_str()); - if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { - return false; - } - } else { - return false; - } - } - - pos_slash += 1; - } - - return true; -#else - // if the path already exists, check whether it's a directory - struct stat info; - if (stat(path.c_str(), &info) == 0) { - return S_ISDIR(info.st_mode); - } - - size_t pos_slash = 1; // skip leading slashes for directory creation - - // process path from front to back, procedurally creating directories - while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { - const std::string subpath = path.substr(0, pos_slash); - struct stat info; - - // if the path already exists, ensure that it's a directory - if (stat(subpath.c_str(), &info) == 0) { - if (!S_ISDIR(info.st_mode)) { - return false; - } - } else { - // create parent directories - const int ret = mkdir(subpath.c_str(), 0755); - if (ret != 0) { - return false; - } - } - - pos_slash += 1; - } - - return true; -#endif // _WIN32 -} - -void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector & data) { - if (data.empty()) { - fprintf(stream, "%s:\n", prop_name); - return; - } - - fprintf(stream, "%s: [", prop_name); - for (size_t i = 0; i < data.size() - 1; ++i) { - fprintf(stream, "%e, ", data[i]); - } - fprintf(stream, "%e]\n", data.back()); -} - -void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector & data) { - if (data.empty()) { - fprintf(stream, "%s:\n", prop_name); - return; - } - - fprintf(stream, "%s: [", prop_name); - for (size_t i = 0; i < data.size() - 1; ++i) { - fprintf(stream, "%d, ", data[i]); - } - fprintf(stream, "%d]\n", data.back()); -} - -void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) { - std::string data_str(data == NULL ? "" : data); - - if (data_str.empty()) { - fprintf(stream, "%s:\n", prop_name); - return; - } - - size_t pos_start = 0; - size_t pos_found = 0; - - if (std::isspace(data_str[0]) || std::isspace(data_str.back())) { - data_str = std::regex_replace(data_str, std::regex("\n"), "\\n"); - data_str = std::regex_replace(data_str, std::regex("\""), "\\\""); - data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)"); - data_str = "\"" + data_str + "\""; - fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); - return; - } - - if (data_str.find('\n') == std::string::npos) { - fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); - return; - } - - fprintf(stream, "%s: |\n", prop_name); - while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) { - fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str()); - pos_start = pos_found + 1; - } -} - -std::string get_sortable_timestamp() { - using clock = std::chrono::system_clock; - - const clock::time_point current_time = clock::now(); - const time_t as_time_t = clock::to_time_t(current_time); - char timestamp_no_ns[100]; - std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t)); - - const int64_t ns = std::chrono::duration_cast( - current_time.time_since_epoch() % 1000000000).count(); - char timestamp_ns[11]; - snprintf(timestamp_ns, 11, "%09" PRId64, ns); - - return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); -} - -void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx, - const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc) { - const llama_sampling_params & sparams = params.sparams; - - fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT); - fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER); - fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); - fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false"); - fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false"); - fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false"); - fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); - fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); - fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); - fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false"); - fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false"); - fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false"); - fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false"); - fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); - fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); - fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); - fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); - fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); - fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); - fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); - fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false"); - fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false"); - fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false"); - -#ifdef NDEBUG - fprintf(stream, "debug: false\n"); -#else - fprintf(stream, "debug: true\n"); -#endif // NDEBUG - - fprintf(stream, "model_desc: %s\n", model_desc); - fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx))); - -#ifdef __OPTIMIZE__ - fprintf(stream, "optimize: true\n"); -#else - fprintf(stream, "optimize: false\n"); -#endif // __OPTIMIZE__ - - fprintf(stream, "time: %s\n", timestamp.c_str()); - - fprintf(stream, "\n"); - fprintf(stream, "###############\n"); - fprintf(stream, "# User Inputs #\n"); - fprintf(stream, "###############\n"); - fprintf(stream, "\n"); - - fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); - fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); - dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str()); - fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale); - fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); - fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); - fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); - fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); - fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); - fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq); - dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str()); - fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); - fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); - fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); - - const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx))); - const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY; - fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false"); - - dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str()); - fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false"); - dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str()); - fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false"); - fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); - fprintf(stream, "interactive_specials: %s # default: false\n", params.interactive_specials ? "true" : "false"); - fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); - fprintf(stream, "keep: %d # default: 0\n", params.n_keep); - fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); - - fprintf(stream, "logit_bias:\n"); - for (std::pair lb : sparams.logit_bias) { - if (ignore_eos && lb.first == logit_bias_eos->first) { - continue; - } - fprintf(stream, " %d: %f", lb.first, lb.second); - } - - fprintf(stream, "lora:\n"); - for (std::tuple la : params.lora_adapter) { - if (std::get<1>(la) != 1.0f) { - continue; - } - fprintf(stream, " - %s\n", std::get<0>(la).c_str()); - } - fprintf(stream, "lora_scaled:\n"); - for (std::tuple la : params.lora_adapter) { - if (std::get<1>(la) == 1.0f) { - continue; - } - fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la)); - } - fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); - fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); - fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep); - fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); - fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); - fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); - fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); - fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH); - fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); - fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); - fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); - fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); - fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); - fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); - fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false"); - fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); - fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); - fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present); - dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str()); - fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); - fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); - fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); - dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens); - fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false"); - fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat); - - fprintf(stream, "reverse_prompt:\n"); - for (std::string ap : params.antiprompt) { - size_t pos = 0; - while ((pos = ap.find('\n', pos)) != std::string::npos) { - ap.replace(pos, 1, "\\n"); - pos += 1; - } - - fprintf(stream, " - %s\n", ap.c_str()); - } - - fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base); - fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale); - fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed); - fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); - fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); - fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false"); - fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); - - const std::vector tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices()); - dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector); - - fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z); - fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency()); - fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k); - fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p); - fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p); - fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p); - fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); - fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false"); -} - // // KV cache utils // -void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) { +void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) { static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+"; printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d", @@ -2777,7 +2521,7 @@ void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) { printf("\n=== Done dumping\n"); } -void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) { +void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) { static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n", @@ -2825,6 +2569,10 @@ void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) { printf("\n=== Done dumping\n"); } +// +// Embedding utils +// + void llama_embd_normalize(const float * inp, float * out, int n) { double sum = 0.0; for (int i = 0; i < n; i++) { @@ -3009,3 +2757,225 @@ llama_control_vector_data llama_control_vector_load(const std::vector & data) { + if (data.empty()) { + fprintf(stream, "%s:\n", prop_name); + return; + } + + fprintf(stream, "%s: [", prop_name); + for (size_t i = 0; i < data.size() - 1; ++i) { + fprintf(stream, "%e, ", data[i]); + } + fprintf(stream, "%e]\n", data.back()); +} + +void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector & data) { + if (data.empty()) { + fprintf(stream, "%s:\n", prop_name); + return; + } + + fprintf(stream, "%s: [", prop_name); + for (size_t i = 0; i < data.size() - 1; ++i) { + fprintf(stream, "%d, ", data[i]); + } + fprintf(stream, "%d]\n", data.back()); +} + +void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) { + std::string data_str(data == NULL ? "" : data); + + if (data_str.empty()) { + fprintf(stream, "%s:\n", prop_name); + return; + } + + size_t pos_start = 0; + size_t pos_found = 0; + + if (std::isspace(data_str[0]) || std::isspace(data_str.back())) { + data_str = std::regex_replace(data_str, std::regex("\n"), "\\n"); + data_str = std::regex_replace(data_str, std::regex("\""), "\\\""); + data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)"); + data_str = "\"" + data_str + "\""; + fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); + return; + } + + if (data_str.find('\n') == std::string::npos) { + fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); + return; + } + + fprintf(stream, "%s: |\n", prop_name); + while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) { + fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str()); + pos_start = pos_found + 1; + } +} + +void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx, + const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc) { + const llama_sampling_params & sparams = params.sparams; + + fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT); + fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER); + fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); + fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false"); + fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false"); + fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false"); + fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); + fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); + fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); + fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false"); + fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false"); + fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false"); + fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false"); + fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); + fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); + fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); + fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); + fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); + fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); + fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); + fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false"); + fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false"); + fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false"); + +#ifdef NDEBUG + fprintf(stream, "debug: false\n"); +#else + fprintf(stream, "debug: true\n"); +#endif // NDEBUG + + fprintf(stream, "model_desc: %s\n", model_desc); + fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx))); + +#ifdef __OPTIMIZE__ + fprintf(stream, "optimize: true\n"); +#else + fprintf(stream, "optimize: false\n"); +#endif // __OPTIMIZE__ + + fprintf(stream, "time: %s\n", timestamp.c_str()); + + fprintf(stream, "\n"); + fprintf(stream, "###############\n"); + fprintf(stream, "# User Inputs #\n"); + fprintf(stream, "###############\n"); + fprintf(stream, "\n"); + + fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); + fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); + yaml_dump_string_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str()); + fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale); + fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); + fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); + fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); + fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); + fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); + fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq); + yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str()); + fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); + fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); + fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); + + const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx))); + const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY; + fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false"); + + yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str()); + fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false"); + yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str()); + fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false"); + fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); + fprintf(stream, "interactive_specials: %s # default: false\n", params.interactive_specials ? "true" : "false"); + fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); + fprintf(stream, "keep: %d # default: 0\n", params.n_keep); + fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); + + fprintf(stream, "logit_bias:\n"); + for (std::pair lb : sparams.logit_bias) { + if (ignore_eos && lb.first == logit_bias_eos->first) { + continue; + } + fprintf(stream, " %d: %f", lb.first, lb.second); + } + + fprintf(stream, "lora:\n"); + for (std::tuple la : params.lora_adapter) { + if (std::get<1>(la) != 1.0f) { + continue; + } + fprintf(stream, " - %s\n", std::get<0>(la).c_str()); + } + fprintf(stream, "lora_scaled:\n"); + for (std::tuple la : params.lora_adapter) { + if (std::get<1>(la) == 1.0f) { + continue; + } + fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la)); + } + fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); + fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); + fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep); + fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); + fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); + fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); + fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); + fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH); + fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); + fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); + fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); + fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); + fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); + fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); + fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false"); + fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); + fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); + fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present); + yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str()); + fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); + fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); + fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); + yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens); + fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false"); + fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat); + + fprintf(stream, "reverse_prompt:\n"); + for (std::string ap : params.antiprompt) { + size_t pos = 0; + while ((pos = ap.find('\n', pos)) != std::string::npos) { + ap.replace(pos, 1, "\\n"); + pos += 1; + } + + fprintf(stream, " - %s\n", ap.c_str()); + } + + fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base); + fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale); + fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed); + fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); + fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); + fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false"); + fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); + + const std::vector tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices()); + yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector); + + fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z); + fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency()); + fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k); + fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p); + fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p); + fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p); + fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); + fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false"); +} diff --git a/common/common.h b/common/common.h index 566490e2f..f68f3c297 100644 --- a/common/common.h +++ b/common/common.h @@ -27,7 +27,7 @@ #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0) #define print_build_info() do { \ - fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \ + fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \ fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \ } while(0) @@ -35,14 +35,18 @@ // build info extern int LLAMA_BUILD_NUMBER; -extern char const *LLAMA_COMMIT; -extern char const *LLAMA_COMPILER; -extern char const *LLAMA_BUILD_TARGET; +extern char const * LLAMA_COMMIT; +extern char const * LLAMA_COMPILER; +extern char const * LLAMA_BUILD_TARGET; struct llama_control_vector_load_info; -int get_math_cpu_count(); -int32_t get_num_physical_cores(); +// +// CPU utils +// + +int32_t cpu_get_num_physical_cores(); +int32_t cpu_get_num_math(); // // CLI argument parsing @@ -51,7 +55,7 @@ int32_t get_num_physical_cores(); struct gpt_params { uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed - int32_t n_threads = get_math_cpu_count(); + int32_t n_threads = cpu_get_num_math(); int32_t n_threads_draft = -1; int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) int32_t n_threads_batch_draft = -1; @@ -179,33 +183,34 @@ struct gpt_params { void gpt_params_handle_model_default(gpt_params & params); -bool parse_kv_override(const char * data, std::vector & overrides); +bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params); +bool gpt_params_parse (int argc, char ** argv, gpt_params & params); +bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param); +void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params); -bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params); - -bool gpt_params_parse(int argc, char ** argv, gpt_params & params); - -void gpt_print_usage(int argc, char ** argv, const gpt_params & params); - -bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param); - -std::string get_system_info(const gpt_params & params); - -std::string gpt_random_prompt(std::mt19937 & rng); - -void process_escapes(std::string& input); - -bool validate_file_name(const std::string & filename); +std::string gpt_params_get_system_info(const gpt_params & params); // // String utils // -std::vector sampler_types_from_names(const std::vector & names, bool allow_alt_names); -std::vector sampler_types_from_chars(const std::string & names_string); std::vector string_split(std::string input, char separator); + std::string string_strip(const std::string & str); -std::string sampler_type_to_name_string(llama_sampler_type sampler_type); +std::string string_get_sortable_timestamp(); +std::string string_random_prompt(std::mt19937 & rng); + +bool string_parse_kv_override(const char * data, std::vector & overrides); +void string_process_escapes(std::string & input); + +// +// Filesystem utils +// + +bool fs_validate_filename(const std::string & filename); +bool fs_create_directory_with_parents(const std::string & path); + +std::string fs_get_cache_directory(); // // Model utils @@ -276,29 +281,15 @@ std::string llama_detokenize_bpe( // defaults to true when model type is SPM, otherwise false. bool llama_should_add_bos_token(const llama_model * model); -// -// YAML utils -// - -bool create_directory_with_parents(const std::string & path); -void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector & data); -void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector & data); -void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data); -std::string get_sortable_timestamp(); - -void dump_non_result_info_yaml( - FILE * stream, const gpt_params & params, const llama_context * lctx, - const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc); - // // KV cache utils // // Dump the KV cache view with the number of sequences per cell. -void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80); +void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80); // Dump the KV cache view showing individual sequences in each cell (long output). -void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40); +void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40); // // Embedding utils @@ -332,6 +323,20 @@ llama_control_vector_data llama_control_vector_load(const std::vector & data); +void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector & data); +void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data); + +void yaml_dump_non_result_info( + FILE * stream, const gpt_params & params, const llama_context * lctx, + const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc); + diff --git a/common/sampling.cpp b/common/sampling.cpp index f0f1b92d3..f1f803516 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -125,7 +125,7 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) { std::string result = "CFG -> Penalties "; if (params.mirostat == 0) { for (auto sampler_type : params.samplers_sequence) { - const auto sampler_type_name = sampler_type_to_name_string(sampler_type); + const auto sampler_type_name = llama_sampling_type_to_str(sampler_type); if (!sampler_type_name.empty()) { result += "-> " + sampler_type_name + " "; } @@ -137,6 +137,87 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) { return result; } +std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) { + switch (sampler_type) { + case llama_sampler_type::TOP_K: return "top_k"; + case llama_sampler_type::TFS_Z: return "tfs_z"; + case llama_sampler_type::TYPICAL_P: return "typical_p"; + case llama_sampler_type::TOP_P: return "top_p"; + case llama_sampler_type::MIN_P: return "min_p"; + case llama_sampler_type::TEMPERATURE: return "temperature"; + default : return ""; + } +} + +std::vector llama_sampling_types_from_names(const std::vector & names, bool allow_alt_names) { + std::unordered_map sampler_canonical_name_map { + {"top_k", llama_sampler_type::TOP_K}, + {"top_p", llama_sampler_type::TOP_P}, + {"typical_p", llama_sampler_type::TYPICAL_P}, + {"min_p", llama_sampler_type::MIN_P}, + {"tfs_z", llama_sampler_type::TFS_Z}, + {"temperature", llama_sampler_type::TEMPERATURE} + }; + + // since samplers names are written multiple ways + // make it ready for both system names and input names + std::unordered_map sampler_alt_name_map { + {"top-k", llama_sampler_type::TOP_K}, + {"top-p", llama_sampler_type::TOP_P}, + {"nucleus", llama_sampler_type::TOP_P}, + {"typical-p", llama_sampler_type::TYPICAL_P}, + {"typical", llama_sampler_type::TYPICAL_P}, + {"min-p", llama_sampler_type::MIN_P}, + {"tfs-z", llama_sampler_type::TFS_Z}, + {"tfs", llama_sampler_type::TFS_Z}, + {"temp", llama_sampler_type::TEMPERATURE} + }; + + std::vector sampler_types; + sampler_types.reserve(names.size()); + for (const auto & name : names) + { + auto sampler_item = sampler_canonical_name_map.find(name); + if (sampler_item != sampler_canonical_name_map.end()) + { + sampler_types.push_back(sampler_item->second); + } + else + { + if (allow_alt_names) + { + sampler_item = sampler_alt_name_map.find(name); + if (sampler_item != sampler_alt_name_map.end()) + { + sampler_types.push_back(sampler_item->second); + } + } + } + } + return sampler_types; +} + +std::vector llama_sampling_types_from_chars(const std::string & names_string) { + std::unordered_map sampler_name_map { + {'k', llama_sampler_type::TOP_K}, + {'p', llama_sampler_type::TOP_P}, + {'y', llama_sampler_type::TYPICAL_P}, + {'m', llama_sampler_type::MIN_P}, + {'f', llama_sampler_type::TFS_Z}, + {'t', llama_sampler_type::TEMPERATURE} + }; + + std::vector sampler_types; + sampler_types.reserve(names_string.size()); + for (const auto & c : names_string) { + const auto sampler_item = sampler_name_map.find(c); + if (sampler_item != sampler_name_map.end()) { + sampler_types.push_back(sampler_item->second); + } + } + return sampler_types; +} + // no reasons to expose this function in header static void sampler_queue( struct llama_context * ctx_main, @@ -179,7 +260,7 @@ static llama_token llama_sampling_sample_impl( struct llama_context * ctx_main, struct llama_context * ctx_cfg, const int idx, - bool is_resampling) { // Add a parameter to indicate if we are resampling + bool is_resampling) { const llama_sampling_params & params = ctx_sampling->params; const float temp = params.temp; @@ -188,8 +269,8 @@ static llama_token llama_sampling_sample_impl( const float mirostat_eta = params.mirostat_eta; std::vector original_logits; - auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, !is_resampling, &original_logits); - if (!is_resampling) { + auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits); + if (ctx_sampling->grammar != NULL && !is_resampling) { GGML_ASSERT(!original_logits.empty()); } llama_token id = 0; @@ -252,7 +333,7 @@ static llama_token llama_sampling_sample_impl( // Restore logits from the copy std::copy(original_logits.begin(), original_logits.end(), logits); - return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling + return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true); } } @@ -285,7 +366,8 @@ static llama_token_data_array llama_sampling_prepare_impl( // Get a pointer to the logits float * logits = llama_get_logits_ith(ctx_main, idx); - if (apply_grammar && original_logits != NULL) { + if (ctx_sampling->grammar != NULL && !apply_grammar) { + GGML_ASSERT(original_logits != NULL); // Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this. *original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))}; } @@ -342,7 +424,7 @@ llama_token llama_sampling_sample( struct llama_context * ctx_cfg, const int idx) { // Call the implementation function with is_resampling set to false by default - return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false); + return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false); } llama_token_data_array llama_sampling_prepare( diff --git a/common/sampling.h b/common/sampling.h index 655732ad1..eeaa53b8b 100644 --- a/common/sampling.h +++ b/common/sampling.h @@ -116,6 +116,11 @@ std::string llama_sampling_print(const llama_sampling_params & params); // Print sampling order into a string std::string llama_sampling_order_print(const llama_sampling_params & params); +std::string llama_sampling_type_to_str(llama_sampler_type sampler_type); + +std::vector llama_sampling_types_from_names(const std::vector & names, bool allow_alt_names); +std::vector llama_sampling_types_from_chars(const std::string & names_string); + // this is a common sampling function used across the examples for convenience // it can serve as a starting point for implementing your own sampling function // Note: When using multiple sequences, it is the caller's responsibility to call diff --git a/common/train.cpp b/common/train.cpp index 0dbfd24df..2d41a1d29 100644 --- a/common/train.cpp +++ b/common/train.cpp @@ -1380,7 +1380,7 @@ bool consume_common_train_arg( void finish_processing_train_args(struct train_params_common * params) { if (params->escape) { - process_escapes(params->sample_start); + string_process_escapes(params->sample_start); } } diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py index 45404b32b..1923b88ba 100755 --- a/convert-hf-to-gguf-update.py +++ b/convert-hf-to-gguf-update.py @@ -72,7 +72,7 @@ models = [ {"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, {"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, {"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", }, - {"name": "stablelm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", }, + {"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", }, {"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", }, {"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", }, {"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 8937a4981..5a00a5e89 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -14,6 +14,7 @@ from pathlib import Path from hashlib import sha256 from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast +import math import numpy as np import torch @@ -447,7 +448,7 @@ class Model: # ref: https://huggingface.co/openai-community/gpt2 res = "gpt-2" if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3": - # ref: https://huggingface.co/stabilityai/stablelm-2-1_6b + # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b res = "stablelm2" if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff": # ref: https://huggingface.co/smallcloudai/Refact-1_6-base @@ -672,6 +673,44 @@ class GPTNeoXModel(Model): self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True)) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) + n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) + + tensors: list[tuple[str, Tensor]] = [] + + if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name): + # Map bloom-style qkv_linear to gpt-style qkv_linear + # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa + # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa + qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed)) + data_torch = torch.cat( + ( + qkv_weights[:, 0, :, :].reshape((-1, n_embed)), + qkv_weights[:, 1, :, :].reshape((-1, n_embed)), + qkv_weights[:, 2, :, :].reshape((-1, n_embed)), + ), + dim=0, + ) + logger.info("re-format attention.linear_qkv.weight") + elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name): + qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head)) + data_torch = torch.cat( + ( + qkv_bias[:, 0, :].reshape((n_embed,)), + qkv_bias[:, 1, :].reshape((n_embed,)), + qkv_bias[:, 2, :].reshape((n_embed,)), + ), + dim=0, + ) + logger.info("re-format attention.linear_qkv.bias") + + tensors.append((self.map_tensor_name(name), data_torch)) + + return tensors + @Model.register("BloomForCausalLM") class BloomModel(Model): @@ -1749,7 +1788,7 @@ class Phi3MiniModel(Model): token_id = int(token_id) token = foken_data["content"].encode("utf-8") if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: - assert(tokens[token_id] == token) + assert tokens[token_id] == token tokens[token_id] = token scores[token_id] = -1000.0 toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED @@ -1765,7 +1804,7 @@ class Phi3MiniModel(Model): token_id = int(foken_data["id"]) token = foken_data["content"].encode("utf-8") if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: - assert(tokens[token_id] == token) + assert tokens[token_id] == token tokens[token_id] = token scores[token_id] = -1000.0 toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED @@ -1784,23 +1823,59 @@ class Phi3MiniModel(Model): def set_gguf_parameters(self): block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) - rot_pct = 1.0 n_embd = self.find_hparam(["hidden_size", "n_embd"]) n_head = self.find_hparam(["num_attention_heads", "n_head"]) + n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"]) rms_eps = self.find_hparam(["rms_norm_eps"]) + max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"]) + orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"]) + rope_dims = n_embd // n_head self.gguf_writer.add_name("Phi3") - self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) - + self.gguf_writer.add_context_length(max_pos_embds) + self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds) self.gguf_writer.add_embedding_length(n_embd) - self.gguf_writer.add_feed_forward_length(8192) + self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"])) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(n_head) - self.gguf_writer.add_head_count_kv(n_head) + self.gguf_writer.add_head_count_kv(n_head_kv) self.gguf_writer.add_layer_norm_rms_eps(rms_eps) - self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) + self.gguf_writer.add_rope_dimension_count(rope_dims) + self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"])) self.gguf_writer.add_file_type(self.ftype) + # write rope scaling for long context (128k) model + rope_scaling = self.find_hparam(['rope_scaling'], True) + if (rope_scaling is None): + return + + scale = max_pos_embds / orig_max_pos_embds + + rope_scaling_type = rope_scaling.get('type', '').lower() + if len(rope_scaling_type) == 0: + raise KeyError('Missing the required key rope_scaling.type') + + if rope_scaling_type == 'su': + attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0 + elif rope_scaling_type == 'yarn': + attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0 + else: + raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet') + + self.gguf_writer.add_rope_scaling_attn_factors(attn_factor) + + long_factors = rope_scaling.get('long_factor', None) + short_factors = rope_scaling.get('short_factor', None) + + if long_factors is None or short_factors is None: + raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor') + + if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2: + raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}') + + self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32)) + self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32)) + @Model.register("PlamoForCausalLM") class PlamoModel(Model): diff --git a/examples/batched/batched.cpp b/examples/batched/batched.cpp index be30d20bf..591bc6e57 100644 --- a/examples/batched/batched.cpp +++ b/examples/batched/batched.cpp @@ -48,7 +48,7 @@ int main(int argc, char ** argv) { params.prompt = "Hello my name is"; } - process_escapes(params.prompt); + string_process_escapes(params.prompt); // init LLM diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 0c921ed69..004399b5f 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -80,7 +80,7 @@ int main(int argc, char ** argv) { std::mt19937 rng(params.seed); if (params.random_prompt) { - params.prompt = gpt_random_prompt(rng); + params.prompt = string_random_prompt(rng); } llama_backend_init(); @@ -107,7 +107,7 @@ int main(int argc, char ** argv) { // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "%s\n", get_system_info(params).c_str()); + fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str()); } // split the prompt into lines diff --git a/examples/eval-callback/eval-callback.cpp b/examples/eval-callback/eval-callback.cpp index e670d3769..51d67d6d9 100644 --- a/examples/eval-callback/eval-callback.cpp +++ b/examples/eval-callback/eval-callback.cpp @@ -152,7 +152,7 @@ int main(int argc, char ** argv) { std::mt19937 rng(params.seed); if (params.random_prompt) { - params.prompt = gpt_random_prompt(rng); + params.prompt = string_random_prompt(rng); } llama_backend_init(); @@ -176,7 +176,7 @@ int main(int argc, char ** argv) { // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "%s\n", get_system_info(params).c_str()); + fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str()); } bool OK = run(ctx, params); diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index 22743b1bf..22425730f 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -563,8 +563,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( // not capturing these, to silcence warnings const int rope_mode = 0; - return ggml_rope_custom(ctx, - t, KQ_pos, n_rot, rope_mode, n_ctx, 0, + return ggml_rope_ext(ctx, + t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f ); }; @@ -643,7 +643,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch); struct ggml_tensor * t16; if (enable_flash_attn) { - t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); + GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported"); + //t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); } else { struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index 82b19fc4f..25a2351cc 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -598,7 +598,7 @@ int main(int argc, char ** argv) { std::mt19937 rng(params.seed); if (params.random_prompt) { - params.prompt = gpt_random_prompt(rng); + params.prompt = string_random_prompt(rng); } sparams.dataset = params.prompt_file; @@ -667,7 +667,7 @@ int main(int argc, char ** argv) { // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "%s\n", get_system_info(params).c_str()); + fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str()); } bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk); diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index afac145f6..539f78184 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -50,9 +50,9 @@ static void write_logfile( return; } - const std::string timestamp = get_sortable_timestamp(); + const std::string timestamp = string_get_sortable_timestamp(); - const bool success = create_directory_with_parents(params.logdir); + const bool success = fs_create_directory_with_parents(params.logdir); if (!success) { fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str()); @@ -70,7 +70,7 @@ static void write_logfile( fprintf(logfile, "binary: infill\n"); char model_desc[128]; llama_model_desc(model, model_desc, sizeof(model_desc)); - dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc); + yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc); fprintf(logfile, "\n"); fprintf(logfile, "######################\n"); @@ -78,8 +78,8 @@ static void write_logfile( fprintf(logfile, "######################\n"); fprintf(logfile, "\n"); - dump_string_yaml_multiline(logfile, "output", output.c_str()); - dump_vector_int_yaml(logfile, "output_tokens", output_tokens); + yaml_dump_string_multiline(logfile, "output", output.c_str()); + yaml_dump_vector_int(logfile, "output_tokens", output_tokens); llama_dump_timing_info_yaml(logfile, ctx); fclose(logfile); @@ -236,7 +236,7 @@ int main(int argc, char ** argv) { // print system information { LOG_TEE("\n"); - LOG_TEE("%s\n", get_system_info(params).c_str()); + LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str()); } const bool add_bos = llama_should_add_bos_token(model); GGML_ASSERT(llama_add_eos_token(model) != 1); @@ -621,8 +621,8 @@ int main(int argc, char ** argv) { if (params.escape) { //process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here - process_escapes(params.input_prefix); - process_escapes(params.input_suffix); + string_process_escapes(params.input_prefix); + string_process_escapes(params.input_suffix); } suff_rm_leading_spc = params.escape; if (suff_rm_leading_spc && params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 8b965e199..2afdb3abd 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -195,12 +195,12 @@ static const cmd_params cmd_params_defaults = { /* model */ {"models/7B/ggml-model-q4_0.gguf"}, /* n_prompt */ {512}, /* n_gen */ {128}, - /* n_pg */ {{512, 128}}, + /* n_pg */ {}, /* n_batch */ {2048}, /* n_ubatch */ {512}, /* type_k */ {GGML_TYPE_F16}, /* type_v */ {GGML_TYPE_F16}, - /* n_threads */ {get_math_cpu_count()}, + /* n_threads */ {cpu_get_num_math()}, /* n_gpu_layers */ {99}, /* split_mode */ {LLAMA_SPLIT_MODE_LAYER}, /* main_gpu */ {0}, diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp index a6d67e5d7..c974900f2 100644 --- a/examples/llava/llava-cli.cpp +++ b/examples/llava/llava-cli.cpp @@ -290,7 +290,7 @@ int main(int argc, char ** argv) { #endif // LOG_DISABLE_LOGS if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { - gpt_print_usage(argc, argv, params); + gpt_params_print_usage(argc, argv, params); show_additional_info(argc, argv); return 1; } diff --git a/examples/lookahead/lookahead.cpp b/examples/lookahead/lookahead.cpp index 9c3540b20..54f060a85 100644 --- a/examples/lookahead/lookahead.cpp +++ b/examples/lookahead/lookahead.cpp @@ -174,7 +174,7 @@ int main(int argc, char ** argv) { // debug if (dump_kv_cache) { llama_kv_cache_view_update(ctx, &kvc_view); - dump_kv_cache_view_seqs(kvc_view, 40); + llama_kv_cache_dump_view_seqs(kvc_view, 40); } // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/ diff --git a/examples/lookup/lookup.cpp b/examples/lookup/lookup.cpp index eebbd00a5..83dbee91a 100644 --- a/examples/lookup/lookup.cpp +++ b/examples/lookup/lookup.cpp @@ -121,7 +121,7 @@ int main(int argc, char ** argv){ // debug if (dump_kv_cache) { llama_kv_cache_view_update(ctx, &kvc_view); - dump_kv_cache_view_seqs(kvc_view, 40); + llama_kv_cache_dump_view_seqs(kvc_view, 40); } // print current draft sequence diff --git a/examples/main/README.md b/examples/main/README.md index 97e2ae4c2..ee930f4e7 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -325,3 +325,5 @@ These options provide extra functionality and customization when running the LLa - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. + +- `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache. diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 9dee41001..09fa85fce 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -60,9 +60,9 @@ static void write_logfile( return; } - const std::string timestamp = get_sortable_timestamp(); + const std::string timestamp = string_get_sortable_timestamp(); - const bool success = create_directory_with_parents(params.logdir); + const bool success = fs_create_directory_with_parents(params.logdir); if (!success) { fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str()); @@ -80,7 +80,7 @@ static void write_logfile( fprintf(logfile, "binary: main\n"); char model_desc[128]; llama_model_desc(model, model_desc, sizeof(model_desc)); - dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc); + yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc); fprintf(logfile, "\n"); fprintf(logfile, "######################\n"); @@ -88,8 +88,8 @@ static void write_logfile( fprintf(logfile, "######################\n"); fprintf(logfile, "\n"); - dump_string_yaml_multiline(logfile, "output", output.c_str()); - dump_vector_int_yaml(logfile, "output_tokens", output_tokens); + yaml_dump_string_multiline(logfile, "output", output.c_str()); + yaml_dump_vector_int(logfile, "output_tokens", output_tokens); llama_dump_timing_info_yaml(logfile, ctx); fclose(logfile); @@ -181,7 +181,7 @@ int main(int argc, char ** argv) { std::mt19937 rng(params.seed); if (params.random_prompt) { - params.prompt = gpt_random_prompt(rng); + params.prompt = string_random_prompt(rng); } LOG("%s: llama backend init\n", __func__); @@ -219,7 +219,7 @@ int main(int argc, char ** argv) { // print system information { LOG_TEE("\n"); - LOG_TEE("%s\n", get_system_info(params).c_str()); + LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str()); } std::string path_session = params.path_prompt_cache; @@ -474,12 +474,12 @@ int main(int argc, char ** argv) { LOG_TEE("\n\n"); if (params.interactive) { - const char *control_message; + const char * control_message; if (params.multiline_input) { - control_message = " - To return control to LLaMa, end your input with '\\'.\n" + control_message = " - To return control to the AI, end your input with '\\'.\n" " - To return control without starting a new line, end your input with '/'.\n"; } else { - control_message = " - Press Return to return control to LLaMa.\n" + control_message = " - Press Return to return control to the AI.\n" " - To return control without starting a new line, end your input with '/'.\n" " - If you want to submit another line, end your input with '\\'.\n"; } @@ -707,7 +707,7 @@ int main(int argc, char ** argv) { const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance); - llama_sampling_accept(ctx_sampling, ctx, id, true); + llama_sampling_accept(ctx_sampling, ctx, id, /* apply_grammar= */ true); LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str()); @@ -728,7 +728,7 @@ int main(int argc, char ** argv) { // push the prompt in the sampling context in order to apply repetition penalties later // for the prompt, we don't apply grammar rules - llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false); + llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], /* apply_grammar= */ false); ++n_consumed; if ((int) embd.size() >= params.n_batch) { @@ -879,7 +879,7 @@ int main(int argc, char ** argv) { embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end()); } if (params.escape) { - process_escapes(buffer); + string_process_escapes(buffer); } const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true); diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index 7c5595d6e..c731abb72 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -210,7 +210,7 @@ int main(int argc, char ** argv) { while (true) { if (dump_kv_cache) { llama_kv_cache_view_update(ctx, &kvc_view); - dump_kv_cache_view_seqs(kvc_view, 40); + llama_kv_cache_dump_view_seqs(kvc_view, 40); } llama_batch_clear(batch); diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index bae014e6f..30e5e282e 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -44,9 +44,9 @@ static void write_logfile( return; } - const std::string timestamp = get_sortable_timestamp(); + const std::string timestamp = string_get_sortable_timestamp(); - const bool success = create_directory_with_parents(params.logdir); + const bool success = fs_create_directory_with_parents(params.logdir); if (!success) { fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str()); @@ -64,7 +64,7 @@ static void write_logfile( fprintf(logfile, "binary: main\n"); char model_desc[128]; llama_model_desc(model, model_desc, sizeof(model_desc)); - dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc); + yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc); fprintf(logfile, "\n"); fprintf(logfile, "######################\n"); @@ -72,9 +72,9 @@ static void write_logfile( fprintf(logfile, "######################\n"); fprintf(logfile, "\n"); - dump_vector_float_yaml(logfile, "logits", results.logits); + yaml_dump_vector_float(logfile, "logits", results.logits); fprintf(logfile, "ppl_value: %f\n", results.ppl_value); - dump_vector_float_yaml(logfile, "probs", results.probs); + yaml_dump_vector_float(logfile, "probs", results.probs); llama_dump_timing_info_yaml(logfile, ctx); fclose(logfile); @@ -2007,7 +2007,7 @@ int main(int argc, char ** argv) { std::mt19937 rng(params.seed); if (params.random_prompt) { - params.prompt = gpt_random_prompt(rng); + params.prompt = string_random_prompt(rng); } llama_backend_init(); @@ -2035,7 +2035,7 @@ int main(int argc, char ** argv) { // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "%s\n", get_system_info(params).c_str()); + fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str()); } struct results_perplexity results; diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index cbb452334..28584e14b 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -259,7 +259,7 @@ int main(int argc, char ** argv) { usage(argv[0]); } } else if (strcmp(argv[arg_idx], "--override-kv") == 0) { - if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) { + if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) { usage(argv[0]); } } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) { diff --git a/examples/retrieval/retrieval.cpp b/examples/retrieval/retrieval.cpp index 5ba71e76a..4e7530706 100644 --- a/examples/retrieval/retrieval.cpp +++ b/examples/retrieval/retrieval.cpp @@ -11,7 +11,7 @@ struct retrieval_params { }; static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) { - gpt_print_usage(argc, argv, gpt_params); + gpt_params_print_usage(argc, argv, gpt_params); printf("retrieval options:\n"); printf(" --context-file FNAME file containing context to embed.\n"); printf(" specify multiple files by providing --context-file option multiple times.\n"); @@ -226,7 +226,7 @@ int main(int argc, char ** argv) { // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "%s\n", get_system_info(params).c_str()); + fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str()); } // max batch size diff --git a/examples/server/public_simplechat/index.html b/examples/server/public_simplechat/index.html new file mode 100644 index 000000000..1eb390b85 --- /dev/null +++ b/examples/server/public_simplechat/index.html @@ -0,0 +1,52 @@ + + + + SimpleChat (LlamaCPP, ...) + + + + + + + + + + +
+ +
+

SimpleChat

+
+ + +
+
+ +
+ +
+
+ + +
+ +
+
+

Enter the system prompt above, before entering/submitting any user query.

+

Enter your text to the ai assistant below.

+

Use shift+enter for inserting enter.

+

Refresh the page to start over fresh.

+
+ +
+
+ + +
+ +
+ + diff --git a/examples/server/public_simplechat/readme.md b/examples/server/public_simplechat/readme.md new file mode 100644 index 000000000..5ac8258f2 --- /dev/null +++ b/examples/server/public_simplechat/readme.md @@ -0,0 +1,81 @@ + +# SimpleChat + +by Humans for All. + + +## overview + +This simple web frontend, allows triggering/testing the server's /completions or /chat/completions endpoints +in a simple way with minimal code from a common code base. Inturn additionally it tries to allow single or +multiple independent back and forth chatting to an extent, with the ai llm model at a basic level, with their +own system prompts. + +The UI follows a responsive web design so that the layout can adapt to available display space in a usable +enough manner, in general. + +NOTE: Given that the idea is for basic minimal testing, it doesnt bother with any model context length and +culling of old messages from the chat. + +NOTE: It doesnt set any parameters other than temperature for now. However if someone wants they can update +the js file as needed. + + +## usage + +One could run this web frontend directly using server itself or if anyone is thinking of adding a built in web +frontend to configure the server over http(s) or so, then run this web frontend using something like python's +http module. + +### running using examples/server + +bin/server -m path/model.gguf --path ../examples/server/public_simplechat [--port PORT] + +### running using python3's server module + +first run examples/server +* bin/server -m path/model.gguf + +next run this web front end in examples/server/public_simplechat +* cd ../examples/server/public_simplechat +* python3 -m http.server PORT + +### using the front end + +Open this simple web front end from your local browser +* http://127.0.0.1:PORT/index.html + +Once inside +* Select between chat and completion mode. By default it is set to chat mode. +* If you want to provide a system prompt, then ideally enter it first, before entering any user query. + * if chat.add_system_begin is used + * you cant change the system prompt, after it is has been submitted once along with user query. + * you cant set a system prompt, after you have submitted any user query + * if chat.add_system_anytime is used + * one can change the system prompt any time during chat, by changing the contents of system prompt. + * inturn the updated/changed system prompt will be inserted into the chat session. + * this allows for the subsequent user chatting to be driven by the new system prompt set above. +* Enter your query and either press enter or click on the submit button. + If you want to insert enter (\n) as part of your chat/query to ai model, use shift+enter. +* Wait for the logic to communicate with the server and get the response. + * the user is not allowed to enter any fresh query during this time. + * the user input box will be disabled and a working message will be shown in it. +* just refresh the page, to reset wrt the chat history and or system prompt and start afresh. +* Using NewChat one can start independent chat sessions. + * two independent chat sessions are setup by default. + + +## Devel note + +Sometimes the browser may be stuborn with caching of the file, so your updates to html/css/js +may not be visible. Also remember that just refreshing/reloading page in browser or for that +matter clearing site data, dont directly override site caching in all cases. Worst case you may +have to change port. Or in dev tools of browser, you may be able to disable caching fully. + +Concept of multiple chat sessions with different servers, as well as saving and restoring of +those across browser usage sessions, can be woven around the SimpleChat/MultiChatUI class and +its instances relatively easily, however given the current goal of keeping this simple, it has +not been added, for now. + +By switching between chat.add_system_begin/anytime, one can control whether one can change +the system prompt, anytime during the conversation or only at the beginning. diff --git a/examples/server/public_simplechat/simplechat.css b/examples/server/public_simplechat/simplechat.css new file mode 100644 index 000000000..d45f50a95 --- /dev/null +++ b/examples/server/public_simplechat/simplechat.css @@ -0,0 +1,61 @@ +/** + * the styling of the simplechat web frontend + * by Humans for All + */ + +#fullbody { + height: 98vh; +} + +.heading { + background-color: lightgray; +} + +.session-selected { + background-color: lightblue; +} + +.role-system { + background-color: lightblue; +} +.role-user { + background-color: lightgray; +} + +.flex-grow { + flex-grow: 1; +} +.float-right { + float: right; +} + +#chat-div { + overflow: scroll; + flex-grow: 1; + flex-shrink: 1; + min-height: 40vh; +} +button { + min-width: 8vw; +} + +.sameline { + display: flex; + flex-direction: row; +} +.samecolumn { + display: flex; + flex-direction: column; +} + +* { + margin: 0.6vmin; +} + +@media print { + + #fullbody { + height: auto; + } + +} diff --git a/examples/server/public_simplechat/simplechat.js b/examples/server/public_simplechat/simplechat.js new file mode 100644 index 000000000..3fc4dbc20 --- /dev/null +++ b/examples/server/public_simplechat/simplechat.js @@ -0,0 +1,478 @@ +// @ts-check +// A simple completions and chat/completions test related web front end logic +// by Humans for All + +class Roles { + static System = "system"; + static User = "user"; + static Assistant = "assistant"; +} + +class ApiEP { + static Chat = "chat"; + static Completion = "completion"; +} + +let gUsageMsg = ` +

Enter the system prompt above, before entering/submitting any user query.

+

Enter your text to the ai assistant below.

+

Use shift+enter for inserting enter.

+

Refresh the page to start over fresh.

+`; + +class SimpleChat { + + constructor() { + /** + * Maintain in a form suitable for common LLM web service chat/completions' messages entry + * @type {{role: string, content: string}[]} + */ + this.xchat = []; + this.iLastSys = -1; + } + + /** + * Add an entry into xchat + * @param {string} role + * @param {string|undefined|null} content + */ + add(role, content) { + if ((content == undefined) || (content == null) || (content == "")) { + return false; + } + this.xchat.push( {role: role, content: content} ); + if (role == Roles.System) { + this.iLastSys = this.xchat.length - 1; + } + return true; + } + + /** + * Show the contents in the specified div + * @param {HTMLDivElement} div + * @param {boolean} bClear + */ + show(div, bClear=true) { + if (bClear) { + div.replaceChildren(); + } + let last = undefined; + for(const x of this.xchat) { + let entry = document.createElement("p"); + entry.className = `role-${x.role}`; + entry.innerText = `${x.role}: ${x.content}`; + div.appendChild(entry); + last = entry; + } + if (last !== undefined) { + last.scrollIntoView(false); + } else { + if (bClear) { + div.innerHTML = gUsageMsg; + } + } + } + + /** + * Add needed fields wrt json object to be sent wrt LLM web services completions endpoint + * Convert the json into string. + * @param {Object} obj + */ + request_jsonstr(obj) { + obj["temperature"] = 0.7; + return JSON.stringify(obj); + } + + /** + * Return a string form of json object suitable for chat/completions + */ + request_messages_jsonstr() { + let req = { + messages: this.xchat, + } + return this.request_jsonstr(req); + } + + /** + * Return a string form of json object suitable for /completions + */ + request_prompt_jsonstr() { + let prompt = ""; + for(const chat of this.xchat) { + prompt += `${chat.role}: ${chat.content}\n`; + } + let req = { + prompt: prompt, + } + return this.request_jsonstr(req); + } + + /** + * Allow setting of system prompt, but only at begining. + * @param {string} sysPrompt + * @param {string} msgTag + */ + add_system_begin(sysPrompt, msgTag) { + if (this.xchat.length == 0) { + if (sysPrompt.length > 0) { + return this.add(Roles.System, sysPrompt); + } + } else { + if (sysPrompt.length > 0) { + if (this.xchat[0].role !== Roles.System) { + console.error(`ERRR:SimpleChat:SC:${msgTag}:You need to specify system prompt before any user query, ignoring...`); + } else { + if (this.xchat[0].content !== sysPrompt) { + console.error(`ERRR:SimpleChat:SC:${msgTag}:You cant change system prompt, mid way through, ignoring...`); + } + } + } + } + return false; + } + + /** + * Allow setting of system prompt, at any time. + * @param {string} sysPrompt + * @param {string} msgTag + */ + add_system_anytime(sysPrompt, msgTag) { + if (sysPrompt.length <= 0) { + return false; + } + + if (this.iLastSys < 0) { + return this.add(Roles.System, sysPrompt); + } + + let lastSys = this.xchat[this.iLastSys].content; + if (lastSys !== sysPrompt) { + return this.add(Roles.System, sysPrompt); + } + return false; + } + + /** + * Retrieve the latest system prompt. + */ + get_system_latest() { + if (this.iLastSys == -1) { + return ""; + } + let sysPrompt = this.xchat[this.iLastSys].content; + return sysPrompt; + } + +} + + +let gBaseURL = "http://127.0.0.1:8080"; +let gChatURL = { + 'chat': `${gBaseURL}/chat/completions`, + 'completion': `${gBaseURL}/completions`, +} +const gbCompletionFreshChatAlways = true; + + +/** + * Set the class of the children, based on whether it is the idSelected or not. + * @param {HTMLDivElement} elBase + * @param {string} idSelected + * @param {string} classSelected + * @param {string} classUnSelected + */ +function el_children_config_class(elBase, idSelected, classSelected, classUnSelected="") { + for(let child of elBase.children) { + if (child.id == idSelected) { + child.className = classSelected; + } else { + child.className = classUnSelected; + } + } +} + +/** + * Create button and set it up. + * @param {string} id + * @param {(this: HTMLButtonElement, ev: MouseEvent) => any} callback + * @param {string | undefined} name + * @param {string | undefined} innerText + */ +function el_create_button(id, callback, name=undefined, innerText=undefined) { + if (!name) { + name = id; + } + if (!innerText) { + innerText = id; + } + let btn = document.createElement("button"); + btn.id = id; + btn.name = name; + btn.innerText = innerText; + btn.addEventListener("click", callback); + return btn; +} + + +class MultiChatUI { + + constructor() { + /** @type {Object} */ + this.simpleChats = {}; + /** @type {string} */ + this.curChatId = ""; + + // the ui elements + this.elInSystem = /** @type{HTMLInputElement} */(document.getElementById("system-in")); + this.elDivChat = /** @type{HTMLDivElement} */(document.getElementById("chat-div")); + this.elBtnUser = /** @type{HTMLButtonElement} */(document.getElementById("user-btn")); + this.elInUser = /** @type{HTMLInputElement} */(document.getElementById("user-in")); + this.elSelectApiEP = /** @type{HTMLSelectElement} */(document.getElementById("api-ep")); + this.elDivSessions = /** @type{HTMLDivElement} */(document.getElementById("sessions-div")); + + this.validate_element(this.elInSystem, "system-in"); + this.validate_element(this.elDivChat, "chat-div"); + this.validate_element(this.elInUser, "user-in"); + this.validate_element(this.elSelectApiEP, "api-ep"); + this.validate_element(this.elDivChat, "sessions-div"); + } + + /** + * Check if the element got + * @param {HTMLElement | null} el + * @param {string} msgTag + */ + validate_element(el, msgTag) { + if (el == null) { + throw Error(`ERRR:SimpleChat:MCUI:${msgTag} element missing in html...`); + } else { + console.debug(`INFO:SimpleChat:MCUI:${msgTag} Id[${el.id}] Name[${el["name"]}]`); + } + } + + /** + * Reset user input ui. + * * clear user input + * * enable user input + * * set focus to user input + */ + ui_reset_userinput() { + this.elInUser.value = ""; + this.elInUser.disabled = false; + this.elInUser.focus(); + } + + /** + * Setup the needed callbacks wrt UI, curChatId to defaultChatId and + * optionally switch to specified defaultChatId. + * @param {string} defaultChatId + * @param {boolean} bSwitchSession + */ + setup_ui(defaultChatId, bSwitchSession=false) { + + this.curChatId = defaultChatId; + if (bSwitchSession) { + this.handle_session_switch(this.curChatId); + } + + this.elBtnUser.addEventListener("click", (ev)=>{ + if (this.elInUser.disabled) { + return; + } + this.handle_user_submit(this.curChatId, this.elSelectApiEP.value).catch((/** @type{Error} */reason)=>{ + let msg = `ERRR:SimpleChat\nMCUI:HandleUserSubmit:${this.curChatId}\n${reason.name}:${reason.message}`; + console.debug(msg.replace("\n", ":")); + alert(msg); + this.ui_reset_userinput(); + }); + }); + + this.elInUser.addEventListener("keyup", (ev)=> { + // allow user to insert enter into their message using shift+enter. + // while just pressing enter key will lead to submitting. + if ((ev.key === "Enter") && (!ev.shiftKey)) { + this.elBtnUser.click(); + ev.preventDefault(); + } + }); + + this.elInSystem.addEventListener("keyup", (ev)=> { + // allow user to insert enter into the system prompt using shift+enter. + // while just pressing enter key will lead to setting the system prompt. + if ((ev.key === "Enter") && (!ev.shiftKey)) { + let chat = this.simpleChats[this.curChatId]; + chat.add_system_anytime(this.elInSystem.value, this.curChatId); + chat.show(this.elDivChat); + ev.preventDefault(); + } + }); + + } + + /** + * Setup a new chat session and optionally switch to it. + * @param {string} chatId + * @param {boolean} bSwitchSession + */ + new_chat_session(chatId, bSwitchSession=false) { + this.simpleChats[chatId] = new SimpleChat(); + if (bSwitchSession) { + this.handle_session_switch(chatId); + } + } + + /** + * Handle user query submit request, wrt specified chat session. + * @param {string} chatId + * @param {string} apiEP + */ + async handle_user_submit(chatId, apiEP) { + + let chat = this.simpleChats[chatId]; + + chat.add_system_anytime(this.elInSystem.value, chatId); + + let content = this.elInUser.value; + if (!chat.add(Roles.User, content)) { + console.debug(`WARN:SimpleChat:MCUI:${chatId}:HandleUserSubmit:Ignoring empty user input...`); + return; + } + chat.show(this.elDivChat); + + let theBody; + let theUrl = gChatURL[apiEP] + if (apiEP == ApiEP.Chat) { + theBody = chat.request_messages_jsonstr(); + } else { + theBody = chat.request_prompt_jsonstr(); + } + + this.elInUser.value = "working..."; + this.elInUser.disabled = true; + console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:${theUrl}:ReqBody:${theBody}`); + let resp = await fetch(theUrl, { + method: "POST", + headers: { + "Content-Type": "application/json", + }, + body: theBody, + }); + + let respBody = await resp.json(); + console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:RespBody:${JSON.stringify(respBody)}`); + let assistantMsg; + if (apiEP == ApiEP.Chat) { + assistantMsg = respBody["choices"][0]["message"]["content"]; + } else { + try { + assistantMsg = respBody["choices"][0]["text"]; + } catch { + assistantMsg = respBody["content"]; + } + } + chat.add(Roles.Assistant, assistantMsg); + if (chatId == this.curChatId) { + chat.show(this.elDivChat); + } else { + console.debug(`DBUG:SimpleChat:MCUI:HandleUserSubmit:ChatId has changed:[${chatId}] [${this.curChatId}]`); + } + // Purposefully clear at end rather than begin of this function + // so that one can switch from chat to completion mode and sequece + // in a completion mode with multiple user-assistant chat data + // from before to be sent/occur once. + if ((apiEP == ApiEP.Completion) && (gbCompletionFreshChatAlways)) { + chat.xchat.length = 0; + } + this.ui_reset_userinput(); + } + + /** + * Show buttons for NewChat and available chat sessions, in the passed elDiv. + * If elDiv is undefined/null, then use this.elDivSessions. + * Take care of highlighting the selected chat-session's btn. + * @param {HTMLDivElement | undefined} elDiv + */ + show_sessions(elDiv=undefined) { + if (!elDiv) { + elDiv = this.elDivSessions; + } + elDiv.replaceChildren(); + // Btn for creating new chat session + let btnNew = el_create_button("New CHAT", (ev)=> { + if (this.elInUser.disabled) { + console.error(`ERRR:SimpleChat:MCUI:NewChat:Current session [${this.curChatId}] awaiting response, ignoring request...`); + alert("ERRR:SimpleChat\nMCUI:NewChat\nWait for response to pending query, before starting new chat session"); + return; + } + let chatId = `Chat${Object.keys(this.simpleChats).length}`; + let chatIdGot = prompt("INFO:SimpleChat\nMCUI:NewChat\nEnter id for new chat session", chatId); + if (!chatIdGot) { + console.error("ERRR:SimpleChat:MCUI:NewChat:Skipping based on user request..."); + return; + } + this.new_chat_session(chatIdGot, true); + this.create_session_btn(elDiv, chatIdGot); + el_children_config_class(elDiv, chatIdGot, "session-selected", ""); + }); + elDiv.appendChild(btnNew); + // Btns for existing chat sessions + let chatIds = Object.keys(this.simpleChats); + for(let cid of chatIds) { + let btn = this.create_session_btn(elDiv, cid); + if (cid == this.curChatId) { + btn.className = "session-selected"; + } + } + } + + create_session_btn(elDiv, cid) { + let btn = el_create_button(cid, (ev)=>{ + let target = /** @type{HTMLButtonElement} */(ev.target); + console.debug(`DBUG:SimpleChat:MCUI:SessionClick:${target.id}`); + if (this.elInUser.disabled) { + console.error(`ERRR:SimpleChat:MCUI:SessionClick:${target.id}:Current session [${this.curChatId}] awaiting response, ignoring switch...`); + alert("ERRR:SimpleChat\nMCUI:SessionClick\nWait for response to pending query, before switching"); + return; + } + this.handle_session_switch(target.id); + el_children_config_class(elDiv, target.id, "session-selected", ""); + }); + elDiv.appendChild(btn); + return btn; + } + + /** + * Switch ui to the specified chatId and set curChatId to same. + * @param {string} chatId + */ + async handle_session_switch(chatId) { + let chat = this.simpleChats[chatId]; + if (chat == undefined) { + console.error(`ERRR:SimpleChat:MCUI:HandleSessionSwitch:${chatId} missing...`); + return; + } + this.elInSystem.value = chat.get_system_latest(); + this.elInUser.value = ""; + chat.show(this.elDivChat); + this.elInUser.focus(); + this.curChatId = chatId; + console.log(`INFO:SimpleChat:MCUI:HandleSessionSwitch:${chatId} entered...`); + } + +} + + +let gMuitChat; +const gChatIds = [ "Default", "Other" ]; + +function startme() { + console.log("INFO:SimpleChat:StartMe:Starting..."); + gMuitChat = new MultiChatUI(); + for (let cid of gChatIds) { + gMuitChat.new_chat_session(cid); + } + gMuitChat.setup_ui(gChatIds[0]); + gMuitChat.show_sessions(); +} + +document.addEventListener("DOMContentLoaded", startme); diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 6af5cb96e..e9904263d 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -1019,7 +1019,7 @@ struct server_context { sampler_names.emplace_back(sampler_name); } } - slot.sparams.samplers_sequence = sampler_types_from_names(sampler_names, false); + slot.sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false); } else { slot.sparams.samplers_sequence = default_sparams.samplers_sequence; } @@ -1256,7 +1256,7 @@ struct server_context { std::vector samplers_sequence; samplers_sequence.reserve(slot.sparams.samplers_sequence.size()); for (const auto & sampler_type : slot.sparams.samplers_sequence) { - samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type)); + samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type)); } return json { @@ -2852,7 +2852,7 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams, invalid_param = true; break; } - if (!parse_kv_override(argv[i], params.kv_overrides)) { + if (!string_parse_kv_override(argv[i], params.kv_overrides)) { fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]); invalid_param = true; break; @@ -3310,7 +3310,7 @@ int main(int argc, char ** argv) { const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) { json request_data = json::parse(req.body); std::string filename = request_data.at("filename"); - if (!validate_file_name(filename)) { + if (!fs_validate_filename(filename)) { res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); return; } @@ -3340,7 +3340,7 @@ int main(int argc, char ** argv) { const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) { json request_data = json::parse(req.body); std::string filename = request_data.at("filename"); - if (!validate_file_name(filename)) { + if (!fs_validate_filename(filename)) { res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); return; } diff --git a/examples/server/tests/features/server.feature b/examples/server/tests/features/server.feature index 048cfad06..d21c09135 100644 --- a/examples/server/tests/features/server.feature +++ b/examples/server/tests/features/server.feature @@ -37,8 +37,8 @@ Feature: llama.cpp server Examples: Prompts | prompt | n_predict | re_content | n_prompt | n_predicted | truncated | - | I believe the meaning of life is | 8 | (read\|going\|pretty)+ | 18 | 8 | not | - | Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 45 | 64 | not | + | I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not | + | Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not | Scenario: Completion prompt truncated Given a prompt: @@ -67,8 +67,8 @@ Feature: llama.cpp server Examples: Prompts | model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated | - | llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 76 | 8 | disabled | not | - | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|fireplace)+ | -1 | 64 | enabled | | + | llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not | + | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | | Scenario Outline: OAI Compatibility w/ response format @@ -84,7 +84,7 @@ Feature: llama.cpp server | response_format | n_predicted | re_content | | {"type": "json_object", "schema": {"const": "42"}} | 5 | "42" | | {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] | - | {"type": "json_object"} | 10 | \{ " Saragine. | + | {"type": "json_object"} | 10 | \{ " Jacky. | Scenario: Tokenize / Detokenize diff --git a/examples/server/tests/features/slotsave.feature b/examples/server/tests/features/slotsave.feature index ba4ecb6f5..1c281c074 100644 --- a/examples/server/tests/features/slotsave.feature +++ b/examples/server/tests/features/slotsave.feature @@ -26,7 +26,7 @@ Feature: llama.cpp server slot management # Since we have cache, this should only process the last tokens Given a user prompt "What is the capital of Germany?" And a completion request with no api error - Then 24 tokens are predicted matching (Thank|special|Lily) + Then 24 tokens are predicted matching (Thank|special) And 7 prompt tokens are processed # Loading the original cache into slot 0, # we should only be processing 1 prompt token and get the same output @@ -41,7 +41,7 @@ Feature: llama.cpp server slot management Given a user prompt "What is the capital of Germany?" And using slot id 1 And a completion request with no api error - Then 24 tokens are predicted matching (Thank|special|Lily) + Then 24 tokens are predicted matching (Thank|special) And 1 prompt tokens are processed Scenario: Erase Slot diff --git a/examples/sycl/win-build-sycl.bat b/examples/sycl/win-build-sycl.bat index 1b0dc41ba..b8037aae8 100644 --- a/examples/sycl/win-build-sycl.bat +++ b/examples/sycl/win-build-sycl.bat @@ -13,10 +13,10 @@ if %errorlevel% neq 0 goto ERROR :: for FP16 :: faster for long-prompt inference -:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON +:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON :: for FP32 -cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release +cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release if %errorlevel% neq 0 goto ERROR :: build example/main only :: make main diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index 587418cc7..e2f85c682 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -301,8 +301,8 @@ static struct ggml_tensor * llama_build_train_graphs( // not capturing these, to silcence warnings const int rope_mode = 0; - return ggml_rope_custom( - ctx, t, KQ_pos, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f + return ggml_rope_ext( + ctx, t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f ); }; @@ -341,7 +341,8 @@ static struct ggml_tensor * llama_build_train_graphs( struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch); struct ggml_tensor * t16; if (enable_flash_attn) { - t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); + GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported"); + //t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); } else { struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); diff --git a/ggml-common.h b/ggml-common.h index 43c7978a0..77e6bfba4 100644 --- a/ggml-common.h +++ b/ggml-common.h @@ -65,13 +65,8 @@ typedef sycl::half2 ggml_half2; // QK = number of values after dequantization // QK_K = super-block size -#ifdef GGML_QKK_64 -#define QK_K 64 -#define K_SCALE_SIZE 4 -#else #define QK_K 256 #define K_SCALE_SIZE 12 -#endif // GGML_QKK_64 #if defined(GGML_COMMON_DECL_CUDA) || defined(GGML_COMMON_DECL_HIP) || defined(GGML_COMMON_DECL_SYCL) // QR = QK / number of values before dequantization @@ -131,13 +126,8 @@ typedef sycl::half2 ggml_half2; #define QI4_NL (QK4_NL / (4*QR4_NL)) #define QR4_NL 2 -#if QK_K == 64 -#define QI4_XS QI4_NL -#define QR4_XS QR4_NL -#else #define QI4_XS (QK_K / (4*QR4_XS)) #define QR4_XS 8 -#endif #endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP @@ -228,15 +218,6 @@ static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_half) + QK_K/16 + QK_K/4, "wro // weight is represented as x = a * q // 16 blocks of 16 elements each // Effectively 3.4375 bits per weight -#ifdef GGML_QKK_64 -typedef struct { - uint8_t hmask[QK_K/8]; // quants - high bit - uint8_t qs[QK_K/4]; // quants - low 2 bits - uint8_t scales[2]; - ggml_half d; // super-block scale -} block_q3_K; -static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding"); -#else typedef struct { uint8_t hmask[QK_K/8]; // quants - high bit uint8_t qs[QK_K/4]; // quants - low 2 bits @@ -244,20 +225,11 @@ typedef struct { ggml_half d; // super-block scale } block_q3_K; static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding"); -#endif // 4-bit quantization // 8 blocks of 32 elements each // weight is represented as x = a * q + b // Effectively 4.5 bits per weight -#ifdef GGML_QKK_64 -typedef struct { - ggml_half d[2]; // super-block scales/mins - uint8_t scales[2]; // 4-bit block scales/mins - uint8_t qs[QK_K/2]; // 4--bit quants -} block_q4_K; -static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + QK_K/2 + 2, "wrong q4_K block size/padding"); -#else typedef struct { union { struct { @@ -270,21 +242,11 @@ typedef struct { uint8_t qs[QK_K/2]; // 4--bit quants } block_q4_K; static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding"); -#endif // 5-bit quantization // 8 blocks of 32 elements each // weight is represented as x = a * q + b // Effectively 5.5 bits per weight -#ifdef GGML_QKK_64 -typedef struct { - ggml_half d; // super-block scale - int8_t scales[QK_K/16]; // 8-bit block scales - uint8_t qh[QK_K/8]; // quants, high bit - uint8_t qs[QK_K/2]; // quants, low 4 bits -} block_q5_K; -static_assert(sizeof(block_q5_K) == sizeof(ggml_half) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding"); -#else typedef struct { union { struct { @@ -298,7 +260,6 @@ typedef struct { uint8_t qs[QK_K/2]; // quants, low 4 bits } block_q5_K; static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); -#endif // 6-bit quantization // weight is represented as x = a * q @@ -356,11 +317,7 @@ typedef struct { static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding"); // 3.4375 bpw -#if QK_K == 64 -#define IQ3S_N_SCALE 2 -#else #define IQ3S_N_SCALE QK_K/64 -#endif typedef struct { ggml_half d; uint8_t qs[QK_K/4]; @@ -381,16 +338,9 @@ static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wron typedef struct { uint8_t qs[QK_K/8]; // grid index, low 8 bits uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8) -#if QK_K == 64 - ggml_half d; -#endif uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64) } block_iq1_m; -#if QK_K == 64 -static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding"); -#else static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding"); -#endif // Used by IQ1_M quants typedef union { @@ -406,9 +356,6 @@ typedef struct { } block_iq4_nl; static_assert(sizeof(block_iq4_nl) == sizeof(ggml_half) + QK4_NL/2, "wrong iq4_nl block size/padding"); -#if QK_K == 64 -#define block_iq4_xs block_iq4_nl -#else typedef struct { ggml_half d; uint16_t scales_h; @@ -416,7 +363,6 @@ typedef struct { uint8_t qs[QK_K/2]; } block_iq4_xs; static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding"); -#endif #endif // GGML_COMMON_DECL #endif // GGML_COMMON_DECL diff --git a/ggml-cuda/convert.cu b/ggml-cuda/convert.cu index 830e2d756..c0a444707 100644 --- a/ggml-cuda/convert.cu +++ b/ggml-cuda/convert.cu @@ -131,7 +131,6 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t const block_q2_K * x = (const block_q2_K *) vx; const int64_t tid = threadIdx.x; -#if QK_K == 256 const int64_t n = tid/32; const int64_t l = tid - 32*n; const int64_t is = 8*n + l/16; @@ -145,17 +144,6 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4); y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4); y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4); -#else - const int64_t is = tid/16; // 0 or 1 - const int64_t il = tid%16; // 0...15 - const uint8_t q = x[i].qs[il] >> (2*is); - dst_t * y = yy + i*QK_K + 16*is + il; - float dall = __low2half(x[i].dm); - float dmin = __high2half(x[i].dm); - y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4); - y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4); -#endif - } template @@ -164,7 +152,6 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t const int64_t i = blockIdx.x; const block_q3_K * x = (const block_q3_K *) vx; -#if QK_K == 256 const int64_t r = threadIdx.x/4; const int64_t tid = r/2; const int64_t is0 = r%2; @@ -188,31 +175,8 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t const uint8_t * hm = x[i].hmask; for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); -#else - const int64_t tid = threadIdx.x; - const int64_t is = tid/16; // 0 or 1 - const int64_t il = tid%16; // 0...15 - const int64_t im = il/8; // 0...1 - const int64_t in = il%8; // 0...7 - - dst_t * y = yy + i*QK_K + 16*is + il; - - const uint8_t q = x[i].qs[il] >> (2*is); - const uint8_t h = x[i].hmask[in] >> (2*is + im); - const float d = (float)x[i].d; - - if (is == 0) { - y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4)); - y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4)); - } else { - y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4)); - y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4)); - } -#endif - } -#if QK_K == 256 static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) { if (j < 4) { d = q[j] & 63; m = q[j + 4] & 63; @@ -221,7 +185,6 @@ static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); } } -#endif template static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { @@ -229,7 +192,6 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t const int64_t i = blockIdx.x; -#if QK_K == 256 // assume 32 threads const int64_t tid = threadIdx.x; const int64_t il = tid/8; @@ -253,15 +215,6 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t y[l + 0] = d1 * (q[l] & 0xF) - m1; y[l +32] = d2 * (q[l] >> 4) - m2; } -#else - const int64_t tid = threadIdx.x; - const uint8_t * q = x[i].qs; - dst_t * y = yy + i*QK_K; - const float d = (float)x[i].dm[0]; - const float m = (float)x[i].dm[1]; - y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4); - y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4); -#endif } template @@ -270,7 +223,6 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t const int64_t i = blockIdx.x; -#if QK_K == 256 // assume 64 threads - this is very slightly better than the one below const int64_t tid = threadIdx.x; const int64_t il = tid/16; // il is in 0...3 @@ -297,18 +249,6 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t hm <<= 1; y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2; y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2; -#else - const int64_t tid = threadIdx.x; - const uint8_t q = x[i].qs[tid]; - const int64_t im = tid/8; // 0...3 - const int64_t in = tid%8; // 0...7 - const int64_t is = tid/16; // 0 or 1 - const uint8_t h = x[i].qh[in] >> im; - const float d = x[i].d; - dst_t * y = yy + i*QK_K + tid; - y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16)); - y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16)); -#endif } template @@ -316,7 +256,6 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t const block_q6_K * x = (const block_q6_K *) vx; const int64_t i = blockIdx.x; -#if QK_K == 256 // assume 64 threads - this is very slightly better than the one below const int64_t tid = threadIdx.x; @@ -336,24 +275,6 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); -#else - - // assume 32 threads - const int64_t tid = threadIdx.x; - const int64_t ip = tid/16; // 0 or 1 - const int64_t il = tid - 16*ip; // 0...15 - - dst_t * y = yy + i*QK_K + 16*ip + il; - - const float d = x[i].d; - - const uint8_t ql = x[i].ql[16*ip + il]; - const uint8_t qh = x[i].qh[il] >> (2*ip); - const int8_t * sc = x[i].scales; - - y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32); - y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32); -#endif } template @@ -363,7 +284,6 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds const block_iq2_xxs * x = (const block_iq2_xxs *) vx; const int64_t tid = threadIdx.x; -#if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -374,10 +294,6 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f; const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127]; for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); -#else - NO_DEVICE_CODE; -#endif - } template @@ -387,7 +303,6 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst const block_iq2_xs * x = (const block_iq2_xs *) vx; const int64_t tid = threadIdx.x; -#if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -396,10 +311,6 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; const uint8_t signs = ksigns_iq2xs[q2[il] >> 9]; for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); -#else - NO_DEVICE_CODE; -#endif - } template @@ -409,7 +320,6 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_ const block_iq2_s * x = (const block_iq2_s *) vx; const int64_t tid = threadIdx.x; -#if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -417,10 +327,6 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_ const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; const uint8_t signs = x[i].qs[QK_K/8+4*ib+il]; for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); -#else - NO_DEVICE_CODE; -#endif - } template @@ -430,7 +336,6 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds const block_iq3_xxs * x = (const block_iq3_xxs *) vx; const int64_t tid = threadIdx.x; -#if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -445,10 +350,6 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); } -#else - NO_DEVICE_CODE; -#endif - } template @@ -458,7 +359,6 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_ const block_iq3_s * x = (const block_iq3_s *) vx; const int64_t tid = threadIdx.x; -#if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -471,10 +371,6 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_ y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); } -#else - NO_DEVICE_CODE; -#endif - } template @@ -484,7 +380,6 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_ const block_iq1_s * x = (const block_iq1_s *) vx; const int64_t tid = threadIdx.x; -#if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -497,10 +392,6 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_ for (int j = 0; j < 8; ++j) { y[j] = d * (q[j] + delta); } -#else - NO_DEVICE_CODE; -#endif - } template @@ -510,7 +401,6 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_ const block_iq1_m * x = (const block_iq1_m *) vx; const int64_t tid = threadIdx.x; -#if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -527,13 +417,8 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_ for (int j = 0; j < 8; ++j) { y[j] = d * (q[j] + delta); } -#else - NO_DEVICE_CODE; -#endif - } - template static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) { @@ -550,10 +435,8 @@ static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf]; y[j+16] = d * kvalues_iq4nl[q4[j] >> 4]; } - } -#if QK_K != 64 template static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; @@ -570,7 +453,6 @@ static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst y[j+16] = d * kvalues_iq4nl[q4[j] >> 4]; } } -#endif template static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) { @@ -592,21 +474,13 @@ static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * template static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; -#if QK_K == 256 dequantize_block_q2_K<<>>(vx, y); -#else - dequantize_block_q2_K<<>>(vx, y); -#endif } template static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; -#if QK_K == 256 dequantize_block_q3_K<<>>(vx, y); -#else - dequantize_block_q3_K<<>>(vx, y); -#endif } template @@ -632,21 +506,13 @@ static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int64_t k template static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; -#if QK_K == 256 dequantize_block_q5_K<<>>(vx, y); -#else - dequantize_block_q5_K<<>>(vx, y); -#endif } template static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; -#if QK_K == 256 dequantize_block_q6_K<<>>(vx, y); -#else - dequantize_block_q6_K<<>>(vx, y); -#endif } template @@ -700,11 +566,7 @@ static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int64_t template static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = (k + QK_K - 1) / QK_K; -#if QK_K == 64 - dequantize_block_iq4_nl<<>>(vx, y); -#else dequantize_block_iq4_xs<<>>(vx, y); -#endif } template diff --git a/ggml-cuda/dmmv.cu b/ggml-cuda/dmmv.cu index 7313e3e17..47d4d5d9e 100644 --- a/ggml-cuda/dmmv.cu +++ b/ggml-cuda/dmmv.cu @@ -22,7 +22,6 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, float tmp = 0; // partial sum for thread in warp -#if QK_K == 256 const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15 const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 @@ -71,37 +70,6 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, tmp += dall * sum1 - dmin * sum2; } -#else - const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7 - const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3 - const int offset = tid * K_QUANTS_PER_ITERATION; - - uint32_t uaux[2]; - const uint8_t * d = (const uint8_t *)uaux; - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + offset; - const uint8_t * q = x[i].qs + offset; - const uint32_t * s = (const uint32_t *)x[i].scales; - - uaux[0] = s[0] & 0x0f0f0f0f; - uaux[1] = (s[0] >> 4) & 0x0f0f0f0f; - - const float2 dall = __half22float2(x[i].dm); - - float sum1 = 0, sum2 = 0; - for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { - const uint8_t ql = q[l]; - sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3) - + y[l+16] * d[1] * ((ql >> 2) & 3) - + y[l+32] * d[2] * ((ql >> 4) & 3) - + y[l+48] * d[3] * ((ql >> 6) & 3); - sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7]; - } - tmp += dall.x * sum1 - dall.y * sum2; - } -#endif // sum up partial sums and write back result tmp = warp_reduce_sum(tmp); @@ -123,8 +91,6 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, float tmp = 0; // partial sum for thread in warp -#if QK_K == 256 - const uint16_t kmask1 = 0x0303; const uint16_t kmask2 = 0x0f0f; @@ -175,34 +141,6 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, tmp += d * sum; } -#else - - const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7 - const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3 - const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14 - const int in = offset/8; // 0 or 1 - const int im = offset%8; // 0...7 - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + offset; - const uint8_t * q = x[i].qs + offset; - const uint8_t * s = x[i].scales; - - const float dall = (float)x[i].d; - - float sum = 0; - for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { - const uint8_t hl = x[i].hmask[im+l] >> in; - const uint8_t ql = q[l]; - sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4)) - + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4)) - + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4)) - + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4)); - } - tmp += sum; - } -#endif // sum up partial sums and write back result tmp = warp_reduce_sum(tmp); @@ -221,7 +159,6 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const block_q4_K * x = (const block_q4_K *)vx + ib0; -#if QK_K == 256 const uint16_t kmask1 = 0x3f3f; const uint16_t kmask2 = 0x0f0f; const uint16_t kmask3 = 0xc0c0; @@ -306,36 +243,6 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, #endif } -#else - const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 - const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); - - const int step = tid * K_QUANTS_PER_ITERATION; - - uint16_t aux16[2]; - const uint8_t * s = (const uint8_t *)aux16; - - float tmp = 0; - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - const uint8_t * q = x[i].qs + step; - const float * y = yy + i*QK_K + step; - const uint16_t * a = (const uint16_t *)x[i].scales; - aux16[0] = a[0] & 0x0f0f; - aux16[1] = (a[0] >> 4) & 0x0f0f; - const float d = (float)x[i].dm[0]; - const float m = (float)x[i].dm[1]; - float sum = 0.f; - for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { - sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2]) - + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2]) - + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3]) - + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]); - } - tmp += sum; - } - -#endif // sum up partial sums and write back result tmp = warp_reduce_sum(tmp); @@ -355,7 +262,6 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, float tmp = 0; // partial sum for thread in warp -#if QK_K == 256 const uint16_t kmask1 = 0x3f3f; const uint16_t kmask2 = 0x0f0f; const uint16_t kmask3 = 0xc0c0; @@ -426,30 +332,6 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin; } -#else - const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 - const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); - const int step = tid * K_QUANTS_PER_ITERATION; - const int im = step/8; - const int in = step%8; - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - const uint8_t * q = x[i].qs + step; - const int8_t * s = x[i].scales; - const float * y = yy + i*QK_K + step; - const float d = x[i].d; - float sum = 0.f; - for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { - const uint8_t h = x[i].qh[in+j] >> im; - sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16)) - + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16)) - + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16)) - + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16)); - } - tmp += sum; - } -#endif - // sum up partial sums and write back result tmp = warp_reduce_sum(tmp); @@ -470,8 +352,6 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const block_q6_K * x = (const block_q6_K *)vx + ib0; -#if QK_K == 256 - const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1 @@ -526,37 +406,6 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, } -#else - - const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7 - const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3 - - const int step = tid * K_QUANTS_PER_ITERATION; - - float tmp = 0; // partial sum for thread in warp - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + step; - const uint8_t * ql = x[i].ql + step; - const uint8_t * qh = x[i].qh + step; - const int8_t * s = x[i].scales; - - const float d = x[i+0].d; - - float sum = 0; - for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { - sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32) - + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32) - + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32) - + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32); - } - tmp += sum; - - } - -#endif - // sum up partial sums and write back result tmp = warp_reduce_sum(tmp); diff --git a/ggml-cuda/fattn-tile-f16.cu b/ggml-cuda/fattn-tile-f16.cu index 4a07ac6ad..cdb5eaff7 100644 --- a/ggml-cuda/fattn-tile-f16.cu +++ b/ggml-cuda/fattn-tile-f16.cu @@ -83,7 +83,7 @@ static __global__ void flash_attn_tile_ext_f16( for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; - const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i]; + const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f); Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); } } @@ -238,6 +238,10 @@ static __global__ void flash_attn_tile_ext_f16( for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) { const int j_VKQ = j_VKQ_0 + threadIdx.y; + if (ic0 + j_VKQ >= ne01) { + return; + } + half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]); kqsum_j = warp_reduce_sum(kqsum_j); diff --git a/ggml-cuda/fattn-tile-f32.cu b/ggml-cuda/fattn-tile-f32.cu index 130e7cbdb..5a3de2918 100644 --- a/ggml-cuda/fattn-tile-f32.cu +++ b/ggml-cuda/fattn-tile-f32.cu @@ -79,7 +79,7 @@ static __global__ void flash_attn_tile_ext_f32( #pragma unroll for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) { - float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x]; + float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f); Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale; Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale; } @@ -237,6 +237,10 @@ static __global__ void flash_attn_tile_ext_f32( for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) { const int j_VKQ = j_VKQ_0 + threadIdx.y; + if (ic0 + j_VKQ >= ne01) { + return; + } + float kqsum_j = kqsum[j_VKQ_0/nwarps]; kqsum_j = warp_reduce_sum(kqsum_j); @@ -283,11 +287,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * } void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * KQV = dst; - const ggml_tensor * Q = dst->src[0]; - - const int32_t precision = KQV->op_params[2]; - GGML_ASSERT(precision == GGML_PREC_DEFAULT); + const ggml_tensor * Q = dst->src[0]; if (Q->ne[1] <= 16) { constexpr int cols_per_block = 16; diff --git a/ggml-cuda/fattn-vec-f16.cu b/ggml-cuda/fattn-vec-f16.cu index 54e1ac5d1..808e8f362 100644 --- a/ggml-cuda/fattn-vec-f16.cu +++ b/ggml-cuda/fattn-vec-f16.cu @@ -94,7 +94,7 @@ static __global__ void flash_attn_vec_ext_f16( for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; - const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i]; + const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f); Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); } } @@ -212,6 +212,10 @@ static __global__ void flash_attn_vec_ext_f16( #pragma unroll for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { + if (ncols > 2 && ic0 + j_VKQ >= ne01) { + break; + } + kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); @@ -223,7 +227,7 @@ static __global__ void flash_attn_vec_ext_f16( dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; } - if (parallel_blocks != 1 && tid < ncols) { + if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) { dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]); } #else diff --git a/ggml-cuda/fattn-vec-f32.cu b/ggml-cuda/fattn-vec-f32.cu index 5bcabd092..b4652301b 100644 --- a/ggml-cuda/fattn-vec-f32.cu +++ b/ggml-cuda/fattn-vec-f32.cu @@ -91,7 +91,7 @@ static __global__ void flash_attn_vec_ext_f32( for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; - Q_h2[j][i0/WARP_SIZE] = Q_f2[j*(nb01/sizeof(float2)) + i]; + Q_h2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f); Q_h2[j][i0/WARP_SIZE].x *= scale; Q_h2[j][i0/WARP_SIZE].y *= scale; } @@ -200,6 +200,10 @@ static __global__ void flash_attn_vec_ext_f32( #pragma unroll for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { + if (ncols > 2 && ic0 + j_VKQ >= ne01) { + break; + } + kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); @@ -211,7 +215,7 @@ static __global__ void flash_attn_vec_ext_f32( dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; } - if (parallel_blocks != 1 && tid < ncols) { + if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) { dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]); } } diff --git a/ggml-cuda/mmq.cu b/ggml-cuda/mmq.cu index 7948f1b12..c0a66d9b6 100644 --- a/ggml-cuda/mmq.cu +++ b/ggml-cuda/mmq.cu @@ -9,6 +9,135 @@ typedef float (*vec_dot_q_mul_mat_cuda_t)( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k); typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v); +typedef void (mul_mat_q_t)( + const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst); + +struct mmq_arch_config_t { + int x; + int y; + int nwarps; +}; + +struct mmq_config_t { + mmq_arch_config_t rdna2; + mmq_arch_config_t rdna1; + mmq_arch_config_t ampere; + mmq_arch_config_t pascal; +}; + +constexpr mmq_config_t MMQ_CONFIG_Q4_0 = { +// x y nwarps + { 64, 128, 8}, + { 64, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q4_1 = { +// x y nwarps + { 64, 128, 8}, + { 64, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q5_0 = { +// x y nwarps + { 64, 128, 8}, + { 64, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + {128, 64, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q5_1 = { +// x y nwarps + { 64, 128, 8}, + { 64, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + {128, 64, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q8_0 = { +// x y nwarps + { 64, 128, 8}, + { 64, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + {128, 64, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q2_K = { +// x y nwarps + { 64, 128, 8}, + {128, 32, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q3_K = { +// x y nwarps + {128, 64, 8}, + { 32, 128, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + {128, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q4_K = { +// x y nwarps + { 64, 128, 8}, + { 32, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q5_K = { +// x y nwarps + { 64, 128, 8}, + { 32, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q6_K = { +// x y nwarps + { 64, 128, 8}, + { 32, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 64, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; + +// ------------------------------------------------------------ template static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); @@ -697,11 +826,7 @@ template static __device__ __forceinlin const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd; -#if QK_K == 256 x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm; -#else - x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]}; -#endif } #pragma unroll @@ -804,9 +929,7 @@ template static __device__ __forceinlin const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd; -#if QK_K == 256 x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm; -#endif } #pragma unroll @@ -943,25 +1066,6 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat( return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]); } -#define MMQ_X_Q4_0_RDNA2 64 -#define MMQ_Y_Q4_0_RDNA2 128 -#define NWARPS_Q4_0_RDNA2 8 -#define MMQ_X_Q4_0_RDNA1 64 -#define MMQ_Y_Q4_0_RDNA1 64 -#define NWARPS_Q4_0_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q4_0_AMPERE 4 -#define MMQ_Y_Q4_0_AMPERE 32 -#define NWARPS_Q4_0_AMPERE 4 -#else -#define MMQ_X_Q4_0_AMPERE 64 -#define MMQ_Y_Q4_0_AMPERE 128 -#define NWARPS_Q4_0_AMPERE 4 -#endif -#define MMQ_X_Q4_0_PASCAL 64 -#define MMQ_Y_Q4_0_PASCAL 64 -#define NWARPS_Q4_0_PASCAL 8 - template static __device__ __forceinline__ void mul_mat_q( @@ -1072,1107 +1176,275 @@ static __device__ __forceinline__ void mul_mat_q( } } +static constexpr __device__ mmq_arch_config_t get_arch_config_device(mmq_config_t mmq_config) { + +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + +#if defined(RDNA3) || defined(RDNA2) + return mmq_config.rdna2; +#else + return mmq_config.rdna1; +#endif // defined(RDNA3) || defined(RDNA2) + +#else + +#if __CUDA_ARCH__ >= CC_VOLTA + return mmq_config.ampere; +#else + return mmq_config.pascal; +#endif // __CUDA_ARCH__ >= CC_VOLTA + +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +} + template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_0.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q4_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q4_0_RDNA2; - const int mmq_y = MMQ_Y_Q4_0_RDNA2; - const int nwarps = NWARPS_Q4_0_RDNA2; -#else - const int mmq_x = MMQ_X_Q4_0_RDNA1; - const int mmq_y = MMQ_Y_Q4_0_RDNA1; - const int nwarps = NWARPS_Q4_0_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_0); - mul_mat_q, - load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q4_0_AMPERE; - const int mmq_y = MMQ_Y_Q4_0_AMPERE; - const int nwarps = NWARPS_Q4_0_AMPERE; - - mul_mat_q, - load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q4_0_PASCAL; - const int mmq_y = MMQ_Y_Q4_0_PASCAL; - const int nwarps = NWARPS_Q4_0_PASCAL; - - mul_mat_q, - load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> + mul_mat_q, + load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else + GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q4_0_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q4_1_RDNA2 64 -#define MMQ_Y_Q4_1_RDNA2 128 -#define NWARPS_Q4_1_RDNA2 8 -#define MMQ_X_Q4_1_RDNA1 64 -#define MMQ_Y_Q4_1_RDNA1 64 -#define NWARPS_Q4_1_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q4_1_AMPERE 4 -#define MMQ_Y_Q4_1_AMPERE 32 -#define NWARPS_Q4_1_AMPERE 4 -#else -#define MMQ_X_Q4_1_AMPERE 64 -#define MMQ_Y_Q4_1_AMPERE 128 -#define NWARPS_Q4_1_AMPERE 4 -#endif -#define MMQ_X_Q4_1_PASCAL 64 -#define MMQ_Y_Q4_1_PASCAL 64 -#define NWARPS_Q4_1_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA - __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q4_1( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q4_1_RDNA2; - const int mmq_y = MMQ_Y_Q4_1_RDNA2; - const int nwarps = NWARPS_Q4_1_RDNA2; -#else - const int mmq_x = MMQ_X_Q4_1_RDNA1; - const int mmq_y = MMQ_Y_Q4_1_RDNA1; - const int nwarps = NWARPS_Q4_1_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_1); - mul_mat_q, - load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q4_1_AMPERE; - const int mmq_y = MMQ_Y_Q4_1_AMPERE; - const int nwarps = NWARPS_Q4_1_AMPERE; - - mul_mat_q, - load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q4_1_PASCAL; - const int mmq_y = MMQ_Y_Q4_1_PASCAL; - const int nwarps = NWARPS_Q4_1_PASCAL; - - mul_mat_q, - load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> + mul_mat_q, + load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else + GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q4_1_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q5_0_RDNA2 64 -#define MMQ_Y_Q5_0_RDNA2 128 -#define NWARPS_Q5_0_RDNA2 8 -#define MMQ_X_Q5_0_RDNA1 64 -#define MMQ_Y_Q5_0_RDNA1 64 -#define NWARPS_Q5_0_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q5_0_AMPERE 4 -#define MMQ_Y_Q5_0_AMPERE 32 -#define NWARPS_Q5_0_AMPERE 4 -#else -#define MMQ_X_Q5_0_AMPERE 128 -#define MMQ_Y_Q5_0_AMPERE 64 -#define NWARPS_Q5_0_AMPERE 4 -#endif -#define MMQ_X_Q5_0_PASCAL 64 -#define MMQ_Y_Q5_0_PASCAL 64 -#define NWARPS_Q5_0_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_0.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q5_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q5_0_RDNA2; - const int mmq_y = MMQ_Y_Q5_0_RDNA2; - const int nwarps = NWARPS_Q5_0_RDNA2; -#else - const int mmq_x = MMQ_X_Q5_0_RDNA1; - const int mmq_y = MMQ_Y_Q5_0_RDNA1; - const int nwarps = NWARPS_Q5_0_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_0); - mul_mat_q, - load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q5_0_AMPERE; - const int mmq_y = MMQ_Y_Q5_0_AMPERE; - const int nwarps = NWARPS_Q5_0_AMPERE; - - mul_mat_q, - load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q5_0_PASCAL; - const int mmq_y = MMQ_Y_Q5_0_PASCAL; - const int nwarps = NWARPS_Q5_0_PASCAL; - - mul_mat_q, - load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> + mul_mat_q, + load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else + GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q5_0_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q5_1_RDNA2 64 -#define MMQ_Y_Q5_1_RDNA2 128 -#define NWARPS_Q5_1_RDNA2 8 -#define MMQ_X_Q5_1_RDNA1 64 -#define MMQ_Y_Q5_1_RDNA1 64 -#define NWARPS_Q5_1_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q5_1_AMPERE 4 -#define MMQ_Y_Q5_1_AMPERE 32 -#define NWARPS_Q5_1_AMPERE 4 -#else -#define MMQ_X_Q5_1_AMPERE 128 -#define MMQ_Y_Q5_1_AMPERE 64 -#define NWARPS_Q5_1_AMPERE 4 -#endif -#define MMQ_X_Q5_1_PASCAL 64 -#define MMQ_Y_Q5_1_PASCAL 64 -#define NWARPS_Q5_1_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_1.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q5_1( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q5_1_RDNA2; - const int mmq_y = MMQ_Y_Q5_1_RDNA2; - const int nwarps = NWARPS_Q5_1_RDNA2; -#else - const int mmq_x = MMQ_X_Q5_1_RDNA1; - const int mmq_y = MMQ_Y_Q5_1_RDNA1; - const int nwarps = NWARPS_Q5_1_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_1); - mul_mat_q, - load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q5_1_AMPERE; - const int mmq_y = MMQ_Y_Q5_1_AMPERE; - const int nwarps = NWARPS_Q5_1_AMPERE; - - mul_mat_q, - load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q5_1_PASCAL; - const int mmq_y = MMQ_Y_Q5_1_PASCAL; - const int nwarps = NWARPS_Q5_1_PASCAL; - - mul_mat_q, - load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> + mul_mat_q, + load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else + GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q5_1_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q8_0_RDNA2 64 -#define MMQ_Y_Q8_0_RDNA2 128 -#define NWARPS_Q8_0_RDNA2 8 -#define MMQ_X_Q8_0_RDNA1 64 -#define MMQ_Y_Q8_0_RDNA1 64 -#define NWARPS_Q8_0_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q8_0_AMPERE 4 -#define MMQ_Y_Q8_0_AMPERE 32 -#define NWARPS_Q8_0_AMPERE 4 -#else -#define MMQ_X_Q8_0_AMPERE 128 -#define MMQ_Y_Q8_0_AMPERE 64 -#define NWARPS_Q8_0_AMPERE 4 -#endif -#define MMQ_X_Q8_0_PASCAL 64 -#define MMQ_Y_Q8_0_PASCAL 64 -#define NWARPS_Q8_0_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q8_0.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q8_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q8_0_RDNA2; - const int mmq_y = MMQ_Y_Q8_0_RDNA2; - const int nwarps = NWARPS_Q8_0_RDNA2; -#else - const int mmq_x = MMQ_X_Q8_0_RDNA1; - const int mmq_y = MMQ_Y_Q8_0_RDNA1; - const int nwarps = NWARPS_Q8_0_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q8_0); - mul_mat_q, - load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q8_0_AMPERE; - const int mmq_y = MMQ_Y_Q8_0_AMPERE; - const int nwarps = NWARPS_Q8_0_AMPERE; - - mul_mat_q, - load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q8_0_PASCAL; - const int mmq_y = MMQ_Y_Q8_0_PASCAL; - const int nwarps = NWARPS_Q8_0_PASCAL; - - mul_mat_q, - load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> + mul_mat_q, + load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else + GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q8_0_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q2_K_RDNA2 64 -#define MMQ_Y_Q2_K_RDNA2 128 -#define NWARPS_Q2_K_RDNA2 8 -#define MMQ_X_Q2_K_RDNA1 128 -#define MMQ_Y_Q2_K_RDNA1 32 -#define NWARPS_Q2_K_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q2_K_AMPERE 4 -#define MMQ_Y_Q2_K_AMPERE 32 -#define NWARPS_Q2_K_AMPERE 4 -#else -#define MMQ_X_Q2_K_AMPERE 64 -#define MMQ_Y_Q2_K_AMPERE 128 -#define NWARPS_Q2_K_AMPERE 4 -#endif -#define MMQ_X_Q2_K_PASCAL 64 -#define MMQ_Y_Q2_K_PASCAL 64 -#define NWARPS_Q2_K_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q2_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q2_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q2_K_RDNA2; - const int mmq_y = MMQ_Y_Q2_K_RDNA2; - const int nwarps = NWARPS_Q2_K_RDNA2; -#else - const int mmq_x = MMQ_X_Q2_K_RDNA1; - const int mmq_y = MMQ_Y_Q2_K_RDNA1; - const int nwarps = NWARPS_Q2_K_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q2_K); - mul_mat_q, - load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q2_K_AMPERE; - const int mmq_y = MMQ_Y_Q2_K_AMPERE; - const int nwarps = NWARPS_Q2_K_AMPERE; - - mul_mat_q, - load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q2_K_PASCAL; - const int mmq_y = MMQ_Y_Q2_K_PASCAL; - const int nwarps = NWARPS_Q2_K_PASCAL; - - mul_mat_q, - load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> + mul_mat_q, + load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else + GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q2_K_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q3_K_RDNA2 128 -#define MMQ_Y_Q3_K_RDNA2 64 -#define NWARPS_Q3_K_RDNA2 8 -#define MMQ_X_Q3_K_RDNA1 32 -#define MMQ_Y_Q3_K_RDNA1 128 -#define NWARPS_Q3_K_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q3_K_AMPERE 4 -#define MMQ_Y_Q3_K_AMPERE 32 -#define NWARPS_Q3_K_AMPERE 4 -#else -#define MMQ_X_Q3_K_AMPERE 128 -#define MMQ_Y_Q3_K_AMPERE 128 -#define NWARPS_Q3_K_AMPERE 4 -#endif -#define MMQ_X_Q3_K_PASCAL 64 -#define MMQ_Y_Q3_K_PASCAL 64 -#define NWARPS_Q3_K_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA - __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q3_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q3_K_RDNA2; - const int mmq_y = MMQ_Y_Q3_K_RDNA2; - const int nwarps = NWARPS_Q3_K_RDNA2; -#else - const int mmq_x = MMQ_X_Q3_K_RDNA1; - const int mmq_y = MMQ_Y_Q3_K_RDNA1; - const int nwarps = NWARPS_Q3_K_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q3_K); - mul_mat_q, - load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q3_K_AMPERE; - const int mmq_y = MMQ_Y_Q3_K_AMPERE; - const int nwarps = NWARPS_Q3_K_AMPERE; - - mul_mat_q, - load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q3_K_PASCAL; - const int mmq_y = MMQ_Y_Q3_K_PASCAL; - const int nwarps = NWARPS_Q3_K_PASCAL; - - mul_mat_q, - load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> + mul_mat_q, + load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else + GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q3_K_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q4_K_RDNA2 64 -#define MMQ_Y_Q4_K_RDNA2 128 -#define NWARPS_Q4_K_RDNA2 8 -#define MMQ_X_Q4_K_RDNA1 32 -#define MMQ_Y_Q4_K_RDNA1 64 -#define NWARPS_Q4_K_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q4_K_AMPERE 4 -#define MMQ_Y_Q4_K_AMPERE 32 -#define NWARPS_Q4_K_AMPERE 4 -#else -#define MMQ_X_Q4_K_AMPERE 64 -#define MMQ_Y_Q4_K_AMPERE 128 -#define NWARPS_Q4_K_AMPERE 4 -#endif -#define MMQ_X_Q4_K_PASCAL 64 -#define MMQ_Y_Q4_K_PASCAL 64 -#define NWARPS_Q4_K_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA - __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q4_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q4_K_RDNA2; - const int mmq_y = MMQ_Y_Q4_K_RDNA2; - const int nwarps = NWARPS_Q4_K_RDNA2; -#else - const int mmq_x = MMQ_X_Q4_K_RDNA1; - const int mmq_y = MMQ_Y_Q4_K_RDNA1; - const int nwarps = NWARPS_Q4_K_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_K); - mul_mat_q, - load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q4_K_AMPERE; - const int mmq_y = MMQ_Y_Q4_K_AMPERE; - const int nwarps = NWARPS_Q4_K_AMPERE; - - mul_mat_q, - load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q4_K_PASCAL; - const int mmq_y = MMQ_Y_Q4_K_PASCAL; - const int nwarps = NWARPS_Q4_K_PASCAL; - - mul_mat_q, - load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> + mul_mat_q, + load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else + GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q4_K_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q5_K_RDNA2 64 -#define MMQ_Y_Q5_K_RDNA2 128 -#define NWARPS_Q5_K_RDNA2 8 -#define MMQ_X_Q5_K_RDNA1 32 -#define MMQ_Y_Q5_K_RDNA1 64 -#define NWARPS_Q5_K_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q5_K_AMPERE 4 -#define MMQ_Y_Q5_K_AMPERE 32 -#define NWARPS_Q5_K_AMPERE 4 -#else -#define MMQ_X_Q5_K_AMPERE 64 -#define MMQ_Y_Q5_K_AMPERE 128 -#define NWARPS_Q5_K_AMPERE 4 -#endif -#define MMQ_X_Q5_K_PASCAL 64 -#define MMQ_Y_Q5_K_PASCAL 64 -#define NWARPS_Q5_K_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q5_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q5_K_RDNA2; - const int mmq_y = MMQ_Y_Q5_K_RDNA2; - const int nwarps = NWARPS_Q5_K_RDNA2; -#else - const int mmq_x = MMQ_X_Q5_K_RDNA1; - const int mmq_y = MMQ_Y_Q5_K_RDNA1; - const int nwarps = NWARPS_Q5_K_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_K); - mul_mat_q, - load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q5_K_AMPERE; - const int mmq_y = MMQ_Y_Q5_K_AMPERE; - const int nwarps = NWARPS_Q5_K_AMPERE; - - mul_mat_q, - load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q5_K_PASCAL; - const int mmq_y = MMQ_Y_Q5_K_PASCAL; - const int nwarps = NWARPS_Q5_K_PASCAL; - - mul_mat_q, - load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> + mul_mat_q, + load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else + GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q5_K_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q6_K_RDNA2 64 -#define MMQ_Y_Q6_K_RDNA2 128 -#define NWARPS_Q6_K_RDNA2 8 -#define MMQ_X_Q6_K_RDNA1 32 -#define MMQ_Y_Q6_K_RDNA1 64 -#define NWARPS_Q6_K_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q6_K_AMPERE 4 -#define MMQ_Y_Q6_K_AMPERE 32 -#define NWARPS_Q6_K_AMPERE 4 -#else -#define MMQ_X_Q6_K_AMPERE 64 -#define MMQ_Y_Q6_K_AMPERE 64 -#define NWARPS_Q6_K_AMPERE 4 -#endif -#define MMQ_X_Q6_K_PASCAL 64 -#define MMQ_Y_Q6_K_PASCAL 64 -#define NWARPS_Q6_K_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q6_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA - __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q6_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q6_K_RDNA2; - const int mmq_y = MMQ_Y_Q6_K_RDNA2; - const int nwarps = NWARPS_Q6_K_RDNA2; -#else - const int mmq_x = MMQ_X_Q6_K_RDNA1; - const int mmq_y = MMQ_Y_Q6_K_RDNA1; - const int nwarps = NWARPS_Q6_K_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q6_K); - mul_mat_q, - load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q6_K_AMPERE; - const int mmq_y = MMQ_Y_Q6_K_AMPERE; - const int nwarps = NWARPS_Q6_K_AMPERE; - - mul_mat_q, - load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q6_K_PASCAL; - const int mmq_y = MMQ_Y_Q6_K_PASCAL; - const int nwarps = NWARPS_Q6_K_PASCAL; - - mul_mat_q, - load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> + mul_mat_q, + load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else + GGML_UNUSED(get_arch_config_device); GGML_UNUSED(vec_dot_q6_K_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -static void ggml_mul_mat_q4_0_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q4_0_RDNA2; - mmq_y = MMQ_Y_Q4_0_RDNA2; - nwarps = NWARPS_Q4_0_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q4_0_RDNA1; - mmq_y = MMQ_Y_Q4_0_RDNA1; - nwarps = NWARPS_Q4_0_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q4_0_AMPERE; - mmq_y = MMQ_Y_Q4_0_AMPERE; - nwarps = NWARPS_Q4_0_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q4_0_PASCAL; - mmq_y = MMQ_Y_Q4_0_PASCAL; - nwarps = NWARPS_Q4_0_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q4_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q4_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q4_1_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q4_1_RDNA2; - mmq_y = MMQ_Y_Q4_1_RDNA2; - nwarps = NWARPS_Q4_1_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q4_1_RDNA1; - mmq_y = MMQ_Y_Q4_1_RDNA1; - nwarps = NWARPS_Q4_1_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q4_1_AMPERE; - mmq_y = MMQ_Y_Q4_1_AMPERE; - nwarps = NWARPS_Q4_1_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q4_1_PASCAL; - mmq_y = MMQ_Y_Q4_1_PASCAL; - nwarps = NWARPS_Q4_1_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q4_1<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q4_1<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q5_0_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q5_0_RDNA2; - mmq_y = MMQ_Y_Q5_0_RDNA2; - nwarps = NWARPS_Q5_0_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q5_0_RDNA1; - mmq_y = MMQ_Y_Q5_0_RDNA1; - nwarps = NWARPS_Q5_0_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q5_0_AMPERE; - mmq_y = MMQ_Y_Q5_0_AMPERE; - nwarps = NWARPS_Q5_0_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q5_0_PASCAL; - mmq_y = MMQ_Y_Q5_0_PASCAL; - nwarps = NWARPS_Q5_0_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q5_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q5_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q5_1_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q5_1_RDNA2; - mmq_y = MMQ_Y_Q5_1_RDNA2; - nwarps = NWARPS_Q5_1_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q5_1_RDNA1; - mmq_y = MMQ_Y_Q5_1_RDNA1; - nwarps = NWARPS_Q5_1_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q5_1_AMPERE; - mmq_y = MMQ_Y_Q5_1_AMPERE; - nwarps = NWARPS_Q5_1_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q5_1_PASCAL; - mmq_y = MMQ_Y_Q5_1_PASCAL; - nwarps = NWARPS_Q5_1_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q5_1<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q5_1<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q8_0_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q8_0_RDNA2; - mmq_y = MMQ_Y_Q8_0_RDNA2; - nwarps = NWARPS_Q8_0_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q8_0_RDNA1; - mmq_y = MMQ_Y_Q8_0_RDNA1; - nwarps = NWARPS_Q8_0_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q8_0_AMPERE; - mmq_y = MMQ_Y_Q8_0_AMPERE; - nwarps = NWARPS_Q8_0_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q8_0_PASCAL; - mmq_y = MMQ_Y_Q8_0_PASCAL; - nwarps = NWARPS_Q8_0_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q8_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q8_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q2_K_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q2_K_RDNA2; - mmq_y = MMQ_Y_Q2_K_RDNA2; - nwarps = NWARPS_Q2_K_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q2_K_RDNA1; - mmq_y = MMQ_Y_Q2_K_RDNA1; - nwarps = NWARPS_Q2_K_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q2_K_AMPERE; - mmq_y = MMQ_Y_Q2_K_AMPERE; - nwarps = NWARPS_Q2_K_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q2_K_PASCAL; - mmq_y = MMQ_Y_Q2_K_PASCAL; - nwarps = NWARPS_Q2_K_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q2_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q2_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q3_K_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - -#if QK_K == 256 - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q3_K_RDNA2; - mmq_y = MMQ_Y_Q3_K_RDNA2; - nwarps = NWARPS_Q3_K_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q3_K_RDNA1; - mmq_y = MMQ_Y_Q3_K_RDNA1; - nwarps = NWARPS_Q3_K_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q3_K_AMPERE; - mmq_y = MMQ_Y_Q3_K_AMPERE; - nwarps = NWARPS_Q3_K_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q3_K_PASCAL; - mmq_y = MMQ_Y_Q3_K_PASCAL; - nwarps = NWARPS_Q3_K_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q3_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q3_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -#endif -} - -static void ggml_mul_mat_q4_K_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q4_K_RDNA2; - mmq_y = MMQ_Y_Q4_K_RDNA2; - nwarps = NWARPS_Q4_K_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q4_K_RDNA1; - mmq_y = MMQ_Y_Q4_K_RDNA1; - nwarps = NWARPS_Q4_K_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q4_K_AMPERE; - mmq_y = MMQ_Y_Q4_K_AMPERE; - nwarps = NWARPS_Q4_K_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q4_K_PASCAL; - mmq_y = MMQ_Y_Q4_K_PASCAL; - nwarps = NWARPS_Q4_K_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q4_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q4_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q5_K_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q5_K_RDNA2; - mmq_y = MMQ_Y_Q5_K_RDNA2; - nwarps = NWARPS_Q5_K_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q5_K_RDNA1; - mmq_y = MMQ_Y_Q5_K_RDNA1; - nwarps = NWARPS_Q5_K_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q5_K_AMPERE; - mmq_y = MMQ_Y_Q5_K_AMPERE; - nwarps = NWARPS_Q5_K_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q5_K_PASCAL; - mmq_y = MMQ_Y_Q5_K_PASCAL; - nwarps = NWARPS_Q5_K_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q5_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q5_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q6_K_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q6_K_RDNA2; - mmq_y = MMQ_Y_Q6_K_RDNA2; - nwarps = NWARPS_Q6_K_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q6_K_RDNA1; - mmq_y = MMQ_Y_Q6_K_RDNA1; - nwarps = NWARPS_Q6_K_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q6_K_AMPERE; - mmq_y = MMQ_Y_Q6_K_AMPERE; - nwarps = NWARPS_Q6_K_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q6_K_PASCAL; - mmq_y = MMQ_Y_Q6_K_PASCAL; - nwarps = NWARPS_Q6_K_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q6_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q6_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} +#define MMQ_SWITCH_CASE(type_suffix) \ + case GGML_TYPE_Q##type_suffix: if (row_diff % arch_config.y == 0) { \ + const bool need_check = false; \ + mul_mat_q##type_suffix<<>> \ + (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \ + } else { \ + const bool need_check = true; \ + mul_mat_q##type_suffix<<>> \ + (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \ + } break; \ void ggml_cuda_op_mul_mat_q( ggml_backend_cuda_context & ctx, @@ -2190,47 +1462,84 @@ void ggml_cuda_op_mul_mat_q( const int64_t row_diff = row_high - row_low; int id = ggml_cuda_get_device(); + const int compute_capability = ggml_cuda_info().devices[id].cc; // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff; + mmq_config_t mmq_config; + switch (src0->type) { case GGML_TYPE_Q4_0: - ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q4_0; break; case GGML_TYPE_Q4_1: - ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q4_1; break; case GGML_TYPE_Q5_0: - ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q5_0; break; case GGML_TYPE_Q5_1: - ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q5_1; break; case GGML_TYPE_Q8_0: - ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q8_0; break; case GGML_TYPE_Q2_K: - ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q2_K; break; case GGML_TYPE_Q3_K: - ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q3_K; break; case GGML_TYPE_Q4_K: - ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q4_K; break; case GGML_TYPE_Q5_K: - ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q5_K; break; case GGML_TYPE_Q6_K: - ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q6_K; break; default: GGML_ASSERT(false); break; } + mmq_arch_config_t arch_config; + if (compute_capability >= CC_RDNA2) { + arch_config = mmq_config.rdna2; + } else if (compute_capability >= CC_OFFSET_AMD) { + arch_config = mmq_config.rdna1; + } else if (compute_capability >= CC_VOLTA) { + arch_config = mmq_config.ampere; + } else if (compute_capability >= MIN_CC_DP4A) { + arch_config = mmq_config.pascal; + } else { + GGML_ASSERT(false); + } + + const int block_num_x = (row_diff + arch_config.y - 1) / arch_config.y; + const int block_num_y = (src1_ncols + arch_config.x - 1) / arch_config.x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, arch_config.nwarps, 1); + + switch (src0->type) { + MMQ_SWITCH_CASE(4_0) + MMQ_SWITCH_CASE(4_1) + MMQ_SWITCH_CASE(5_0) + MMQ_SWITCH_CASE(5_1) + MMQ_SWITCH_CASE(8_0) + MMQ_SWITCH_CASE(2_K) + MMQ_SWITCH_CASE(3_K) + MMQ_SWITCH_CASE(4_K) + MMQ_SWITCH_CASE(5_K) + MMQ_SWITCH_CASE(6_K) + default: + GGML_ASSERT(false); + break; + } + GGML_UNUSED(src1); GGML_UNUSED(dst); GGML_UNUSED(src1_ddf_i); diff --git a/ggml-cuda/rope.cu b/ggml-cuda/rope.cu index 4b0d2e5ad..50f2cf415 100644 --- a/ggml-cuda/rope.cu +++ b/ggml-cuda/rope.cu @@ -58,10 +58,10 @@ static __global__ void rope( dst[i + 1] = x0*sin_theta + x1*cos_theta; } -template +template static __global__ void rope_neox( const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, - float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims + float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims, const float * freq_factors ) { const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); @@ -88,7 +88,9 @@ static __global__ void rope_neox( float cur_rot = inv_ndims * ic - ib; const int p = has_pos ? pos[i2] : 0; - const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f); + const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f; + + const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f)/freq_factor; float cos_theta, sin_theta; rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); @@ -164,7 +166,7 @@ static void rope_cuda( template static void rope_neox_cuda( const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, - float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream ) { GGML_ASSERT(ncols % 2 == 0); const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); @@ -175,15 +177,29 @@ static void rope_neox_cuda( const float inv_ndims = -1.0f / n_dims; if (pos == nullptr) { - rope_neox<<>>( - x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, - theta_scale, inv_ndims - ); + if (freq_factors == nullptr) { + rope_neox<<>>( + x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, + theta_scale, inv_ndims, freq_factors + ); + } else { + rope_neox<<>>( + x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, + theta_scale, inv_ndims, freq_factors + ); + } } else { - rope_neox<<>>( - x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, - theta_scale, inv_ndims - ); + if (freq_factors == nullptr) { + rope_neox<<>>( + x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, + theta_scale, inv_ndims, freq_factors + ); + } else { + rope_neox<<>>( + x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, + theta_scale, inv_ndims, freq_factors + ); + } } } @@ -214,24 +230,27 @@ static void rope_cuda_f32( static void rope_neox_cuda_f16( const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, - float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) { + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) { - rope_neox_cuda(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream); + rope_neox_cuda(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream); } static void rope_neox_cuda_f32( const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, - float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream ) { - rope_neox_cuda(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream); + rope_neox_cuda(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream); } void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; + const ggml_tensor * src2 = dst->src[2]; + const float * src0_d = (const float *)src0->data; const float * src1_d = (const float *)src1->data; + float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); @@ -241,7 +260,6 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; - const int64_t ne2 = dst->ne[2]; const int64_t nrows = ggml_nrows(src0); //const int n_past = ((int32_t *) dst->op_params)[0]; @@ -259,16 +277,22 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + const float * freq_factors = nullptr; const int32_t * pos = nullptr; - if ((mode & 1) == 0) { - GGML_ASSERT(src1->type == GGML_TYPE_I32); - GGML_ASSERT(src1->ne[0] == ne2); - pos = (const int32_t *) src1_d; - } const bool is_neox = mode & 2; const bool is_glm = mode & 4; + pos = (const int32_t *) src1_d; + + if (is_neox) { + if (src2 != nullptr) { + freq_factors = (const float *) src2->data; + } + } else { + GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox"); + } + rope_corr_dims corr_dims; ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v); @@ -280,12 +304,12 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { if (src0->type == GGML_TYPE_F32) { rope_neox_cuda_f32( (const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor, - attn_factor, corr_dims, stream + attn_factor, corr_dims, freq_factors, stream ); } else if (src0->type == GGML_TYPE_F16) { rope_neox_cuda_f16( (const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor, - attn_factor, corr_dims, stream + attn_factor, corr_dims, freq_factors, stream ); } else { GGML_ASSERT(false); diff --git a/ggml-cuda/vecdotq.cuh b/ggml-cuda/vecdotq.cuh index 86b87fa93..5ebdddcc7 100644 --- a/ggml-cuda/vecdotq.cuh +++ b/ggml-cuda/vecdotq.cuh @@ -712,7 +712,6 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1( static __device__ __forceinline__ float vec_dot_q4_K_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#ifndef GGML_QKK_64 const block_q4_K * bq4_K = (const block_q4_K *) vbq; int v[2]; @@ -754,58 +753,11 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1( } return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8); - -#else - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const block_q4_K * bq4_K = (const block_q4_K *) vbq; - - float sumf_d = 0.0f; - float sumf_m = 0.0f; - - uint16_t aux16[2]; - const uint8_t * s = (const uint8_t *)aux16; - - const uint16_t * a = (const uint16_t *)bq4_K->scales; - aux16[0] = a[0] & 0x0f0f; - aux16[1] = (a[0] >> 4) & 0x0f0f; - - const float dall = bq4_K->dm[0]; - const float dmin = bq4_K->dm[1]; - - const float d8_1 = __low2float(bq8_1[0].ds); - const float d8_2 = __low2float(bq8_1[1].ds); - - const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); - const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); - const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2)); - const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4); - - const int * q4 = (const int *)bq4_K->qs + (iqs/2); - const int v1 = q4[0]; - const int v2 = q4[4]; - - const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0)); - const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0)); - const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0)); - const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0)); - - sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]); - sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]); - - return dall * sumf_d - dmin * sumf_m; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A - -#endif } static __device__ __forceinline__ float vec_dot_q5_K_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#ifndef GGML_QKK_64 const block_q5_K * bq5_K = (const block_q5_K *) vbq; int vl[2]; @@ -847,48 +799,6 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1( } return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8); - -#else - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const block_q5_K * bq5_K = (const block_q5_K *) vbq; - - const int8_t * s = bq5_K->scales; - - const float d = bq5_K->d; - - const float d8_1 = __low2half(bq8_1[0].ds); - const float d8_2 = __low2half(bq8_1[1].ds); - - const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); - const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); - const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2)); - const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4); - - const int * ql = (const int *)bq5_K->qs + (iqs/2); - const int vl1 = ql[0]; - const int vl2 = ql[4]; - - const int step = 4 * (iqs/2); // 0, 4, 8, 12 - const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6 - const int in = step%8; // 0, 4, 0, 4 - const int vh = (*((const int *)(bq5_K->qh + in))) >> im; - - const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f); - const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f); - const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f); - const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f); - - const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1]) - + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]); - - return d * sumf_d; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A - -#endif } static __device__ __forceinline__ float vec_dot_q6_K_q8_1( @@ -919,7 +829,6 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1( static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if QK_K == 256 const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq; #if QR2_XXS == 8 @@ -960,15 +869,11 @@ static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1( } return d * (sumi1 + sumi2); #endif -#else - NO_DEVICE_CODE; -#endif } static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -#if QK_K == 256 const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq; const int ib32 = iqs; @@ -1002,17 +907,12 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1( GGML_UNUSED(ksigns64); NO_DEVICE_CODE; #endif -#else - GGML_UNUSED(ksigns64); - NO_DEVICE_CODE; -#endif } // TODO static __device__ __forceinline__ float vec_dot_iq2_s_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -#if QK_K == 256 const block_iq2_s * bq2 = (const block_iq2_s *) vbq; const int ib32 = iqs; @@ -1048,16 +948,11 @@ static __device__ __forceinline__ float vec_dot_iq2_s_q8_1( GGML_UNUSED(ksigns64); NO_DEVICE_CODE; #endif -#else - GGML_UNUSED(ksigns64); - NO_DEVICE_CODE; -#endif } static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -#if QK_K == 256 const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq; const int ib32 = iqs; @@ -1082,16 +977,12 @@ static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1( #else NO_DEVICE_CODE; #endif -#else - NO_DEVICE_CODE; -#endif } // TODO: don't use lookup table for signs static __device__ __forceinline__ float vec_dot_iq3_s_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -#if QK_K == 256 const block_iq3_s * bq2 = (const block_iq3_s *) vbq; const int ib32 = iqs; @@ -1114,14 +1005,10 @@ static __device__ __forceinline__ float vec_dot_iq3_s_q8_1( #else NO_DEVICE_CODE; #endif -#else - NO_DEVICE_CODE; -#endif } static __device__ __forceinline__ float vec_dot_iq1_s_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if QK_K == 256 const block_iq1_s * bq1 = (const block_iq1_s *) vbq; const int ib32 = iqs; @@ -1149,14 +1036,10 @@ static __device__ __forceinline__ float vec_dot_iq1_s_q8_1( const float d = d1q * __low2float (bq8_1[ib32].ds); const float m = d1q * __high2float(bq8_1[ib32].ds); return d * sumi + m * delta; -#else - NO_DEVICE_CODE; -#endif } static __device__ __forceinline__ float vec_dot_iq1_m_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if QK_K == 256 const block_iq1_m * bq1 = (const block_iq1_m *) vbq; const int ib32 = iqs; @@ -1192,9 +1075,6 @@ static __device__ __forceinline__ float vec_dot_iq1_m_q8_1( scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds); return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1)); -#else - NO_DEVICE_CODE; -#endif } #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics @@ -1250,9 +1130,7 @@ static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1( static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { -#if QK_K == 256 #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq; const uint8_t * values = (const uint8_t *)kvalues_iq4nl; @@ -1270,10 +1148,6 @@ static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1( sumi2 = __dp4a(v2, q8[j+4], sumi2); } return d * (sumi1 + sumi2); - -#else - NO_DEVICE_CODE; -#endif #else return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs); #endif diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp index 3f033d58b..6c6058b2a 100644 --- a/ggml-kompute.cpp +++ b/ggml-kompute.cpp @@ -1677,6 +1677,10 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml } break; case GGML_OP_ROPE: { +#pragma message("TODO: implement phi3 frequency factors support") +#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225") + GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet"); + GGML_ASSERT(ne10 == ne02); GGML_ASSERT(src0t == dstt); // const int n_past = ((int32_t *) dst->op_params)[0]; diff --git a/ggml-metal.m b/ggml-metal.m index b0b16dbf7..c9e570dbf 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -381,10 +381,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { // dictionary of preprocessor macros NSMutableDictionary * prep = [NSMutableDictionary dictionary]; -#ifdef GGML_QKK_64 - prep[@"GGML_QKK_64"] = @(1); -#endif - MTLCompileOptions* options = [MTLCompileOptions new]; options.preprocessorMacros = prep; @@ -927,22 +923,32 @@ static enum ggml_status ggml_metal_graph_compute( const int64_t ne10 = src1 ? src1->ne[0] : 0; const int64_t ne11 = src1 ? src1->ne[1] : 0; const int64_t ne12 = src1 ? src1->ne[2] : 0; - const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); + const int64_t ne13 = src1 ? src1->ne[3] : 0; const uint64_t nb10 = src1 ? src1->nb[0] : 0; const uint64_t nb11 = src1 ? src1->nb[1] : 0; const uint64_t nb12 = src1 ? src1->nb[2] : 0; - const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); + const uint64_t nb13 = src1 ? src1->nb[3] : 0; - const int64_t ne0 = dst ? dst->ne[0] : 0; - const int64_t ne1 = dst ? dst->ne[1] : 0; - const int64_t ne2 = dst ? dst->ne[2] : 0; - const int64_t ne3 = dst ? dst->ne[3] : 0; + const int64_t ne20 = src2 ? src2->ne[0] : 0; + const int64_t ne21 = src2 ? src2->ne[1] : 0; + const int64_t ne22 = src2 ? src2->ne[2] : 0; GGML_UNUSED(ne22); + const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23); - const uint64_t nb0 = dst ? dst->nb[0] : 0; - const uint64_t nb1 = dst ? dst->nb[1] : 0; - const uint64_t nb2 = dst ? dst->nb[2] : 0; - const uint64_t nb3 = dst ? dst->nb[3] : 0; + const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20); + const uint64_t nb21 = src2 ? src2->nb[1] : 0; + const uint64_t nb22 = src2 ? src2->nb[2] : 0; + const uint64_t nb23 = src2 ? src2->nb[3] : 0; + + const int64_t ne0 = dst ? dst->ne[0] : 0; + const int64_t ne1 = dst ? dst->ne[1] : 0; + const int64_t ne2 = dst ? dst->ne[2] : 0; + const int64_t ne3 = dst ? dst->ne[3] : 0; + + const uint64_t nb0 = dst ? dst->nb[0] : 0; + const uint64_t nb1 = dst ? dst->nb[1] : 0; + const uint64_t nb2 = dst ? dst->nb[2] : 0; + const uint64_t nb3 = dst ? dst->nb[3] : 0; const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; @@ -1763,11 +1769,7 @@ static enum ggml_status ggml_metal_graph_compute( [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q3_K) { -#ifdef GGML_QKK_64 - [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; -#else [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; -#endif } else if (src0t == GGML_TYPE_Q5_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; @@ -1785,16 +1787,6 @@ static enum ggml_status ggml_metal_graph_compute( const int n_as = src0->ne[2]; // src2 = ids - const int64_t ne20 = src2->ne[0]; - const int64_t ne21 = src2->ne[1]; - const int64_t ne22 = src2->ne[2]; GGML_UNUSED(ne22); - const int64_t ne23 = src2->ne[3]; GGML_UNUSED(ne23); - - const uint64_t nb20 = src2->nb[0]; GGML_UNUSED(nb20); - const uint64_t nb21 = src2->nb[1]; - const uint64_t nb22 = src2->nb[2]; GGML_UNUSED(nb22); - const uint64_t nb23 = src2->nb[3]; GGML_UNUSED(nb23); - const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t); GGML_ASSERT(src2t == GGML_TYPE_I32); @@ -2018,12 +2010,7 @@ static enum ggml_status ggml_metal_graph_compute( { nth0 = 4; nth1 = 16; - #if QK_K == 64 - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline; - #else pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline; - #endif - } break; default: { @@ -2088,11 +2075,7 @@ static enum ggml_status ggml_metal_graph_compute( [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q3_K) { -#ifdef GGML_QKK_64 - [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; -#else [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; -#endif } else if (src0t == GGML_TYPE_Q5_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; @@ -2244,7 +2227,13 @@ static enum ggml_status ggml_metal_graph_compute( // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; - float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + float freq_base; + float freq_scale; + float ext_factor; + float attn_factor; + float beta_fast; + float beta_slow; + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); @@ -2252,6 +2241,15 @@ static enum ggml_status ggml_metal_graph_compute( memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + const bool is_neox = mode & 2; + const bool is_glm = mode & 4; + + GGML_ASSERT(!is_glm && "GLM RoPE not implemented in Metal"); + + if (!is_neox) { + GGML_ASSERT(id_src2 == nil && "TODO: freq_factors not implemented for !is_neox"); + } + id pipeline = nil; switch (src0->type) { @@ -2263,33 +2261,38 @@ static enum ggml_status ggml_metal_graph_compute( [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14]; - [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15]; - [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16]; - [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18]; - [encoder setBytes:&n_past length:sizeof( int) atIndex:19]; - [encoder setBytes:&n_dims length:sizeof( int) atIndex:20]; - [encoder setBytes:&mode length:sizeof( int) atIndex:21]; - [encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22]; - [encoder setBytes:&freq_base length:sizeof( float) atIndex:23]; - [encoder setBytes:&freq_scale length:sizeof( float) atIndex:24]; - [encoder setBytes:&ext_factor length:sizeof( float) atIndex:25]; - [encoder setBytes:&attn_factor length:sizeof( float) atIndex:26]; - [encoder setBytes:&beta_fast length:sizeof( float) atIndex:27]; - [encoder setBytes:&beta_slow length:sizeof( float) atIndex:28]; + if (id_src2 != nil) { + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; + } else { + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:2]; + } + [encoder setBuffer:id_dst offset:offs_dst atIndex:3]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:10]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:11]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:14]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:15]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:18]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:19]; + [encoder setBytes:&n_past length:sizeof( int) atIndex:20]; + [encoder setBytes:&n_dims length:sizeof( int) atIndex:21]; + [encoder setBytes:&mode length:sizeof( int) atIndex:22]; + [encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:23]; + [encoder setBytes:&freq_base length:sizeof( float) atIndex:24]; + [encoder setBytes:&freq_scale length:sizeof( float) atIndex:25]; + [encoder setBytes:&ext_factor length:sizeof( float) atIndex:26]; + [encoder setBytes:&attn_factor length:sizeof( float) atIndex:27]; + [encoder setBytes:&beta_fast length:sizeof( float) atIndex:28]; + [encoder setBytes:&beta_slow length:sizeof( float) atIndex:29]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; @@ -2535,11 +2538,6 @@ static enum ggml_status ggml_metal_graph_compute( GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) && "the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big"); - const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20); - const uint64_t nb21 = src2 ? src2->nb[1] : 0; - const uint64_t nb22 = src2 ? src2->nb[2] : 0; - const uint64_t nb23 = src2 ? src2->nb[3] : 0; - const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30); //const int64_t ne31 = src3 ? src3->ne[1] : 0; const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32); diff --git a/ggml-metal.metal b/ggml-metal.metal index 386e9195f..8ff70d7a7 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -1640,6 +1640,7 @@ static void rope_yarn_corr_dims( typedef void (rope_t)( device const void * src0, device const int32_t * src1, + device const float * src2, device float * dst, constant int64_t & ne00, constant int64_t & ne01, @@ -1675,6 +1676,7 @@ template kernel void kernel_rope( device const void * src0, device const int32_t * src1, + device const float * src2, device float * dst, constant int64_t & ne00, constant int64_t & ne01, @@ -1744,8 +1746,10 @@ kernel void kernel_rope( // simplified from `(ib * n_dims + ic) * inv_ndims` const float cur_rot = inv_ndims*ic - ib; + const float freq_factor = src2 != src0 ? src2[ic/2] : 1.0f; + + const float theta = theta_0 * pow(freq_base, cur_rot) / freq_factor; - const float theta = theta_0 * pow(freq_base, cur_rot); float cos_theta, sin_theta; rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); @@ -2204,11 +2208,7 @@ kernel void kernel_flash_attn_ext_f16( // pointer to the mask device const half * mp = (device const half *) (mask + iq1*nb31); - // prepare diagonal scale matrix - simdgroup_float8x8 mscale(scale); - - // prepare diagonal slope matrix - simdgroup_float8x8 mslope(1.0f); + float slope = 1.0f; // ALiBi if (max_bias > 0.0f) { @@ -2217,7 +2217,7 @@ kernel void kernel_flash_attn_ext_f16( const float base = h < n_head_log2 ? m0 : m1; const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; - mslope = simdgroup_float8x8(pow(base, exph)); + slope = pow(base, exph); } // loop over the KV cache @@ -2242,18 +2242,20 @@ kernel void kernel_flash_attn_ext_f16( simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk); } + simdgroup_store(mqk, ss + 8*cc, TF, 0, false); + + const short tx = tiisg%4; + const short ty = tiisg/4; + if (mask != q) { // mqk = mqk*scale + mask*slope - simdgroup_half8x8 mm; - simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false); - simdgroup_multiply(mm, mslope, mm); - simdgroup_multiply_accumulate(mqk, mqk, mscale, mm); + ss[8*cc + ty*TF + 2*tx + 0] = scale*ss[8*cc + ty*TF + 2*tx + 0] + slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 0]; + ss[8*cc + ty*TF + 2*tx + 1] = scale*ss[8*cc + ty*TF + 2*tx + 1] + slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 1]; } else { // mqk = mqk*scale - simdgroup_multiply(mqk, mscale, mqk); + ss[8*cc + ty*TF + 2*tx + 0] *= scale; + ss[8*cc + ty*TF + 2*tx + 1] *= scale; } - - simdgroup_store(mqk, ss + 8*cc, TF, 0, false); } } @@ -2816,8 +2818,7 @@ kernel void kernel_cpy_f32_f16( for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); - // TODO: is there a better way to handle -INFINITY? - dst_data[i00] = src[0] == -INFINITY ? -MAXHALF : src[0]; + dst_data[i00] = src[0]; } } @@ -3385,7 +3386,6 @@ void kernel_mul_mv_q2_K_f32_impl( const int step = sizeof(block_q2_K) * nb; -#if QK_K == 256 const int ix = tiisg/8; // 0...3 const int it = tiisg%8; // 0...7 const int iq = it/4; // 0 or 1 @@ -3437,57 +3437,6 @@ void kernel_mul_mv_q2_K_f32_impl( y4 += 4 * QK_K; } -#else - const int ix = tiisg/2; // 0...15 - const int it = tiisg%2; // 0...1 - - device const float * y4 = y + ix * QK_K + 8 * it; - - for (int ib = ix; ib < nb; ib += 16) { - - float4 sumy = {0.f, 0.f, 0.f, 0.f}; - for (int i = 0; i < 8; ++i) { - yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0]; - yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8]; - yl[i+16] = y4[i+32]; sumy[2] += yl[i+16]; - yl[i+24] = y4[i+48]; sumy[3] += yl[i+24]; - } - - device const uint8_t * sc = (device const uint8_t *)x[ib].scales; - device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it; - device const half * dh = &x[ib].d; - - for (int row = 0; row < N_DST; row++) { - - float4 acc1 = {0.f, 0.f, 0.f, 0.f}; - float4 acc2 = {0.f, 0.f, 0.f, 0.f}; - for (int i = 0; i < 8; i += 2) { - acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003); - acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300); - acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c); - acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00); - acc1[2] += yl[i+16] * (qs[i/2] & 0x0030); - acc2[2] += yl[i+17] * (qs[i/2] & 0x3000); - acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0); - acc2[3] += yl[i+25] * (qs[i/2] & 0xc000); - } - - float dall = dh[0]; - float dmin = dh[1]; - sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f + - (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f + - (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f + - (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) - - dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4)); - - qs += step/2; - sc += step; - dh += step/2; - } - - y4 += 16 * QK_K; - } -#endif for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); @@ -3525,7 +3474,6 @@ kernel void kernel_mul_mv_q2_K_f32( kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); } -#if QK_K == 256 void kernel_mul_mv_q3_K_f32_impl( device const void * src0, device const float * src1, @@ -3684,84 +3632,6 @@ void kernel_mul_mv_q3_K_f32_impl( } } } -#else -void kernel_mul_mv_q3_K_f32_impl( - device const void * src0, - device const float * src1, - device float * dst, - constant int64_t & ne00, - constant int64_t & ne01, - constant int64_t & ne02, - constant int64_t & ne10, - constant int64_t & ne12, - constant int64_t & ne0, - constant int64_t & ne1, - constant uint & r2, - constant uint & r3, - threadgroup int8_t * shared_values [[threadgroup(0)]], - uint3 tgpig[[threadgroup_position_in_grid]], - uint tiisg[[thread_index_in_simdgroup]], - uint sgitg[[simdgroup_index_in_threadgroup]]) { - - const int nb = ne00/QK_K; - - const int64_t r0 = tgpig.x; - const int64_t r1 = tgpig.y; - const int64_t im = tgpig.z; - - const int row = 2 * r0 + sgitg; - - const uint i12 = im%ne12; - const uint i13 = im/ne12; - - const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); - - device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0; - device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1; - - const int ix = tiisg/4; - const int il = 4 * (tiisg%4);// 0, 4, 8, 12 - const int iq = il/8; // 0, 0, 1, 1 - const int in = il%8; // 0, 4, 0, 4 - - float2 sum = {0.f, 0.f}; - - for (int i = ix; i < nb; i += 8) { - - const float d_all = (float)(x[i].d); - - device const uint16_t * q = (device const uint16_t *)(x[i].qs + il); - device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in); - device const uint16_t * s = (device const uint16_t *)(x[i].scales); - device const float * y = yy + i * QK_K + il; - - const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8); - const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f; - const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f; - const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f; - - for (int l = 0; l < 4; l += 2) { - const uint16_t hm = h[l/2] >> iq; - sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4)) - + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16)) - + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64)) - + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256)); - sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024)) - + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096)) - + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384)) - + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536)); - } - - } - const float sumf = sum[0] + sum[1] * 1.f/256.f; - - const float tot = simd_sum(sumf); - if (tiisg == 0) { - dst[r1*ne0 + im*ne0*ne1 + row] = tot; - } - -} -#endif [[host_name("kernel_mul_mv_q3_K_f32")]] kernel void kernel_mul_mv_q3_K_f32( @@ -3791,7 +3661,6 @@ kernel void kernel_mul_mv_q3_K_f32( kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); } -#if QK_K == 256 void kernel_mul_mv_q4_K_f32_impl( device const void * src0, device const float * src1, @@ -3905,103 +3774,6 @@ void kernel_mul_mv_q4_K_f32_impl( } } } -#else -void kernel_mul_mv_q4_K_f32_impl( - device const void * src0, - device const float * src1, - device float * dst, - constant int64_t & ne00, - constant int64_t & ne01, - constant int64_t & ne02, - constant int64_t & ne10, - constant int64_t & ne12, - constant int64_t & ne0, - constant int64_t & ne1, - constant uint & r2, - constant uint & r3, - threadgroup int8_t * shared_values [[threadgroup(0)]], - uint3 tgpig[[threadgroup_position_in_grid]], - uint tiisg[[thread_index_in_simdgroup]], - uint sgitg[[simdgroup_index_in_threadgroup]]) { - - const int ix = tiisg/4; // 0...7 - const int it = tiisg%4; // 0...3 - - const int nb = ne00/QK_K; - const int r0 = tgpig.x; - const int r1 = tgpig.y; - const int im = tgpig.z; - const int first_row = r0 * N_DST; - const int ib_row = first_row * nb; - - const uint i12 = im%ne12; - const uint i13 = im/ne12; - - const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); - - device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0; - device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; - - float yl[8]; - float yh[8]; - float sumf[N_DST]={0.f}, all_sum; - - const int step = sizeof(block_q4_K) * nb / 2; - - device const float * y4 = y + ix * QK_K + 8 * it; - - uint16_t sc16[4]; - - for (int ib = ix; ib < nb; ib += 8) { - - float2 sumy = {0.f, 0.f}; - for (int i = 0; i < 8; ++i) { - yl[i] = y4[i+ 0]; sumy[0] += yl[i]; - yh[i] = y4[i+32]; sumy[1] += yh[i]; - } - - device const uint16_t * sc = (device const uint16_t *)x[ib].scales; - device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it; - device const half * dh = x[ib].d; - - for (int row = 0; row < N_DST; row++) { - - sc16[0] = sc[0] & 0x000f; - sc16[1] = sc[0] & 0x0f00; - sc16[2] = sc[0] & 0x00f0; - sc16[3] = sc[0] & 0xf000; - - float2 acc1 = {0.f, 0.f}; - float2 acc2 = {0.f, 0.f}; - for (int i = 0; i < 8; i += 2) { - acc1[0] += yl[i+0] * (qs[i/2] & 0x000F); - acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00); - acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0); - acc2[1] += yh[i+1] * (qs[i/2] & 0xF000); - } - - float dall = dh[0]; - float dmin = dh[1]; - sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] + - (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) - - dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f); - - qs += step; - sc += step; - dh += step; - } - - y4 += 8 * QK_K; - } - - for (int row = 0; row < N_DST; ++row) { - all_sum = simd_sum(sumf[row]); - if (tiisg == 0) { - dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; - } - } -} -#endif [[host_name("kernel_mul_mv_q4_K_f32")]] kernel void kernel_mul_mv_q4_K_f32( @@ -4069,8 +3841,6 @@ void kernel_mul_mv_q5_K_f32_impl( const int step = sizeof(block_q5_K) * nb; -#if QK_K == 256 -# float yl[16], yh[16]; const uint16_t kmask1 = 0x3f3f; @@ -4153,54 +3923,6 @@ void kernel_mul_mv_q5_K_f32_impl( y1 += 4 * QK_K; } -#else - float yl[8], yh[8]; - - const int il = 4 * (tiisg/8); // 0, 4, 8, 12 - const int ix = tiisg%8; - const int iq = il/8; // 0, 0, 1, 1 - const int in = il%8; // 0, 4, 0, 4 - - device const float * y = yy + ix*QK_K + il; - - for (int i = ix; i < nb; i += 8) { - - for (int l = 0; l < 4; ++l) { - yl[l+0] = y[l+ 0]; - yl[l+4] = y[l+16]; - yh[l+0] = y[l+32]; - yh[l+4] = y[l+48]; - } - - device const half * dh = &x[i].d; - device const uint8_t * q = x[i].qs + il; - device const uint8_t * h = x[i].qh + in; - device const int8_t * s = x[i].scales; - - for (int row = 0; row < 2; ++row) { - - const float d = dh[0]; - - float2 acc = {0.f, 0.f}; - for (int l = 0; l < 4; ++l) { - const uint8_t hl = h[l] >> iq; - acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16)) - + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16)); - acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256)) - + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256)); - } - sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]); - - q += step; - h += step; - s += step; - dh += step/2; - - } - - y += 8 * QK_K; - } -#endif for (int row = 0; row < 2; ++row) { const float tot = simd_sum(sumf[row]); @@ -4279,7 +4001,6 @@ void kernel_mul_mv_q6_K_f32_impl( float sumf = 0; -#if QK_K == 256 const int tid = tiisg/2; const int ix = tiisg%2; const int ip = tid/8; // 0 or 1 @@ -4315,30 +4036,6 @@ void kernel_mul_mv_q6_K_f32_impl( } -#else - const int ix = tiisg/4; - const int il = 4*(tiisg%4); - - for (int i = ix; i < nb; i += 8) { - device const float * y = yy + i * QK_K + il; - device const uint8_t * ql = x[i].ql + il; - device const uint8_t * qh = x[i].qh + il; - device const int8_t * s = x[i].scales; - - const float d = x[i].d; - - float4 sums = {0.f, 0.f, 0.f, 0.f}; - for (int l = 0; l < 4; ++l) { - sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32); - sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32); - sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32); - sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32); - } - sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]); - } - -#endif - const float tot = simd_sum(sumf); if (tiisg == 0) { dst[r1*ne0 + im*ne0*ne1 + row] = tot; @@ -5172,9 +4869,7 @@ void kernel_mul_mv_iq1_m_f32_impl( device const float * y4 = y + 32 * ix; -#if QK_K != 64 iq1m_scale_t scale; -#endif for (int ib32 = ix; ib32 < nb32; ib32 += 32) { @@ -5195,10 +4890,7 @@ void kernel_mul_mv_iq1_m_f32_impl( device const uint16_t * sc = (device const uint16_t *)xr->scales; for (int row = 0; row < N_DST; row++) { - -#if QK_K != 64 scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); -#endif constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700))); @@ -5214,14 +4906,9 @@ void kernel_mul_mv_iq1_m_f32_impl( } const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); -#if QK_K == 64 - const float d = (float) *((device const half *)(sc - 1)); - sumf[row] += d * ((sum[0] + delta1) * (2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1) + - (sum[1] + delta2) * (2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1)); -#else + sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) + (sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1)); -#endif sc += nb*sizeof(block_iq1_m)/2; qs += nb*sizeof(block_iq1_m); @@ -5333,7 +5020,6 @@ void kernel_mul_mv_iq4_nl_f32_impl( } } -#if QK_K != 64 void kernel_mul_mv_iq4_xs_f32_impl( device const void * src0, device const float * src1, @@ -5428,7 +5114,6 @@ void kernel_mul_mv_iq4_xs_f32_impl( } } } -#endif [[host_name("kernel_mul_mv_iq1_s_f32")]] kernel void kernel_mul_mv_iq1_s_f32( @@ -5541,11 +5226,7 @@ kernel void kernel_mul_mv_iq4_xs_f32( uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { -#if QK_K == 64 - kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); -#else kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); -#endif } //============================= templates and their specializations ============================= @@ -5671,10 +5352,9 @@ void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg float dl, ml; uint8_t sc = xb->scales[il]; -#if QK_K == 256 q = q + 32*(il/8) + 16*(il&1); il = (il/2)%4; -#endif + half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4); @@ -5690,7 +5370,6 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg device const uint8_t * h = (device const uint8_t *)xb->hmask; device const int8_t * scales = (device const int8_t *)xb->scales; -#if QK_K == 256 q = q + 32 * (il/8) + 16 * (il&1); h = h + 16 * (il&1); uint8_t m = 1 << (il/2); @@ -5711,17 +5390,6 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg for (int i = 0; i < 16; ++i) { reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml); } -#else - float kcoef = il&1 ? 1.f/16.f : 1.f; - uint16_t kmask = il&1 ? 0xF0 : 0x0F; - float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8); - float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); - uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); - uint8_t m = 1<<(il*2); - for (int i = 0; i < 16; ++i) { - reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef)); - } -#endif } static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) { @@ -5733,7 +5401,6 @@ template void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) { device const uchar * q = xb->qs; -#if QK_K == 256 short is = (il/4) * 2; q = q + (il/4) * 32 + 16 * (il&1); il = il & 3; @@ -5742,16 +5409,7 @@ void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg const float min = xb->dmin; const float dl = d * sc[0]; const float ml = min * sc[1]; -#else - (void) get_scale_min_k4_just2; - q = q + 16 * (il&1); - device const uint8_t * s = xb->scales; - device const half2 * dh = (device const half2 *)xb->d; - const float2 d = (float2)dh[0]; - const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h; - const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4); -#endif const ushort mask = il<2 ? 0x0F : 0xF0; for (int i = 0; i < 16; ++i) { reg[i/4][i%4] = dl * (q[i] & mask) - ml; @@ -5763,7 +5421,6 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg device const uint8_t * q = xb->qs; device const uint8_t * qh = xb->qh; -#if QK_K == 256 short is = (il/4) * 2; q = q + 32 * (il/4) + 16 * (il&1); qh = qh + 16 * (il&1); @@ -5780,17 +5437,6 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg for (int i = 0; i < 16; ++i) { reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml; } -#else - q = q + 16 * (il&1); - device const int8_t * s = xb->scales; - const float dl = xb->d * s[il]; - uint8_t m = 1<<(il*2); - const float coef = il<2 ? 1.f : 1.f/16.f; - const ushort mask = il<2 ? 0x0F : 0xF0; - for (int i = 0; i < 16; ++i) { - reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef)); - } -#endif } template @@ -5800,15 +5446,11 @@ void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg device const uint8_t * qh = (device const uint8_t *)xb->qh; device const int8_t * scales = (device const int8_t *)xb->scales; -#if QK_K == 256 ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1); qh = qh + 32*(il/8) + 16*(il&1); float sc = scales[(il%2) + 2 * ((il/2))]; il = (il/2) & 3; -#else - ql = ql + 16 * (il&1); - float sc = scales[il]; -#endif + const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F; const float coef = il>1 ? 1.f/16.f : 1.f; @@ -5965,20 +5607,15 @@ void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & const int ib32 = il/2; il = il%2; device const uint16_t * sc = (device const uint16_t *)xb->scales; -#if QK_K == 64 - const float d = xb->d; -#else + iq1m_scale_t scale; scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); const float d = scale.f16; -#endif + device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; device const uint8_t * qh = xb->qh + 2*ib32 + il; -#if QK_K == 64 - const float dl = d * (2*((sc[ib32/2] >> (8*(ib32%2)+4*il)) & 0xf) + 1); -#else + const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1); -#endif const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); @@ -6008,9 +5645,6 @@ void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 template void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) { -#if QK_K == 64 - dequantize_iq4_nl(xb, il, reg); -#else // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 const int ib32 = il/2; il = il%2; @@ -6027,7 +5661,6 @@ void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 reg[i][2] = d * kvalues_iq4nl_f[q8[2]]; reg[i][3] = d * kvalues_iq4nl_f[q8[3]]; } -#endif } template @@ -6532,11 +6165,7 @@ kernel void kernel_mul_mm_id( sgitg); } -#if QK_K == 256 #define QK_NL 16 -#else -#define QK_NL 4 -#endif // // get rows @@ -6576,11 +6205,7 @@ template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_t kernel_get_r template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows; template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_t kernel_get_rows; template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows; -#if QK_K == 64 -template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows; -#else template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows; -#endif // // matrix-matrix multiplication @@ -6608,11 +6233,7 @@ template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_m template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm; -#if QK_K == 64 -template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm; -#else template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm; -#endif // // indirect matrix-matrix multiplication @@ -6640,11 +6261,7 @@ template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; -#if QK_K == 64 -template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; -#else template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; -#endif // // matrix-vector multiplication @@ -6853,7 +6470,5 @@ template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; -#if QK_K != 64 template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; -#endif diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 922f24837..e28566a7b 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -1,4 +1,4 @@ -#include "ggml.h" +#include "ggml.h" #include "ggml-opencl.h" #include "ggml-backend-impl.h" diff --git a/ggml-quants.c b/ggml-quants.c index ed40ca74a..bb01ce93c 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -1888,7 +1888,6 @@ static float make_qkx2_quants(int n, int nmax, const float * restrict x, const f return scale; } -#if QK_K == 256 static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) { if (j < 4) { *d = q[j] & 63; *m = q[j + 4] & 63; @@ -1897,7 +1896,6 @@ static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); } } -#endif //========================- 2-bit (de)-quantization @@ -1961,20 +1959,13 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict } } -#if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); } } -#else - for (int l = 0; l < 16; ++l) { - y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); - } -#endif x += QK_K; - } } @@ -1989,7 +1980,6 @@ void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int6 const uint8_t * q = x[i].qs; -#if QK_K == 256 int is = 0; float dl, ml; for (int n = 0; n < QK_K; n += 128) { @@ -2008,19 +1998,6 @@ void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int6 } q += 32; } -#else - float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4); - float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4); - float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4); - float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4); - for (int l = 0; l < 16; ++l) { - y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1; - y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2; - y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3; - y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4; - } - y += QK_K; -#endif } } @@ -2211,36 +2188,9 @@ static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restri } float dm, mm; -#if QK_K == 64 - float max_scale = 0, max_min = 0; - for (int j = 0; j < QK_K/16; ++j) { - max_scale = MAX(max_scale, scales[j]); - max_min = MAX(max_min, mins[j]); - } - dm = max_scale/15; - mm = max_min/15; - if (max_scale) { - float id = 1/dm; - for (int j = 0; j < QK_K/16; ++j) { - int l = nearest_int(id*scales[j]); - Ls[j] = MAX(0, MIN(15, l)); - } - } else { - memset(Ls, 0, QK_K/16); - } - if (max_min) { - float id = 1/mm; - for (int j = 0; j < QK_K/16; ++j) { - int l = nearest_int(id*mins[j]); - Lm[j] = MAX(0, MIN(15, l)); - } - } else { - memset(Lm, 0, QK_K/16); - } -#else dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw); mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw); -#endif + y[i].d = GGML_FP32_TO_FP16(dm); y[i].dmin = GGML_FP32_TO_FP16(mm); dm = GGML_FP16_TO_FP32(y[i].d); @@ -2263,20 +2213,13 @@ static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restri } } -#if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); } } -#else - for (int l = 0; l < 16; ++l) { - y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); - } -#endif x += QK_K; - } } @@ -2317,7 +2260,6 @@ void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict } } -#if QK_K == 256 memset(y[i].scales, 0, 12); if (max_scale) { float iscale = -32.f/max_scale; @@ -2351,36 +2293,6 @@ void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict L[16*j + ii] = l + 4; } } -#else - if (max_scale) { - float iscale = -8.f/max_scale; - for (int j = 0; j < QK_K/16; j+=2) { - int l1 = nearest_int(iscale*scales[j]); - l1 = 8 + MAX(-8, MIN(7, l1)); - int l2 = nearest_int(iscale*scales[j+1]); - l2 = 8 + MAX(-8, MIN(7, l2)); - y[i].scales[j/2] = l1 | (l2 << 4); - } - y[i].d = GGML_FP32_TO_FP16(1/iscale); - } else { - for (int j = 0; j < QK_K/16; j+=2) { - y[i].scales[j/2] = 0; - } - y[i].d = GGML_FP32_TO_FP16(0.f); - } - for (int j = 0; j < QK_K/16; ++j) { - int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4; - float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8); - if (!d) { - continue; - } - for (int ii = 0; ii < 16; ++ii) { - int l = nearest_int(x[16*j + ii]/d); - l = MAX(-4, MIN(3, l)); - L[16*j + ii] = l + 4; - } - } -#endif memset(y[i].hmask, 0, QK_K/8); // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc. @@ -2395,23 +2307,16 @@ void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict m = 0; hm <<= 1; } } -#if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); } } -#else - for (int l = 0; l < 16; ++l) { - y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); - } -#endif x += QK_K; } } -#if QK_K == 256 void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2461,49 +2366,12 @@ void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int6 } } -#else -void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) { - assert(k % QK_K == 0); - assert(QK_K == 64); - const int nb = k / QK_K; - - for (int i = 0; i < nb; i++) { - - const float d_all = GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict q = x[i].qs; - const uint8_t * restrict hm = x[i].hmask; - - const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8); - const float d2 = d_all * ((x[i].scales[0] >> 4) - 8); - const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8); - const float d4 = d_all * ((x[i].scales[1] >> 4) - 8); - - for (int l=0; l<8; ++l) { - uint8_t h = hm[l]; - y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4)); - y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4)); - y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4)); - y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4)); - y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4)); - y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4)); - y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4)); - y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4)); - } - y += QK_K; - } -} -#endif void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) { quantize_row_q3_K_reference(x, vy, k); } static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) { -#if QK_K != 256 - (void)quant_weights; - quantize_row_q3_K_reference(x, y, n_per_row); -#else assert(n_per_row % QK_K == 0); const int nb = n_per_row / QK_K; @@ -2585,7 +2453,6 @@ static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restri x += QK_K; } -#endif } size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { @@ -2617,7 +2484,6 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict float scales[QK_K/32]; for (int i = 0; i < nb; i++) { - float max_scale = 0; // as we are deducting the min, scales are always positive float max_min = 0; for (int j = 0; j < QK_K/32; ++j) { @@ -2637,7 +2503,6 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict } } -#if QK_K == 256 float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; float inv_min = max_min > 0 ? 63.f/max_min : 0.f; for (int j = 0; j < QK_K/32; ++j) { @@ -2669,39 +2534,7 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict L[32*j + ii] = l; } } -#else - const float s_factor = 15.f; - float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f; - float inv_min = max_min > 0 ? s_factor/max_min : 0.f; - int d1 = nearest_int(inv_scale*scales[0]); - int m1 = nearest_int(inv_min*mins[0]); - int d2 = nearest_int(inv_scale*scales[1]); - int m2 = nearest_int(inv_min*mins[1]); - y[i].scales[0] = d1 | (m1 << 4); - y[i].scales[1] = d2 | (m2 << 4); - y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor); - y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor); - float sumlx = 0; - int suml2 = 0; - for (int j = 0; j < QK_K/32; ++j) { - const uint8_t sd = y[i].scales[j] & 0xF; - const uint8_t sm = y[i].scales[j] >> 4; - const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd; - if (!d) continue; - const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm; - for (int ii = 0; ii < 32; ++ii) { - int l = nearest_int((x[32*j + ii] + m)/d); - l = MAX(0, MIN(15, l)); - L[32*j + ii] = l; - sumlx += (x[32*j + ii] + m)*l*sd; - suml2 += l*l*sd*sd; - } - } - if (suml2) { - y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2); - } -#endif uint8_t * q = y[i].qs; for (int j = 0; j < QK_K; j += 64) { for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4); @@ -2709,7 +2542,6 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict } x += QK_K; - } } @@ -2718,11 +2550,8 @@ void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int6 const int nb = k / QK_K; for (int i = 0; i < nb; i++) { - const uint8_t * q = x[i].qs; -#if QK_K == 256 - const float d = GGML_FP16_TO_FP32(x[i].d); const float min = GGML_FP16_TO_FP32(x[i].dmin); @@ -2737,18 +2566,6 @@ void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int6 for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2; q += 32; is += 2; } -#else - const float dall = GGML_FP16_TO_FP32(x[i].d[0]); - const float mall = GGML_FP16_TO_FP32(x[i].d[1]); - const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4); - const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4); - for (int l = 0; l < 32; ++l) { - y[l+ 0] = d1 * (q[l] & 0xF) - m1; - y[l+32] = d2 * (q[l] >> 4) - m2; - } - y += QK_K; -#endif - } } @@ -2759,10 +2576,6 @@ void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) } static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) { -#if QK_K != 256 - (void)quant_weights; - quantize_row_q4_K_reference(x, y, n_per_row); -#else assert(n_per_row % QK_K == 0); const int64_t nb = n_per_row / QK_K; @@ -2833,7 +2646,6 @@ static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restri x += QK_K; } -#endif } size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { @@ -2858,21 +2670,13 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict assert(k % QK_K == 0); const int64_t nb = k / QK_K; -#if QK_K == 256 uint8_t L[QK_K]; float mins[QK_K/32]; float scales[QK_K/32]; float weights[32]; uint8_t Laux[32]; -#else - int8_t L[QK_K]; - float scales[QK_K/16]; -#endif for (int i = 0; i < nb; i++) { - -#if QK_K == 256 - float max_scale = 0; // as we are deducting the min, scales are always positive float max_min = 0; for (int j = 0; j < QK_K/32; ++j) { @@ -2944,55 +2748,8 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict m1 <<= 2; m2 <<= 2; ql += 32; } -#else - float max_scale = 0, amax = 0; - for (int j = 0; j < QK_K/16; ++j) { - scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL); - float abs_scale = fabsf(scales[j]); - if (abs_scale > amax) { - amax = abs_scale; - max_scale = scales[j]; - } - } - - float iscale = -128.f/max_scale; - for (int j = 0; j < QK_K/16; ++j) { - int l = nearest_int(iscale*scales[j]); - y[i].scales[j] = MAX(-128, MIN(127, l)); - } - y[i].d = GGML_FP32_TO_FP16(1/iscale); - - for (int j = 0; j < QK_K/16; ++j) { - const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j]; - if (!d) continue; - for (int ii = 0; ii < 16; ++ii) { - int l = nearest_int(x[16*j + ii]/d); - l = MAX(-16, MIN(15, l)); - L[16*j + ii] = l + 16; - } - } - - uint8_t * restrict qh = y[i].qh; - uint8_t * restrict ql = y[i].qs; - memset(qh, 0, QK_K/8); - - for (int j = 0; j < 32; ++j) { - int jm = j%8; - int is = j/8; - int l1 = L[j]; - if (l1 > 15) { - l1 -= 16; qh[jm] |= (1 << is); - } - int l2 = L[j + 32]; - if (l2 > 15) { - l2 -= 16; qh[jm] |= (1 << (4 + is)); - } - ql[j] = l1 | (l2 << 4); - } -#endif x += QK_K; - } } @@ -3001,12 +2758,9 @@ void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int6 const int64_t nb = k / QK_K; for (int i = 0; i < nb; i++) { - const uint8_t * ql = x[i].qs; const uint8_t * qh = x[i].qh; -#if QK_K == 256 - const float d = GGML_FP16_TO_FP32(x[i].d); const float min = GGML_FP16_TO_FP32(x[i].dmin); @@ -3023,21 +2777,6 @@ void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int6 ql += 32; is += 2; u1 <<= 2; u2 <<= 2; } -#else - float d = GGML_FP16_TO_FP32(x[i].d); - const int8_t * restrict s = x[i].scales; - for (int l = 0; l < 8; ++l) { - y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16)); - y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16)); - y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16)); - y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16)); - y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16)); - y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16)); - y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16)); - y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16)); - } - y += QK_K; -#endif } } @@ -3048,10 +2787,6 @@ void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) } static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) { -#if QK_K != 256 - (void)quant_weights; - quantize_row_q5_K_reference(x, y, n_per_row); -#else assert(n_per_row % QK_K == 0); const int64_t nb = n_per_row / QK_K; @@ -3142,7 +2877,6 @@ static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restri x += QK_K; } -#endif } size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { @@ -3215,7 +2949,6 @@ void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict uint8_t * restrict ql = y[i].ql; uint8_t * restrict qh = y[i].qh; -#if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { const uint8_t q1 = L[j + l + 0] & 0xF; @@ -3229,19 +2962,8 @@ void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict ql += 64; qh += 32; } -#else - for (int l = 0; l < 32; ++l) { - const uint8_t q1 = L[l + 0] & 0xF; - const uint8_t q2 = L[l + 32] & 0xF; - ql[l] = q1 | (q2 << 4); - } - for (int l = 0; l < 16; ++l) { - qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6); - } -#endif x += QK_K; - } } @@ -3250,14 +2972,12 @@ void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int6 const int64_t nb = k / QK_K; for (int i = 0; i < nb; i++) { - const float d = GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict ql = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict sc = x[i].scales; -#if QK_K == 256 for (int n = 0; n < QK_K; n += 128) { for (int l = 0; l < 32; ++l) { int is = l/16; @@ -3275,20 +2995,6 @@ void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int6 qh += 32; sc += 8; } -#else - for (int l = 0; l < 16; ++l) { - const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; - const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; - const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; - const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; - y[l+ 0] = d * sc[0] * q1; - y[l+16] = d * sc[1] * q2; - y[l+32] = d * sc[2] * q3; - y[l+48] = d * sc[3] * q4; - } - y += 64; -#endif - } } @@ -3299,10 +3005,6 @@ void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) } static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) { -#if QK_K != 256 - (void)quant_weights; - quantize_row_q6_K_reference(x, y, n_per_row); -#else assert(n_per_row % QK_K == 0); const int64_t nb = n_per_row / QK_K; @@ -3384,7 +3086,6 @@ static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restri x += QK_K; } -#endif } size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { @@ -3801,30 +3502,21 @@ void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, in float delta[4]; uint16_t idx[4]; -#if QK_K != 64 iq1m_scale_t scale; -#endif for (int i = 0; i < nb; i++) { const uint16_t * sc = (const uint16_t *)x[i].scales; -#if QK_K == 64 - const float d = GGML_FP16_TO_FP32(x[i].d); -#else scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); const float d = GGML_FP16_TO_FP32(scale.f16); -#endif + const uint8_t * qs = x[i].qs; const uint8_t * qh = x[i].qh; for (int ib = 0; ib < QK_K/32; ++ib) { -#if QK_K == 64 - const float dl1 = d * (2*((sc[ib/2] >> (8*(ib%2)+0)) & 0xf) + 1); - const float dl2 = d * (2*((sc[ib/2] >> (8*(ib%2)+4)) & 0xf) + 1); -#else const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1); const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1); -#endif + idx[0] = qs[0] | ((qh[0] << 8) & 0x700); idx[1] = qs[1] | ((qh[0] << 4) & 0x700); idx[2] = qs[2] | ((qh[1] << 8) & 0x700); @@ -3875,9 +3567,6 @@ void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) { assert(k % QK_K == 0); -#if QK_K == 64 - dequantize_row_iq4_nl((const block_iq4_nl *)x, y, k); -#else const int64_t nb = k / QK_K; for (int i = 0; i < nb; i++) { @@ -3897,7 +3586,6 @@ void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, qs += 16; } } -#endif } //===================================== Q8_K ============================================== @@ -5849,7 +5537,6 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r #endif } -#if QK_K == 256 void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(nrc == 1); UNUSED(nrc); @@ -6433,410 +6120,6 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r #endif } -#else - -void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { - assert(nrc == 1); - UNUSED(nrc); - UNUSED(bx); - UNUSED(by); - UNUSED(bs); - - const block_q2_K * restrict x = vx; - const block_q8_K * restrict y = vy; - - const int nb = n / QK_K; - -#ifdef __ARM_NEON - const uint8x16_t m3 = vdupq_n_u8(0x3); - - const int32x4_t vzero = vdupq_n_s32(0); - - ggml_int8x16x4_t q2bytes; - - uint32_t aux32[2]; - const uint8_t * scales = (const uint8_t *)aux32; - - float sum = 0; - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - const uint32_t * restrict sc = (const uint32_t *)x[i].scales; - - aux32[0] = sc[0] & 0x0f0f0f0f; - aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; - - sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]); - - int isum1 = 0, isum2 = 0; - - const uint8x16_t q2bits = vld1q_u8(q2); - - const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); - - q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3)); - q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3)); - q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3)); - q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3)); - - isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0]; - isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1]; - isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2]; - isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3]; - - sum += d * (isum1 + isum2); - } - - *s = sum; - -#elif defined __AVX2__ - - const __m256i m3 = _mm256_set1_epi8(3); - - __m256 acc = _mm256_setzero_ps(); - - uint32_t ud, um; - const uint8_t * restrict db = (const uint8_t *)&ud; - const uint8_t * restrict mb = (const uint8_t *)&um; - - float summs = 0; - - // TODO: optimize this - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const uint32_t * restrict sc = (const uint32_t *)x[i].scales; - ud = (sc[0] >> 0) & 0x0f0f0f0f; - um = (sc[0] >> 4) & 0x0f0f0f0f; - - int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3]; - summs += dmin * smin; - - const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); - const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3); - const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3); - - const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); - const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); - - const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0); - const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1); - - const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0)); - const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1)); - const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0)); - const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1)); - - acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc); - acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc); - acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc); - acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc); - } - - *s = hsum_float_8(acc) + summs; - -#elif defined __AVX__ - - const __m128i m3 = _mm_set1_epi8(3); - - __m256 acc = _mm256_setzero_ps(); - - uint32_t ud, um; - const uint8_t * restrict db = (const uint8_t *)&ud; - const uint8_t * restrict mb = (const uint8_t *)&um; - - float summs = 0; - - // TODO: optimize this - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const uint32_t * restrict sc = (const uint32_t *)x[i].scales; - ud = (sc[0] >> 0) & 0x0f0f0f0f; - um = (sc[0] >> 4) & 0x0f0f0f0f; - - int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3]; - summs += dmin * smin; - - const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); - const __m128i q2_0 = _mm_and_si128(q2bits, m3); - const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); - const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); - const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); - - const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); - const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); - - const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0)); - const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1)); - const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0)); - const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1)); - - const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0)); - const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1)); - const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2)); - const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3)); - - acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc); - acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc); - acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc); - acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc); - } - - *s = hsum_float_8(acc) + summs; - -#elif defined __riscv_v_intrinsic - - uint32_t aux32[2]; - const uint8_t * scales = (const uint8_t *)aux32; - - float sumf = 0; - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - const uint32_t * restrict sc = (const uint32_t *)x[i].scales; - - aux32[0] = sc[0] & 0x0f0f0f0f; - aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; - - sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]); - - int isum1 = 0; - int isum2 = 0; - - size_t vl = 16; - - vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); - - // load Q2 - vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl); - - vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl)); - vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl)); - vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl)); - vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl)); - - // load Q8, and take product with Q2 - vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl); - vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); - vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); - vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); - - vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl); - vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl); - vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl); - vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl); - - isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0]; - isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1]; - isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2]; - isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3]; - - sumf += d * (isum1 + isum2); - - } - - *s = sumf; - - -#elif defined(__POWER9_VECTOR__) - const vector signed char lowMask = vec_splats((signed char)0x3); - const vector signed char lowScaleMask = vec_splats((signed char)0xF); - const vector unsigned char v2 = vec_splats((unsigned char)0x2); - const vector unsigned char v4 = vec_splats((unsigned char)0x4); - const vector unsigned char v6 = vec_splats((unsigned char)0x6); - - vector float vsumf0 = vec_splats(0.0f); - vector float vsumf1 = vec_splats(0.0f); - vector float vsumf2 = vec_splats(0.0f); - vector float vsumf3 = vec_splats(0.0f); - -#pragma GCC unroll 2 - for (int i = 0; i < nb; ++i) { - __builtin_prefetch(x[i].qs, 0, 1); - __builtin_prefetch(y[i].qs, 0, 1); - - vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); - vector float vyd = vec_splats(y[i].d); - vector float vd = vec_mul(vxd, vyd); - - vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin)); - vector float vdmin = vec_mul(vxmin, vyd); - - vector signed short q8ysums0 = vec_xl_len(y[i].bsums, 8); - - vector signed char q2xmins = (vector signed char)vec_xl_len(x[i].scales, 4); - vector signed char vscales = vec_and(q2xmins, lowScaleMask); - - q2xmins = vec_sr(q2xmins, v4); - vector signed short q2xmins0 = vec_unpackh((vector signed char)q2xmins); - - vector signed int prod0 = vec_mule(q2xmins0, q8ysums0); - vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0); - - vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0); - vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1); - - vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs); - vector signed char q2x00 = vec_and(qxs0, lowMask); - vector signed char q2x01 = vec_and(vec_sr(qxs0, v2), lowMask); - vector signed char q2x02 = vec_and(vec_sr(qxs0, v4), lowMask); - vector signed char q2x03 = vec_and(vec_sr(qxs0, v6), lowMask); - - vector signed char q8y00 = vec_xl( 0, y[i].qs); - vector signed char q8y01 = vec_xl( 16, y[i].qs); - vector signed char q8y02 = vec_xl( 32, y[i].qs); - vector signed char q8y03 = vec_xl( 48, y[i].qs); - - vector signed short qv0 = vec_add(vec_mule(q2x00, q8y00), vec_mulo(q2x00, q8y00)); - vector signed short qv1 = vec_add(vec_mule(q2x01, q8y01), vec_mulo(q2x01, q8y01)); - vector signed short qv2 = vec_add(vec_mule(q2x02, q8y02), vec_mulo(q2x02, q8y02)); - vector signed short qv3 = vec_add(vec_mule(q2x03, q8y03), vec_mulo(q2x03, q8y03)); - - vector signed short vscales_h = vec_unpackh(vscales); - vector signed short vs0 = vec_splat(vscales_h, 0); - vector signed short vs1 = vec_splat(vscales_h, 1); - vector signed short vs2 = vec_splat(vscales_h, 2); - vector signed short vs3 = vec_splat(vscales_h, 3); - - vector signed int vsumi0 = vec_add(vec_mule(qv0, vs0), vec_mulo(qv0, vs0)); - vector signed int vsumi1 = vec_add(vec_mule(qv1, vs1), vec_mulo(qv1, vs1)); - vector signed int vsumi2 = vec_add(vec_mule(qv2, vs2), vec_mulo(qv2, vs2)); - vector signed int vsumi3 = vec_add(vec_mule(qv3, vs3), vec_mulo(qv3, vs3)); - - vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); - vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); - vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); - vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); - } - - vsumf0 = vec_add(vsumf0, vsumf2); - vsumf1 = vec_add(vsumf1, vsumf3); - - vsumf0 = vec_add(vsumf0, vsumf1); - - vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); - vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); - - *s = vec_extract(vsumf0, 0); - -#elif defined __loongarch_asx - - const __m256i m3 = __lasx_xvreplgr2vr_b(3); - - __m256 acc = (__m256)__lasx_xvldi(0); - - uint32_t ud, um; - const uint8_t * restrict db = (const uint8_t *)&ud; - const uint8_t * restrict mb = (const uint8_t *)&um; - - float summs = 0; - - // TODO: optimize this - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const uint32_t * restrict sc = (const uint32_t *)x[i].scales; - ud = (sc[0] >> 0) & 0x0f0f0f0f; - um = (sc[0] >> 4) & 0x0f0f0f0f; - - int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3]; - summs += dmin * smin; - - const __m128i q2bits = __lsx_vld((const __m128i*)q2, 0); - const __m256i q2_0 = __lasx_xvand_v(lasx_insertf128(__lsx_vsrli_h(q2bits, 2), q2bits), m3); - const __m256i q2_1 = __lasx_xvand_v(lasx_insertf128(__lsx_vsrli_h(q2bits, 6), __lsx_vsrli_h(q2bits, 4)), m3); - - const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0); - const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0); - - const __m256i p0 = lasx_maddubs_h(q2_0, q8_0); - const __m256i p1 = lasx_maddubs_h(q2_1, q8_1); - - const __m256i p_0 = lasx_ext16_32(lasx_extracti128(p0, 0)); - const __m256i p_1 = lasx_ext16_32(lasx_extracti128(p0, 1)); - const __m256i p_2 = lasx_ext16_32(lasx_extracti128(p1, 0)); - const __m256i p_3 = lasx_ext16_32(lasx_extracti128(p1, 1)); - - ft_union t0, t1, t2, t3; - t0.f = d * db[0]; - t1.f = d * db[1]; - t2.f = d * db[2]; - t3.f = d * db[3]; - acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t0.i), __lasx_xvffint_s_w(p_0), acc); - acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t1.i), __lasx_xvffint_s_w(p_1), acc); - acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t2.i), __lasx_xvffint_s_w(p_2), acc); - acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t3.i), __lasx_xvffint_s_w(p_3), acc); - } - - *s = hsum_float_8(acc) + summs; - -#else - - float sumf = 0; - - int isum[QK_K/16]; - - for (int i = 0; i < nb; ++i) { - - const uint8_t * q2 = x[i].qs; - const int8_t * q8 = y[i].qs; - const uint8_t * sc = x[i].scales; - - int summs = 0; - for (int j = 0; j < QK_K/16; ++j) { - summs += y[i].bsums[j] * (sc[j] >> 4); - } - - const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - - memset(isum, 0, (QK_K/16)*sizeof(int)); - for (int l = 0; l < 16; ++l) { - isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3); - isum[1] += q8[l+16] * ((q2[l] >> 2) & 3); - isum[2] += q8[l+32] * ((q2[l] >> 4) & 3); - isum[3] += q8[l+48] * ((q2[l] >> 6) & 3); - } - for (int l = 0; l < QK_K/16; ++l) { - isum[l] *= (sc[l] & 0xF); - } - sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs; - } - *s = sumf; -#endif -} -#endif - -#if QK_K == 256 void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); @@ -7616,512 +6899,6 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r } -#else - -void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { - assert(n % QK_K == 0); - assert(nrc == 1); - UNUSED(nrc); - UNUSED(bx); - UNUSED(by); - UNUSED(bs); - - const block_q3_K * restrict x = vx; - const block_q8_K * restrict y = vy; - - const int nb = n / QK_K; - -#ifdef __ARM_NEON - const int32x4_t vzero = vdupq_n_s32(0); - - const uint8x16_t m3b = vdupq_n_u8(0x3); - const uint8x16_t mh = vdupq_n_u8(4); - - ggml_int8x16x4_t q3bytes; - - uint16_t aux16[2]; - int8_t * scales = (int8_t *)aux16; - - float sum = 0; - - for (int i = 0; i < nb; ++i) { - - ggml_uint8x16x4_t q3h; - - const uint8x8_t hbits = vld1_u8(x[i].hmask); - const uint8x16_t q3bits = vld1q_u8(x[i].qs); - const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs); - - const uint16_t a = *(const uint16_t *)x[i].scales; - aux16[0] = a & 0x0f0f; - aux16[1] = (a >> 4) & 0x0f0f; - - for (int j = 0; j < 4; ++j) scales[j] -= 8; - - int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1)); - q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2)); - q3h.val[1] = vandq_u8(mh, htmp); - q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2)); - q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4)); - - q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0])); - q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1])); - q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2])); - q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3])); - - isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0]; - isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2]; - isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1]; - isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3]; - - sum += d * isum; - - } - - *s = sum; - -#elif defined __AVX2__ - - const __m256i m3 = _mm256_set1_epi8(3); - const __m256i m1 = _mm256_set1_epi8(1); - - __m256 acc = _mm256_setzero_ps(); - - uint64_t aux64; - - uint16_t aux16[2]; - const int8_t * aux8 = (const int8_t *)aux16; - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict q3 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const uint16_t a = *(const uint16_t *)x[i].scales; - aux16[0] = a & 0x0f0f; - aux16[1] = (a >> 4) & 0x0f0f; - - const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8)); - const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8)); - - memcpy(&aux64, x[i].hmask, 8); - - const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0); - __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux); - __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4); - q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2); - q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2); - - // load low 2 bits - const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3); - - // prepare low and high bits - const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits); - const __m256i q3l_0 = _mm256_and_si256(q3aux, m3); - const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3); - - // load Q8 quants - const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); - const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); - - // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, - // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, - // and 2 if the high bit was set) - const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0); - const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1); - - __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0); - __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1); - - p16_0 = _mm256_sub_epi16(p16_0, q8s_0); - p16_1 = _mm256_sub_epi16(p16_1, q8s_1); - - // multiply with scales - p16_0 = _mm256_madd_epi16(scale_0, p16_0); - p16_1 = _mm256_madd_epi16(scale_1, p16_1); - - p16_0 = _mm256_add_epi32(p16_0, p16_1); - - // multiply with block scale and accumulate - acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc); - - } - - *s = hsum_float_8(acc); - -#elif defined __AVX__ - - const __m128i m3 = _mm_set1_epi8(3); - const __m128i m1 = _mm_set1_epi8(1); - - __m256 acc = _mm256_setzero_ps(); - - uint64_t aux64; - - uint16_t aux16[2]; - const int8_t * aux8 = (const int8_t *)aux16; - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict q3 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const uint16_t a = *(const uint16_t *)x[i].scales; - aux16[0] = a & 0x0f0f; - aux16[1] = (a >> 4) & 0x0f0f; - - const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8); - const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8); - const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8); - const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8); - - memcpy(&aux64, x[i].hmask, 8); - - __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0); - __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2); - __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4); - __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6); - q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2); - q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2); - q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2); - q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2); - - // load low 2 bits - const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3); - - // prepare low and high bits - const __m128i q3l_0 = _mm_and_si128(q3bits, m3); - const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3); - const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3); - const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3); - - // load Q8 quants - const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); - const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); - - // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16, - // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, - // and 2 if the high bit was set) - const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0)); - const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1)); - const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0)); - const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1)); - - __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0)); - __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1)); - __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0)); - __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1)); - - p16_0 = _mm_sub_epi16(p16_0, q8s_0); - p16_1 = _mm_sub_epi16(p16_1, q8s_1); - p16_2 = _mm_sub_epi16(p16_2, q8s_2); - p16_3 = _mm_sub_epi16(p16_3, q8s_3); - - // multiply with scales - p16_0 = _mm_madd_epi16(scale_0, p16_0); - p16_1 = _mm_madd_epi16(scale_1, p16_1); - p16_2 = _mm_madd_epi16(scale_2, p16_2); - p16_3 = _mm_madd_epi16(scale_3, p16_3); - - p16_0 = _mm_add_epi32(p16_0, p16_2); - p16_1 = _mm_add_epi32(p16_1, p16_3); - __m256i p16 = MM256_SET_M128I(p16_1, p16_0); - - // multiply with block scale and accumulate - acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc); - - } - - *s = hsum_float_8(acc); - -#elif defined __riscv_v_intrinsic - - uint16_t aux16[2]; - int8_t * scales = (int8_t *)aux16; - - float sumf = 0; - - for (int i = 0; i < nb; ++i) { - - const uint8_t * restrict q3 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const uint16_t a = *(const uint16_t *)x[i].scales; - aux16[0] = a & 0x0f0f; - aux16[1] = (a >> 4) & 0x0f0f; - - for (int j = 0; j < 4; ++j) scales[j] -= 8; - - int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); - - // load qh - vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8); - vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8)); - - size_t vl = 16; - - // extend and combine both qh_x1 and qh_x2 - vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl); - - vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl); - vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl); - vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl); - vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl); - - // load Q3 - vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl); - - vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl); - vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl); - vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl); - vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl); - - vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0); - vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1); - vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2); - vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3); - - // load Q8 and take product with Q3 - vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl); - vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); - vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); - vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); - - vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); - vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); - vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); - vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); - - isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0]; - isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2]; - isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1]; - isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3]; - - sumf += d * isum; - - } - - *s = sumf; - -#elif defined(__POWER9_VECTOR__) - const vector signed char lowMask = vec_splats((signed char)0x3); - const vector signed char v1 = vec_splats((signed char)0x1); - const vector unsigned char v2 = vec_splats((unsigned char)0x2); - const vector unsigned char v4 = vec_splats((unsigned char)0x4); - const vector unsigned char v6 = vec_splats((unsigned char)0x6); - const vector signed char off = vec_splats((signed char)0x8); - - vector float vsumf0 = vec_splats(0.0f); - vector float vsumf1 = vec_splats(0.0f); - vector float vsumf2 = vec_splats(0.0f); - vector float vsumf3 = vec_splats(0.0f); - -#pragma GCC unroll 2 - for (int i = 0; i < nb; ++i) { - __builtin_prefetch(x[i].qs, 0, 1); - __builtin_prefetch(y[i].qs, 0, 1); - - vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); - vector float vyd = vec_splats(y[i].d); - vector float vd = vec_mul(vxd, vyd); - - uint16_t aux16[2]; - int8_t * scales = (int8_t *)aux16; - - const uint16_t a = *(const uint16_t *)x[i].scales; - aux16[0] = a & 0x0f0f; - aux16[1] = (a >> 4) & 0x0f0f; - - vector signed char vscales = (vector signed char)vec_xl_len(scales, 8); - vector signed char qxhs0 = (vector signed char)vec_xl_len(x[i].hmask, 8); - qxhs0 = vec_or(qxhs0, vec_sr(vec_sld(qxhs0, qxhs0, 8), (vector unsigned char)v1)); - - vscales = vec_sub(vscales, off); - - vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs); - vector signed char qxs00 = vec_and(qxs0, lowMask); - vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask); - vector signed char qxs10 = vec_and(vec_sr(qxs0, v4), lowMask); - vector signed char qxs11 = vec_and(vec_sr(qxs0, v6), lowMask); - - //the 3rd bit - vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2); - vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2); - vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v4)), v2); - vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v6)), v2); - qxhs0 = vec_sr(qxhs0, v4); - - vector signed char q3x00 = vec_sub(qxs00, qxh00); - vector signed char q3x01 = vec_sub(qxs01, qxh01); - vector signed char q3x10 = vec_sub(qxs10, qxh02); - vector signed char q3x11 = vec_sub(qxs11, qxh03); - - vector signed char q8y00 = vec_xl( 0, y[i].qs); - vector signed char q8y01 = vec_xl( 16, y[i].qs); - vector signed char q8y10 = vec_xl( 32, y[i].qs); - vector signed char q8y11 = vec_xl( 48, y[i].qs); - - vector signed short vscales_h = vec_unpackh(vscales); - vector signed short vs0 = vec_splat(vscales_h, 0); - vector signed short vs1 = vec_splat(vscales_h, 1); - vector signed short vs2 = vec_splat(vscales_h, 2); - vector signed short vs3 = vec_splat(vscales_h, 3); - - vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00)); - vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10)); - vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01)); - vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11)); - - vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0)); - vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1)); - vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2)); - vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3)); - - vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); - vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); - vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); - vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); - } - - vsumf0 = vec_add(vsumf0, vsumf2); - vsumf1 = vec_add(vsumf1, vsumf3); - - vsumf0 = vec_add(vsumf0, vsumf1); - - vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); - vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); - - *s = vec_extract(vsumf0, 0); - -#elif defined __loongarch_asx - - const __m256i m3 = __lasx_xvreplgr2vr_b(3); - const __m256i m1 = __lasx_xvreplgr2vr_b(1); - - __m256 acc = (__m256)__lasx_xvldi(0); - - uint64_t aux64; - - uint16_t aux16[2]; - const int8_t * aux8 = (const int8_t *)aux16; - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict q3 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - const __m256i scale_0 = lasx_insertf128(__lasx_xvreplgr2vr_h(aux8[2] - 8), __lasx_xvreplgr2vr_h(aux8[0] - 8)); - const __m256i scale_1 = lasx_insertf128(__lasx_xvreplgr2vr_h(aux8[3] - 8), __lasx_xvreplgr2vr_h(aux8[1] - 8)); - - memcpy(&aux64, x[i].hmask, 8); - - __m128i haux = __lsx_vinsgr2vr_d(haux, aux64, 0); - haux = __lsx_vinsgr2vr_d(haux, aux64 >> 1, 1); - __m256i q3h_0 = lasx_insertf128(__lsx_vsrli_h(haux, 2), haux); - __m256i q3h_1 = __lasx_xvsrli_h(q3h_0, 4); - q3h_0 = __lasx_xvslli_h(__lasx_xvandn_v(q3h_0, m1), 2); - q3h_1 = __lasx_xvslli_h(__lasx_xvandn_v(q3h_1, m1), 2); - - // load low 2 bits - const __m128i q3bits = __lsx_vld((const __m128i*)q3, 0); - - // prepare low and high bits - const __m256i q3aux = lasx_insertf128(__lsx_vsrli_h(q3bits, 2), q3bits); - const __m256i q3l_0 = __lasx_xvand_v(q3aux, m3); - const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3aux, 4), m3); - - // load Q8 quants - const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0); - const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0); - - // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h, - // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, - // and 2 if the high bit was set) - const __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0); - const __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1); - - __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0); - __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1); - - p16_0 = __lasx_xvsub_h(p16_0, q8s_0); - p16_1 = __lasx_xvsub_h(p16_1, q8s_1); - - // multiply with scales - p16_0 = lasx_madd_h(scale_0, p16_0); - p16_1 = lasx_madd_h(scale_1, p16_1); - - p16_0 = __lasx_xvadd_w(p16_0, p16_1); - - // multiply with block scale and accumulate - acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(p16_0), acc); - } - - *s = hsum_float_8(acc); - -#else - - int8_t aux8[QK_K]; - int16_t aux16[8]; - float sums [8]; - int32_t aux32[8]; - int32_t scales[4]; - memset(sums, 0, 8*sizeof(float)); - - float sumf = 0; - for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q3 = x[i].qs; - const uint8_t * restrict hm = x[i].hmask; - const int8_t * restrict q8 = y[i].qs; - int8_t * restrict a = aux8; - for (int l = 0; l < 8; ++l) { - a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4); - a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4); - a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4); - a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4); - a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4); - a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4); - a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4); - a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4); - } - - scales[0] = (x[i].scales[0] & 0xF) - 8; - scales[1] = (x[i].scales[0] >> 4) - 8; - scales[2] = (x[i].scales[1] & 0xF) - 8; - scales[3] = (x[i].scales[1] >> 4) - 8; - - memset(aux32, 0, 8*sizeof(int32_t)); - for (int j = 0; j < QK_K/16; ++j) { - for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; - q8 += 8; a += 8; - for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l]; - q8 += 8; a += 8; - for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l]; - } - const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; - for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; - } - for (int l = 0; l < 8; ++l) sumf += sums[l]; - *s = sumf; - -#endif - -} -#endif - -#if QK_K == 256 void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); @@ -8679,381 +7456,7 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; #endif } -#else -void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { - assert(n % QK_K == 0); - assert(nrc == 1); - UNUSED(nrc); - UNUSED(bx); - UNUSED(by); - UNUSED(bs); - const block_q4_K * restrict x = vx; - const block_q8_K * restrict y = vy; - - const int nb = n / QK_K; - -#ifdef __ARM_NEON - const uint8x16_t m4b = vdupq_n_u8(0xf); - - const int32x4_t mzero = vdupq_n_s32(0); - - float sumf = 0; - - ggml_int8x16x2_t q4bytes; - ggml_int8x16x4_t q8bytes; - - float sum_mins = 0.f; - - uint16_t aux16[2]; - const uint8_t * restrict scales = (const uint8_t *)aux16; - - for (int i = 0; i < nb; ++i) { - - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const uint16_t * restrict a = (const uint16_t *)x[i].scales; - aux16[0] = a[0] & 0x0f0f; - aux16[1] = (a[0] >> 4) & 0x0f0f; - - const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]); - sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi; - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]); - - const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); - - q8bytes = ggml_vld1q_s8_x4(q8); - q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); - q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); - - const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); - const int32_t sumi1 = vaddvq_s32(p1) * scales[0]; - - q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); - q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); - - const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]); - const int32_t sumi2 = vaddvq_s32(p2) * scales[1]; - - sumf += d * (sumi1 + sumi2); - } - - *s = sumf - sum_mins; - -#elif defined __AVX2__ - - const __m256i m4 = _mm256_set1_epi8(0xF); - - __m256 acc = _mm256_setzero_ps(); - - float summs = 0; - - uint16_t aux16[2]; - const uint8_t * scales = (const uint8_t *)aux16; - - for (int i = 0; i < nb; ++i) { - - const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d; - const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d; - const __m256 vd = _mm256_set1_ps(d); - - const uint16_t * a = (const uint16_t *)x[i].scales; - aux16[0] = a[0] & 0x0f0f; - aux16[1] = (a[0] >> 4) & 0x0f0f; - - summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); - - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); - const __m256i q4l = _mm256_and_si256(q4bits, m4); - const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4); - - const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0)); - const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32)); - - const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l); - const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h); - - const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l); - acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc); - - const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h); - acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc); - - } - - *s = hsum_float_8(acc) - summs; - -#elif defined __AVX__ - - const __m128i m4 = _mm_set1_epi8(0xF); - - __m256 acc = _mm256_setzero_ps(); - - float summs = 0; - - uint16_t aux16[2]; - const uint8_t * scales = (const uint8_t *)aux16; - - for (int i = 0; i < nb; ++i) { - - const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d; - const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d; - const __m256 vd = _mm256_set1_ps(d); - - const uint16_t * a = (const uint16_t *)x[i].scales; - aux16[0] = a[0] & 0x0f0f; - aux16[1] = (a[0] >> 4) & 0x0f0f; - - summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); - - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); - const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0); - const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1); - const __m128i q4_0 = _mm_and_si128(q4bits_0, m4); - const __m128i q4_1 = _mm_and_si128(q4bits_1, m4); - const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4); - const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4); - - const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); - const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); - - const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0)); - const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1)); - const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0)); - const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1)); - - const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0); - const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1); - acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc); - - const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2); - const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3); - acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc); - - } - - *s = hsum_float_8(acc) - summs; - -#elif defined __riscv_v_intrinsic - - uint16_t s16[2]; - const uint8_t * restrict scales = (const uint8_t *)s16; - - float sumf = 0; - - for (int i = 0; i < nb; ++i) { - - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const uint16_t * restrict b = (const uint16_t *)x[i].scales; - s16[0] = b[0] & 0x0f0f; - s16[1] = (b[0] >> 4) & 0x0f0f; - - sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]); - - size_t vl = 32; - - vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); - - // load Q4 - vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl); - - // load Q8 and multiply it with lower Q4 nibble - vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl)); - vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl); - vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl); - - sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1); - - // load Q8 and multiply it with upper Q4 nibble - vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl)); - vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl); - vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl); - - sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2); - - } - - *s = sumf; - -#elif defined(__POWER9_VECTOR__) - const vector signed char lowMask = vec_splats((signed char)0xF); - const vector unsigned char v4 = vec_splats((unsigned char)0x4); - - vector float vsumf0 = vec_splats(0.0f); - vector float vsumf1 = vec_splats(0.0f); - vector float vsumf2 = vec_splats(0.0f); - vector float vsumf3 = vec_splats(0.0f); - -#pragma GCC unroll 2 - for (int i = 0; i < nb; ++i) { - __builtin_prefetch(x[i].qs, 0, 1); - __builtin_prefetch(y[i].qs, 0, 1); - - vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d[1])); - vector float vyd = vec_splats(y[i].d); - vector float vd= vec_mul(vxd, vyd); - - uint16_t s16[2]; - const uint8_t * scales = (const uint8_t *)s16; - - const uint16_t * restrict b = (const uint16_t *)x[i].scales; - s16[0] = b[0] & 0x0f0f; - s16[1] = (b[0] >> 4) & 0x0f0f; - - vector signed char utmps = (vector signed char)vec_xl_len(scales, 4); - vector signed short vscales = (vector signed short)vec_unpackh(utmps); - vector signed short q4xmins0 = vec_mergeh(vscales, vscales); - q4xmins0 = vec_sld(q4xmins0, q4xmins0, 8); - - vector signed short q8ysums0 = vec_xl_len((const int16_t *)(y[i].bsums), 8); - - vector signed int prod0 = vec_mule(q4xmins0, q8ysums0); - vector signed int prod1 = vec_mulo(q4xmins0, q8ysums0); - - vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vd, vsumf0); - vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vd, vsumf1); - - vd = vec_mul(vyd, vec_splats(GGML_FP16_TO_FP32(x[i].d[0]))); - - vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs); - vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].qs); - vector signed char q4x00 = vec_and(qxs0, lowMask); - vector signed char q4x01 = vec_sr(qxs0, v4); - vector signed char q4x10 = vec_and(qxs1, lowMask); - vector signed char q4x11 = vec_sr(qxs1, v4); - - vector signed char q8y00 = vec_xl( 0, y[i].qs); - vector signed char q8y10 = vec_xl(16, y[i].qs); - vector signed char q8y01 = vec_xl(32, y[i].qs); - vector signed char q8y11 = vec_xl(48, y[i].qs); - - vector signed short qv00 = vec_add(vec_mule(q4x00, q8y00), vec_mulo(q4x00, q8y00)); - vector signed short qv01 = vec_add(vec_mule(q4x01, q8y01), vec_mulo(q4x01, q8y01)); - vector signed short qv10 = vec_add(vec_mule(q4x10, q8y10), vec_mulo(q4x10, q8y10)); - vector signed short qv11 = vec_add(vec_mule(q4x11, q8y11), vec_mulo(q4x11, q8y11)); - - vector signed short vs0 = vec_splat(vscales, 0); - vector signed short vs1 = vec_splat(vscales, 1); - - vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0)); - vector signed int vsumi1 = vec_add(vec_mule(qv10, vs0), vec_mulo(qv10, vs0)); - vector signed int vsumi2 = vec_add(vec_mule(qv01, vs1), vec_mulo(qv01, vs1)); - vector signed int vsumi3 = vec_add(vec_mule(qv11, vs1), vec_mulo(qv11, vs1)); - - vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); - vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); - vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); - vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); - } - - vsumf0 = vec_add(vsumf0, vsumf2); - vsumf1 = vec_add(vsumf1, vsumf3); - - vsumf0 = vec_add(vsumf0, vsumf1); - - vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); - vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); - - *s = vec_extract(vsumf0, 0); - -#elif defined __loongarch_asx - - const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); - - __m256 acc = (__m256)__lasx_xvldi(0); - - float summs = 0; - - uint16_t aux16[2]; - const uint8_t * scales = (const uint8_t *)aux16; - - for (int i = 0; i < nb; ++i) { - - const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d; - const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d; - const __m256 vd = __lasx_xvreplfr2vr_s(d); - - const uint16_t * a = (const uint16_t *)x[i].scales; - aux16[0] = a[0] & 0x0f0f; - aux16[1] = (a[0] >> 4) & 0x0f0f; - - summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); - - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); - const __m256i q4l = __lasx_xvand_v(q4bits, m4); - const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4); - - const __m256i q8l = __lasx_xvld((const __m256i*)(q8+ 0), 0); - const __m256i q8h = __lasx_xvld((const __m256i*)(q8+32), 0); - - const __m256i p16l = lasx_maddubs_h(q4l, q8l); - const __m256i p16h = lasx_maddubs_h(q4h, q8h); - - const __m256i p32l = lasx_madd_h(__lasx_xvreplgr2vr_h(scales[0]), p16l); - acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(p32l), acc); - - const __m256i p32h = lasx_madd_h(__lasx_xvreplgr2vr_h(scales[1]), p16h); - acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(p32h), acc); - } - - *s = hsum_float_8(acc) - summs; - -#else - - uint8_t aux8[QK_K]; - int16_t aux16[16]; - float sums [8]; - memset(sums, 0, 8*sizeof(float)); - - uint16_t s16[2]; - const uint8_t * restrict scales = (const uint8_t *)s16; - - float sumf = 0; - for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - uint8_t * restrict a = aux8; - for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF; - for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4; - - const uint16_t * restrict b = (const uint16_t *)x[i].scales; - s16[0] = b[0] & 0x0f0f; - s16[1] = (b[0] >> 4) & 0x0f0f; - - sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]); - - for (int j = 0; j < QK_K/32; ++j) { - for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l]; - q8 += 16; a += 16; - for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l]; - q8 += 16; a += 16; - const float dl = d * scales[j]; - for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]); - } - } - for (int l = 0; l < 8; ++l) sumf += sums[l]; - *s = sumf; -#endif -} -#endif - -#if QK_K == 256 void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); @@ -9151,12 +7554,10 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r float summs = 0.f; - for (int i = 0; i < nb; ++i) { - + for (int i = 0; i < nb; ++i) { const uint8_t * restrict q5 = x[i].qs; const int8_t * restrict q8 = y[i].qs; -#if QK_K == 256 const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); @@ -9166,10 +7567,6 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; -#else - // TODO - const float d = 0, dmin = 0; -#endif const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); @@ -9552,15 +7949,10 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r const uint8_t * restrict q5 = x[i].qs; const int8_t * restrict q8 = y[i].qs; -#if QK_K == 256 const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); memcpy(utmp, x[i].scales, 12); -#else - // TODO - const float d = 0, dmin = 0; -#endif const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0])); @@ -9679,402 +8071,6 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r #endif } -#else - -void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { - assert(n % QK_K == 0); - assert(nrc == 1); - UNUSED(nrc); - UNUSED(bx); - UNUSED(by); - UNUSED(bs); - - const block_q5_K * restrict x = vx; - const block_q8_K * restrict y = vy; - - const int nb = n / QK_K; - -#ifdef __ARM_NEON - const uint8x16_t m4b = vdupq_n_u8(0xf); - const uint8x16_t mh = vdupq_n_u8(16); - const int32x4_t mzero = vdupq_n_s32(0); - - ggml_int8x16x4_t q5bytes; - ggml_uint8x16x4_t q5h; - - float sumf = 0; - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const int8_t * sc = x[i].scales; - - const uint8_t * restrict q5 = x[i].qs; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - - const uint8x8_t qhbits = vld1_u8(qh); - - const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); - const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); - - const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1)); - q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4)); - q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2)); - q5h.val[2] = vbicq_u8(mh, htmp); - q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2)); - - q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0])); - q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1])); - q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2])); - q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3])); - - int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0])); - int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1])); - int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2])); - int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3])); - - sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); - } - - *s = sumf; - -#elif defined __AVX2__ - - const __m256i m4 = _mm256_set1_epi8(0xF); - const __m256i mone = _mm256_set1_epi8(1); - - __m256 acc = _mm256_setzero_ps(); - - for (int i = 0; i < nb; ++i) { - - const uint8_t * restrict q5 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); - - const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0])); - const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2])); - - int64_t aux64; - memcpy(&aux64, x[i].qh, 8); - const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64); - const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128); - - const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4); - const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4); - - const __m256i q5l_0 = _mm256_and_si256(q5bits, m4); - const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4); - - const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); - const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); - - const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0)); - const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1)); - const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0)); - const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1)); - - const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1)); - - acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc); - - } - - *s = hsum_float_8(acc); - -#elif defined __AVX__ - - const __m128i m4 = _mm_set1_epi8(0xF); - const __m128i mone = _mm_set1_epi8(1); - - __m256 acc = _mm256_setzero_ps(); - - for (int i = 0; i < nb; ++i) { - - const uint8_t * restrict q5 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); - - const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]); - const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]); - const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]); - const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]); - - int64_t aux64; - memcpy(&aux64, x[i].qh, 8); - const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64); - const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2); - - const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4); - const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4); - const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4); - const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4); - - const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4); - const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4); - const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4); - const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4); - - const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); - const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); - - const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0))); - const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1))); - const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0))); - const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1))); - const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0))); - const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1))); - const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0))); - const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1))); - - const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2)); - const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3)); - - acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc); - - } - - *s = hsum_float_8(acc); - -#elif defined __riscv_v_intrinsic - - float sumf = 0; - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const int8_t * sc = x[i].scales; - - const uint8_t * restrict q5 = x[i].qs; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - - vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); - - // load qh - vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8); - vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8)); - - size_t vl = 16; - - // combine both qh_1 and qh_2 - vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl); - - vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl); - vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl); - vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl); - vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl); - - vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0); - vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1); - vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2); - vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3); - - // load q5 - vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl); - vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl); - - vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl)); - vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl)); - vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl)); - vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl)); - - vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl); - vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl); - vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl); - vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl); - - // load Q8 and multiply it with Q5 - vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl); - vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); - vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); - vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); - - vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); - vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); - vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); - vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); - - int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0); - int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1); - int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2); - int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3); - - sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); - - } - - *s = sumf; - -#elif defined(__POWER9_VECTOR__) - const vector signed char lowMask = vec_splats((signed char)0xF); - const vector unsigned char v1 = vec_splats((unsigned char)0x1); - const vector unsigned char v2 = vec_splats((unsigned char)0x2); - const vector unsigned char v4 = vec_splats((unsigned char)0x4); - - vector float vsumf0 = vec_splats(0.0f); - vector float vsumf1 = vec_splats(0.0f); - vector float vsumf2 = vec_splats(0.0f); - vector float vsumf3 = vec_splats(0.0f); - -#pragma GCC unroll 2 - for (int i = 0; i < nb; ++i) { - __builtin_prefetch(x[i].qs, 0, 1); - __builtin_prefetch(y[i].qs, 0, 1); - - vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); - vector float vyd = vec_splats(y[i].d); - vector float vd= vec_mul(vxd, vyd); - - vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs); - vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].qs); - vector signed char qxs00 = (vector signed char)vec_and(qxs0, lowMask); - vector signed char qxs01 = (vector signed char)vec_sr(qxs0, v4); - vector signed char qxs10 = (vector signed char)vec_and(qxs1, lowMask); - vector signed char qxs11 = (vector signed char)vec_sr(qxs1, v4); - - vector signed char qxhs = (vector signed char)vec_xl_len(x[i].qh, 8); - vector signed char qxhs0 = vec_or(qxhs, vec_sr(vec_sld(qxhs, qxhs, 8), v1)); - vector signed char qxhs1 = vec_sr(qxhs0, v2); - vector signed char qxh00 = vec_sl(vec_andc((vector signed char)v1, qxhs0), v4); - vector signed char qxh10 = vec_sl(vec_andc((vector signed char)v1, qxhs1), v4); - vector signed char qxh01 = vec_sl(vec_andc((vector signed char)v1, vec_sr(qxhs0, v4)), v4); - vector signed char qxh11 = vec_sl(vec_andc((vector signed char)v1, vec_sr(qxhs1, v4)), v4); - - vector signed char q5x00 = vec_sub(qxs00, qxh00); - vector signed char q5x10 = vec_sub(qxs10, qxh10); - vector signed char q5x01 = vec_sub(qxs01, qxh01); - vector signed char q5x11 = vec_sub(qxs11, qxh11); - - vector signed char q8y00 = vec_xl( 0, y[i].qs); - vector signed char q8y10 = vec_xl(16, y[i].qs); - vector signed char q8y01 = vec_xl(32, y[i].qs); - vector signed char q8y11 = vec_xl(48, y[i].qs); - - vector signed short qv00 = vec_add(vec_mule(q5x00, q8y00), vec_mulo(q5x00, q8y00)); - vector signed short qv01 = vec_add(vec_mule(q5x01, q8y01), vec_mulo(q5x01, q8y01)); - vector signed short qv10 = vec_add(vec_mule(q5x10, q8y10), vec_mulo(q5x10, q8y10)); - vector signed short qv11 = vec_add(vec_mule(q5x11, q8y11), vec_mulo(q5x11, q8y11)); - - vector signed short vs = (vector signed short)vec_unpackh(vec_xl_len(x[i].scales, 4)); - vector signed short vs0 = vec_splat(vs, 0); - vector signed short vs1 = vec_splat(vs, 1); - vector signed short vs2 = vec_splat(vs, 2); - vector signed short vs3 = vec_splat(vs, 3); - - vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0)); - vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1)); - vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2)); - vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3)); - - vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); - vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); - vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); - vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); - } - - vsumf0 = vec_add(vsumf0, vsumf2); - vsumf1 = vec_add(vsumf1, vsumf3); - - vsumf0 = vec_add(vsumf0, vsumf1); - - vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); - vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); - - *s = vec_extract(vsumf0, 0); - -#elif defined __loongarch_asx - - const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); - const __m256i mone = __lasx_xvreplgr2vr_b(1); - - __m256 acc = (__m256)__lasx_xvldi(0); - - for (int i = 0; i < nb; ++i) { - - const uint8_t * restrict q5 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); - - const __m256i scale_l = lasx_insertf128(__lsx_vreplgr2vr_h(x[i].scales[1]), __lsx_vreplgr2vr_h(x[i].scales[0])); - const __m256i scale_h = lasx_insertf128(__lsx_vreplgr2vr_h(x[i].scales[3]), __lsx_vreplgr2vr_h(x[i].scales[2])); - - int64_t aux64; - memcpy(&aux64, x[i].qh, 8); - __m128i haux128 = __lsx_vinsgr2vr_d(haux128, aux64, 0); - haux128 = __lsx_vinsgr2vr_d(haux128, aux64 >> 1, 1); - const __m256i haux256 = lasx_insertf128(__lsx_vsrli_h(haux128, 2), haux128); - - const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvandn_v(haux256, mone), 4); - const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvandn_v(__lasx_xvsrli_h(haux256, 4), mone), 4); - - const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4); - const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4); - - const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0); - const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0); - - const __m256i p16_0 = lasx_madd_h(scale_l, lasx_maddubs_h(q5l_0, q8_0)); - const __m256i p16_1 = lasx_madd_h(scale_h, lasx_maddubs_h(q5l_1, q8_1)); - const __m256i s16_0 = lasx_madd_h(scale_l, lasx_maddubs_h(q5h_0, q8_0)); - const __m256i s16_1 = lasx_madd_h(scale_h, lasx_maddubs_h(q5h_1, q8_1)); - - const __m256i dot = __lasx_xvsub_w(__lasx_xvadd_w(p16_0, p16_1), __lasx_xvadd_w(s16_0, s16_1)); - - acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(dot), acc); - } - - *s = hsum_float_8(acc); - -#else - - int8_t aux8[QK_K]; - int16_t aux16[16]; - float sums [8]; - memset(sums, 0, 8*sizeof(float)); - - float sumf = 0; - for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].qs; - const uint8_t * restrict hm = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - int8_t * restrict a = aux8; - for (int l = 0; l < 32; ++l) { - a[l+ 0] = q4[l] & 0xF; - a[l+32] = q4[l] >> 4; - } - for (int is = 0; is < 8; ++is) { - uint8_t m = 1 << is; - for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16); - } - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const int8_t * restrict sc = x[i].scales; - - for (int j = 0; j < QK_K/16; ++j) { - const float dl = d * sc[j]; - for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l]; - for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]); - q8 += 16; a += 16; - } - } - for (int l = 0; l < 8; ++l) sumf += sums[l]; - *s = sumf; -#endif -} -#endif - - -#if QK_K == 256 void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); @@ -10733,446 +8729,6 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r #endif } -#else - -void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { - assert(n % QK_K == 0); - assert(nrc == 1); - UNUSED(nrc); - UNUSED(bx); - UNUSED(by); - UNUSED(bs); - - const block_q6_K * restrict x = vx; - const block_q8_K * restrict y = vy; - - const int nb = n / QK_K; - -#ifdef __ARM_NEON - float sum = 0; - - const uint8x16_t m4b = vdupq_n_u8(0xF); - const int8x16_t m32s = vdupq_n_s8(32); - const int32x4_t vzero = vdupq_n_s32(0); - - const uint8x16_t mone = vdupq_n_u8(3); - - ggml_int8x16x4_t q6bytes; - ggml_uint8x16x4_t q6h; - - for (int i = 0; i < nb; ++i) { - - const float d_all = GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict q6 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - - const int8_t * restrict scale = x[i].scales; - - int32_t isum = 0; - - uint8x16_t qhbits = vld1q_u8(qh); - ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6); - ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); - - q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4); - uint8x16_t shifted = vshrq_n_u8(qhbits, 2); - q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4); - shifted = vshrq_n_u8(qhbits, 4); - q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); - shifted = vshrq_n_u8(qhbits, 6); - q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); - - q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s); - q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s); - q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s); - q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s); - - isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + - vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + - vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + - vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; - - sum += isum * d_all * y[i].d; - - } - *s = sum; - -#elif defined __AVX2__ - - const __m256i m4 = _mm256_set1_epi8(0xF); - const __m256i m2 = _mm256_set1_epi8(3); - const __m256i m32s = _mm256_set1_epi8(32); - - __m256 acc = _mm256_setzero_ps(); - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict q4 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - - const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]); - const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]); - const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]); - const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]); - - __m256i sumi = _mm256_setzero_si256(); - - const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1); - const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3); - - const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); - const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh); - - const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4); - const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4); - - const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0); - const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1); - - const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); - const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); - - __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0); - __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1); - - __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0); - __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1); - - p16_0 = _mm256_sub_epi16(p16_0, q8s_0); - p16_1 = _mm256_sub_epi16(p16_1, q8s_1); - - p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0); - p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1); - - sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); - - acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); - } - - *s = hsum_float_8(acc); - -#elif defined __AVX__ - - const __m128i m4 = _mm_set1_epi8(0xF); - const __m128i m2 = _mm_set1_epi8(3); - const __m128i m32s = _mm_set1_epi8(32); - - __m256 acc = _mm256_setzero_ps(); - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict q4 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - - const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]); - const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]); - const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]); - const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]); - - __m128i sumi_0 = _mm_setzero_si128(); - __m128i sumi_1 = _mm_setzero_si128(); - - const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1); - const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3); - - const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); - const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh); - - const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4); - const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4); - const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4); - const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4); - - const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0); - const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1); - const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2); - const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3); - - const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); - const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); - - __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0)); - __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1)); - __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0)); - __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1)); - - __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0)); - __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1)); - __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0)); - __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1)); - - p16_0 = _mm_sub_epi16(p16_0, q8s_0); - p16_1 = _mm_sub_epi16(p16_1, q8s_1); - p16_2 = _mm_sub_epi16(p16_2, q8s_2); - p16_3 = _mm_sub_epi16(p16_3, q8s_3); - - p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0); - p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1); - p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2); - p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3); - - sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); - sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); - - acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc); - } - - *s = hsum_float_8(acc); - -#elif defined __riscv_v_intrinsic - - float sumf = 0; - - for (int i = 0; i < nb; ++i) { - - const float d_all = GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict q6 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - - const int8_t * restrict scale = x[i].scales; - - int32_t isum = 0; - - size_t vl = 16; - - vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); - - // load Q6 - vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl); - vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl); - - // load qh - vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl); - - vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); - qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); - vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); - qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); - vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); - qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); - vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); - - vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl); - vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl); - vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl); - vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl); - - vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl); - vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl); - vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl); - vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl); - - // load Q8 and take product - vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl); - vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); - vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); - vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); - - vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); - vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); - vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); - vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); - - isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0]; - isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1]; - isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2]; - isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3]; - - sumf += isum * d_all * y[i].d; - - } - - *s = sumf; - -#elif defined(__POWER9_VECTOR__) - const vector signed char lowMask = vec_splats((signed char)0xF); - const vector unsigned char v2 = vec_splats((unsigned char)0x2); - const vector unsigned char v3 = vec_splats((unsigned char)0x3); - const vector unsigned char v4 = vec_splats((unsigned char)0x4); - const vector unsigned char v6 = vec_splats((unsigned char)0x6); - const vector signed char off = vec_splats((signed char)0x20); - - vector float vsumf0 = vec_splats(0.0f); - vector float vsumf1 = vec_splats(0.0f); - vector float vsumf2 = vec_splats(0.0f); - vector float vsumf3 = vec_splats(0.0f); - -#pragma GCC unroll 2 - for (int i = 0; i < nb; ++i) { - __builtin_prefetch(x[i].ql, 0, 1); - __builtin_prefetch(x[i].qh, 0, 1); - __builtin_prefetch(y[i].qs, 0, 1); - - vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); - vector float vyd = vec_splats(y[i].d); - vector float vd= vec_mul(vxd, vyd); - - vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].ql); - vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].ql); - vector signed char qxs00 = vec_and(qxs0, lowMask); - vector signed char qxs01 = vec_sr(qxs0, v4); - vector signed char qxs10 = vec_and(qxs1, lowMask); - vector signed char qxs11 = vec_sr(qxs1, v4); - - vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh); - - vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4); - vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4); - vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4); - vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4); - - vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off); - vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off); - vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off); - vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off); - - vector signed char q8y00 = vec_xl( 0, y[i].qs); - vector signed char q8y10 = vec_xl(16, y[i].qs); - vector signed char q8y01 = vec_xl(32, y[i].qs); - vector signed char q8y11 = vec_xl(48, y[i].qs); - - vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00)); - vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10)); - vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01)); - vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11)); - - vector signed short vs = (vector signed short)vec_unpackh(vec_xl_len(x[i].scales, 4)); - vector signed short vs0 = vec_splat(vs, 0); - vector signed short vs1 = vec_splat(vs, 1); - vector signed short vs2 = vec_splat(vs, 2); - vector signed short vs3 = vec_splat(vs, 3); - - vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0)); - vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1)); - vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2)); - vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3)); - - vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); - vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); - vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); - vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); - } - - vsumf0 = vec_add(vsumf0, vsumf2); - vsumf1 = vec_add(vsumf1, vsumf3); - - vsumf0 = vec_add(vsumf0, vsumf1); - - vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); - vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); - - *s = vec_extract(vsumf0, 0); - -#elif defined __loongarch_asx - - const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); - const __m256i m2 = __lasx_xvreplgr2vr_b(3); - const __m256i m32s = __lasx_xvreplgr2vr_b(32); - - __m256 acc = (__m256)__lasx_xvldi(0); - - for (int i = 0; i < nb; ++i) { - - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict q4 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - - const __m64 scales_1 = __lasx_xvreplgr2vr_b(x[i].scales[0]); - const __m64 scales_2 = __lasx_xvreplgr2vr_b(x[i].scales[1]); - const __m64 scales_3 = __lasx_xvreplgr2vr_b(x[i].scales[2]); - const __m64 scales_4 = __lasx_xvreplgr2vr_b(x[i].scales[3]); - - __m256i sumi = __lasx_xvldi(0); - - __m128i scale_0 = __lsx_vinsgr2vr_d(scale_0, scales_1, 0); - scale_0 = __lsx_vinsgr2vr_d(scale_0, scales_2, 1); - __m128i scale_1 = __lsx_vinsgr2vr_d(scale_1, scales_3, 0); - scale_1 = __lsx_vinsgr2vr_d(scale_1, scales_4, 1); - - const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); - const __m128i q4bitsH = __lsx_vld((const __m128i*)qh, 0); - - const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(lasx_insertf128(__lasx_xvsrli_h(q4bitsH, 2), q4bitsH), m2), 4); - const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(lasx_insertf128(__lasx_xvsrli_h(q4bitsH, 6), __lasx_xvsrli_h(q4bitsH, 4)), m2), 4); - - const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0); - const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_1); - - const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0); - const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0); - - __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0); - __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1); - - __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0); - __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1); - - p16_0 = __lasx_xvsub_h(p16_0, q8s_0); - p16_1 = __lasx_xvsub_h(p16_1, q8s_1); - - p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0); - p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1); - - sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1)); - - acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc); - } - - *s = hsum_float_8(acc); - -#else - - int8_t aux8[QK_K]; - int16_t aux16[8]; - float sums [8]; - int32_t aux32[8]; - memset(sums, 0, 8*sizeof(float)); - - float sumf = 0; - for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - memset(aux32, 0, 8*sizeof(int32_t)); - int8_t * restrict a = aux8; - for (int l = 0; l < 16; ++l) { - a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; - a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; - a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; - a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; - } - int is = 0; - for (int j = 0; j < QK_K/16; ++j) { - int scale = x[i].scales[is++]; - for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; - for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; - q8 += 8; a += 8; - for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; - for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; - q8 += 8; a += 8; - } - const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; - for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; - } - for (int l = 0; l < 8; ++l) sumf += sums[l]; - *s = sumf; -#endif -} - -#endif - #if defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx) static const int8_t keven_signs_q2xs[1024] = { 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, @@ -11564,64 +9120,6 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1); const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2); -#if QK_K == 64 - static const uint8_t k_bit_helper[16] = { - 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, - }; - const __m128i bit_helper = _mm_loadu_si128((const __m128i*)k_bit_helper); - const __m128i m511 = _mm_set1_epi16(511); - typedef union { - __m128i vec_index; - uint16_t index[8]; - } index_t; - - index_t idx; - __m256 accumf = _mm256_setzero_ps(); - for (int i = 0; i < nb; ++i) { - const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; - const __m128i q2_data = _mm_loadu_si128((const __m128i*)x[i].qs); - idx.vec_index = _mm_and_si128(q2_data, m511); - - const __m128i partial_sign_bits = _mm_srli_epi16(q2_data, 9); - const __m128i partial_sign_bits_upper = _mm_srli_epi16(q2_data, 13); - const __m128i partial_sign_bits_for_counting = _mm_xor_si128(partial_sign_bits, partial_sign_bits_upper); - - const __m128i odd_bits = _mm_shuffle_epi8(bit_helper, partial_sign_bits_for_counting); - const __m128i full_sign_bits = _mm_or_si128(partial_sign_bits, odd_bits); - const __m256i full_signs = MM256_SET_M128I(full_sign_bits, full_sign_bits); - - const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)y[i].qs); - const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)(y[i].qs+32)); - - const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]], - iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]); - const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]], - iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]); - - __m256i signs; - signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_1); - signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); - const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone)); - - signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_2); - signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); - const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone)); - - const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); - const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); - - const __m256i sc1 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1)); - const __m256i sc2 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1)); - - const __m256i sum = _mm256_add_epi32(_mm256_madd_epi16(sc1, dot1), _mm256_madd_epi16(sc2, dot2)); - - accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sum), accumf); - - } - - *s = 0.125f * hsum_float_8(accumf); -#else - static const uint8_t k_bit_helper[32] = { 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, @@ -11719,7 +9217,6 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * } *s = 0.125f * hsum_float_8(accumf); -#endif #elif defined(__loongarch_asx) const __m256i mone = __lasx_xvreplgr2vr_b(1); @@ -11740,62 +9237,6 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0); const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0); -#if QK_K == 64 - static const uint8_t k_bit_helper[16] = { - 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, - }; - const __m128i bit_helper = __lsx_vld((const __m128i*)k_bit_helper, 0); - const __m128i m511 = __lsx_vreplgr2vr_h(511); - typedef union { - __m128i vec_index; - uint16_t index[8]; - } index_t; - - index_t idx; - __m256 accumf = (__m256)__lasx_xvldi(0); - for (int i = 0; i < nb; ++i) { - const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; - const __m128i q2_data = __lsx_vld((const __m128i*)x[i].qs, 0); - idx.vec_index = __lsx_vand_v(q2_data, m511); - - const __m128i partial_sign_bits = __lsx_vsrli_h(q2_data, 9); - const __m128i partial_sign_bits_upper = __lsx_vsrli_h(q2_data, 13); - const __m128i partial_sign_bits_for_counting = __lsx_vxor_v(partial_sign_bits, partial_sign_bits_upper); - - const __m128i odd_bits = lsx_shuffle_b(bit_helper, partial_sign_bits_for_counting); - const __m128i full_sign_bits = __lsx_vor_v(partial_sign_bits, odd_bits); - const __m256i full_signs = lasx_insertf128(full_sign_bits, full_sign_bits); - - const __m256i q8_1 = __lasx_xvld((const __m256i *)y[i].qs, 0); - const __m256i q8_2 = __lasx_xvld((const __m256i *)(y[i].qs+32), 0); - - const __m256i q2_1 = lasx_set_d(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]], - iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]); - const __m256i q2_2 = lasx_set_d(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]], - iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]); - __m256i signs; - signs = lasx_shuffle_b(full_signs, block_sign_shuffle_1); - signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask); - const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1); - - signs = lasx_shuffle_b(full_signs, block_sign_shuffle_2); - signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask); - const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2); - - const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); - const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); - - const __m256i sc1 = lasx_insertf128(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), __lsx_vreplgr2vr_h(2*(x[i].scales[0] & 0xf)+1)); - const __m256i sc2 = lasx_insertf128(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), __lsx_vreplgr2vr_h(2*(x[i].scales[1] & 0xf)+1)); - - const __m256i sum = __lasx_xvadd_w(lasx_madd_h(sc1, dot1), lasx_madd_h(sc2, dot2)); - - accumf = __lasx_vfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sum), accumf); - } - - *s = 0.125f * hsum_float_8(accumf); -#else - static const uint8_t k_bit_helper[32] = { 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, @@ -11893,9 +9334,6 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * } *s = 0.125f * hsum_float_8(accumf); -#endif - - #elif defined(__POWER9_VECTOR__) vector float vsumf0 = vec_splats(0.0f); vector float vsumf1 = vec_splats(0.0f); @@ -12748,10 +10186,8 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * ggml_int8x16x4_t q8b; vec_index_t idx; -#if QK_K == 256 uint32_t scales32[2]; const uint8_t * scales8 = (const uint8_t *)scales32; -#endif float sumf = 0; for (int i = 0; i < nb; ++i) { @@ -12761,11 +10197,9 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * const uint16_t * restrict signs = (const uint16_t *)x[i].signs; const int8_t * restrict q8 = y[i].qs; -#if QK_K == 256 memcpy(scales32, x[i].scales, 4); scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101; scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101; -#endif int sumi1 = 0, sumi2 = 0; for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { @@ -12806,13 +10240,9 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]); const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]); -#if QK_K == 256 + sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0]; sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4]; -#else - sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf)); - sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >> 4)); -#endif } sumf += d*(sumi1 + sumi2); } @@ -13476,17 +10906,10 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void const int nb = n / QK_K; -#if QK_K != 64 iq1m_scale_t scale; -#endif #if defined __ARM_NEON - -#if QK_K == 64 - const int32x4_t mask = vdupq_n_s32(0xf); -#else const int32x4_t mask = vdupq_n_s32(0x7); -#endif const int32x4_t mone = vdupq_n_s32(1); const int32x4_t mzero = vdupq_n_s32(0); @@ -13510,9 +10933,7 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void const uint8_t * qh = x[i].qh; const uint16_t * sc = (const uint16_t *)x[i].scales; -#if QK_K != 64 scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); -#endif int32x4_t sumi1 = mzero; int32x4_t sumi2 = mzero; @@ -13541,11 +10962,8 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3])); const int32x4_t p34 = vpaddq_s32(p3, p4); -#if QK_K == 64 - int32x4_t scales_4 = ggml_vld1q_u32(sc[0] >> 0, sc[0] >> 4, sc[0] >> 8, sc[0] >> 12); -#else int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9); -#endif + scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone); sumi1 = vmlaq_s32(sumi1, scales_4, p12); @@ -13555,22 +10973,14 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void } -#if QK_K == 64 - sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2)); -#else sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2)); -#endif } *s = sumf; #elif defined __AVX2__ -#if QK_K == 64 - const __m256i mask = _mm256_set1_epi16(0xf); -#else const __m256i mask = _mm256_set1_epi16(0x7); -#endif const __m256i mone = _mm256_set1_epi16(1); __m256 accum1 = _mm256_setzero_ps(); @@ -13582,9 +10992,7 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void const uint8_t * qh = x[i].qh; const uint16_t * sc = (const uint16_t *)x[i].scales; -#if QK_K != 64 scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); -#endif __m256i sumi1 = _mm256_setzero_si256(); __m256i sumi2 = _mm256_setzero_si256(); @@ -13614,13 +11022,10 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void const __m256i dot3 = mul_add_epi8(delta1, q8b_1); const __m256i dot4 = mul_add_epi8(delta2, q8b_2); -#if QK_K == 64 - __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 4), _mm_set1_epi16(sc[0] >> 0)); - __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 12), _mm_set1_epi16(sc[0] >> 8)); -#else + __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0)); __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6)); -#endif + scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone); scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone); const __m256i p1 = _mm256_madd_epi16(dot1, scale1); @@ -13634,14 +11039,10 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void qs += 8; qh += 4; } -#if QK_K == 64 - const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)); -#else const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16)); -#endif + accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1); accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2); - } *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2); @@ -13658,9 +11059,7 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void const uint8_t * qh = x[i].qh; const uint16_t * sc = (const uint16_t *)x[i].scales; -#if QK_K != 64 scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); -#endif int sumi1 = 0, sumi2 = 0; for (int ib = 0; ib < QK_K/32; ++ib) { @@ -13680,24 +11079,17 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void sum1[l/2] += lsum1; sum2[l/2] += lsum2*delta[l]; } -#if QK_K == 64 - const int ls1 = 2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1; - const int ls2 = 2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1; -#else + const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1; const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1; -#endif + sumi1 += sum1[0] * ls1 + sum1[1] * ls2; sumi2 += sum2[0] * ls1 + sum2[1] * ls2; qs += 4; qh += 2; } -#if QK_K == 64 - sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2); -#else sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2); -#endif } *s = sumf; @@ -13885,9 +11277,6 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * UNUSED(by); UNUSED(bs); assert(n % QK_K == 0); -#if QK_K == 64 - ggml_vec_dot_iq4_nl_q8_0(n, s, bs, vx, bx, vy, by, nrc); -#else const block_iq4_xs * restrict x = vx; const block_q8_K * restrict y = vy; @@ -14180,7 +11569,6 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * } *s = sumf; #endif -#endif } // ================================ IQ2 quantization ============================================= @@ -14756,7 +12144,7 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict printf("\n"); GGML_ASSERT(false); } - q2[2*ib+0] |= (grid_index << 8*k); + q2[2*ib+0] |= ((uint32_t) grid_index << 8*k); q2[2*ib+1] |= (block_signs[k] << 7*k); } GGML_ASSERT(scale >= 0); @@ -15998,10 +13386,6 @@ static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy const float * xx; for (int ibl = 0; ibl < nbl; ++ibl) { - -#if QK_K == 64 - y[ibl].d = GGML_FP32_TO_FP16(0.f); -#endif memset(y[ibl].qs, 0, QK_K/8); memset(y[ibl].qh, 0, QK_K/16); memset(y[ibl].scales, 0, QK_K/32); @@ -16176,22 +13560,13 @@ static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy } uint16_t * sc = (uint16_t *)y[ibl].scales; -#if QK_K == 64 - float d = max_scale/31; -#else float d = max_scale/15; -#endif float id = 1/d; float sumqx_f = 0, sumq2_f = 0; for (int ib = 0; ib < QK_K/block_size; ++ib) { int l = nearest_int(0.5f*(id*scales[ib+0]-1)); -#if QK_K == 64 - l = MAX(0, MIN(15, l)); - sc[ib/4] |= (l << 4*(ib%4)); -#else l = MAX(0, MIN(7, l)); sc[ib/4] |= (l << 3*(ib%4)); -#endif y[ibl].qh[ib] |= masks[shifts[ib]]; const float * xb = xbl + block_size*ib; if (quant_weights) { @@ -16214,14 +13589,10 @@ static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy } if (sumq2_f > 0) d = sumqx_f/sumq2_f; s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed. -#if QK_K == 64 - y[ibl].d = s.f16; -#else sc[0] |= ((s.u16 & 0x000f) << 12); sc[1] |= ((s.u16 & 0x00f0) << 8); sc[2] |= ((s.u16 & 0x0f00) << 4); sc[3] |= ((s.u16 & 0xf000) << 0); -#endif } } @@ -16410,9 +13781,6 @@ void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * rest } size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { -#if QK_K == 64 - return quantize_iq4_nl(src, dst, nrow, n_per_row, quant_weights); -#else GGML_ASSERT(n_per_row%QK_K == 0); int64_t nblock = n_per_row/QK_K; char * qrow = (char *)dst; @@ -16430,7 +13798,6 @@ size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t qrow += nblock*sizeof(block_iq4_xs); } return nrow * nblock * sizeof(block_iq4_xs); -#endif } void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int64_t k) { @@ -16842,19 +14209,11 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte } break; case GGML_TYPE_Q4_K: { - #ifdef GGML_QKK_64 - VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d[0], d[1]); - #else VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin); - #endif } break; case GGML_TYPE_Q5_K: { - #ifdef GGML_QKK_64 - VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_K, data, nb); - #else VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin); - #endif } break; case GGML_TYPE_Q6_K: { @@ -16877,18 +14236,12 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte { const block_iq1_m * q = (const block_iq1_m *) data; for (size_t i = 0; i < nb; ++i) { - #if QK_K == 64 - if (!validate_fp16(q[i].d, i)) { - return false; - } - #else iq1m_scale_t scale; const uint16_t * sc = (const uint16_t *)q[i].scales; scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); if (!validate_fp16(scale.f16, i)) { return false; } - #endif } } break; case GGML_TYPE_IQ2_XXS: @@ -16913,12 +14266,9 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb); } break; case GGML_TYPE_IQ4_XS: - #if QK_K != 64 { VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb); } break; - #endif - // with QK_K == 64, iq4_xs is iq4_nl case GGML_TYPE_IQ4_NL: { VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb); diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index eac8f5579..496ec61c3 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -4197,7 +4197,6 @@ static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restri const block_q2_K * x = (const block_q2_K *) vx; const int tid = item_ct1.get_local_id(2); -#if QK_K == 256 const int n = tid/32; const int l = tid - 32*n; const int is = 8*n + l/16; @@ -4211,18 +4210,6 @@ static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restri y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4); y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4); y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4); -#else - const int is = tid/16; // 0 or 1 - const int il = tid%16; // 0...15 - const uint8_t q = x[i].qs[il] >> (2*is); - dst_t * y = yy + i*QK_K + 16*is + il; - - float dall = x[i].dm[0]; - float dmin = x[i].dm[1]; - y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4); - y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4); -#endif - } template @@ -4232,7 +4219,6 @@ static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restri const int i = item_ct1.get_group(2); const block_q3_K * x = (const block_q3_K *) vx; -#if QK_K == 256 const int r = item_ct1.get_local_id(2) / 4; const int tid = r/2; const int is0 = r%2; @@ -4256,31 +4242,8 @@ static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restri const uint8_t * hm = x[i].hmask; for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); -#else - const int tid = item_ct1.get_local_id(2); - const int is = tid/16; // 0 or 1 - const int il = tid%16; // 0...15 - const int im = il/8; // 0...1 - const int in = il%8; // 0...7 - - dst_t * y = yy + i*QK_K + 16*is + il; - - const uint8_t q = x[i].qs[il] >> (2*is); - const uint8_t h = x[i].hmask[in] >> (2*is + im); - const float d = (float)x[i].d; - - if (is == 0) { - y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4)); - y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4)); - } else { - y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4)); - y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4)); - } -#endif - } -#if QK_K == 256 static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) { if (j < 4) { d = q[j] & 63; m = q[j + 4] & 63; @@ -4289,7 +4252,6 @@ static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8 m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); } } -#endif template static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy, @@ -4298,7 +4260,6 @@ static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restri const int i = item_ct1.get_group(2); -#if QK_K == 256 // assume 32 threads const int tid = item_ct1.get_local_id(2); const int il = tid/8; @@ -4322,15 +4283,6 @@ static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restri y[l + 0] = d1 * (q[l] & 0xF) - m1; y[l +32] = d2 * (q[l] >> 4) - m2; } -#else - const int tid = item_ct1.get_local_id(2); - const uint8_t * q = x[i].qs; - dst_t * y = yy + i*QK_K; - const float d = (float)x[i].dm[0]; - const float m = (float)x[i].dm[1]; - y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4); - y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4); -#endif } template @@ -4340,7 +4292,6 @@ static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restri const int i = item_ct1.get_group(2); -#if QK_K == 256 // assume 64 threads - this is very slightly better than the one below const int tid = item_ct1.get_local_id(2); const int il = tid/16; // il is in 0...3 @@ -4367,18 +4318,6 @@ static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restri hm <<= 1; y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2; y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2; -#else - const int tid = item_ct1.get_local_id(2); - const uint8_t q = x[i].qs[tid]; - const int im = tid/8; // 0...3 - const int in = tid%8; // 0...7 - const int is = tid/16; // 0 or 1 - const uint8_t h = x[i].qh[in] >> im; - const float d = x[i].d; - dst_t * y = yy + i*QK_K + tid; - y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16)); - y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16)); -#endif } template @@ -4387,7 +4326,6 @@ static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restri const block_q6_K * x = (const block_q6_K *) vx; const int i = item_ct1.get_group(2); -#if QK_K == 256 // assume 64 threads - this is very slightly better than the one below const int tid = item_ct1.get_local_id(2); @@ -4407,24 +4345,6 @@ static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restri y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); -#else - - // assume 32 threads - const int tid = item_ct1.get_local_id(2); - const int ip = tid/16; // 0 or 1 - const int il = tid - 16*ip; // 0...15 - - dst_t * y = yy + i*QK_K + 16*ip + il; - - const float d = x[i].d; - - const uint8_t ql = x[i].ql[16*ip + il]; - const uint8_t qh = x[i].qh[il] >> (2*ip); - const int8_t * sc = x[i].scales; - - y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32); - y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32); -#endif } template @@ -4438,7 +4358,6 @@ static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __res const block_iq2_xxs * x = (const block_iq2_xxs *) vx; const int tid = item_ct1.get_local_id(2); -#if QK_K == 256 const int il = tid/8; // 0...3 const int ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -4449,10 +4368,6 @@ static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __res const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f; const uint8_t signs = ksigns_iq2xs_ptr[(aux32 >> 7*il) & 127]; for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs_ptr[j] ? -1.f : 1.f); -#else - assert(false); -#endif - } template @@ -4466,7 +4381,6 @@ static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __rest const block_iq2_xs * x = (const block_iq2_xs *) vx; const int tid = item_ct1.get_local_id(2); -#if QK_K == 256 const int il = tid/8; // 0...3 const int ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -4475,10 +4389,6 @@ static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __rest const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; const uint8_t signs = ksigns_iq2xs[q2[il] >> 9]; for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); -#else - assert(false); -#endif - } template @@ -4490,7 +4400,6 @@ dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy, const block_iq2_s * x = (const block_iq2_s *) vx; const int tid = item_ct1.get_local_id(2); -#if QK_K == 256 const int il = tid/8; // 0...3 const int ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -4498,13 +4407,9 @@ dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy, const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; const uint8_t signs = x[i].qs[QK_K/8+4*ib+il]; #pragma unroll - for (int j = 0; j < 8; ++j) + for (int j = 0; j < 8; ++j) { y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); -#else - assert(false); - -#endif - + } } template @@ -4518,7 +4423,6 @@ static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __res const block_iq3_xxs * x = (const block_iq3_xxs *) vx; const int tid = item_ct1.get_local_id(2); -#if QK_K == 256 const int il = tid/8; // 0...3 const int ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -4533,10 +4437,6 @@ static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __res y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); } -#else - assert(false); -#endif - } template @@ -4549,7 +4449,6 @@ dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy, const block_iq3_s * x = (const block_iq3_s *) vx; const int tid = item_ct1.get_local_id(2); -#if QK_K == 256 const int il = tid/8; // 0...3 const int ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -4563,10 +4462,6 @@ dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy, y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); } -#else - assert(false); -#endif - } template @@ -4579,7 +4474,6 @@ dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy, const block_iq1_s * x = (const block_iq1_s *) vx; const int tid = item_ct1.get_local_id(2); -#if QK_K == 256 const int il = tid/8; // 0...3 const int ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -4593,10 +4487,6 @@ dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy, for (int j = 0; j < 8; ++j) { y[j] = d * (q[j] + delta); } -#else - assert(false); -#endif - } template @@ -4609,7 +4499,6 @@ dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy, const block_iq1_m * x = (const block_iq1_m *) vx; const int tid = item_ct1.get_local_id(2); -#if QK_K == 256 const int il = tid/8; // 0...3 const int ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; @@ -4627,10 +4516,6 @@ dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy, for (int j = 0; j < 8; ++j) { y[j] = d * (q[j] + delta); } -#else - assert(false); -#endif - } template @@ -4704,7 +4589,6 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx, float tmp = 0; // partial sum for thread in warp -#if QK_K == 256 const int tid = item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15 const int ix = @@ -4755,42 +4639,6 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx, tmp += dall * sum1 - dmin * sum2; } -#else - const int tid = item_ct1.get_local_id(2) / - (2 * K_QUANTS_PER_ITERATION); // 0...15 or 0...7 - const int ix = item_ct1.get_local_id(2) % - (2 * K_QUANTS_PER_ITERATION); // 0....1 or 0...3 - const int offset = tid * K_QUANTS_PER_ITERATION; - - uint32_t uaux[2]; - const uint8_t * d = (const uint8_t *)uaux; - - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + offset; - const uint8_t * q = x[i].qs + offset; - const uint32_t * s = (const uint32_t *)x[i].scales; - - uaux[0] = s[0] & 0x0f0f0f0f; - uaux[1] = (s[0] >> 4) & 0x0f0f0f0f; - - const sycl::float2 dall = - x[i].dm.convert(); - - float sum1 = 0, sum2 = 0; - for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { - const uint8_t ql = q[l]; - sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3) - + y[l+16] * d[1] * ((ql >> 2) & 3) - + y[l+32] * d[2] * ((ql >> 4) & 3) - + y[l+48] * d[3] * ((ql >> 6) & 3); - sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7]; - } - tmp += dall.x() * sum1 - dall.y() * sum2; - } - -#endif // sum up partial sums and write back result #pragma unroll @@ -4828,8 +4676,6 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx, float tmp = 0; // partial sum for thread in warp -#if QK_K == 256 - const uint16_t kmask1 = 0x0303; const uint16_t kmask2 = 0x0f0f; @@ -4882,34 +4728,6 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx, tmp += d * sum; } -#else - - const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7 - const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3 - const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14 - const int in = offset/8; // 0 or 1 - const int im = offset%8; // 0...7 - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + offset; - const uint8_t * q = x[i].qs + offset; - const uint8_t * s = x[i].scales; - - const float dall = (float)x[i].d; - - float sum = 0; - for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { - const uint8_t hl = x[i].hmask[im+l] >> in; - const uint8_t ql = q[l]; - sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4)) - + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4)) - + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4)) - + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4)); - } - tmp += sum; - } -#endif // sum up partial sums and write back result #pragma unroll @@ -4944,7 +4762,6 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx, const block_q4_K * x = (const block_q4_K *)vx + ib0; -#if QK_K == 256 const uint16_t kmask1 = 0x3f3f; const uint16_t kmask2 = 0x0f0f; const uint16_t kmask3 = 0xc0c0; @@ -5033,36 +4850,6 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx, #endif } -#else - const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15 - const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); - - const int step = tid * K_QUANTS_PER_ITERATION; - - uint16_t aux16[2]; - const uint8_t * s = (const uint8_t *)aux16; - - float tmp = 0; - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - const uint8_t * q = x[i].qs + step; - const float * y = yy + i*QK_K + step; - const uint16_t * a = (const uint16_t *)x[i].scales; - aux16[0] = a[0] & 0x0f0f; - aux16[1] = (a[0] >> 4) & 0x0f0f; - const float d = (float)x[i].dm[0]; - const float m = (float)x[i].dm[1]; - float sum = 0.f; - for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { - sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2]) - + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2]) - + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3]) - + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]); - } - tmp += sum; - } - -#endif // sum up partial sums and write back result #pragma unroll @@ -5097,7 +4884,6 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx, float tmp = 0; // partial sum for thread in warp -#if QK_K == 256 const uint16_t kmask1 = 0x3f3f; const uint16_t kmask2 = 0x0f0f; const uint16_t kmask3 = 0xc0c0; @@ -5174,30 +4960,6 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx, dmin * smin; } -#else - const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15 - const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); - const int step = tid * K_QUANTS_PER_ITERATION; - const int im = step/8; - const int in = step%8; - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - const uint8_t * q = x[i].qs + step; - const int8_t * s = x[i].scales; - const float * y = yy + i*QK_K + step; - const float d = x[i].d; - float sum = 0.f; - for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { - const uint8_t h = x[i].qh[in+j] >> im; - sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16)) - + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16)) - + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16)) - + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16)); - } - tmp += sum; - } -#endif - // sum up partial sums and write back result #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { @@ -5224,8 +4986,6 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa const block_q6_K * x = (const block_q6_K *)vx + ib0; -#if QK_K == 256 - const int tid = item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = @@ -5282,37 +5042,6 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa } -#else - - const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...7 - const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); // 0...3 - - const int step = tid * K_QUANTS_PER_ITERATION; - - float tmp = 0; // partial sum for thread in warp - - for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { - - const float * y = yy + i * QK_K + step; - const uint8_t * ql = x[i].ql + step; - const uint8_t * qh = x[i].qh + step; - const int8_t * s = x[i].scales; - - const float d = x[i+0].d; - - float sum = 0; - for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { - sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32) - + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32) - + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32) - + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32); - } - tmp += sum; - - } - -#endif - // sum up partial sums and write back result #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { @@ -6857,7 +6586,6 @@ static __dpct_inline__ float vec_dot_q4_K_q8_1(const void *__restrict__ vbq, const block_q8_1 *__restrict__ bq8_1, const int &iqs) { -#ifndef GGML_QKK_64 const block_q4_K * bq4_K = (const block_q4_K *) vbq; int v[2]; @@ -6899,52 +6627,6 @@ vec_dot_q4_K_q8_1(const void *__restrict__ vbq, } return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8); - -#else - -#if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics - const block_q4_K * bq4_K = (const block_q4_K *) vbq; - - float sumf_d = 0.0f; - float sumf_m = 0.0f; - - uint16_t aux16[2]; - const uint8_t * s = (const uint8_t *)aux16; - - const uint16_t * a = (const uint16_t *)bq4_K->scales; - aux16[0] = a[0] & 0x0f0f; - aux16[1] = (a[0] >> 4) & 0x0f0f; - - const float dall = bq4_K->dm[0]; - const float dmin = bq4_K->dm[1]; - - const float d8_1 = bq8_1[0].ds[0]; - const float d8_2 = bq8_1[1].ds[1]; - - const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); - const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); - const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2)); - const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4); - - const int * q4 = (const int *)bq4_K->qs + (iqs/2); - const int v1 = q4[0]; - const int v2 = q4[4]; - - const int dot1 = dpct::dp4a(ui2, v2 & 0x0f0f0f0f, dpct::dp4a(ui1, v1 & 0x0f0f0f0f, 0)); - const int dot2 = dpct::dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, dpct::dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0)); - const int dot3 = dpct::dp4a(0x01010101, ui2, dpct::dp4a(0x01010101, ui1, 0)); - const int dot4 = dpct::dp4a(0x01010101, ui4, dpct::dp4a(0x01010101, ui3, 0)); - - sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]); - sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]); - - return dall * sumf_d - dmin * sumf_m; - -#else - bad_arch(); -#endif // __SYCL_ARCH__ >= VER_4VEC - -#endif } template @@ -7003,11 +6685,7 @@ load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql, const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd; -#if QK_K == 256 x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm; -#else - x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]}; -#endif } #pragma unroll @@ -7050,7 +6728,6 @@ static __dpct_inline__ float vec_dot_q5_K_q8_1(const void *__restrict__ vbq, const block_q8_1 *__restrict__ bq8_1, const int &iqs) { -#ifndef GGML_QKK_64 const block_q5_K * bq5_K = (const block_q5_K *) vbq; int vl[2]; @@ -7092,48 +6769,6 @@ vec_dot_q5_K_q8_1(const void *__restrict__ vbq, } return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8); - -#else - -#if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics - const block_q5_K * bq5_K = (const block_q5_K *) vbq; - - const int8_t * s = bq5_K->scales; - - const float d = bq5_K->d; - - const float d8_1 = bq8_1[0].ds[0]; - const float d8_2 = bq8_1[1].ds[1]; - - const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); - const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); - const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2)); - const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4); - - const int * ql = (const int *)bq5_K->qs + (iqs/2); - const int vl1 = ql[0]; - const int vl2 = ql[4]; - - const int step = 4 * (iqs/2); // 0, 4, 8, 12 - const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6 - const int in = step%8; // 0, 4, 0, 4 - const int vh = (*((const int *)(bq5_K->qh + in))) >> im; - - const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f); - const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f); - const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f); - const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f); - - const float sumf_d = d8_1 * (dpct::dp4a(ui1, v1, 0) * s[0] + dpct::dp4a(ui2, v2, 0) * s[1]) - + d8_2 * (dpct::dp4a(ui3, v3, 0) * s[2] + dpct::dp4a(ui4, v4, 0) * s[3]); - - return d * sumf_d; - -#else - bad_arch(); -#endif // __SYCL_ARCH__ >= VER_4VEC - -#endif } template @@ -7205,9 +6840,7 @@ load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql, const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd; -#if QK_K == 256 x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm; -#endif } #pragma unroll @@ -7387,7 +7020,6 @@ vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq, const block_q8_1 *__restrict__ bq8_1, const int &iqs, const uint64_t *iq2xxs_grid, const uint8_t *ksigns_iq2xs, const uint8_t *kmask_iq2xs) { -#if QK_K == 256 const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq; #if QR2_XXS == 8 @@ -7428,10 +7060,6 @@ vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq, } return d * (sumi1 + sumi2); #endif -#else - assert(false); - return 0.f; -#endif } static __dpct_inline__ float @@ -7440,7 +7068,6 @@ vec_dot_iq2_xs_q8_1(const void *__restrict__ vbq, const uint64_t *iq2xs_grid, const uint64_t *ksigns64) { #if DPCT_COMPATIBILITY_TEMP >= \ MIN_CC_DP4A // lowest compute capability for integer intrinsics -#if QK_K == 256 const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq; const int ib32 = iqs; @@ -7478,16 +7105,11 @@ vec_dot_iq2_xs_q8_1(const void *__restrict__ vbq, assert(false); return 0.f; #endif -#else - assert(false); - return 0.f; -#endif } static __dpct_inline__ float vec_dot_iq2_s_q8_1(const void *__restrict__ vbq, const block_q8_1 *__restrict__ bq8_1, const int &iqs) { -#if QK_K == 256 const block_iq2_s * bq2 = (const block_iq2_s *) vbq; const int ib32 = iqs; @@ -7531,9 +7153,6 @@ vec_dot_iq2_s_q8_1(const void *__restrict__ vbq, } const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f; return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); -#else - assert(false); -#endif } static __dpct_inline__ float @@ -7542,7 +7161,6 @@ vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq, const uint32_t *iq3xxs_grid, const uint64_t *ksigns64) { #if DPCT_COMPATIBILITY_TEMP >= \ MIN_CC_DP4A // lowest compute capability for integer intrinsics -#if QK_K == 256 const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq; const int ib32 = iqs; @@ -7570,17 +7188,12 @@ vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq, assert(false); return 0.f; #endif -#else - assert(false); - return 0.f; -#endif } static __dpct_inline__ float vec_dot_iq3_s_q8_1(const void *__restrict__ vbq, const block_q8_1 *__restrict__ bq8_1, const int &iqs, const uint32_t *iq3s_grid) { -#if QK_K == 256 const block_iq3_s * bq2 = (const block_iq3_s *) vbq; const int ib32 = iqs; @@ -7609,16 +7222,12 @@ vec_dot_iq3_s_q8_1(const void *__restrict__ vbq, (1 + 2 * ((bq2->scales[ib32 / 2] >> 4 * (ib32 % 2)) & 0xf)) * bq8_1[ib32].ds[0]; return d * sumi; -#else - assert(false); -#endif } static __dpct_inline__ float vec_dot_iq1_s_q8_1(const void *__restrict__ vbq, const block_q8_1 *__restrict__ bq8_1, const int &iqs, const uint32_t *iq1s_grid_gpu) { -#if QK_K == 256 const block_iq1_s * bq1 = (const block_iq1_s *) vbq; const int ib32 = iqs; @@ -7637,15 +7246,11 @@ vec_dot_iq1_s_q8_1(const void *__restrict__ vbq, const float d = d1q * bq8_1[ib32].ds[0]; const float m = d1q * bq8_1[ib32].ds[1]; return d * sumi + m * delta; -#else - assert(false); -#endif } static __dpct_inline__ float vec_dot_iq1_m_q8_1(const void *__restrict__ vbq, const block_q8_1 *__restrict__ bq8_1, const int &iqs) { -#if QK_K == 256 const block_iq1_m * bq1 = (const block_iq1_m *) vbq; const int ib32 = iqs; @@ -7670,9 +7275,6 @@ vec_dot_iq1_m_q8_1(const void *__restrict__ vbq, scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); const float d = (float)scale.f16 * bq8_1[ib32].ds[0]; return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1)); -#else - assert(false); -#endif } static __dpct_inline__ void get_int_from_table_16(const uint32_t &q4, @@ -7720,7 +7322,6 @@ static __dpct_inline__ float vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq, const block_q8_1 *__restrict__ bq8_1, const int &iqs) { -#if QK_K == 256 const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq; const uint8_t * values = (const uint8_t *)kvalues_iq4nl; @@ -7738,9 +7339,6 @@ vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq, sumi2 = dpct::dp4a(v2, q8[j + 4], sumi2); } return d * (sumi1 + sumi2); -#else - assert(false); -#endif } template static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k, dpct::queue_ptr stream) { const int nb = k / QK_K; -#if QK_K == 256 { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); @@ -10215,27 +9812,12 @@ static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k, dequantize_block_q2_K(vx, y, item_ct1); }); } -#else - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); - - stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * - sycl::range<3>(1, 1, 32), - sycl::range<3>(1, 1, 32)), - [=](sycl::nd_item<3> item_ct1) { - dequantize_block_q2_K(vx, y, item_ct1); - }); - } - -#endif } template static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k, dpct::queue_ptr stream) { const int nb = k / QK_K; -#if QK_K == 256 { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); @@ -10247,19 +9829,6 @@ static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k, dequantize_block_q3_K(vx, y, item_ct1); }); } -#else - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); - - stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * - sycl::range<3>(1, 1, 32), - sycl::range<3>(1, 1, 32)), - [=](sycl::nd_item<3> item_ct1) { - dequantize_block_q3_K(vx, y, item_ct1); - }); - } -#endif } template @@ -10320,7 +9889,6 @@ template static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k, dpct::queue_ptr stream) { const int nb = k / QK_K; -#if QK_K == 256 { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); @@ -10332,27 +9900,12 @@ static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k, dequantize_block_q5_K(vx, y, item_ct1); }); } -#else - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); - - stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * - sycl::range<3>(1, 1, 32), - sycl::range<3>(1, 1, 32)), - [=](sycl::nd_item<3> item_ct1) { - dequantize_block_q5_K(vx, y, item_ct1); - }); - } - -#endif } template static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k, dpct::queue_ptr stream) { const int nb = k / QK_K; -#if QK_K == 256 { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); @@ -10364,20 +9917,6 @@ static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k, dequantize_block_q6_K(vx, y, item_ct1); }); } -#else - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); - - stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * - sycl::range<3>(1, 1, 32), - sycl::range<3>(1, 1, 32)), - [=](sycl::nd_item<3> item_ct1) { - dequantize_block_q6_K(vx, y, item_ct1); - }); - } - -#endif } template @@ -10529,9 +10068,6 @@ template static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k, dpct::queue_ptr stream) { const int nb = (k + QK_K - 1) / QK_K; -#if QK_K == 64 - dequantize_row_iq4_nl_sycl(vx, y, k, stream); -#else { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); @@ -10546,7 +10082,6 @@ static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k, }); }); } -#endif } @@ -12051,8 +11586,6 @@ static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { -#if QK_K == 256 - int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); @@ -12167,7 +11700,6 @@ static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy, }); } } -#endif } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ @@ -14454,6 +13986,9 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const float *src0_dd, const float *src1_dd, float *dst_dd, const dpct::queue_ptr &main_stream) { +#pragma message("TODO: implement phi3 frequency factors support") +#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225") + GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet"); GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); diff --git a/ggml-vulkan-shaders.hpp b/ggml-vulkan-shaders.hpp index 70c4043d3..e8cb5f52c 100644 --- a/ggml-vulkan-shaders.hpp +++ b/ggml-vulkan-shaders.hpp @@ -78882,342 +78882,15 @@ const uint64_t rope_f32_len = 3072; unsigned char rope_neox_f16_data[] = { 0x03,0x02,0x23,0x07,0x00,0x05,0x01,0x00,0x0b,0x00,0x0d,0x00, -0x5f,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x11,0x00,0x02,0x00, +0x75,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x11,0x00,0x02,0x00, 0x01,0x00,0x00,0x00,0x11,0x00,0x02,0x00,0x51,0x11,0x00,0x00, 0x0b,0x00,0x06,0x00,0x01,0x00,0x00,0x00,0x47,0x4c,0x53,0x4c, 0x2e,0x73,0x74,0x64,0x2e,0x34,0x35,0x30,0x00,0x00,0x00,0x00, 0x0e,0x00,0x03,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, -0x0f,0x00,0x0a,0x00,0x05,0x00,0x00,0x00,0x04,0x00,0x00,0x00, +0x0f,0x00,0x0b,0x00,0x05,0x00,0x00,0x00,0x04,0x00,0x00,0x00, 0x6d,0x61,0x69,0x6e,0x00,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, 0x68,0x00,0x00,0x00,0x98,0x00,0x00,0x00,0x9e,0x00,0x00,0x00, -0xcf,0x00,0x00,0x00,0x10,0x00,0x06,0x00,0x04,0x00,0x00,0x00, -0x11,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x01,0x00,0x00, -0x01,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x29,0x00,0x00,0x00, -0x06,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x48,0x00,0x05,0x00, -0x2a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00, -0x01,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x04,0x00,0x00,0x00, -0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00,0x02,0x00,0x00,0x00, -0x23,0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x48,0x00,0x05,0x00, -0x2a,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x23,0x00,0x00,0x00, -0x0c,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00, -0x04,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x10,0x00,0x00,0x00, -0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00,0x05,0x00,0x00,0x00, -0x23,0x00,0x00,0x00,0x14,0x00,0x00,0x00,0x48,0x00,0x05,0x00, -0x2a,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x23,0x00,0x00,0x00, -0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00, -0x07,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x1c,0x00,0x00,0x00, -0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00,0x08,0x00,0x00,0x00, -0x23,0x00,0x00,0x00,0x2c,0x00,0x00,0x00,0x48,0x00,0x05,0x00, -0x2a,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x23,0x00,0x00,0x00, -0x30,0x00,0x00,0x00,0x47,0x00,0x03,0x00,0x2a,0x00,0x00,0x00, -0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x68,0x00,0x00,0x00, -0x0b,0x00,0x00,0x00,0x1c,0x00,0x00,0x00,0x47,0x00,0x04,0x00, -0x95,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x02,0x00,0x00,0x00, -0x48,0x00,0x04,0x00,0x96,0x00,0x00,0x00,0x00,0x00,0x00,0x00, -0x19,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x96,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x00,0x00,0x00,0x00, -0x47,0x00,0x03,0x00,0x96,0x00,0x00,0x00,0x02,0x00,0x00,0x00, -0x47,0x00,0x04,0x00,0x98,0x00,0x00,0x00,0x22,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x98,0x00,0x00,0x00, -0x21,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00, -0x9b,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x02,0x00,0x00,0x00, -0x48,0x00,0x04,0x00,0x9c,0x00,0x00,0x00,0x00,0x00,0x00,0x00, -0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x9c,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x00,0x00,0x00,0x00, -0x47,0x00,0x03,0x00,0x9c,0x00,0x00,0x00,0x02,0x00,0x00,0x00, -0x47,0x00,0x04,0x00,0x9e,0x00,0x00,0x00,0x22,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x9e,0x00,0x00,0x00, -0x21,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00, -0xcc,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x04,0x00,0x00,0x00, -0x48,0x00,0x04,0x00,0xcd,0x00,0x00,0x00,0x00,0x00,0x00,0x00, -0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0xcd,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x00,0x00,0x00,0x00, -0x47,0x00,0x03,0x00,0xcd,0x00,0x00,0x00,0x02,0x00,0x00,0x00, -0x47,0x00,0x04,0x00,0xcf,0x00,0x00,0x00,0x22,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0xcf,0x00,0x00,0x00, -0x21,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x47,0x00,0x04,0x00, -0x16,0x01,0x00,0x00,0x0b,0x00,0x00,0x00,0x19,0x00,0x00,0x00, -0x13,0x00,0x02,0x00,0x02,0x00,0x00,0x00,0x21,0x00,0x03,0x00, -0x03,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x16,0x00,0x03,0x00, -0x06,0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x15,0x00,0x04,0x00, -0x07,0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00, -0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x17,0x00,0x00,0x00, -0x02,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00, -0x1b,0x00,0x00,0x00,0x6f,0x12,0x83,0x3a,0x2b,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0x1f,0x00,0x00,0x00,0x00,0x00,0x80,0x3f, -0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x20,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00, -0x28,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x1c,0x00,0x04,0x00, -0x29,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x28,0x00,0x00,0x00, -0x1e,0x00,0x0c,0x00,0x2a,0x00,0x00,0x00,0x07,0x00,0x00,0x00, -0x07,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00, -0x06,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x06,0x00,0x00,0x00, -0x29,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x06,0x00,0x00,0x00, -0x20,0x00,0x04,0x00,0x2b,0x00,0x00,0x00,0x09,0x00,0x00,0x00, -0x2a,0x00,0x00,0x00,0x3b,0x00,0x04,0x00,0x2b,0x00,0x00,0x00, -0x2c,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x15,0x00,0x04,0x00, -0x2d,0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x01,0x00,0x00,0x00, -0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00,0x2e,0x00,0x00,0x00, -0x06,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0x2f,0x00,0x00,0x00, -0x09,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, -0x2d,0x00,0x00,0x00,0x33,0x00,0x00,0x00,0x02,0x00,0x00,0x00, -0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00,0x39,0x00,0x00,0x00, -0x05,0x00,0x00,0x00,0x14,0x00,0x02,0x00,0x3c,0x00,0x00,0x00, -0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00,0x41,0x00,0x00,0x00, -0x07,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00, -0x42,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, -0x2d,0x00,0x00,0x00,0x45,0x00,0x00,0x00,0x01,0x00,0x00,0x00, -0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x53,0x00,0x00,0x00, -0xcd,0xcc,0xcc,0x3d,0x17,0x00,0x04,0x00,0x66,0x00,0x00,0x00, -0x07,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x20,0x00,0x04,0x00, -0x67,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x66,0x00,0x00,0x00, -0x3b,0x00,0x04,0x00,0x67,0x00,0x00,0x00,0x68,0x00,0x00,0x00, -0x01,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00, -0x69,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x20,0x00,0x04,0x00, -0x6a,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x07,0x00,0x00,0x00, -0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x6f,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0x73,0x00,0x00,0x00, -0x09,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x16,0x00,0x03,0x00, -0x94,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x1d,0x00,0x03,0x00, -0x95,0x00,0x00,0x00,0x94,0x00,0x00,0x00,0x1e,0x00,0x03,0x00, -0x96,0x00,0x00,0x00,0x95,0x00,0x00,0x00,0x20,0x00,0x04,0x00, -0x97,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0x96,0x00,0x00,0x00, -0x3b,0x00,0x04,0x00,0x97,0x00,0x00,0x00,0x98,0x00,0x00,0x00, -0x0c,0x00,0x00,0x00,0x1d,0x00,0x03,0x00,0x9b,0x00,0x00,0x00, -0x94,0x00,0x00,0x00,0x1e,0x00,0x03,0x00,0x9c,0x00,0x00,0x00, -0x9b,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0x9d,0x00,0x00,0x00, -0x0c,0x00,0x00,0x00,0x9c,0x00,0x00,0x00,0x3b,0x00,0x04,0x00, -0x9d,0x00,0x00,0x00,0x9e,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, -0x20,0x00,0x04,0x00,0xa1,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, -0x94,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00, -0xbc,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, -0x2d,0x00,0x00,0x00,0xc1,0x00,0x00,0x00,0x09,0x00,0x00,0x00, -0x1d,0x00,0x03,0x00,0xcc,0x00,0x00,0x00,0x2d,0x00,0x00,0x00, -0x1e,0x00,0x03,0x00,0xcd,0x00,0x00,0x00,0xcc,0x00,0x00,0x00, -0x20,0x00,0x04,0x00,0xce,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, -0xcd,0x00,0x00,0x00,0x3b,0x00,0x04,0x00,0xce,0x00,0x00,0x00, -0xcf,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0x20,0x00,0x04,0x00, -0xd1,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0x2d,0x00,0x00,0x00, -0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00,0xda,0x00,0x00,0x00, -0x08,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00, -0x15,0x01,0x00,0x00,0x00,0x01,0x00,0x00,0x2c,0x00,0x06,0x00, -0x66,0x00,0x00,0x00,0x16,0x01,0x00,0x00,0x69,0x00,0x00,0x00, -0x15,0x01,0x00,0x00,0x69,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0x5c,0x01,0x00,0x00,0x00,0x00,0x00,0x3f, -0x36,0x00,0x05,0x00,0x02,0x00,0x00,0x00,0x04,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0xf8,0x00,0x02,0x00, -0x05,0x00,0x00,0x00,0xf7,0x00,0x03,0x00,0x17,0x01,0x00,0x00, -0x00,0x00,0x00,0x00,0xfb,0x00,0x03,0x00,0x6f,0x00,0x00,0x00, -0x18,0x01,0x00,0x00,0xf8,0x00,0x02,0x00,0x18,0x01,0x00,0x00, -0x41,0x00,0x05,0x00,0x6a,0x00,0x00,0x00,0x6b,0x00,0x00,0x00, -0x68,0x00,0x00,0x00,0x69,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x07,0x00,0x00,0x00,0x6c,0x00,0x00,0x00,0x6b,0x00,0x00,0x00, -0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0x6d,0x00,0x00,0x00, -0x6c,0x00,0x00,0x00,0x17,0x00,0x00,0x00,0x41,0x00,0x05,0x00, -0x6a,0x00,0x00,0x00,0x70,0x00,0x00,0x00,0x68,0x00,0x00,0x00, -0x6f,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, -0x71,0x00,0x00,0x00,0x70,0x00,0x00,0x00,0x41,0x00,0x05,0x00, -0x73,0x00,0x00,0x00,0x74,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, -0x42,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, -0x75,0x00,0x00,0x00,0x74,0x00,0x00,0x00,0xae,0x00,0x05,0x00, -0x3c,0x00,0x00,0x00,0x76,0x00,0x00,0x00,0x6d,0x00,0x00,0x00, -0x75,0x00,0x00,0x00,0xf7,0x00,0x03,0x00,0x78,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0xfa,0x00,0x04,0x00,0x76,0x00,0x00,0x00, -0x77,0x00,0x00,0x00,0x78,0x00,0x00,0x00,0xf8,0x00,0x02,0x00, -0x77,0x00,0x00,0x00,0xf9,0x00,0x02,0x00,0x17,0x01,0x00,0x00, -0xf8,0x00,0x02,0x00,0x78,0x00,0x00,0x00,0x41,0x00,0x05,0x00, -0x73,0x00,0x00,0x00,0x7c,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, -0x45,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, -0x7d,0x00,0x00,0x00,0x7c,0x00,0x00,0x00,0x86,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0x7e,0x00,0x00,0x00,0x6d,0x00,0x00,0x00, -0x7d,0x00,0x00,0x00,0x89,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0x83,0x00,0x00,0x00,0x6d,0x00,0x00,0x00,0x7d,0x00,0x00,0x00, -0xac,0x00,0x05,0x00,0x3c,0x00,0x00,0x00,0x85,0x00,0x00,0x00, -0x7e,0x00,0x00,0x00,0x6f,0x00,0x00,0x00,0xf7,0x00,0x03,0x00, -0x87,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xfa,0x00,0x04,0x00, -0x85,0x00,0x00,0x00,0x86,0x00,0x00,0x00,0x87,0x00,0x00,0x00, -0xf8,0x00,0x02,0x00,0x86,0x00,0x00,0x00,0x84,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0x8c,0x00,0x00,0x00,0x71,0x00,0x00,0x00, -0x75,0x00,0x00,0x00,0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0x90,0x00,0x00,0x00,0x7e,0x00,0x00,0x00,0x7d,0x00,0x00,0x00, -0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0x91,0x00,0x00,0x00, -0x8c,0x00,0x00,0x00,0x90,0x00,0x00,0x00,0x80,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0x93,0x00,0x00,0x00,0x91,0x00,0x00,0x00, -0x83,0x00,0x00,0x00,0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00, -0xa2,0x00,0x00,0x00,0x9e,0x00,0x00,0x00,0x42,0x00,0x00,0x00, -0x93,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x94,0x00,0x00,0x00, -0xa3,0x00,0x00,0x00,0xa2,0x00,0x00,0x00,0x41,0x00,0x06,0x00, -0xa1,0x00,0x00,0x00,0xa4,0x00,0x00,0x00,0x98,0x00,0x00,0x00, -0x42,0x00,0x00,0x00,0x93,0x00,0x00,0x00,0x3e,0x00,0x03,0x00, -0xa4,0x00,0x00,0x00,0xa3,0x00,0x00,0x00,0x80,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0xa6,0x00,0x00,0x00,0x93,0x00,0x00,0x00, -0x69,0x00,0x00,0x00,0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00, -0xa9,0x00,0x00,0x00,0x9e,0x00,0x00,0x00,0x42,0x00,0x00,0x00, -0xa6,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x94,0x00,0x00,0x00, -0xaa,0x00,0x00,0x00,0xa9,0x00,0x00,0x00,0x41,0x00,0x06,0x00, -0xa1,0x00,0x00,0x00,0xab,0x00,0x00,0x00,0x98,0x00,0x00,0x00, -0x42,0x00,0x00,0x00,0xa6,0x00,0x00,0x00,0x3e,0x00,0x03,0x00, -0xab,0x00,0x00,0x00,0xaa,0x00,0x00,0x00,0xf9,0x00,0x02,0x00, -0x17,0x01,0x00,0x00,0xf8,0x00,0x02,0x00,0x87,0x00,0x00,0x00, -0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xb1,0x00,0x00,0x00, -0x71,0x00,0x00,0x00,0x75,0x00,0x00,0x00,0x84,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0xb5,0x00,0x00,0x00,0x7e,0x00,0x00,0x00, -0x7d,0x00,0x00,0x00,0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0xb6,0x00,0x00,0x00,0xb1,0x00,0x00,0x00,0xb5,0x00,0x00,0x00, -0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xb8,0x00,0x00,0x00, -0x83,0x00,0x00,0x00,0x17,0x00,0x00,0x00,0x80,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0xb9,0x00,0x00,0x00,0xb6,0x00,0x00,0x00, -0xb8,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x73,0x00,0x00,0x00, -0xbd,0x00,0x00,0x00,0x2c,0x00,0x00,0x00,0xbc,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0xbe,0x00,0x00,0x00, -0xbd,0x00,0x00,0x00,0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0xbf,0x00,0x00,0x00,0x71,0x00,0x00,0x00,0xbe,0x00,0x00,0x00, -0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00,0xc2,0x00,0x00,0x00, -0x2c,0x00,0x00,0x00,0xc1,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0xc3,0x00,0x00,0x00,0xc2,0x00,0x00,0x00, -0x70,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xc5,0x00,0x00,0x00, -0x83,0x00,0x00,0x00,0x70,0x00,0x04,0x00,0x06,0x00,0x00,0x00, -0xc8,0x00,0x00,0x00,0x7e,0x00,0x00,0x00,0x7f,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0x5b,0x01,0x00,0x00,0xc8,0x00,0x00,0x00, -0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00,0xc9,0x00,0x00,0x00, -0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00,0xc3,0x00,0x00,0x00, -0xc5,0x00,0x00,0x00,0x5b,0x01,0x00,0x00,0x41,0x00,0x06,0x00, -0xd1,0x00,0x00,0x00,0xd2,0x00,0x00,0x00,0xcf,0x00,0x00,0x00, -0x42,0x00,0x00,0x00,0xbf,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x2d,0x00,0x00,0x00,0xd3,0x00,0x00,0x00,0xd2,0x00,0x00,0x00, -0x6f,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xd6,0x00,0x00,0x00, -0xd3,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00, -0xd7,0x00,0x00,0x00,0x2c,0x00,0x00,0x00,0x33,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xd8,0x00,0x00,0x00, -0xd7,0x00,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0xd9,0x00,0x00,0x00,0xd6,0x00,0x00,0x00,0xd8,0x00,0x00,0x00, -0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00,0xdb,0x00,0x00,0x00, -0x2c,0x00,0x00,0x00,0xda,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0xdc,0x00,0x00,0x00,0xdb,0x00,0x00,0x00, -0x70,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xde,0x00,0x00,0x00, -0x6d,0x00,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0xe0,0x00,0x00,0x00,0xde,0x00,0x00,0x00,0x5c,0x01,0x00,0x00, -0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0xe1,0x00,0x00,0x00, -0x01,0x00,0x00,0x00,0x1a,0x00,0x00,0x00,0xdc,0x00,0x00,0x00, -0xe0,0x00,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0xe2,0x00,0x00,0x00,0xd9,0x00,0x00,0x00,0xe1,0x00,0x00,0x00, -0x6d,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0xe5,0x00,0x00,0x00, -0xc9,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00, -0x22,0x01,0x00,0x00,0x2c,0x00,0x00,0x00,0x2e,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x23,0x01,0x00,0x00, -0x22,0x01,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x26,0x01,0x00,0x00,0xd8,0x00,0x00,0x00,0xe2,0x00,0x00,0x00, -0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00,0x28,0x01,0x00,0x00, -0x2c,0x00,0x00,0x00,0x39,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0x29,0x01,0x00,0x00,0x28,0x01,0x00,0x00, -0xb7,0x00,0x05,0x00,0x3c,0x00,0x00,0x00,0x2a,0x01,0x00,0x00, -0x29,0x01,0x00,0x00,0x20,0x00,0x00,0x00,0xf7,0x00,0x03,0x00, -0x43,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xfa,0x00,0x04,0x00, -0x2a,0x01,0x00,0x00,0x2b,0x01,0x00,0x00,0x43,0x01,0x00,0x00, -0xf8,0x00,0x02,0x00,0x2b,0x01,0x00,0x00,0x41,0x00,0x06,0x00, -0x2f,0x00,0x00,0x00,0x2c,0x01,0x00,0x00,0x2c,0x00,0x00,0x00, -0x41,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0x2d,0x01,0x00,0x00,0x2c,0x01,0x00,0x00, -0x41,0x00,0x06,0x00,0x2f,0x00,0x00,0x00,0x2e,0x01,0x00,0x00, -0x2c,0x00,0x00,0x00,0x41,0x00,0x00,0x00,0x45,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x2f,0x01,0x00,0x00, -0x2e,0x01,0x00,0x00,0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0x4f,0x01,0x00,0x00,0xe5,0x00,0x00,0x00,0x17,0x00,0x00,0x00, -0x70,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x50,0x01,0x00,0x00, -0x4f,0x01,0x00,0x00,0x83,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x51,0x01,0x00,0x00,0x50,0x01,0x00,0x00,0x2d,0x01,0x00,0x00, -0x83,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x52,0x01,0x00,0x00, -0x2f,0x01,0x00,0x00,0x2d,0x01,0x00,0x00,0x0c,0x00,0x07,0x00, -0x06,0x00,0x00,0x00,0x53,0x01,0x00,0x00,0x01,0x00,0x00,0x00, -0x28,0x00,0x00,0x00,0x1b,0x00,0x00,0x00,0x52,0x01,0x00,0x00, -0x88,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x54,0x01,0x00,0x00, -0x51,0x01,0x00,0x00,0x53,0x01,0x00,0x00,0x0c,0x00,0x07,0x00, -0x06,0x00,0x00,0x00,0x56,0x01,0x00,0x00,0x01,0x00,0x00,0x00, -0x28,0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x54,0x01,0x00,0x00, -0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x57,0x01,0x00,0x00, -0x01,0x00,0x00,0x00,0x25,0x00,0x00,0x00,0x1f,0x00,0x00,0x00, -0x56,0x01,0x00,0x00,0x83,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x58,0x01,0x00,0x00,0x1f,0x00,0x00,0x00,0x57,0x01,0x00,0x00, -0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x33,0x01,0x00,0x00, -0x58,0x01,0x00,0x00,0x29,0x01,0x00,0x00,0x83,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0x5d,0x01,0x00,0x00,0x57,0x01,0x00,0x00, -0x1f,0x00,0x00,0x00,0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00, -0x36,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00, -0x5d,0x01,0x00,0x00,0x29,0x01,0x00,0x00,0x1f,0x00,0x00,0x00, -0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x39,0x01,0x00,0x00, -0xe2,0x00,0x00,0x00,0x33,0x01,0x00,0x00,0x0c,0x00,0x08,0x00, -0x06,0x00,0x00,0x00,0x3a,0x01,0x00,0x00,0x01,0x00,0x00,0x00, -0x32,0x00,0x00,0x00,0x26,0x01,0x00,0x00,0x36,0x01,0x00,0x00, -0x39,0x01,0x00,0x00,0x88,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x3d,0x01,0x00,0x00,0x1f,0x00,0x00,0x00,0xd8,0x00,0x00,0x00, -0x0c,0x00,0x06,0x00,0x06,0x00,0x00,0x00,0x3e,0x01,0x00,0x00, -0x01,0x00,0x00,0x00,0x1c,0x00,0x00,0x00,0x3d,0x01,0x00,0x00, -0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00,0x40,0x01,0x00,0x00, -0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00,0x53,0x00,0x00,0x00, -0x3e,0x01,0x00,0x00,0x1f,0x00,0x00,0x00,0x85,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0x42,0x01,0x00,0x00,0x23,0x01,0x00,0x00, -0x40,0x01,0x00,0x00,0xf9,0x00,0x02,0x00,0x43,0x01,0x00,0x00, -0xf8,0x00,0x02,0x00,0x43,0x01,0x00,0x00,0xf5,0x00,0x07,0x00, -0x06,0x00,0x00,0x00,0x5a,0x01,0x00,0x00,0x23,0x01,0x00,0x00, -0x87,0x00,0x00,0x00,0x42,0x01,0x00,0x00,0x2b,0x01,0x00,0x00, -0xf5,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x59,0x01,0x00,0x00, -0x26,0x01,0x00,0x00,0x87,0x00,0x00,0x00,0x3a,0x01,0x00,0x00, -0x2b,0x01,0x00,0x00,0x0c,0x00,0x06,0x00,0x06,0x00,0x00,0x00, -0x45,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x0e,0x00,0x00,0x00, -0x59,0x01,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x47,0x01,0x00,0x00,0x45,0x01,0x00,0x00,0x5a,0x01,0x00,0x00, -0x0c,0x00,0x06,0x00,0x06,0x00,0x00,0x00,0x49,0x01,0x00,0x00, -0x01,0x00,0x00,0x00,0x0d,0x00,0x00,0x00,0x59,0x01,0x00,0x00, -0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x4b,0x01,0x00,0x00, -0x49,0x01,0x00,0x00,0x5a,0x01,0x00,0x00,0x41,0x00,0x06,0x00, -0xa1,0x00,0x00,0x00,0xf0,0x00,0x00,0x00,0x9e,0x00,0x00,0x00, -0x42,0x00,0x00,0x00,0xb9,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x94,0x00,0x00,0x00,0xf1,0x00,0x00,0x00,0xf0,0x00,0x00,0x00, -0x73,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xf2,0x00,0x00,0x00, -0xf1,0x00,0x00,0x00,0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0xf7,0x00,0x00,0x00,0x7d,0x00,0x00,0x00,0x17,0x00,0x00,0x00, -0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xf8,0x00,0x00,0x00, -0xb9,0x00,0x00,0x00,0xf7,0x00,0x00,0x00,0x41,0x00,0x06,0x00, -0xa1,0x00,0x00,0x00,0xf9,0x00,0x00,0x00,0x9e,0x00,0x00,0x00, -0x42,0x00,0x00,0x00,0xf8,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x94,0x00,0x00,0x00,0xfa,0x00,0x00,0x00,0xf9,0x00,0x00,0x00, -0x73,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xfb,0x00,0x00,0x00, -0xfa,0x00,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x03,0x01,0x00,0x00,0xfb,0x00,0x00,0x00,0x4b,0x01,0x00,0x00, -0x7f,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x5e,0x01,0x00,0x00, -0x03,0x01,0x00,0x00,0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00, -0x04,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00, -0xf2,0x00,0x00,0x00,0x47,0x01,0x00,0x00,0x5e,0x01,0x00,0x00, -0x73,0x00,0x04,0x00,0x94,0x00,0x00,0x00,0x05,0x01,0x00,0x00, -0x04,0x01,0x00,0x00,0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00, -0x06,0x01,0x00,0x00,0x98,0x00,0x00,0x00,0x42,0x00,0x00,0x00, -0xb9,0x00,0x00,0x00,0x3e,0x00,0x03,0x00,0x06,0x01,0x00,0x00, -0x05,0x01,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x11,0x01,0x00,0x00,0xfb,0x00,0x00,0x00,0x47,0x01,0x00,0x00, -0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00,0x12,0x01,0x00,0x00, -0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00,0xf2,0x00,0x00,0x00, -0x4b,0x01,0x00,0x00,0x11,0x01,0x00,0x00,0x73,0x00,0x04,0x00, -0x94,0x00,0x00,0x00,0x13,0x01,0x00,0x00,0x12,0x01,0x00,0x00, -0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00,0x14,0x01,0x00,0x00, -0x98,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0xf8,0x00,0x00,0x00, -0x3e,0x00,0x03,0x00,0x14,0x01,0x00,0x00,0x13,0x01,0x00,0x00, -0xf9,0x00,0x02,0x00,0x17,0x01,0x00,0x00,0xf8,0x00,0x02,0x00, -0x17,0x01,0x00,0x00,0xfd,0x00,0x01,0x00,0x38,0x00,0x01,0x00, - -}; -const uint64_t rope_neox_f16_len = 3876; - -unsigned char rope_neox_f32_data[] = { -0x03,0x02,0x23,0x07,0x00,0x05,0x01,0x00,0x0b,0x00,0x0d,0x00, -0x5a,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x11,0x00,0x02,0x00, -0x01,0x00,0x00,0x00,0x0b,0x00,0x06,0x00,0x01,0x00,0x00,0x00, -0x47,0x4c,0x53,0x4c,0x2e,0x73,0x74,0x64,0x2e,0x34,0x35,0x30, -0x00,0x00,0x00,0x00,0x0e,0x00,0x03,0x00,0x00,0x00,0x00,0x00, -0x01,0x00,0x00,0x00,0x0f,0x00,0x0a,0x00,0x05,0x00,0x00,0x00, -0x04,0x00,0x00,0x00,0x6d,0x61,0x69,0x6e,0x00,0x00,0x00,0x00, -0x2c,0x00,0x00,0x00,0x68,0x00,0x00,0x00,0x97,0x00,0x00,0x00, -0x9d,0x00,0x00,0x00,0xce,0x00,0x00,0x00,0x10,0x00,0x06,0x00, +0xcf,0x00,0x00,0x00,0xdf,0x00,0x00,0x00,0x10,0x00,0x06,0x00, 0x04,0x00,0x00,0x00,0x11,0x00,0x00,0x00,0x01,0x00,0x00,0x00, 0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x47,0x00,0x04,0x00, 0x29,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x04,0x00,0x00,0x00, @@ -79237,51 +78910,61 @@ unsigned char rope_neox_f32_data[] = { 0x1c,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00, 0x08,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, 0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00,0x09,0x00,0x00,0x00, -0x23,0x00,0x00,0x00,0x30,0x00,0x00,0x00,0x47,0x00,0x03,0x00, -0x2a,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00, -0x68,0x00,0x00,0x00,0x0b,0x00,0x00,0x00,0x1c,0x00,0x00,0x00, -0x47,0x00,0x04,0x00,0x94,0x00,0x00,0x00,0x06,0x00,0x00,0x00, -0x04,0x00,0x00,0x00,0x48,0x00,0x04,0x00,0x95,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x19,0x00,0x00,0x00,0x48,0x00,0x05,0x00, -0x95,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x47,0x00,0x03,0x00,0x95,0x00,0x00,0x00, -0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x97,0x00,0x00,0x00, -0x22,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00, -0x97,0x00,0x00,0x00,0x21,0x00,0x00,0x00,0x02,0x00,0x00,0x00, -0x47,0x00,0x04,0x00,0x9a,0x00,0x00,0x00,0x06,0x00,0x00,0x00, -0x04,0x00,0x00,0x00,0x48,0x00,0x04,0x00,0x9b,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00, -0x9b,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x47,0x00,0x03,0x00,0x9b,0x00,0x00,0x00, -0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x9d,0x00,0x00,0x00, -0x22,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00, -0x9d,0x00,0x00,0x00,0x21,0x00,0x00,0x00,0x00,0x00,0x00,0x00, -0x47,0x00,0x04,0x00,0xcb,0x00,0x00,0x00,0x06,0x00,0x00,0x00, -0x04,0x00,0x00,0x00,0x48,0x00,0x04,0x00,0xcc,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00, -0xcc,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00, -0x00,0x00,0x00,0x00,0x47,0x00,0x03,0x00,0xcc,0x00,0x00,0x00, -0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0xce,0x00,0x00,0x00, -0x22,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00, -0xce,0x00,0x00,0x00,0x21,0x00,0x00,0x00,0x01,0x00,0x00,0x00, -0x47,0x00,0x04,0x00,0x11,0x01,0x00,0x00,0x0b,0x00,0x00,0x00, -0x19,0x00,0x00,0x00,0x13,0x00,0x02,0x00,0x02,0x00,0x00,0x00, -0x21,0x00,0x03,0x00,0x03,0x00,0x00,0x00,0x02,0x00,0x00,0x00, -0x16,0x00,0x03,0x00,0x06,0x00,0x00,0x00,0x20,0x00,0x00,0x00, -0x15,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x20,0x00,0x00,0x00, +0x23,0x00,0x00,0x00,0x30,0x00,0x00,0x00,0x48,0x00,0x05,0x00, +0x2a,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x23,0x00,0x00,0x00, +0x34,0x00,0x00,0x00,0x47,0x00,0x03,0x00,0x2a,0x00,0x00,0x00, +0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x68,0x00,0x00,0x00, +0x0b,0x00,0x00,0x00,0x1c,0x00,0x00,0x00,0x47,0x00,0x04,0x00, +0x95,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x02,0x00,0x00,0x00, +0x48,0x00,0x04,0x00,0x96,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x19,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x96,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x47,0x00,0x03,0x00,0x96,0x00,0x00,0x00,0x02,0x00,0x00,0x00, +0x47,0x00,0x04,0x00,0x98,0x00,0x00,0x00,0x22,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x98,0x00,0x00,0x00, +0x21,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x47,0x00,0x04,0x00, +0x9b,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x02,0x00,0x00,0x00, +0x48,0x00,0x04,0x00,0x9c,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x9c,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x47,0x00,0x03,0x00,0x9c,0x00,0x00,0x00,0x02,0x00,0x00,0x00, +0x47,0x00,0x04,0x00,0x9e,0x00,0x00,0x00,0x22,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x9e,0x00,0x00,0x00, +0x21,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00, +0xcc,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x04,0x00,0x00,0x00, +0x48,0x00,0x04,0x00,0xcd,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0xcd,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x47,0x00,0x03,0x00,0xcd,0x00,0x00,0x00,0x02,0x00,0x00,0x00, +0x47,0x00,0x04,0x00,0xcf,0x00,0x00,0x00,0x22,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0xcf,0x00,0x00,0x00, +0x21,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x47,0x00,0x04,0x00, +0xdc,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x04,0x00,0x00,0x00, +0x48,0x00,0x04,0x00,0xdd,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0xdd,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x47,0x00,0x03,0x00,0xdd,0x00,0x00,0x00,0x02,0x00,0x00,0x00, +0x47,0x00,0x04,0x00,0xdf,0x00,0x00,0x00,0x22,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0xdf,0x00,0x00,0x00, +0x21,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00, +0x2b,0x01,0x00,0x00,0x0b,0x00,0x00,0x00,0x19,0x00,0x00,0x00, +0x13,0x00,0x02,0x00,0x02,0x00,0x00,0x00,0x21,0x00,0x03,0x00, +0x03,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x16,0x00,0x03,0x00, +0x06,0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x15,0x00,0x04,0x00, +0x07,0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x17,0x00,0x00,0x00, +0x02,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x1b,0x00,0x00,0x00,0x6f,0x12,0x83,0x3a,0x2b,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0x1f,0x00,0x00,0x00,0x00,0x00,0x80,0x3f, +0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x20,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00, -0x17,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0x1b,0x00,0x00,0x00,0x6f,0x12,0x83,0x3a, -0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x1f,0x00,0x00,0x00, -0x00,0x00,0x80,0x3f,0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00, -0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, -0x07,0x00,0x00,0x00,0x28,0x00,0x00,0x00,0x04,0x00,0x00,0x00, -0x1c,0x00,0x04,0x00,0x29,0x00,0x00,0x00,0x06,0x00,0x00,0x00, -0x28,0x00,0x00,0x00,0x1e,0x00,0x0c,0x00,0x2a,0x00,0x00,0x00, -0x07,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x06,0x00,0x00,0x00, -0x07,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x06,0x00,0x00,0x00, -0x06,0x00,0x00,0x00,0x29,0x00,0x00,0x00,0x06,0x00,0x00,0x00, -0x06,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0x2b,0x00,0x00,0x00, +0x28,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x1c,0x00,0x04,0x00, +0x29,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x28,0x00,0x00,0x00, +0x1e,0x00,0x0d,0x00,0x2a,0x00,0x00,0x00,0x07,0x00,0x00,0x00, +0x07,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00, +0x06,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x29,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x07,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0x2b,0x00,0x00,0x00, 0x09,0x00,0x00,0x00,0x2a,0x00,0x00,0x00,0x3b,0x00,0x04,0x00, 0x2b,0x00,0x00,0x00,0x2c,0x00,0x00,0x00,0x09,0x00,0x00,0x00, 0x15,0x00,0x04,0x00,0x2d,0x00,0x00,0x00,0x20,0x00,0x00,0x00, @@ -79306,228 +78989,614 @@ unsigned char rope_neox_f32_data[] = { 0x07,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00, 0x6f,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00,0x04,0x00, 0x73,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x07,0x00,0x00,0x00, -0x1d,0x00,0x03,0x00,0x94,0x00,0x00,0x00,0x06,0x00,0x00,0x00, -0x1e,0x00,0x03,0x00,0x95,0x00,0x00,0x00,0x94,0x00,0x00,0x00, -0x20,0x00,0x04,0x00,0x96,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, -0x95,0x00,0x00,0x00,0x3b,0x00,0x04,0x00,0x96,0x00,0x00,0x00, -0x97,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0x1d,0x00,0x03,0x00, -0x9a,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x1e,0x00,0x03,0x00, -0x9b,0x00,0x00,0x00,0x9a,0x00,0x00,0x00,0x20,0x00,0x04,0x00, -0x9c,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0x9b,0x00,0x00,0x00, -0x3b,0x00,0x04,0x00,0x9c,0x00,0x00,0x00,0x9d,0x00,0x00,0x00, -0x0c,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0xa0,0x00,0x00,0x00, -0x0c,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, -0x2d,0x00,0x00,0x00,0xbb,0x00,0x00,0x00,0x03,0x00,0x00,0x00, -0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00,0xc0,0x00,0x00,0x00, -0x09,0x00,0x00,0x00,0x1d,0x00,0x03,0x00,0xcb,0x00,0x00,0x00, -0x2d,0x00,0x00,0x00,0x1e,0x00,0x03,0x00,0xcc,0x00,0x00,0x00, -0xcb,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0xcd,0x00,0x00,0x00, -0x0c,0x00,0x00,0x00,0xcc,0x00,0x00,0x00,0x3b,0x00,0x04,0x00, -0xcd,0x00,0x00,0x00,0xce,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, -0x20,0x00,0x04,0x00,0xd0,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, +0x16,0x00,0x03,0x00,0x94,0x00,0x00,0x00,0x10,0x00,0x00,0x00, +0x1d,0x00,0x03,0x00,0x95,0x00,0x00,0x00,0x94,0x00,0x00,0x00, +0x1e,0x00,0x03,0x00,0x96,0x00,0x00,0x00,0x95,0x00,0x00,0x00, +0x20,0x00,0x04,0x00,0x97,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, +0x96,0x00,0x00,0x00,0x3b,0x00,0x04,0x00,0x97,0x00,0x00,0x00, +0x98,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0x1d,0x00,0x03,0x00, +0x9b,0x00,0x00,0x00,0x94,0x00,0x00,0x00,0x1e,0x00,0x03,0x00, +0x9c,0x00,0x00,0x00,0x9b,0x00,0x00,0x00,0x20,0x00,0x04,0x00, +0x9d,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0x9c,0x00,0x00,0x00, +0x3b,0x00,0x04,0x00,0x9d,0x00,0x00,0x00,0x9e,0x00,0x00,0x00, +0x0c,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0xa1,0x00,0x00,0x00, +0x0c,0x00,0x00,0x00,0x94,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x2d,0x00,0x00,0x00,0xbc,0x00,0x00,0x00,0x03,0x00,0x00,0x00, +0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00,0xc1,0x00,0x00,0x00, +0x09,0x00,0x00,0x00,0x1d,0x00,0x03,0x00,0xcc,0x00,0x00,0x00, +0x2d,0x00,0x00,0x00,0x1e,0x00,0x03,0x00,0xcd,0x00,0x00,0x00, +0xcc,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0xce,0x00,0x00,0x00, +0x0c,0x00,0x00,0x00,0xcd,0x00,0x00,0x00,0x3b,0x00,0x04,0x00, +0xce,0x00,0x00,0x00,0xcf,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, +0x20,0x00,0x04,0x00,0xd1,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, 0x2d,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00, -0xd9,0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, -0x07,0x00,0x00,0x00,0x10,0x01,0x00,0x00,0x00,0x01,0x00,0x00, -0x2c,0x00,0x06,0x00,0x66,0x00,0x00,0x00,0x11,0x01,0x00,0x00, -0x69,0x00,0x00,0x00,0x10,0x01,0x00,0x00,0x69,0x00,0x00,0x00, -0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x57,0x01,0x00,0x00, -0x00,0x00,0x00,0x3f,0x36,0x00,0x05,0x00,0x02,0x00,0x00,0x00, -0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00, -0xf8,0x00,0x02,0x00,0x05,0x00,0x00,0x00,0xf7,0x00,0x03,0x00, -0x12,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xfb,0x00,0x03,0x00, -0x6f,0x00,0x00,0x00,0x13,0x01,0x00,0x00,0xf8,0x00,0x02,0x00, -0x13,0x01,0x00,0x00,0x41,0x00,0x05,0x00,0x6a,0x00,0x00,0x00, -0x6b,0x00,0x00,0x00,0x68,0x00,0x00,0x00,0x69,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x6c,0x00,0x00,0x00, -0x6b,0x00,0x00,0x00,0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0x6d,0x00,0x00,0x00,0x6c,0x00,0x00,0x00,0x17,0x00,0x00,0x00, -0x41,0x00,0x05,0x00,0x6a,0x00,0x00,0x00,0x70,0x00,0x00,0x00, -0x68,0x00,0x00,0x00,0x6f,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x07,0x00,0x00,0x00,0x71,0x00,0x00,0x00,0x70,0x00,0x00,0x00, -0x41,0x00,0x05,0x00,0x73,0x00,0x00,0x00,0x74,0x00,0x00,0x00, -0x2c,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x07,0x00,0x00,0x00,0x75,0x00,0x00,0x00,0x74,0x00,0x00,0x00, -0xae,0x00,0x05,0x00,0x3c,0x00,0x00,0x00,0x76,0x00,0x00,0x00, -0x6d,0x00,0x00,0x00,0x75,0x00,0x00,0x00,0xf7,0x00,0x03,0x00, -0x78,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xfa,0x00,0x04,0x00, -0x76,0x00,0x00,0x00,0x77,0x00,0x00,0x00,0x78,0x00,0x00,0x00, -0xf8,0x00,0x02,0x00,0x77,0x00,0x00,0x00,0xf9,0x00,0x02,0x00, -0x12,0x01,0x00,0x00,0xf8,0x00,0x02,0x00,0x78,0x00,0x00,0x00, -0x41,0x00,0x05,0x00,0x73,0x00,0x00,0x00,0x7c,0x00,0x00,0x00, -0x2c,0x00,0x00,0x00,0x45,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x07,0x00,0x00,0x00,0x7d,0x00,0x00,0x00,0x7c,0x00,0x00,0x00, -0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0x7e,0x00,0x00,0x00, -0x6d,0x00,0x00,0x00,0x7d,0x00,0x00,0x00,0x89,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0x83,0x00,0x00,0x00,0x6d,0x00,0x00,0x00, -0x7d,0x00,0x00,0x00,0xac,0x00,0x05,0x00,0x3c,0x00,0x00,0x00, -0x85,0x00,0x00,0x00,0x7e,0x00,0x00,0x00,0x6f,0x00,0x00,0x00, -0xf7,0x00,0x03,0x00,0x87,0x00,0x00,0x00,0x00,0x00,0x00,0x00, -0xfa,0x00,0x04,0x00,0x85,0x00,0x00,0x00,0x86,0x00,0x00,0x00, -0x87,0x00,0x00,0x00,0xf8,0x00,0x02,0x00,0x86,0x00,0x00,0x00, -0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0x8c,0x00,0x00,0x00, -0x71,0x00,0x00,0x00,0x75,0x00,0x00,0x00,0x84,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0x90,0x00,0x00,0x00,0x7e,0x00,0x00,0x00, -0x7d,0x00,0x00,0x00,0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0x91,0x00,0x00,0x00,0x8c,0x00,0x00,0x00,0x90,0x00,0x00,0x00, -0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0x93,0x00,0x00,0x00, -0x91,0x00,0x00,0x00,0x83,0x00,0x00,0x00,0x41,0x00,0x06,0x00, -0xa0,0x00,0x00,0x00,0xa1,0x00,0x00,0x00,0x9d,0x00,0x00,0x00, -0x42,0x00,0x00,0x00,0x93,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0xa2,0x00,0x00,0x00,0xa1,0x00,0x00,0x00, -0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00,0xa3,0x00,0x00,0x00, -0x97,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0x93,0x00,0x00,0x00, -0x3e,0x00,0x03,0x00,0xa3,0x00,0x00,0x00,0xa2,0x00,0x00,0x00, -0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xa5,0x00,0x00,0x00, -0x93,0x00,0x00,0x00,0x69,0x00,0x00,0x00,0x41,0x00,0x06,0x00, -0xa0,0x00,0x00,0x00,0xa8,0x00,0x00,0x00,0x9d,0x00,0x00,0x00, -0x42,0x00,0x00,0x00,0xa5,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0xa9,0x00,0x00,0x00,0xa8,0x00,0x00,0x00, -0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00,0xaa,0x00,0x00,0x00, -0x97,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0xa5,0x00,0x00,0x00, -0x3e,0x00,0x03,0x00,0xaa,0x00,0x00,0x00,0xa9,0x00,0x00,0x00, -0xf9,0x00,0x02,0x00,0x12,0x01,0x00,0x00,0xf8,0x00,0x02,0x00, -0x87,0x00,0x00,0x00,0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0xb0,0x00,0x00,0x00,0x71,0x00,0x00,0x00,0x75,0x00,0x00,0x00, -0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xb4,0x00,0x00,0x00, +0xd5,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x1d,0x00,0x03,0x00, +0xdc,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x1e,0x00,0x03,0x00, +0xdd,0x00,0x00,0x00,0xdc,0x00,0x00,0x00,0x20,0x00,0x04,0x00, +0xde,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0xdd,0x00,0x00,0x00, +0x3b,0x00,0x04,0x00,0xde,0x00,0x00,0x00,0xdf,0x00,0x00,0x00, +0x0c,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0xe2,0x00,0x00,0x00, +0x0c,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x2d,0x00,0x00,0x00,0xed,0x00,0x00,0x00,0x08,0x00,0x00,0x00, +0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x2a,0x01,0x00,0x00, +0x00,0x01,0x00,0x00,0x2c,0x00,0x06,0x00,0x66,0x00,0x00,0x00, +0x2b,0x01,0x00,0x00,0x69,0x00,0x00,0x00,0x2a,0x01,0x00,0x00, +0x69,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x72,0x01,0x00,0x00,0x00,0x00,0x00,0x3f,0x36,0x00,0x05,0x00, +0x02,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x03,0x00,0x00,0x00,0xf8,0x00,0x02,0x00,0x05,0x00,0x00,0x00, +0xf7,0x00,0x03,0x00,0x2c,0x01,0x00,0x00,0x00,0x00,0x00,0x00, +0xfb,0x00,0x03,0x00,0x6f,0x00,0x00,0x00,0x2d,0x01,0x00,0x00, +0xf8,0x00,0x02,0x00,0x2d,0x01,0x00,0x00,0x41,0x00,0x05,0x00, +0x6a,0x00,0x00,0x00,0x6b,0x00,0x00,0x00,0x68,0x00,0x00,0x00, +0x69,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, +0x6c,0x00,0x00,0x00,0x6b,0x00,0x00,0x00,0x84,0x00,0x05,0x00, +0x07,0x00,0x00,0x00,0x6d,0x00,0x00,0x00,0x6c,0x00,0x00,0x00, +0x17,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x6a,0x00,0x00,0x00, +0x70,0x00,0x00,0x00,0x68,0x00,0x00,0x00,0x6f,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x71,0x00,0x00,0x00, +0x70,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x73,0x00,0x00,0x00, +0x74,0x00,0x00,0x00,0x2c,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x75,0x00,0x00,0x00, +0x74,0x00,0x00,0x00,0xae,0x00,0x05,0x00,0x3c,0x00,0x00,0x00, +0x76,0x00,0x00,0x00,0x6d,0x00,0x00,0x00,0x75,0x00,0x00,0x00, +0xf7,0x00,0x03,0x00,0x78,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0xfa,0x00,0x04,0x00,0x76,0x00,0x00,0x00,0x77,0x00,0x00,0x00, +0x78,0x00,0x00,0x00,0xf8,0x00,0x02,0x00,0x77,0x00,0x00,0x00, +0xf9,0x00,0x02,0x00,0x2c,0x01,0x00,0x00,0xf8,0x00,0x02,0x00, +0x78,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x73,0x00,0x00,0x00, +0x7c,0x00,0x00,0x00,0x2c,0x00,0x00,0x00,0x45,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x7d,0x00,0x00,0x00, +0x7c,0x00,0x00,0x00,0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0x7e,0x00,0x00,0x00,0x6d,0x00,0x00,0x00,0x7d,0x00,0x00,0x00, +0x89,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0x83,0x00,0x00,0x00, +0x6d,0x00,0x00,0x00,0x7d,0x00,0x00,0x00,0xac,0x00,0x05,0x00, +0x3c,0x00,0x00,0x00,0x85,0x00,0x00,0x00,0x7e,0x00,0x00,0x00, +0x6f,0x00,0x00,0x00,0xf7,0x00,0x03,0x00,0x87,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0xfa,0x00,0x04,0x00,0x85,0x00,0x00,0x00, +0x86,0x00,0x00,0x00,0x87,0x00,0x00,0x00,0xf8,0x00,0x02,0x00, +0x86,0x00,0x00,0x00,0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0x8c,0x00,0x00,0x00,0x71,0x00,0x00,0x00,0x75,0x00,0x00,0x00, +0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0x90,0x00,0x00,0x00, 0x7e,0x00,0x00,0x00,0x7d,0x00,0x00,0x00,0x80,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0xb5,0x00,0x00,0x00,0xb0,0x00,0x00,0x00, -0xb4,0x00,0x00,0x00,0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0xb7,0x00,0x00,0x00,0x83,0x00,0x00,0x00,0x17,0x00,0x00,0x00, -0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xb8,0x00,0x00,0x00, -0xb5,0x00,0x00,0x00,0xb7,0x00,0x00,0x00,0x41,0x00,0x05,0x00, -0x73,0x00,0x00,0x00,0xbc,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, -0xbb,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, -0xbd,0x00,0x00,0x00,0xbc,0x00,0x00,0x00,0x86,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0xbe,0x00,0x00,0x00,0x71,0x00,0x00,0x00, -0xbd,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00, -0xc1,0x00,0x00,0x00,0x2c,0x00,0x00,0x00,0xc0,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xc2,0x00,0x00,0x00, -0xc1,0x00,0x00,0x00,0x70,0x00,0x04,0x00,0x06,0x00,0x00,0x00, -0xc4,0x00,0x00,0x00,0x83,0x00,0x00,0x00,0x70,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0xc7,0x00,0x00,0x00,0x7e,0x00,0x00,0x00, -0x7f,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x56,0x01,0x00,0x00, -0xc7,0x00,0x00,0x00,0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00, -0xc8,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00, -0xc2,0x00,0x00,0x00,0xc4,0x00,0x00,0x00,0x56,0x01,0x00,0x00, -0x41,0x00,0x06,0x00,0xd0,0x00,0x00,0x00,0xd1,0x00,0x00,0x00, -0xce,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0xbe,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x2d,0x00,0x00,0x00,0xd2,0x00,0x00,0x00, -0xd1,0x00,0x00,0x00,0x6f,0x00,0x04,0x00,0x06,0x00,0x00,0x00, -0xd5,0x00,0x00,0x00,0xd2,0x00,0x00,0x00,0x41,0x00,0x05,0x00, -0x2f,0x00,0x00,0x00,0xd6,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, -0x33,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, -0xd7,0x00,0x00,0x00,0xd6,0x00,0x00,0x00,0x85,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0xd8,0x00,0x00,0x00,0xd5,0x00,0x00,0x00, -0xd7,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00, -0xda,0x00,0x00,0x00,0x2c,0x00,0x00,0x00,0xd9,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xdb,0x00,0x00,0x00, -0xda,0x00,0x00,0x00,0x70,0x00,0x04,0x00,0x06,0x00,0x00,0x00, -0xdd,0x00,0x00,0x00,0x6d,0x00,0x00,0x00,0x85,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0xdf,0x00,0x00,0x00,0xdd,0x00,0x00,0x00, -0x57,0x01,0x00,0x00,0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00, -0xe0,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x1a,0x00,0x00,0x00, -0xdb,0x00,0x00,0x00,0xdf,0x00,0x00,0x00,0x85,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0xe1,0x00,0x00,0x00,0xd8,0x00,0x00,0x00, -0xe0,0x00,0x00,0x00,0x6d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, -0xe4,0x00,0x00,0x00,0xc8,0x00,0x00,0x00,0x41,0x00,0x05,0x00, -0x2f,0x00,0x00,0x00,0x1d,0x01,0x00,0x00,0x2c,0x00,0x00,0x00, +0x07,0x00,0x00,0x00,0x91,0x00,0x00,0x00,0x8c,0x00,0x00,0x00, +0x90,0x00,0x00,0x00,0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0x93,0x00,0x00,0x00,0x91,0x00,0x00,0x00,0x83,0x00,0x00,0x00, +0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00,0xa2,0x00,0x00,0x00, +0x9e,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0x93,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x94,0x00,0x00,0x00,0xa3,0x00,0x00,0x00, +0xa2,0x00,0x00,0x00,0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00, +0xa4,0x00,0x00,0x00,0x98,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0x93,0x00,0x00,0x00,0x3e,0x00,0x03,0x00,0xa4,0x00,0x00,0x00, +0xa3,0x00,0x00,0x00,0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0xa6,0x00,0x00,0x00,0x93,0x00,0x00,0x00,0x69,0x00,0x00,0x00, +0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00,0xa9,0x00,0x00,0x00, +0x9e,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0xa6,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x94,0x00,0x00,0x00,0xaa,0x00,0x00,0x00, +0xa9,0x00,0x00,0x00,0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00, +0xab,0x00,0x00,0x00,0x98,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0xa6,0x00,0x00,0x00,0x3e,0x00,0x03,0x00,0xab,0x00,0x00,0x00, +0xaa,0x00,0x00,0x00,0xf9,0x00,0x02,0x00,0x2c,0x01,0x00,0x00, +0xf8,0x00,0x02,0x00,0x87,0x00,0x00,0x00,0x84,0x00,0x05,0x00, +0x07,0x00,0x00,0x00,0xb1,0x00,0x00,0x00,0x71,0x00,0x00,0x00, +0x75,0x00,0x00,0x00,0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0xb5,0x00,0x00,0x00,0x7e,0x00,0x00,0x00,0x7d,0x00,0x00,0x00, +0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xb6,0x00,0x00,0x00, +0xb1,0x00,0x00,0x00,0xb5,0x00,0x00,0x00,0x86,0x00,0x05,0x00, +0x07,0x00,0x00,0x00,0xb8,0x00,0x00,0x00,0x83,0x00,0x00,0x00, +0x17,0x00,0x00,0x00,0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0xb9,0x00,0x00,0x00,0xb6,0x00,0x00,0x00,0xb8,0x00,0x00,0x00, +0x41,0x00,0x05,0x00,0x73,0x00,0x00,0x00,0xbd,0x00,0x00,0x00, +0x2c,0x00,0x00,0x00,0xbc,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, +0x07,0x00,0x00,0x00,0xbe,0x00,0x00,0x00,0xbd,0x00,0x00,0x00, +0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xbf,0x00,0x00,0x00, +0x71,0x00,0x00,0x00,0xbe,0x00,0x00,0x00,0x41,0x00,0x05,0x00, +0x2f,0x00,0x00,0x00,0xc2,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, +0xc1,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0xc3,0x00,0x00,0x00,0xc2,0x00,0x00,0x00,0x70,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0xc5,0x00,0x00,0x00,0x83,0x00,0x00,0x00, +0x70,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xc8,0x00,0x00,0x00, +0x7e,0x00,0x00,0x00,0x7f,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x71,0x01,0x00,0x00,0xc8,0x00,0x00,0x00,0x0c,0x00,0x08,0x00, +0x06,0x00,0x00,0x00,0xc9,0x00,0x00,0x00,0x01,0x00,0x00,0x00, +0x32,0x00,0x00,0x00,0xc3,0x00,0x00,0x00,0xc5,0x00,0x00,0x00, +0x71,0x01,0x00,0x00,0x41,0x00,0x06,0x00,0xd1,0x00,0x00,0x00, +0xd2,0x00,0x00,0x00,0xcf,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0xbf,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x2d,0x00,0x00,0x00, +0xd3,0x00,0x00,0x00,0xd2,0x00,0x00,0x00,0x41,0x00,0x05,0x00, +0x73,0x00,0x00,0x00,0xd6,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, +0xd5,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, +0xd7,0x00,0x00,0x00,0xd6,0x00,0x00,0x00,0xab,0x00,0x05,0x00, +0x3c,0x00,0x00,0x00,0xd8,0x00,0x00,0x00,0xd7,0x00,0x00,0x00, +0x6f,0x00,0x00,0x00,0xf7,0x00,0x03,0x00,0xdb,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0xfa,0x00,0x04,0x00,0xd8,0x00,0x00,0x00, +0xda,0x00,0x00,0x00,0xe5,0x00,0x00,0x00,0xf8,0x00,0x02,0x00, +0xda,0x00,0x00,0x00,0x41,0x00,0x06,0x00,0xe2,0x00,0x00,0x00, +0xe3,0x00,0x00,0x00,0xdf,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0xb8,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0xe4,0x00,0x00,0x00,0xe3,0x00,0x00,0x00,0xf9,0x00,0x02,0x00, +0xdb,0x00,0x00,0x00,0xf8,0x00,0x02,0x00,0xe5,0x00,0x00,0x00, +0xf9,0x00,0x02,0x00,0xdb,0x00,0x00,0x00,0xf8,0x00,0x02,0x00, +0xdb,0x00,0x00,0x00,0xf5,0x00,0x07,0x00,0x06,0x00,0x00,0x00, +0x6e,0x01,0x00,0x00,0xe4,0x00,0x00,0x00,0xda,0x00,0x00,0x00, +0x1f,0x00,0x00,0x00,0xe5,0x00,0x00,0x00,0x6f,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0xe9,0x00,0x00,0x00,0xd3,0x00,0x00,0x00, +0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00,0xea,0x00,0x00,0x00, +0x2c,0x00,0x00,0x00,0x33,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0xeb,0x00,0x00,0x00,0xea,0x00,0x00,0x00, +0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0xec,0x00,0x00,0x00, +0xe9,0x00,0x00,0x00,0xeb,0x00,0x00,0x00,0x41,0x00,0x05,0x00, +0x2f,0x00,0x00,0x00,0xee,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, +0xed,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0xef,0x00,0x00,0x00,0xee,0x00,0x00,0x00,0x70,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0xf1,0x00,0x00,0x00,0x6d,0x00,0x00,0x00, +0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0xf3,0x00,0x00,0x00, +0xf1,0x00,0x00,0x00,0x72,0x01,0x00,0x00,0x0c,0x00,0x07,0x00, +0x06,0x00,0x00,0x00,0xf4,0x00,0x00,0x00,0x01,0x00,0x00,0x00, +0x1a,0x00,0x00,0x00,0xef,0x00,0x00,0x00,0xf3,0x00,0x00,0x00, +0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0xf5,0x00,0x00,0x00, +0xec,0x00,0x00,0x00,0xf4,0x00,0x00,0x00,0x88,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0xf7,0x00,0x00,0x00,0xf5,0x00,0x00,0x00, +0x6e,0x01,0x00,0x00,0x6d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, +0xfa,0x00,0x00,0x00,0xc9,0x00,0x00,0x00,0x41,0x00,0x05,0x00, +0x2f,0x00,0x00,0x00,0x37,0x01,0x00,0x00,0x2c,0x00,0x00,0x00, 0x2e,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, -0x1e,0x01,0x00,0x00,0x1d,0x01,0x00,0x00,0x85,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0x21,0x01,0x00,0x00,0xd7,0x00,0x00,0x00, -0xe1,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00, -0x23,0x01,0x00,0x00,0x2c,0x00,0x00,0x00,0x39,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x24,0x01,0x00,0x00, -0x23,0x01,0x00,0x00,0xb7,0x00,0x05,0x00,0x3c,0x00,0x00,0x00, -0x25,0x01,0x00,0x00,0x24,0x01,0x00,0x00,0x20,0x00,0x00,0x00, -0xf7,0x00,0x03,0x00,0x3e,0x01,0x00,0x00,0x00,0x00,0x00,0x00, -0xfa,0x00,0x04,0x00,0x25,0x01,0x00,0x00,0x26,0x01,0x00,0x00, -0x3e,0x01,0x00,0x00,0xf8,0x00,0x02,0x00,0x26,0x01,0x00,0x00, -0x41,0x00,0x06,0x00,0x2f,0x00,0x00,0x00,0x27,0x01,0x00,0x00, +0x38,0x01,0x00,0x00,0x37,0x01,0x00,0x00,0x85,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x3b,0x01,0x00,0x00,0xeb,0x00,0x00,0x00, +0xf7,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00, +0x3d,0x01,0x00,0x00,0x2c,0x00,0x00,0x00,0x39,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x3e,0x01,0x00,0x00, +0x3d,0x01,0x00,0x00,0xb7,0x00,0x05,0x00,0x3c,0x00,0x00,0x00, +0x3f,0x01,0x00,0x00,0x3e,0x01,0x00,0x00,0x20,0x00,0x00,0x00, +0xf7,0x00,0x03,0x00,0x58,0x01,0x00,0x00,0x00,0x00,0x00,0x00, +0xfa,0x00,0x04,0x00,0x3f,0x01,0x00,0x00,0x40,0x01,0x00,0x00, +0x58,0x01,0x00,0x00,0xf8,0x00,0x02,0x00,0x40,0x01,0x00,0x00, +0x41,0x00,0x06,0x00,0x2f,0x00,0x00,0x00,0x41,0x01,0x00,0x00, 0x2c,0x00,0x00,0x00,0x41,0x00,0x00,0x00,0x42,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x28,0x01,0x00,0x00, -0x27,0x01,0x00,0x00,0x41,0x00,0x06,0x00,0x2f,0x00,0x00,0x00, -0x29,0x01,0x00,0x00,0x2c,0x00,0x00,0x00,0x41,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x42,0x01,0x00,0x00, +0x41,0x01,0x00,0x00,0x41,0x00,0x06,0x00,0x2f,0x00,0x00,0x00, +0x43,0x01,0x00,0x00,0x2c,0x00,0x00,0x00,0x41,0x00,0x00,0x00, 0x45,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, -0x2a,0x01,0x00,0x00,0x29,0x01,0x00,0x00,0x86,0x00,0x05,0x00, -0x07,0x00,0x00,0x00,0x4a,0x01,0x00,0x00,0xe4,0x00,0x00,0x00, +0x44,0x01,0x00,0x00,0x43,0x01,0x00,0x00,0x86,0x00,0x05,0x00, +0x07,0x00,0x00,0x00,0x64,0x01,0x00,0x00,0xfa,0x00,0x00,0x00, 0x17,0x00,0x00,0x00,0x70,0x00,0x04,0x00,0x06,0x00,0x00,0x00, -0x4b,0x01,0x00,0x00,0x4a,0x01,0x00,0x00,0x83,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0x4c,0x01,0x00,0x00,0x4b,0x01,0x00,0x00, -0x28,0x01,0x00,0x00,0x83,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x4d,0x01,0x00,0x00,0x2a,0x01,0x00,0x00,0x28,0x01,0x00,0x00, -0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x4e,0x01,0x00,0x00, +0x65,0x01,0x00,0x00,0x64,0x01,0x00,0x00,0x83,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x66,0x01,0x00,0x00,0x65,0x01,0x00,0x00, +0x42,0x01,0x00,0x00,0x83,0x00,0x05,0x00,0x06,0x00,0x00,0x00, +0x67,0x01,0x00,0x00,0x44,0x01,0x00,0x00,0x42,0x01,0x00,0x00, +0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x68,0x01,0x00,0x00, 0x01,0x00,0x00,0x00,0x28,0x00,0x00,0x00,0x1b,0x00,0x00,0x00, -0x4d,0x01,0x00,0x00,0x88,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x4f,0x01,0x00,0x00,0x4c,0x01,0x00,0x00,0x4e,0x01,0x00,0x00, -0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x51,0x01,0x00,0x00, +0x67,0x01,0x00,0x00,0x88,0x00,0x05,0x00,0x06,0x00,0x00,0x00, +0x69,0x01,0x00,0x00,0x66,0x01,0x00,0x00,0x68,0x01,0x00,0x00, +0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x6b,0x01,0x00,0x00, 0x01,0x00,0x00,0x00,0x28,0x00,0x00,0x00,0x20,0x00,0x00,0x00, -0x4f,0x01,0x00,0x00,0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00, -0x52,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x25,0x00,0x00,0x00, -0x1f,0x00,0x00,0x00,0x51,0x01,0x00,0x00,0x83,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0x53,0x01,0x00,0x00,0x1f,0x00,0x00,0x00, -0x52,0x01,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x2e,0x01,0x00,0x00,0x53,0x01,0x00,0x00,0x24,0x01,0x00,0x00, -0x83,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x58,0x01,0x00,0x00, -0x52,0x01,0x00,0x00,0x1f,0x00,0x00,0x00,0x0c,0x00,0x08,0x00, -0x06,0x00,0x00,0x00,0x31,0x01,0x00,0x00,0x01,0x00,0x00,0x00, -0x32,0x00,0x00,0x00,0x58,0x01,0x00,0x00,0x24,0x01,0x00,0x00, +0x69,0x01,0x00,0x00,0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00, +0x6c,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x25,0x00,0x00,0x00, +0x1f,0x00,0x00,0x00,0x6b,0x01,0x00,0x00,0x83,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x6d,0x01,0x00,0x00,0x1f,0x00,0x00,0x00, +0x6c,0x01,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, +0x48,0x01,0x00,0x00,0x6d,0x01,0x00,0x00,0x3e,0x01,0x00,0x00, +0x83,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x73,0x01,0x00,0x00, +0x6c,0x01,0x00,0x00,0x1f,0x00,0x00,0x00,0x0c,0x00,0x08,0x00, +0x06,0x00,0x00,0x00,0x4b,0x01,0x00,0x00,0x01,0x00,0x00,0x00, +0x32,0x00,0x00,0x00,0x73,0x01,0x00,0x00,0x3e,0x01,0x00,0x00, 0x1f,0x00,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x34,0x01,0x00,0x00,0xe1,0x00,0x00,0x00,0x2e,0x01,0x00,0x00, -0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00,0x35,0x01,0x00,0x00, -0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00,0x21,0x01,0x00,0x00, -0x31,0x01,0x00,0x00,0x34,0x01,0x00,0x00,0x88,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0x38,0x01,0x00,0x00,0x1f,0x00,0x00,0x00, -0xd7,0x00,0x00,0x00,0x0c,0x00,0x06,0x00,0x06,0x00,0x00,0x00, -0x39,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x1c,0x00,0x00,0x00, -0x38,0x01,0x00,0x00,0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00, -0x3b,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00, -0x53,0x00,0x00,0x00,0x39,0x01,0x00,0x00,0x1f,0x00,0x00,0x00, -0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x3d,0x01,0x00,0x00, -0x1e,0x01,0x00,0x00,0x3b,0x01,0x00,0x00,0xf9,0x00,0x02,0x00, -0x3e,0x01,0x00,0x00,0xf8,0x00,0x02,0x00,0x3e,0x01,0x00,0x00, -0xf5,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x55,0x01,0x00,0x00, -0x1e,0x01,0x00,0x00,0x87,0x00,0x00,0x00,0x3d,0x01,0x00,0x00, -0x26,0x01,0x00,0x00,0xf5,0x00,0x07,0x00,0x06,0x00,0x00,0x00, -0x54,0x01,0x00,0x00,0x21,0x01,0x00,0x00,0x87,0x00,0x00,0x00, -0x35,0x01,0x00,0x00,0x26,0x01,0x00,0x00,0x0c,0x00,0x06,0x00, -0x06,0x00,0x00,0x00,0x40,0x01,0x00,0x00,0x01,0x00,0x00,0x00, -0x0e,0x00,0x00,0x00,0x54,0x01,0x00,0x00,0x85,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0x42,0x01,0x00,0x00,0x40,0x01,0x00,0x00, -0x55,0x01,0x00,0x00,0x0c,0x00,0x06,0x00,0x06,0x00,0x00,0x00, -0x44,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x0d,0x00,0x00,0x00, -0x54,0x01,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, -0x46,0x01,0x00,0x00,0x44,0x01,0x00,0x00,0x55,0x01,0x00,0x00, -0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00,0xef,0x00,0x00,0x00, +0x4e,0x01,0x00,0x00,0xf7,0x00,0x00,0x00,0x48,0x01,0x00,0x00, +0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00,0x4f,0x01,0x00,0x00, +0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00,0x3b,0x01,0x00,0x00, +0x4b,0x01,0x00,0x00,0x4e,0x01,0x00,0x00,0x88,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x52,0x01,0x00,0x00,0x1f,0x00,0x00,0x00, +0xeb,0x00,0x00,0x00,0x0c,0x00,0x06,0x00,0x06,0x00,0x00,0x00, +0x53,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x1c,0x00,0x00,0x00, +0x52,0x01,0x00,0x00,0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00, +0x55,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00, +0x53,0x00,0x00,0x00,0x53,0x01,0x00,0x00,0x1f,0x00,0x00,0x00, +0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x57,0x01,0x00,0x00, +0x38,0x01,0x00,0x00,0x55,0x01,0x00,0x00,0xf9,0x00,0x02,0x00, +0x58,0x01,0x00,0x00,0xf8,0x00,0x02,0x00,0x58,0x01,0x00,0x00, +0xf5,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x70,0x01,0x00,0x00, +0x38,0x01,0x00,0x00,0xdb,0x00,0x00,0x00,0x57,0x01,0x00,0x00, +0x40,0x01,0x00,0x00,0xf5,0x00,0x07,0x00,0x06,0x00,0x00,0x00, +0x6f,0x01,0x00,0x00,0x3b,0x01,0x00,0x00,0xdb,0x00,0x00,0x00, +0x4f,0x01,0x00,0x00,0x40,0x01,0x00,0x00,0x0c,0x00,0x06,0x00, +0x06,0x00,0x00,0x00,0x5a,0x01,0x00,0x00,0x01,0x00,0x00,0x00, +0x0e,0x00,0x00,0x00,0x6f,0x01,0x00,0x00,0x85,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x5c,0x01,0x00,0x00,0x5a,0x01,0x00,0x00, +0x70,0x01,0x00,0x00,0x0c,0x00,0x06,0x00,0x06,0x00,0x00,0x00, +0x5e,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x0d,0x00,0x00,0x00, +0x6f,0x01,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, +0x60,0x01,0x00,0x00,0x5e,0x01,0x00,0x00,0x70,0x01,0x00,0x00, +0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00,0x05,0x01,0x00,0x00, +0x9e,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0xb9,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x94,0x00,0x00,0x00,0x06,0x01,0x00,0x00, +0x05,0x01,0x00,0x00,0x73,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x07,0x01,0x00,0x00,0x06,0x01,0x00,0x00,0x86,0x00,0x05,0x00, +0x07,0x00,0x00,0x00,0x0c,0x01,0x00,0x00,0x7d,0x00,0x00,0x00, +0x17,0x00,0x00,0x00,0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0x0d,0x01,0x00,0x00,0xb9,0x00,0x00,0x00,0x0c,0x01,0x00,0x00, +0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00,0x0e,0x01,0x00,0x00, +0x9e,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0x0d,0x01,0x00,0x00, +0x3d,0x00,0x04,0x00,0x94,0x00,0x00,0x00,0x0f,0x01,0x00,0x00, +0x0e,0x01,0x00,0x00,0x73,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x10,0x01,0x00,0x00,0x0f,0x01,0x00,0x00,0x85,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x18,0x01,0x00,0x00,0x10,0x01,0x00,0x00, +0x60,0x01,0x00,0x00,0x7f,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x74,0x01,0x00,0x00,0x18,0x01,0x00,0x00,0x0c,0x00,0x08,0x00, +0x06,0x00,0x00,0x00,0x19,0x01,0x00,0x00,0x01,0x00,0x00,0x00, +0x32,0x00,0x00,0x00,0x07,0x01,0x00,0x00,0x5c,0x01,0x00,0x00, +0x74,0x01,0x00,0x00,0x73,0x00,0x04,0x00,0x94,0x00,0x00,0x00, +0x1a,0x01,0x00,0x00,0x19,0x01,0x00,0x00,0x41,0x00,0x06,0x00, +0xa1,0x00,0x00,0x00,0x1b,0x01,0x00,0x00,0x98,0x00,0x00,0x00, +0x42,0x00,0x00,0x00,0xb9,0x00,0x00,0x00,0x3e,0x00,0x03,0x00, +0x1b,0x01,0x00,0x00,0x1a,0x01,0x00,0x00,0x85,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x26,0x01,0x00,0x00,0x10,0x01,0x00,0x00, +0x5c,0x01,0x00,0x00,0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00, +0x27,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00, +0x07,0x01,0x00,0x00,0x60,0x01,0x00,0x00,0x26,0x01,0x00,0x00, +0x73,0x00,0x04,0x00,0x94,0x00,0x00,0x00,0x28,0x01,0x00,0x00, +0x27,0x01,0x00,0x00,0x41,0x00,0x06,0x00,0xa1,0x00,0x00,0x00, +0x29,0x01,0x00,0x00,0x98,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0x0d,0x01,0x00,0x00,0x3e,0x00,0x03,0x00,0x29,0x01,0x00,0x00, +0x28,0x01,0x00,0x00,0xf9,0x00,0x02,0x00,0x2c,0x01,0x00,0x00, +0xf8,0x00,0x02,0x00,0x2c,0x01,0x00,0x00,0xfd,0x00,0x01,0x00, +0x38,0x00,0x01,0x00, +}; +const uint64_t rope_neox_f16_len = 4300; + +unsigned char rope_neox_f32_data[] = { +0x03,0x02,0x23,0x07,0x00,0x05,0x01,0x00,0x0b,0x00,0x0d,0x00, +0x6f,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x11,0x00,0x02,0x00, +0x01,0x00,0x00,0x00,0x0b,0x00,0x06,0x00,0x01,0x00,0x00,0x00, +0x47,0x4c,0x53,0x4c,0x2e,0x73,0x74,0x64,0x2e,0x34,0x35,0x30, +0x00,0x00,0x00,0x00,0x0e,0x00,0x03,0x00,0x00,0x00,0x00,0x00, +0x01,0x00,0x00,0x00,0x0f,0x00,0x0b,0x00,0x05,0x00,0x00,0x00, +0x04,0x00,0x00,0x00,0x6d,0x61,0x69,0x6e,0x00,0x00,0x00,0x00, +0x2c,0x00,0x00,0x00,0x68,0x00,0x00,0x00,0x97,0x00,0x00,0x00, +0x9d,0x00,0x00,0x00,0xce,0x00,0x00,0x00,0xde,0x00,0x00,0x00, +0x10,0x00,0x06,0x00,0x04,0x00,0x00,0x00,0x11,0x00,0x00,0x00, +0x01,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x00, +0x47,0x00,0x04,0x00,0x29,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x04,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00,0x01,0x00,0x00,0x00, +0x23,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x48,0x00,0x05,0x00, +0x2a,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x23,0x00,0x00,0x00, +0x08,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00, +0x03,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, +0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00,0x04,0x00,0x00,0x00, +0x23,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x48,0x00,0x05,0x00, +0x2a,0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x23,0x00,0x00,0x00, +0x14,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00, +0x06,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x18,0x00,0x00,0x00, +0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00,0x07,0x00,0x00,0x00, +0x23,0x00,0x00,0x00,0x1c,0x00,0x00,0x00,0x48,0x00,0x05,0x00, +0x2a,0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x23,0x00,0x00,0x00, +0x2c,0x00,0x00,0x00,0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00, +0x09,0x00,0x00,0x00,0x23,0x00,0x00,0x00,0x30,0x00,0x00,0x00, +0x48,0x00,0x05,0x00,0x2a,0x00,0x00,0x00,0x0a,0x00,0x00,0x00, +0x23,0x00,0x00,0x00,0x34,0x00,0x00,0x00,0x47,0x00,0x03,0x00, +0x2a,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00, +0x68,0x00,0x00,0x00,0x0b,0x00,0x00,0x00,0x1c,0x00,0x00,0x00, +0x47,0x00,0x04,0x00,0x94,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x04,0x00,0x00,0x00,0x48,0x00,0x04,0x00,0x95,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x19,0x00,0x00,0x00,0x48,0x00,0x05,0x00, +0x95,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x47,0x00,0x03,0x00,0x95,0x00,0x00,0x00, +0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x97,0x00,0x00,0x00, +0x22,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00, +0x97,0x00,0x00,0x00,0x21,0x00,0x00,0x00,0x03,0x00,0x00,0x00, +0x47,0x00,0x04,0x00,0x9a,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x04,0x00,0x00,0x00,0x48,0x00,0x04,0x00,0x9b,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00, +0x9b,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x47,0x00,0x03,0x00,0x9b,0x00,0x00,0x00, +0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0x9d,0x00,0x00,0x00, +0x22,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00, +0x9d,0x00,0x00,0x00,0x21,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x47,0x00,0x04,0x00,0xcb,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x04,0x00,0x00,0x00,0x48,0x00,0x04,0x00,0xcc,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00, +0xcc,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x47,0x00,0x03,0x00,0xcc,0x00,0x00,0x00, +0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0xce,0x00,0x00,0x00, +0x22,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00, +0xce,0x00,0x00,0x00,0x21,0x00,0x00,0x00,0x01,0x00,0x00,0x00, +0x47,0x00,0x04,0x00,0xdb,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x04,0x00,0x00,0x00,0x48,0x00,0x04,0x00,0xdc,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x18,0x00,0x00,0x00,0x48,0x00,0x05,0x00, +0xdc,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x23,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x47,0x00,0x03,0x00,0xdc,0x00,0x00,0x00, +0x02,0x00,0x00,0x00,0x47,0x00,0x04,0x00,0xde,0x00,0x00,0x00, +0x22,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x47,0x00,0x04,0x00, +0xde,0x00,0x00,0x00,0x21,0x00,0x00,0x00,0x02,0x00,0x00,0x00, +0x47,0x00,0x04,0x00,0x25,0x01,0x00,0x00,0x0b,0x00,0x00,0x00, +0x19,0x00,0x00,0x00,0x13,0x00,0x02,0x00,0x02,0x00,0x00,0x00, +0x21,0x00,0x03,0x00,0x03,0x00,0x00,0x00,0x02,0x00,0x00,0x00, +0x16,0x00,0x03,0x00,0x06,0x00,0x00,0x00,0x20,0x00,0x00,0x00, +0x15,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x20,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00, +0x17,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0x1b,0x00,0x00,0x00,0x6f,0x12,0x83,0x3a, +0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x1f,0x00,0x00,0x00, +0x00,0x00,0x80,0x3f,0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x07,0x00,0x00,0x00,0x28,0x00,0x00,0x00,0x04,0x00,0x00,0x00, +0x1c,0x00,0x04,0x00,0x29,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x28,0x00,0x00,0x00,0x1e,0x00,0x0d,0x00,0x2a,0x00,0x00,0x00, +0x07,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x07,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x06,0x00,0x00,0x00,0x29,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x20,0x00,0x04,0x00, +0x2b,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x2a,0x00,0x00,0x00, +0x3b,0x00,0x04,0x00,0x2b,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, +0x09,0x00,0x00,0x00,0x15,0x00,0x04,0x00,0x2d,0x00,0x00,0x00, +0x20,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x2d,0x00,0x00,0x00,0x2e,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x20,0x00,0x04,0x00,0x2f,0x00,0x00,0x00,0x09,0x00,0x00,0x00, +0x06,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00, +0x33,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x2d,0x00,0x00,0x00,0x39,0x00,0x00,0x00,0x05,0x00,0x00,0x00, +0x14,0x00,0x02,0x00,0x3c,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x2d,0x00,0x00,0x00,0x41,0x00,0x00,0x00,0x07,0x00,0x00,0x00, +0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00, +0x45,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0x53,0x00,0x00,0x00,0xcd,0xcc,0xcc,0x3d, +0x17,0x00,0x04,0x00,0x66,0x00,0x00,0x00,0x07,0x00,0x00,0x00, +0x03,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0x67,0x00,0x00,0x00, +0x01,0x00,0x00,0x00,0x66,0x00,0x00,0x00,0x3b,0x00,0x04,0x00, +0x67,0x00,0x00,0x00,0x68,0x00,0x00,0x00,0x01,0x00,0x00,0x00, +0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x69,0x00,0x00,0x00, +0x01,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0x6a,0x00,0x00,0x00, +0x01,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x07,0x00,0x00,0x00,0x6f,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x20,0x00,0x04,0x00,0x73,0x00,0x00,0x00,0x09,0x00,0x00,0x00, +0x07,0x00,0x00,0x00,0x1d,0x00,0x03,0x00,0x94,0x00,0x00,0x00, +0x06,0x00,0x00,0x00,0x1e,0x00,0x03,0x00,0x95,0x00,0x00,0x00, +0x94,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0x96,0x00,0x00,0x00, +0x0c,0x00,0x00,0x00,0x95,0x00,0x00,0x00,0x3b,0x00,0x04,0x00, +0x96,0x00,0x00,0x00,0x97,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, +0x1d,0x00,0x03,0x00,0x9a,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x1e,0x00,0x03,0x00,0x9b,0x00,0x00,0x00,0x9a,0x00,0x00,0x00, +0x20,0x00,0x04,0x00,0x9c,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, +0x9b,0x00,0x00,0x00,0x3b,0x00,0x04,0x00,0x9c,0x00,0x00,0x00, +0x9d,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0x20,0x00,0x04,0x00, +0xa0,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00,0xbb,0x00,0x00,0x00, +0x03,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x2d,0x00,0x00,0x00, +0xc0,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x1d,0x00,0x03,0x00, +0xcb,0x00,0x00,0x00,0x2d,0x00,0x00,0x00,0x1e,0x00,0x03,0x00, +0xcc,0x00,0x00,0x00,0xcb,0x00,0x00,0x00,0x20,0x00,0x04,0x00, +0xcd,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0xcc,0x00,0x00,0x00, +0x3b,0x00,0x04,0x00,0xcd,0x00,0x00,0x00,0xce,0x00,0x00,0x00, +0x0c,0x00,0x00,0x00,0x20,0x00,0x04,0x00,0xd0,0x00,0x00,0x00, +0x0c,0x00,0x00,0x00,0x2d,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x2d,0x00,0x00,0x00,0xd4,0x00,0x00,0x00,0x0a,0x00,0x00,0x00, +0x1d,0x00,0x03,0x00,0xdb,0x00,0x00,0x00,0x06,0x00,0x00,0x00, +0x1e,0x00,0x03,0x00,0xdc,0x00,0x00,0x00,0xdb,0x00,0x00,0x00, +0x20,0x00,0x04,0x00,0xdd,0x00,0x00,0x00,0x0c,0x00,0x00,0x00, +0xdc,0x00,0x00,0x00,0x3b,0x00,0x04,0x00,0xdd,0x00,0x00,0x00, +0xde,0x00,0x00,0x00,0x0c,0x00,0x00,0x00,0x2b,0x00,0x04,0x00, +0x2d,0x00,0x00,0x00,0xeb,0x00,0x00,0x00,0x08,0x00,0x00,0x00, +0x2b,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x24,0x01,0x00,0x00, +0x00,0x01,0x00,0x00,0x2c,0x00,0x06,0x00,0x66,0x00,0x00,0x00, +0x25,0x01,0x00,0x00,0x69,0x00,0x00,0x00,0x24,0x01,0x00,0x00, +0x69,0x00,0x00,0x00,0x2b,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x6c,0x01,0x00,0x00,0x00,0x00,0x00,0x3f,0x36,0x00,0x05,0x00, +0x02,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0x03,0x00,0x00,0x00,0xf8,0x00,0x02,0x00,0x05,0x00,0x00,0x00, +0xf7,0x00,0x03,0x00,0x26,0x01,0x00,0x00,0x00,0x00,0x00,0x00, +0xfb,0x00,0x03,0x00,0x6f,0x00,0x00,0x00,0x27,0x01,0x00,0x00, +0xf8,0x00,0x02,0x00,0x27,0x01,0x00,0x00,0x41,0x00,0x05,0x00, +0x6a,0x00,0x00,0x00,0x6b,0x00,0x00,0x00,0x68,0x00,0x00,0x00, +0x69,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, +0x6c,0x00,0x00,0x00,0x6b,0x00,0x00,0x00,0x84,0x00,0x05,0x00, +0x07,0x00,0x00,0x00,0x6d,0x00,0x00,0x00,0x6c,0x00,0x00,0x00, +0x17,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x6a,0x00,0x00,0x00, +0x70,0x00,0x00,0x00,0x68,0x00,0x00,0x00,0x6f,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x71,0x00,0x00,0x00, +0x70,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x73,0x00,0x00,0x00, +0x74,0x00,0x00,0x00,0x2c,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x75,0x00,0x00,0x00, +0x74,0x00,0x00,0x00,0xae,0x00,0x05,0x00,0x3c,0x00,0x00,0x00, +0x76,0x00,0x00,0x00,0x6d,0x00,0x00,0x00,0x75,0x00,0x00,0x00, +0xf7,0x00,0x03,0x00,0x78,0x00,0x00,0x00,0x00,0x00,0x00,0x00, +0xfa,0x00,0x04,0x00,0x76,0x00,0x00,0x00,0x77,0x00,0x00,0x00, +0x78,0x00,0x00,0x00,0xf8,0x00,0x02,0x00,0x77,0x00,0x00,0x00, +0xf9,0x00,0x02,0x00,0x26,0x01,0x00,0x00,0xf8,0x00,0x02,0x00, +0x78,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x73,0x00,0x00,0x00, +0x7c,0x00,0x00,0x00,0x2c,0x00,0x00,0x00,0x45,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00,0x7d,0x00,0x00,0x00, +0x7c,0x00,0x00,0x00,0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0x7e,0x00,0x00,0x00,0x6d,0x00,0x00,0x00,0x7d,0x00,0x00,0x00, +0x89,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0x83,0x00,0x00,0x00, +0x6d,0x00,0x00,0x00,0x7d,0x00,0x00,0x00,0xac,0x00,0x05,0x00, +0x3c,0x00,0x00,0x00,0x85,0x00,0x00,0x00,0x7e,0x00,0x00,0x00, +0x6f,0x00,0x00,0x00,0xf7,0x00,0x03,0x00,0x87,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0xfa,0x00,0x04,0x00,0x85,0x00,0x00,0x00, +0x86,0x00,0x00,0x00,0x87,0x00,0x00,0x00,0xf8,0x00,0x02,0x00, +0x86,0x00,0x00,0x00,0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0x8c,0x00,0x00,0x00,0x71,0x00,0x00,0x00,0x75,0x00,0x00,0x00, +0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0x90,0x00,0x00,0x00, +0x7e,0x00,0x00,0x00,0x7d,0x00,0x00,0x00,0x80,0x00,0x05,0x00, +0x07,0x00,0x00,0x00,0x91,0x00,0x00,0x00,0x8c,0x00,0x00,0x00, +0x90,0x00,0x00,0x00,0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0x93,0x00,0x00,0x00,0x91,0x00,0x00,0x00,0x83,0x00,0x00,0x00, +0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00,0xa1,0x00,0x00,0x00, +0x9d,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0x93,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xa2,0x00,0x00,0x00, +0xa1,0x00,0x00,0x00,0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00, +0xa3,0x00,0x00,0x00,0x97,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0x93,0x00,0x00,0x00,0x3e,0x00,0x03,0x00,0xa3,0x00,0x00,0x00, +0xa2,0x00,0x00,0x00,0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0xa5,0x00,0x00,0x00,0x93,0x00,0x00,0x00,0x69,0x00,0x00,0x00, +0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00,0xa8,0x00,0x00,0x00, +0x9d,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0xa5,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xa9,0x00,0x00,0x00, +0xa8,0x00,0x00,0x00,0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00, +0xaa,0x00,0x00,0x00,0x97,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0xa5,0x00,0x00,0x00,0x3e,0x00,0x03,0x00,0xaa,0x00,0x00,0x00, +0xa9,0x00,0x00,0x00,0xf9,0x00,0x02,0x00,0x26,0x01,0x00,0x00, +0xf8,0x00,0x02,0x00,0x87,0x00,0x00,0x00,0x84,0x00,0x05,0x00, +0x07,0x00,0x00,0x00,0xb0,0x00,0x00,0x00,0x71,0x00,0x00,0x00, +0x75,0x00,0x00,0x00,0x84,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0xb4,0x00,0x00,0x00,0x7e,0x00,0x00,0x00,0x7d,0x00,0x00,0x00, +0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xb5,0x00,0x00,0x00, +0xb0,0x00,0x00,0x00,0xb4,0x00,0x00,0x00,0x86,0x00,0x05,0x00, +0x07,0x00,0x00,0x00,0xb7,0x00,0x00,0x00,0x83,0x00,0x00,0x00, +0x17,0x00,0x00,0x00,0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0xb8,0x00,0x00,0x00,0xb5,0x00,0x00,0x00,0xb7,0x00,0x00,0x00, +0x41,0x00,0x05,0x00,0x73,0x00,0x00,0x00,0xbc,0x00,0x00,0x00, +0x2c,0x00,0x00,0x00,0xbb,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, +0x07,0x00,0x00,0x00,0xbd,0x00,0x00,0x00,0xbc,0x00,0x00,0x00, +0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xbe,0x00,0x00,0x00, +0x71,0x00,0x00,0x00,0xbd,0x00,0x00,0x00,0x41,0x00,0x05,0x00, +0x2f,0x00,0x00,0x00,0xc1,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, +0xc0,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0xc2,0x00,0x00,0x00,0xc1,0x00,0x00,0x00,0x70,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0xc4,0x00,0x00,0x00,0x83,0x00,0x00,0x00, +0x70,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xc7,0x00,0x00,0x00, +0x7e,0x00,0x00,0x00,0x7f,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x6b,0x01,0x00,0x00,0xc7,0x00,0x00,0x00,0x0c,0x00,0x08,0x00, +0x06,0x00,0x00,0x00,0xc8,0x00,0x00,0x00,0x01,0x00,0x00,0x00, +0x32,0x00,0x00,0x00,0xc2,0x00,0x00,0x00,0xc4,0x00,0x00,0x00, +0x6b,0x01,0x00,0x00,0x41,0x00,0x06,0x00,0xd0,0x00,0x00,0x00, +0xd1,0x00,0x00,0x00,0xce,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0xbe,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x2d,0x00,0x00,0x00, +0xd2,0x00,0x00,0x00,0xd1,0x00,0x00,0x00,0x41,0x00,0x05,0x00, +0x73,0x00,0x00,0x00,0xd5,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, +0xd4,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, +0xd6,0x00,0x00,0x00,0xd5,0x00,0x00,0x00,0xab,0x00,0x05,0x00, +0x3c,0x00,0x00,0x00,0xd7,0x00,0x00,0x00,0xd6,0x00,0x00,0x00, +0x6f,0x00,0x00,0x00,0xf7,0x00,0x03,0x00,0xda,0x00,0x00,0x00, +0x00,0x00,0x00,0x00,0xfa,0x00,0x04,0x00,0xd7,0x00,0x00,0x00, +0xd9,0x00,0x00,0x00,0xe3,0x00,0x00,0x00,0xf8,0x00,0x02,0x00, +0xd9,0x00,0x00,0x00,0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00, +0xe1,0x00,0x00,0x00,0xde,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0xb7,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0xe2,0x00,0x00,0x00,0xe1,0x00,0x00,0x00,0xf9,0x00,0x02,0x00, +0xda,0x00,0x00,0x00,0xf8,0x00,0x02,0x00,0xe3,0x00,0x00,0x00, +0xf9,0x00,0x02,0x00,0xda,0x00,0x00,0x00,0xf8,0x00,0x02,0x00, +0xda,0x00,0x00,0x00,0xf5,0x00,0x07,0x00,0x06,0x00,0x00,0x00, +0x68,0x01,0x00,0x00,0xe2,0x00,0x00,0x00,0xd9,0x00,0x00,0x00, +0x1f,0x00,0x00,0x00,0xe3,0x00,0x00,0x00,0x6f,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0xe7,0x00,0x00,0x00,0xd2,0x00,0x00,0x00, +0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00,0xe8,0x00,0x00,0x00, +0x2c,0x00,0x00,0x00,0x33,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0xe9,0x00,0x00,0x00,0xe8,0x00,0x00,0x00, +0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0xea,0x00,0x00,0x00, +0xe7,0x00,0x00,0x00,0xe9,0x00,0x00,0x00,0x41,0x00,0x05,0x00, +0x2f,0x00,0x00,0x00,0xec,0x00,0x00,0x00,0x2c,0x00,0x00,0x00, +0xeb,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0xed,0x00,0x00,0x00,0xec,0x00,0x00,0x00,0x70,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0xef,0x00,0x00,0x00,0x6d,0x00,0x00,0x00, +0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0xf1,0x00,0x00,0x00, +0xef,0x00,0x00,0x00,0x6c,0x01,0x00,0x00,0x0c,0x00,0x07,0x00, +0x06,0x00,0x00,0x00,0xf2,0x00,0x00,0x00,0x01,0x00,0x00,0x00, +0x1a,0x00,0x00,0x00,0xed,0x00,0x00,0x00,0xf1,0x00,0x00,0x00, +0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0xf3,0x00,0x00,0x00, +0xea,0x00,0x00,0x00,0xf2,0x00,0x00,0x00,0x88,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0xf5,0x00,0x00,0x00,0xf3,0x00,0x00,0x00, +0x68,0x01,0x00,0x00,0x6d,0x00,0x04,0x00,0x07,0x00,0x00,0x00, +0xf8,0x00,0x00,0x00,0xc8,0x00,0x00,0x00,0x41,0x00,0x05,0x00, +0x2f,0x00,0x00,0x00,0x31,0x01,0x00,0x00,0x2c,0x00,0x00,0x00, +0x2e,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x32,0x01,0x00,0x00,0x31,0x01,0x00,0x00,0x85,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x35,0x01,0x00,0x00,0xe9,0x00,0x00,0x00, +0xf5,0x00,0x00,0x00,0x41,0x00,0x05,0x00,0x2f,0x00,0x00,0x00, +0x37,0x01,0x00,0x00,0x2c,0x00,0x00,0x00,0x39,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x38,0x01,0x00,0x00, +0x37,0x01,0x00,0x00,0xb7,0x00,0x05,0x00,0x3c,0x00,0x00,0x00, +0x39,0x01,0x00,0x00,0x38,0x01,0x00,0x00,0x20,0x00,0x00,0x00, +0xf7,0x00,0x03,0x00,0x52,0x01,0x00,0x00,0x00,0x00,0x00,0x00, +0xfa,0x00,0x04,0x00,0x39,0x01,0x00,0x00,0x3a,0x01,0x00,0x00, +0x52,0x01,0x00,0x00,0xf8,0x00,0x02,0x00,0x3a,0x01,0x00,0x00, +0x41,0x00,0x06,0x00,0x2f,0x00,0x00,0x00,0x3b,0x01,0x00,0x00, +0x2c,0x00,0x00,0x00,0x41,0x00,0x00,0x00,0x42,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x3c,0x01,0x00,0x00, +0x3b,0x01,0x00,0x00,0x41,0x00,0x06,0x00,0x2f,0x00,0x00,0x00, +0x3d,0x01,0x00,0x00,0x2c,0x00,0x00,0x00,0x41,0x00,0x00,0x00, +0x45,0x00,0x00,0x00,0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x3e,0x01,0x00,0x00,0x3d,0x01,0x00,0x00,0x86,0x00,0x05,0x00, +0x07,0x00,0x00,0x00,0x5e,0x01,0x00,0x00,0xf8,0x00,0x00,0x00, +0x17,0x00,0x00,0x00,0x70,0x00,0x04,0x00,0x06,0x00,0x00,0x00, +0x5f,0x01,0x00,0x00,0x5e,0x01,0x00,0x00,0x83,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x60,0x01,0x00,0x00,0x5f,0x01,0x00,0x00, +0x3c,0x01,0x00,0x00,0x83,0x00,0x05,0x00,0x06,0x00,0x00,0x00, +0x61,0x01,0x00,0x00,0x3e,0x01,0x00,0x00,0x3c,0x01,0x00,0x00, +0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x62,0x01,0x00,0x00, +0x01,0x00,0x00,0x00,0x28,0x00,0x00,0x00,0x1b,0x00,0x00,0x00, +0x61,0x01,0x00,0x00,0x88,0x00,0x05,0x00,0x06,0x00,0x00,0x00, +0x63,0x01,0x00,0x00,0x60,0x01,0x00,0x00,0x62,0x01,0x00,0x00, +0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x65,0x01,0x00,0x00, +0x01,0x00,0x00,0x00,0x28,0x00,0x00,0x00,0x20,0x00,0x00,0x00, +0x63,0x01,0x00,0x00,0x0c,0x00,0x07,0x00,0x06,0x00,0x00,0x00, +0x66,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x25,0x00,0x00,0x00, +0x1f,0x00,0x00,0x00,0x65,0x01,0x00,0x00,0x83,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x67,0x01,0x00,0x00,0x1f,0x00,0x00,0x00, +0x66,0x01,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, +0x42,0x01,0x00,0x00,0x67,0x01,0x00,0x00,0x38,0x01,0x00,0x00, +0x83,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x6d,0x01,0x00,0x00, +0x66,0x01,0x00,0x00,0x1f,0x00,0x00,0x00,0x0c,0x00,0x08,0x00, +0x06,0x00,0x00,0x00,0x45,0x01,0x00,0x00,0x01,0x00,0x00,0x00, +0x32,0x00,0x00,0x00,0x6d,0x01,0x00,0x00,0x38,0x01,0x00,0x00, +0x1f,0x00,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, +0x48,0x01,0x00,0x00,0xf5,0x00,0x00,0x00,0x42,0x01,0x00,0x00, +0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00,0x49,0x01,0x00,0x00, +0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00,0x35,0x01,0x00,0x00, +0x45,0x01,0x00,0x00,0x48,0x01,0x00,0x00,0x88,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x4c,0x01,0x00,0x00,0x1f,0x00,0x00,0x00, +0xe9,0x00,0x00,0x00,0x0c,0x00,0x06,0x00,0x06,0x00,0x00,0x00, +0x4d,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x1c,0x00,0x00,0x00, +0x4c,0x01,0x00,0x00,0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00, +0x4f,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00, +0x53,0x00,0x00,0x00,0x4d,0x01,0x00,0x00,0x1f,0x00,0x00,0x00, +0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x51,0x01,0x00,0x00, +0x32,0x01,0x00,0x00,0x4f,0x01,0x00,0x00,0xf9,0x00,0x02,0x00, +0x52,0x01,0x00,0x00,0xf8,0x00,0x02,0x00,0x52,0x01,0x00,0x00, +0xf5,0x00,0x07,0x00,0x06,0x00,0x00,0x00,0x6a,0x01,0x00,0x00, +0x32,0x01,0x00,0x00,0xda,0x00,0x00,0x00,0x51,0x01,0x00,0x00, +0x3a,0x01,0x00,0x00,0xf5,0x00,0x07,0x00,0x06,0x00,0x00,0x00, +0x69,0x01,0x00,0x00,0x35,0x01,0x00,0x00,0xda,0x00,0x00,0x00, +0x49,0x01,0x00,0x00,0x3a,0x01,0x00,0x00,0x0c,0x00,0x06,0x00, +0x06,0x00,0x00,0x00,0x54,0x01,0x00,0x00,0x01,0x00,0x00,0x00, +0x0e,0x00,0x00,0x00,0x69,0x01,0x00,0x00,0x85,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x56,0x01,0x00,0x00,0x54,0x01,0x00,0x00, +0x6a,0x01,0x00,0x00,0x0c,0x00,0x06,0x00,0x06,0x00,0x00,0x00, +0x58,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x0d,0x00,0x00,0x00, +0x69,0x01,0x00,0x00,0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00, +0x5a,0x01,0x00,0x00,0x58,0x01,0x00,0x00,0x6a,0x01,0x00,0x00, +0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00,0x03,0x01,0x00,0x00, 0x9d,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0xb8,0x00,0x00,0x00, -0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0xf0,0x00,0x00,0x00, -0xef,0x00,0x00,0x00,0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00, -0xf5,0x00,0x00,0x00,0x7d,0x00,0x00,0x00,0x17,0x00,0x00,0x00, -0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0xf6,0x00,0x00,0x00, -0xb8,0x00,0x00,0x00,0xf5,0x00,0x00,0x00,0x41,0x00,0x06,0x00, -0xa0,0x00,0x00,0x00,0xf7,0x00,0x00,0x00,0x9d,0x00,0x00,0x00, -0x42,0x00,0x00,0x00,0xf6,0x00,0x00,0x00,0x3d,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0xf8,0x00,0x00,0x00,0xf7,0x00,0x00,0x00, -0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x00,0x01,0x00,0x00, -0xf8,0x00,0x00,0x00,0x46,0x01,0x00,0x00,0x7f,0x00,0x04,0x00, -0x06,0x00,0x00,0x00,0x59,0x01,0x00,0x00,0x00,0x01,0x00,0x00, -0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00,0x01,0x01,0x00,0x00, -0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00,0xf0,0x00,0x00,0x00, -0x42,0x01,0x00,0x00,0x59,0x01,0x00,0x00,0x41,0x00,0x06,0x00, -0xa0,0x00,0x00,0x00,0x02,0x01,0x00,0x00,0x97,0x00,0x00,0x00, +0x3d,0x00,0x04,0x00,0x06,0x00,0x00,0x00,0x04,0x01,0x00,0x00, +0x03,0x01,0x00,0x00,0x86,0x00,0x05,0x00,0x07,0x00,0x00,0x00, +0x09,0x01,0x00,0x00,0x7d,0x00,0x00,0x00,0x17,0x00,0x00,0x00, +0x80,0x00,0x05,0x00,0x07,0x00,0x00,0x00,0x0a,0x01,0x00,0x00, +0xb8,0x00,0x00,0x00,0x09,0x01,0x00,0x00,0x41,0x00,0x06,0x00, +0xa0,0x00,0x00,0x00,0x0b,0x01,0x00,0x00,0x9d,0x00,0x00,0x00, +0x42,0x00,0x00,0x00,0x0a,0x01,0x00,0x00,0x3d,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0x0c,0x01,0x00,0x00,0x0b,0x01,0x00,0x00, +0x85,0x00,0x05,0x00,0x06,0x00,0x00,0x00,0x14,0x01,0x00,0x00, +0x0c,0x01,0x00,0x00,0x5a,0x01,0x00,0x00,0x7f,0x00,0x04,0x00, +0x06,0x00,0x00,0x00,0x6e,0x01,0x00,0x00,0x14,0x01,0x00,0x00, +0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00,0x15,0x01,0x00,0x00, +0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00,0x04,0x01,0x00,0x00, +0x56,0x01,0x00,0x00,0x6e,0x01,0x00,0x00,0x41,0x00,0x06,0x00, +0xa0,0x00,0x00,0x00,0x16,0x01,0x00,0x00,0x97,0x00,0x00,0x00, 0x42,0x00,0x00,0x00,0xb8,0x00,0x00,0x00,0x3e,0x00,0x03,0x00, -0x02,0x01,0x00,0x00,0x01,0x01,0x00,0x00,0x85,0x00,0x05,0x00, -0x06,0x00,0x00,0x00,0x0d,0x01,0x00,0x00,0xf8,0x00,0x00,0x00, -0x42,0x01,0x00,0x00,0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00, -0x0e,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00, -0xf0,0x00,0x00,0x00,0x46,0x01,0x00,0x00,0x0d,0x01,0x00,0x00, -0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00,0x0f,0x01,0x00,0x00, -0x97,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0xf6,0x00,0x00,0x00, -0x3e,0x00,0x03,0x00,0x0f,0x01,0x00,0x00,0x0e,0x01,0x00,0x00, -0xf9,0x00,0x02,0x00,0x12,0x01,0x00,0x00,0xf8,0x00,0x02,0x00, -0x12,0x01,0x00,0x00,0xfd,0x00,0x01,0x00,0x38,0x00,0x01,0x00, +0x16,0x01,0x00,0x00,0x15,0x01,0x00,0x00,0x85,0x00,0x05,0x00, +0x06,0x00,0x00,0x00,0x21,0x01,0x00,0x00,0x0c,0x01,0x00,0x00, +0x56,0x01,0x00,0x00,0x0c,0x00,0x08,0x00,0x06,0x00,0x00,0x00, +0x22,0x01,0x00,0x00,0x01,0x00,0x00,0x00,0x32,0x00,0x00,0x00, +0x04,0x01,0x00,0x00,0x5a,0x01,0x00,0x00,0x21,0x01,0x00,0x00, +0x41,0x00,0x06,0x00,0xa0,0x00,0x00,0x00,0x23,0x01,0x00,0x00, +0x97,0x00,0x00,0x00,0x42,0x00,0x00,0x00,0x0a,0x01,0x00,0x00, +0x3e,0x00,0x03,0x00,0x23,0x01,0x00,0x00,0x22,0x01,0x00,0x00, +0xf9,0x00,0x02,0x00,0x26,0x01,0x00,0x00,0xf8,0x00,0x02,0x00, +0x26,0x01,0x00,0x00,0xfd,0x00,0x01,0x00,0x38,0x00,0x01,0x00, }; -const uint64_t rope_neox_f32_len = 3792; +const uint64_t rope_neox_f32_len = 4200; unsigned char scale_f32_data[] = { 0x03,0x02,0x23,0x07,0x00,0x05,0x01,0x00,0x0b,0x00,0x0d,0x00, diff --git a/ggml-vulkan.cpp b/ggml-vulkan.cpp index aff451b63..79ce1479f 100644 --- a/ggml-vulkan.cpp +++ b/ggml-vulkan.cpp @@ -290,6 +290,7 @@ struct vk_op_rope_neox_push_constants { float corr_dims[4]; float theta_scale; float inv_ndims; + uint32_t has_freq_facs; }; struct vk_op_soft_max_push_constants { @@ -1522,8 +1523,8 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) { ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); - ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1); - ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1); + ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 4, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1); + ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1); } @@ -3732,7 +3733,7 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx } -static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) { +static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) { switch (op) { case GGML_OP_ADD: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { @@ -3853,6 +3854,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const default: return nullptr; } + + GGML_UNUSED(src2); } static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) { @@ -3880,12 +3883,15 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) { } template -static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) { +static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; if (src1 != nullptr) { std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; } + if (src2 != nullptr) { + std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3]; + } std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl; #endif GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT @@ -3896,6 +3902,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c const uint64_t ne02 = src0->ne[2]; const uint64_t ne03 = src0->ne[3]; const uint64_t ne0 = ne00 * ne01; + const bool use_src1 = src1 != nullptr; const uint64_t ne10 = use_src1 ? src1->ne[0] : 0; const uint64_t ne11 = use_src1 ? src1->ne[1] : 0; @@ -3904,7 +3911,14 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c const uint64_t ne1 = ne10 * ne11; // const uint64_t nb10 = use_src1 ? src1->nb[0] : 0; - vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, dst, op); + const bool use_src2 = src2 != nullptr; + const uint64_t ne20 = use_src2 ? src2->ne[0] : 0; + const uint64_t ne21 = use_src2 ? src2->ne[1] : 0; + const uint64_t ne22 = use_src2 ? src2->ne[2] : 0; + const uint64_t ne23 = use_src2 ? src2->ne[3] : 0; + const uint64_t ne2 = ne20 * ne21; + + vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op); ggml_vk_func_t op_func; if (pipeline == nullptr) { @@ -3927,15 +3941,18 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; + ggml_tensor_extra_gpu * extra_src2 = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr; vk_buffer d_X = nullptr; size_t x_buf_offset = 0; vk_buffer d_Y = nullptr; size_t y_buf_offset = 0; vk_buffer d_Z = nullptr; + size_t z_buf_offset = 0; bool src0_uma = false; bool src1_uma = false; + bool src2_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset); @@ -3944,10 +3961,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset); src1_uma = d_Y != nullptr; } + if (use_src2) { + ggml_vk_host_get(ctx, src2->data, d_Z, z_buf_offset); + src2_uma = d_Z != nullptr; + } } uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0, ctx->device->properties.limits.minStorageBufferOffsetAlignment); uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0; + uint64_t z_sz = use_src2 ? ggml_vk_align_size(ggml_type_size(src2->type) * ne2, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0; uint64_t d_sz = ggml_type_size(dst->type) * ne0; vk_buffer d_D = extra->buffer_gpu.lock(); @@ -3970,10 +3992,16 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c y_buf_offset = extra_src1->offset; GGML_ASSERT(d_Y != nullptr); } + if (use_src2 && !src2_uma) { + d_Z = extra_src2->buffer_gpu.lock(); + z_buf_offset = extra_src2->offset; + GGML_ASSERT(d_Z != nullptr); + } if (op_supports_incontiguous) { x_sz = ggml_nbytes(src0); y_sz = use_src1 ? ggml_nbytes(src1) : 0; + z_sz = use_src2 ? ggml_nbytes(src2) : 0; d_sz = ggml_nbytes(dst); if (x_buf_offset + x_sz >= d_X->size) { @@ -3982,6 +4010,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c if (use_src1 && y_buf_offset + y_sz >= d_Y->size) { y_sz = VK_WHOLE_SIZE; } + if (use_src2 && z_buf_offset + z_sz >= d_Z->size) { + z_sz = VK_WHOLE_SIZE; + } if (d_buf_offset + d_sz >= d_D->size) { d_sz = VK_WHOLE_SIZE; } @@ -4021,13 +4052,16 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c if (use_src1 && y_sz != VK_WHOLE_SIZE) { y_sz *= ne12 * ne13; } + if (use_src2 && z_sz != VK_WHOLE_SIZE) { + z_sz *= ne22 * ne23; + } if (d_sz != VK_WHOLE_SIZE) { d_sz *= ne02 * ne03; } } if (op == GGML_OP_SOFT_MAX) { - // Empty src1 is possible on soft_max, but the shader needs a buffer + // Empty src1 is possible in soft_max, but the shader needs a buffer vk_subbuffer subbuf_y; if (use_src1) { subbuf_y = { d_Y, y_buf_offset, y_sz }; @@ -4037,6 +4071,28 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + } else if (op == GGML_OP_ROPE) { + const int mode = ((int32_t *) dst->op_params)[2]; + const bool is_neox = mode & 2; + + if (is_neox) { + // Empty src2 is possible in rope, but the shader needs a buffer + vk_subbuffer subbuf_z; + if (use_src2) { + subbuf_z = { d_Z, z_buf_offset, z_sz }; + } else { + subbuf_z = { d_X, 0, d_X->size }; + } + + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + } else { + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + } + } else if (use_src2) { + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_Z, z_buf_offset, z_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else if (use_src1) { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); @@ -4047,6 +4103,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c } else { GGML_ASSERT(op != GGML_OP_SOFT_MAX); GGML_ASSERT(op != GGML_OP_ARGSORT); + GGML_ASSERT(!use_src2); ggml_pipeline_allocate_descriptor_sets(ctx, pipeline, ne02 * ne03); @@ -4088,7 +4145,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c } static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); } static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -4096,7 +4153,7 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_GET_ROWS, { + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, @@ -4111,7 +4168,7 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, cons const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_ADD, { + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, @@ -4126,7 +4183,7 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, cons const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_MUL, { + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, @@ -4141,7 +4198,7 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, co const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_SCALE, { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, @@ -4154,7 +4211,7 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, cons const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_SQR, { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, @@ -4168,7 +4225,7 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, co const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_CLAMP, { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, @@ -4183,7 +4240,7 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons const uint32_t dst_type_size = ggml_type_size(dst->type); const uint32_t d_offset = (extra->offset % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_CPY, { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, @@ -4195,21 +4252,21 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); } static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); } static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { - ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); } static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { int32_t * op_params = (int32_t *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }); } static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -4228,7 +4285,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); - ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_SOFT_MAX, { + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX, { ncols, src1 != nullptr ? nrows_y : (uint32_t)0, scale, max_bias, @@ -4237,7 +4294,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, }); } -static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; // const int n_ctx = ((int32_t *) dst->op_params)[3]; @@ -4260,12 +4317,13 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con if (is_neox) { const float theta_scale = powf(freq_base, -2.0f/n_dims); const float inv_ndims = -1.0f / n_dims; - ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, { + ggml_vk_op_f32(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], - freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims + freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims, + src2 != nullptr, }); } else { - ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, { + ggml_vk_op_f32(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f} }); @@ -4288,7 +4346,7 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx, std::cerr << ((ggml_sort_order) op_params[0]) << " " << GGML_SORT_ORDER_ASC << std::endl; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_ARGSORT, { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, { ncols, ncols_pad, op_params[0], @@ -5404,6 +5462,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod const ggml_tensor * src0 = node->src[0]; const ggml_tensor * src1 = node->src[1]; + const ggml_tensor * src2 = node->src[2]; switch (node->op) { case GGML_OP_UNARY: @@ -5520,7 +5579,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod break; case GGML_OP_ROPE: - ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, src2, node); break; case GGML_OP_ARGSORT: @@ -6496,7 +6555,7 @@ static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vectorop) << " gpu=" << (tensor->extra != nullptr) << " backend=" << tensor->backend << std::endl; + std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << std::endl; done.push_back(tensor); @@ -6546,7 +6605,7 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) { void * tensor_data = tensor->data; - if (tensor->backend == GGML_BACKEND_TYPE_GPU) { + if (ggml_backend_buffer_is_vk(tensor->buffer)) { const size_t tensor_size = ggml_nbytes(tensor); tensor_data = malloc(tensor_size); @@ -6557,12 +6616,12 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso } std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl; - std::cerr << "tensor=" << tensor << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl; + std::cerr << "tensor=" << tensor << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl; if (tensor->src[0] != nullptr) { - std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " backend=" << tensor->src[0]->backend << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl; + std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl; } if (tensor->src[1] != nullptr) { - std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " backend=" << tensor->src[1]->backend << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl; + std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl; } std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0); @@ -6573,43 +6632,11 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso std::vector done; ggml_vk_print_graph_origin(tensor, done); - if (tensor->backend == GGML_BACKEND_TYPE_GPU) { + if (ggml_backend_buffer_is_vk(tensor->buffer)) { free(tensor_data); } } -static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) { - return; - GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_CPU); - if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) { - return; - } - for (int i3 = 0; i3 < tensor->ne[3]; i3++) { - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float val = 0.0f; - if (tensor->type == GGML_TYPE_F32) { - val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]); - } else if (tensor->type == GGML_TYPE_F16) { - val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0])); - } - if (std::isnan(val)) { - std::cerr << "ERROR: TENSOR CHECK " << name << ": Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " val=" << val << std::endl; - std::cerr << "tensor=" << tensor << " tensor->type=" << ggml_type_name(tensor->type) << " tensor->backend: " << tensor->backend << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl; - std::cerr << std::endl; - ggml_vk_print_tensor_area(tensor, tensor->data, i0, i1, i2, i3); - std::cerr << std::endl; - std::vector done; - ggml_vk_print_graph_origin(tensor, done); - GGML_ASSERT(false); - } - } - } - } - } -} - void * comp_result; size_t comp_size; size_t comp_nb[GGML_MAX_DIMS]; @@ -6633,6 +6660,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ ggml_tensor * src0 = tensor->src[0]; ggml_tensor * src1 = tensor->src[1]; + ggml_tensor * src2 = tensor->src[2]; struct ggml_init_params iparams = { /*.mem_size =*/ 1024*1024*1024, @@ -6662,10 +6690,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ src0_buffer = malloc(src0_size); src0_clone->data = src0_buffer; - if (src0->backend == GGML_BACKEND_TYPE_CPU) { + if (ggml_backend_buffer_is_host(src0->buffer)) { memcpy(src0_clone->data, src0->data, src0_size); memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS); - } else if (src0->backend == GGML_BACKEND_TYPE_GPU) { + } else if (ggml_backend_buffer_is_vk(src0->buffer)) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra; vk_buffer buffer_gpu = extra->buffer_gpu.lock(); uint64_t offset = extra->offset; @@ -6696,8 +6724,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(ctx, src0, "src0"); } - - ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src0", src0_clone); } if (src1 != nullptr) { src1_clone = ggml_dup_tensor(ggml_ctx, src1); @@ -6706,10 +6732,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ src1_buffer = malloc(src1_size); src1_clone->data = src1_buffer; - if (src1->backend == GGML_BACKEND_TYPE_CPU) { + if (ggml_backend_buffer_is_host(src1->buffer)) { memcpy(src1_clone->data, src1->data, src1_size); memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS); - } else if (src1->backend == GGML_BACKEND_TYPE_GPU) { + } else if (ggml_backend_buffer_is_vk(src1->buffer)) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra; vk_buffer buffer_gpu = extra->buffer_gpu.lock(); uint64_t offset = extra->offset; @@ -6740,12 +6766,12 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(ctx, src1, "src1"); std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl; - std::cerr << "src1_clone=" << tensor << " src1_clone->backend: " << src1_clone->backend << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl; + std::cerr << "src1_clone=" << tensor << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl; if (src1->src[0] != nullptr) { - std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " backend=" << src1->src[0]->backend << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl; + std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl; } if (src1->src[1] != nullptr) { - std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " backend=" << src1->src[1]->backend << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl; + std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl; } std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0); @@ -6756,8 +6782,64 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ std::vector done; ggml_vk_print_graph_origin(src1_clone, done); } + } + if (src2 != nullptr) { + src2_clone = ggml_dup_tensor(ggml_ctx, src2); - ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone); + src2_size = ggml_nbytes(src2); + + src2_buffer = malloc(src2_size); + src2_clone->data = src2_buffer; + if (ggml_backend_buffer_is_host(src2->buffer)) { + memcpy(src2_clone->data, src2->data, src2_size); + memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS); + } else if (ggml_backend_buffer_is_vk(src2->buffer)) { + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src2->extra; + vk_buffer buffer_gpu = extra->buffer_gpu.lock(); + uint64_t offset = extra->offset; + if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) { + for (int i3 = 0; i3 < src2->ne[3]; i3++) { + for (int i2 = 0; i2 < src2->ne[2]; i2++) { + const int idx = i3*src2->ne[2] + i2; + ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]); + } + } + + src2_clone->nb[0] = src2->nb[0]; + src2_clone->nb[1] = src2->nb[1]; + for (int i = 2; i < GGML_MAX_DIMS; i++) { + src2_clone->nb[i] = src2_clone->nb[i - 1]*src2_clone->ne[i - 1]; + } + } else { + if (offset + src2_size >= buffer_gpu->size) { + src2_size = buffer_gpu->size - offset; + } + ggml_vk_buffer_read(ctx, buffer_gpu, offset, src2_clone->data, src2_size); + memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS); + } + } else { + GGML_ASSERT(false); + } + + if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { + ggml_vk_print_tensor(ctx, src2, "src2"); + std::cerr << "TENSOR CHECK: " << ggml_op_name(src2_clone->op) << " (check " << check_counter << ")" << std::endl; + std::cerr << "src2_clone=" << tensor << " src2_clone->type: " << ggml_type_name(src2_clone->type) << " ne0=" << src2_clone->ne[0] << " nb0=" << src2_clone->nb[0] << " ne1=" << src2_clone->ne[1] << " nb1=" << src2_clone->nb[1] << " ne2=" << src2_clone->ne[2] << " nb2=" << src2_clone->nb[2] << " ne3=" << src2_clone->ne[3] << " nb3=" << src2_clone->nb[3] << std::endl; + if (src2->src[0] != nullptr) { + std::cerr << "src2->src[0]=" << src2->src[0] << " op=" << ggml_op_name(src2->src[0]->op) << " type=" << ggml_type_name(src2->src[0]->type) << " ne0=" << src2->src[0]->ne[0] << " nb0=" << src2->src[0]->nb[0] << " ne1=" << src2->src[0]->ne[1] << " nb1=" << src2->src[0]->nb[1] << " ne2=" << src2->src[0]->ne[2] << " nb2=" << src2->src[0]->nb[2] << " ne3=" << src2->src[0]->ne[3] << " nb3=" << src2->src[0]->nb[3] << std::endl; + } + if (src2->src[1] != nullptr) { + std::cerr << "src2->src[1]=" << src2->src[1] << " op=" << ggml_op_name(src2->src[1]->op) << " type=" << ggml_type_name(src2->src[1]->type) << " ne0=" << src2->src[1]->ne[0] << " nb0=" << src2->src[1]->nb[0] << " ne1=" << src2->src[1]->ne[1] << " nb1=" << src2->src[1]->nb[1] << " ne2=" << src2->src[1]->ne[2] << " nb2=" << src2->src[1]->nb[2] << " ne3=" << src2->src[1]->ne[3] << " nb3=" << src2->src[1]->nb[3] << std::endl; + } + std::cerr << std::endl << "Result:" << std::endl; + ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 0, 0); + std::cerr << std::endl; + std::cerr << std::endl << "Result:" << std::endl; + ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 1, 0); + std::cerr << std::endl; + std::vector done; + ggml_vk_print_graph_origin(src2_clone, done); + } } if (tensor->op == GGML_OP_MUL_MAT) { @@ -6795,7 +6877,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ float attn_factor = ((float *) tensor->op_params)[8]; float beta_fast = ((float *) tensor->op_params)[9]; float beta_slow = ((float *) tensor->op_params)[10]; - tensor_clone = ggml_rope_custom(ggml_ctx, src0_clone, src1_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); + tensor_clone = ggml_rope_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); } else if (tensor->op == GGML_OP_UNARY) { switch (ggml_get_unary_op(tensor)) { case GGML_UNARY_OP_SILU: @@ -6843,7 +6925,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8); - ggml_vk_check_tensor(ggml_op_name(tensor->op), tensor_clone); if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone"); } @@ -6884,7 +6965,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_ void * tensor_data = tensor->data; - if (tensor->backend == GGML_BACKEND_TYPE_GPU) { + if (ggml_backend_buffer_is_vk(tensor->buffer)) { size_t tensor_size = ggml_nbytes(tensor); tensor_data = malloc(tensor_size); @@ -6932,12 +7013,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_ if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) { std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl; - std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; + std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; if (src0 != nullptr) { - std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; + std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; } if (src1 != nullptr) { - std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; + std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; } std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl; std::cerr << std::endl << "Result:" << std::endl; @@ -6973,12 +7054,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_ if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl; - std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; + std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; if (src0 != nullptr) { - std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; + std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; } if (src1 != nullptr) { - std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; + std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; } std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl; std::cerr << std::endl << "Result:" << std::endl; @@ -6997,12 +7078,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_ if (avg_err > 0.05 || std::isnan(avg_err)) { std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl; - std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; + std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl; if (src0 != nullptr) { - std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; + std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl; } if (src1 != nullptr) { - std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; + std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl; } std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl; std::cerr << std::endl << "Result:" << std::endl; @@ -7014,14 +7095,14 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_ ggml_vk_print_graph_origin(tensor, done); GGML_ASSERT(false); } else { - std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " backend=" << tensor->backend << " avg_err=" << avg_err << std::endl; + std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " avg_err=" << avg_err << std::endl; } free(comp_result); comp_result = nullptr; comp_size = 0; - if (tensor->backend == GGML_BACKEND_TYPE_GPU) { + if (ggml_backend_buffer_is_vk(tensor->buffer)) { free(tensor_data); } } diff --git a/ggml.c b/ggml.c index 4bd911528..9e72b7a76 100644 --- a/ggml.c +++ b/ggml.c @@ -871,22 +871,14 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { }, [GGML_TYPE_IQ4_XS] = { .type_name = "iq4_xs", -#if QK_K == 64 - .blck_size = QK4_NL, -#else .blck_size = QK_K, -#endif .type_size = sizeof(block_iq4_xs), .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_iq4_xs, .from_float = quantize_row_iq4_xs, .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference, .vec_dot = ggml_vec_dot_iq4_xs_q8_K, -#if QK_K == 64 - .vec_dot_type = GGML_TYPE_Q8_0, -#else .vec_dot_type = GGML_TYPE_Q8_K, -#endif .nrows = 1, }, [GGML_TYPE_Q8_K] = { @@ -2678,9 +2670,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "ARGSORT", "LEAKY_RELU", - "FLASH_ATTN", "FLASH_ATTN_EXT", - "FLASH_FF", "FLASH_ATTN_BACK", "SSM_CONV", "SSM_SCAN", @@ -2706,7 +2696,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); +static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -2768,9 +2758,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "argsort(x)", "leaky_relu(x)", - "flash_attn(x)", "flash_attn_ext(x)", - "flash_ff(x)", "flash_attn_back(x)", "ssm_conv(x)", "ssm_scan(x)", @@ -2796,7 +2784,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); +static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); @@ -6231,6 +6219,7 @@ static struct ggml_tensor * ggml_rope_impl( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, + struct ggml_tensor * c, int n_dims, int mode, int n_ctx, @@ -6244,10 +6233,17 @@ static struct ggml_tensor * ggml_rope_impl( float xpos_base, bool xpos_down, bool inplace) { + GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported"); + GGML_ASSERT(ggml_is_vector(b)); GGML_ASSERT(b->type == GGML_TYPE_I32); GGML_ASSERT(a->ne[2] == b->ne[0]); + if (c) { + GGML_ASSERT(c->type == GGML_TYPE_F32); + GGML_ASSERT(c->ne[0] >= n_dims / 2); + } + bool is_node = false; if (a->grad) { @@ -6271,6 +6267,7 @@ static struct ggml_tensor * ggml_rope_impl( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = b; + result->src[2] = c; return result; } @@ -6283,7 +6280,7 @@ struct ggml_tensor * ggml_rope( int mode, int n_ctx) { return ggml_rope_impl( - ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false + ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false ); } @@ -6295,7 +6292,49 @@ struct ggml_tensor * ggml_rope_inplace( int mode, int n_ctx) { return ggml_rope_impl( - ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true + ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true + ); +} + +struct ggml_tensor * ggml_rope_ext( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + int n_dims, + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow) { + return ggml_rope_impl( + ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false + ); +} + +struct ggml_tensor * ggml_rope_ext_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + int n_dims, + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow) { + return ggml_rope_impl( + ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true ); } @@ -6314,7 +6353,7 @@ struct ggml_tensor * ggml_rope_custom( float beta_fast, float beta_slow) { return ggml_rope_impl( - ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale, + ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false ); } @@ -6334,27 +6373,18 @@ struct ggml_tensor * ggml_rope_custom_inplace( float beta_fast, float beta_slow) { return ggml_rope_impl( - ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale, + ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true ); } -struct ggml_tensor * ggml_rope_xpos_inplace( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b, - int n_dims, - float base, - bool down) { - return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true); -} - // ggml_rope_back struct ggml_tensor * ggml_rope_back( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, + struct ggml_tensor * c, int n_dims, int mode, int n_ctx, @@ -6370,6 +6400,7 @@ struct ggml_tensor * ggml_rope_back( GGML_ASSERT(ggml_is_vector(b)); GGML_ASSERT(b->type == GGML_TYPE_I32); GGML_ASSERT(a->ne[2] == b->ne[0]); + GGML_ASSERT(c == NULL && "freq factors not implemented yet"); GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet"); @@ -6913,38 +6944,6 @@ struct ggml_tensor * ggml_top_k( return result; } -// ggml_flash_attn - -struct ggml_tensor * ggml_flash_attn( - struct ggml_context * ctx, - struct ggml_tensor * q, - struct ggml_tensor * k, - struct ggml_tensor * v, - bool masked) { - GGML_ASSERT(ggml_can_mul_mat(k, q)); - // TODO: check if vT can be multiplied by (k*qT) - - bool is_node = false; - - if (q->grad || k->grad || v->grad) { - is_node = true; - } - - //struct ggml_tensor * result = ggml_dup_tensor(ctx, q); - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne); - - int32_t t = masked ? 1 : 0; - ggml_set_op_params(result, &t, sizeof(t)); - - result->op = GGML_OP_FLASH_ATTN; - result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; - result->src[0] = q; - result->src[1] = k; - result->src[2] = v; - - return result; -} - // ggml_flash_attn_ext struct ggml_tensor * ggml_flash_attn_ext( @@ -7004,38 +7003,6 @@ void ggml_flash_attn_ext_set_prec( ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second } -// ggml_flash_ff - -struct ggml_tensor * ggml_flash_ff( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b0, - struct ggml_tensor * b1, - struct ggml_tensor * c0, - struct ggml_tensor * c1) { - GGML_ASSERT(ggml_can_mul_mat(b0, a)); - // TODO: more checks - - bool is_node = false; - - if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) { - is_node = true; - } - - //struct ggml_tensor * result = ggml_dup_tensor(ctx, a); - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne); - - result->op = GGML_OP_FLASH_FF; - result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; - result->src[0] = a; - result->src[1] = b0; - result->src[2] = b1; - result->src[3] = c0; - result->src[4] = c1; - - return result; -} - // ggml_flash_attn_back struct ggml_tensor * ggml_flash_attn_back( @@ -7045,6 +7012,8 @@ struct ggml_tensor * ggml_flash_attn_back( struct ggml_tensor * v, struct ggml_tensor * d, bool masked) { + GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes"); + GGML_ASSERT(ggml_can_mul_mat(k, q)); // TODO: check if vT can be multiplied by (k*qT) @@ -14304,6 +14273,7 @@ static void ggml_compute_forward_rope_f32( const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * src2 = dst->src[2]; if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; @@ -14363,6 +14333,17 @@ static void ggml_compute_forward_rope_f32( const bool is_neox = mode & 2; const bool is_glm = mode & 4; + const float * freq_factors = NULL; + if (is_neox) { + if (src2 != NULL) { + GGML_ASSERT(src2->type == GGML_TYPE_F32); + GGML_ASSERT(src2->ne[0] >= n_dims / 2); + freq_factors = (const float *) src2->data; + } + } else { + GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox"); + } + // backward process uses inverse rotation by cos and sin. // cos and sin build a rotation matrix, where the inverse is the transpose. // this essentially just switches the sign of sin. @@ -14439,10 +14420,11 @@ static void ggml_compute_forward_rope_f32( // simplified from `(ib * n_dims + ic) * inv_ndims` float cur_rot = inv_ndims * ic - ib; + float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f; float cos_theta, sin_theta; rope_yarn( - theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, + theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta ); sin_theta *= sin_sign; @@ -14475,6 +14457,7 @@ static void ggml_compute_forward_rope_f32( } } +// TODO: deduplicate f16/f32 code static void ggml_compute_forward_rope_f16( const struct ggml_compute_params * params, struct ggml_tensor * dst, @@ -14482,6 +14465,7 @@ static void ggml_compute_forward_rope_f16( const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * src2 = dst->src[2]; if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; @@ -14534,6 +14518,17 @@ static void ggml_compute_forward_rope_f16( const bool is_neox = mode & 2; const bool is_glm = mode & 4; + const float * freq_factors = NULL; + if (is_neox) { + if (src2 != NULL) { + GGML_ASSERT(src2->type == GGML_TYPE_F32); + GGML_ASSERT(src2->ne[0] >= n_dims / 2); + freq_factors = (const float *) src2->data; + } + } else { + GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox"); + } + // backward process uses inverse rotation by cos and sin. // cos and sin build a rotation matrix, where the inverse is the transpose. // this essentially just switches the sign of sin. @@ -14606,10 +14601,11 @@ static void ggml_compute_forward_rope_f16( // simplified from `(ib * n_dims + ic) * inv_ndims` float cur_rot = inv_ndims * ic - ib; + float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f; float cos_theta, sin_theta; rope_yarn( - theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, + theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta ); sin_theta *= sin_sign; @@ -15647,400 +15643,6 @@ static void ggml_compute_forward_argsort( } } -// ggml_compute_forward_flash_attn - -static void ggml_compute_forward_flash_attn_f32( - const struct ggml_compute_params * params, - const bool masked, - struct ggml_tensor * dst) { - - const struct ggml_tensor * q = dst->src[0]; - const struct ggml_tensor * k = dst->src[1]; - const struct ggml_tensor * v = dst->src[2]; - - int64_t t0 = ggml_perf_time_us(); - UNUSED(t0); - - GGML_TENSOR_LOCALS(int64_t, neq, q, ne) - GGML_TENSOR_LOCALS(size_t, nbq, q, nb) - GGML_TENSOR_LOCALS(int64_t, nek, k, ne) - GGML_TENSOR_LOCALS(size_t, nbk, k, nb) - GGML_TENSOR_LOCALS(int64_t, nev, v, ne) - GGML_TENSOR_LOCALS(size_t, nbv, v, nb) - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) - GGML_TENSOR_LOCALS(size_t, nb, dst, nb) - - const int ith = params->ith; - const int nth = params->nth; - - const int64_t D = neq0; - const int64_t N = neq1; - const int64_t P = nek1 - N; - const int64_t M = P + N; - - const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); - - GGML_ASSERT(ne0 == D); - GGML_ASSERT(ne1 == N); - GGML_ASSERT(P >= 0); - - GGML_ASSERT(nbq0 == sizeof(float)); - GGML_ASSERT(nbk0 == sizeof(float)); - GGML_ASSERT(nbv0 == sizeof(float)); - - GGML_ASSERT(neq0 == D); - GGML_ASSERT(nek0 == D); - GGML_ASSERT(nev1 == D); - - GGML_ASSERT(neq1 == N); - GGML_ASSERT(nek1 == N + P); - GGML_ASSERT(nev1 == D); - - // dst cannot be transposed or permuted - GGML_ASSERT(nb0 == sizeof(float)); - GGML_ASSERT(nb0 <= nb1); - GGML_ASSERT(nb1 <= nb2); - GGML_ASSERT(nb2 <= nb3); - - if (params->type == GGML_TASK_TYPE_INIT) { - return; - } - - if (params->type == GGML_TASK_TYPE_FINALIZE) { - return; - } - - // parallelize by q rows using ggml_vec_dot_f32 - - // total rows in q - const int nr = neq1*neq2*neq3; - - // rows per thread - const int dr = (nr + nth - 1)/nth; - - // row range for this thread - const int ir0 = dr*ith; - const int ir1 = MIN(ir0 + dr, nr); - - const float scale = 1.0f/sqrtf(D); - - //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); - - for (int ir = ir0; ir < ir1; ++ir) { - // q indices - const int iq3 = ir/(neq2*neq1); - const int iq2 = (ir - iq3*neq2*neq1)/neq1; - const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); - - float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32); - - for (int i = M; i < Mup; ++i) { - S[i] = -INFINITY; - } - - const int64_t masked_begin = masked ? (P + iq1 + 1) : M; - for (int64_t ic = 0; ic < masked_begin; ++ic) { - // k indices - const int ik3 = iq3; - const int ik2 = iq2 % nek2; - const int ik1 = ic; - - // S indices - const int i1 = ik1; - - ggml_vec_dot_f32(neq0, - S + i1, 0, - (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0, - (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1); - } - - // scale - ggml_vec_scale_f32(masked_begin, S, scale); - - for (int64_t i = masked_begin; i < M; i++) { - S[i] = -INFINITY; - } - - // softmax - // exclude known -INF S[..] values from max and loop - // dont forget to set their SW values to zero - { - float max = -INFINITY; - ggml_vec_max_f32(masked_begin, &max, S); - - ggml_float sum = 0.0; - { -#ifdef GGML_SOFT_MAX_ACCELERATE - max = -max; - vDSP_vsadd(S, 1, &max, S, 1, Mup); - vvexpf(S, S, &Mup); - ggml_vec_sum_f32(Mup, &sum, S); -#else - sum = ggml_vec_soft_max_f32(Mup, S, S, max); -#endif - } - - assert(sum > 0.0); - - sum = 1.0/sum; - ggml_vec_scale_f32(masked_begin, S, sum); - -#ifndef NDEBUG - for (int i = 0; i < masked_begin; ++i) { - assert(!isnan(S[i])); - assert(!isinf(S[i])); - } -#endif - } - - for (int64_t ic = 0; ic < nev1; ++ic) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; - - // v indices - const int iv2 = iq2 % nev2; - const int iv3 = iq3; - - ggml_vec_dot_f32(masked_begin, - (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0, - (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0, - S, 0, 1); - } - } -} - -static void ggml_compute_forward_flash_attn_f16( - const struct ggml_compute_params * params, - const bool masked, - struct ggml_tensor * dst) { - - const struct ggml_tensor * q = dst->src[0]; - const struct ggml_tensor * k = dst->src[1]; - const struct ggml_tensor * v = dst->src[2]; - - int64_t t0 = ggml_perf_time_us(); - UNUSED(t0); - - GGML_TENSOR_LOCALS(int64_t, neq, q, ne) - GGML_TENSOR_LOCALS(size_t, nbq, q, nb) - GGML_TENSOR_LOCALS(int64_t, nek, k, ne) - GGML_TENSOR_LOCALS(size_t, nbk, k, nb) - GGML_TENSOR_LOCALS(int64_t, nev, v, ne) - GGML_TENSOR_LOCALS(size_t, nbv, v, nb) - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) - GGML_TENSOR_LOCALS(size_t, nb, dst, nb) - - const int ith = params->ith; - const int nth = params->nth; - - const int64_t D = neq0; - const int64_t N = neq1; - const int64_t P = nek1 - N; - const int64_t M = P + N; - - const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); - - GGML_ASSERT(ne0 == D); - GGML_ASSERT(ne1 == N); - GGML_ASSERT(P >= 0); - - GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t)); - GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t)); - GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t)); - - GGML_ASSERT(neq0 == D); - GGML_ASSERT(nek0 == D); - GGML_ASSERT(nev1 == D); - - GGML_ASSERT(neq1 == N); - GGML_ASSERT(nek1 == N + P); - GGML_ASSERT(nev1 == D); - - // dst cannot be transposed or permuted - GGML_ASSERT(nb0 == sizeof(float)); - GGML_ASSERT(nb0 <= nb1); - GGML_ASSERT(nb1 <= nb2); - GGML_ASSERT(nb2 <= nb3); - - if (params->type == GGML_TASK_TYPE_INIT) { - return; - } - - if (params->type == GGML_TASK_TYPE_FINALIZE) { - return; - } - - // parallelize by q rows using ggml_vec_dot_f32 - - // total rows in q - const int nr = neq1*neq2*neq3; - - // rows per thread - const int dr = (nr + nth - 1)/nth; - - // row range for this thread - const int ir0 = dr*ith; - const int ir1 = MIN(ir0 + dr, nr); - - const float scale = 1.0f/sqrtf(D); - - //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); - - for (int ir = ir0; ir < ir1; ++ir) { - // q indices - const int iq3 = ir/(neq2*neq1); - const int iq2 = (ir - iq3*neq2*neq1)/neq1; - const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); - - float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32); - - for (int i = M; i < Mup; ++i) { - S[i] = -INFINITY; - } - - if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) { - for (int64_t ic = 0; ic < nek1; ++ic) { - // k indices - const int ik3 = iq3; - const int ik2 = iq2 % nek2; - const int ik1 = ic; - - // S indices - const int i1 = ik1; - - ggml_vec_dot_f16(neq0, - S + i1, 0, - (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0, - (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1); - } - } else { - for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) { - // k indices - const int ik3 = iq3; - const int ik2 = iq2 % nek2; - const int ik1 = ic; - - // S indices - const int i1 = ik1; - - ggml_vec_dot_f16_unroll(neq0, nbk1, - S + i1, - ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), - (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); - } - } - - // scale - ggml_vec_scale_f32(nek1, S, scale); - - if (masked) { - for (int64_t i = P; i < M; i++) { - if (i > P + iq1) { - S[i] = -INFINITY; - } - } - } - - // softmax - // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero. - // dont forget to set their S values to zero - { - float max = -INFINITY; - ggml_vec_max_f32(M, &max, S); - - ggml_float sum = 0.0; - { -#ifdef GGML_SOFT_MAX_ACCELERATE - max = -max; - vDSP_vsadd(S, 1, &max, S, 1, Mup); - vvexpf(S, S, &Mup); - ggml_vec_sum_f32(Mup, &sum, S); -#else - sum = ggml_vec_soft_max_f32(Mup, S, S, max); -#endif - } - - assert(sum > 0.0); - - sum = 1.0/sum; - ggml_vec_scale_f32(M, S, sum); - -#ifndef NDEBUG - for (int i = 0; i < M; ++i) { - assert(!isnan(S[i])); - assert(!isinf(S[i])); - } -#endif - } - - ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup); - - for (int64_t i = 0; i < M; i++) { - S16[i] = GGML_FP32_TO_FP16(S[i]); - } - - // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16). - if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) { - for (int64_t ic = 0; ic < nev1; ++ic) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; - - // v indices - const int iv2 = iq2 % nev2; - const int iv3 = iq3; - - ggml_vec_dot_f16(nev0, - (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0, - (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0, - S16, 0, 1); - } - } else { - for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; - - // v indices - const int iv2 = iq2 % nev2; - const int iv3 = iq3; - - ggml_vec_dot_f16_unroll(nev0, nbv1, - (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), - ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), - S16); - } - } - } -} - -static void ggml_compute_forward_flash_attn( - const struct ggml_compute_params * params, - const bool masked, - struct ggml_tensor * dst) { - - const struct ggml_tensor * q = dst->src[0]; - - switch (q->type) { - case GGML_TYPE_F16: - { - ggml_compute_forward_flash_attn_f16(params, masked, dst); - } break; - case GGML_TYPE_F32: - { - ggml_compute_forward_flash_attn_f32(params, masked, dst); - } break; - default: - { - GGML_ASSERT(false); - } break; - } -} - // ggml_compute_forward_flash_attn_ext static void ggml_compute_forward_flash_attn_ext_f16( @@ -16274,165 +15876,6 @@ static void ggml_compute_forward_flash_attn_ext( } } -// ggml_compute_forward_flash_ff - -static void ggml_compute_forward_flash_ff_f16( - const struct ggml_compute_params * params, - struct ggml_tensor * dst) { - - const struct ggml_tensor * a = dst->src[0]; // F16 - const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w - const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b - const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w - const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b - - int64_t t0 = ggml_perf_time_us(); - UNUSED(t0); - - GGML_TENSOR_LOCALS(int64_t, nea, a, ne) - GGML_TENSOR_LOCALS(size_t, nba, a, nb) - GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne) - GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb) - GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne) - GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb) - GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne) - GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb) - GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne) - GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb) - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) - GGML_TENSOR_LOCALS(size_t, nb, dst, nb) - - const int ith = params->ith; - const int nth = params->nth; - - const int64_t D = nea0; - //const int64_t N = nea1; - const int64_t M = neb01; - - GGML_ASSERT(ne0 == nea0); - GGML_ASSERT(ne1 == nea1); - GGML_ASSERT(ne2 == nea2); - - GGML_ASSERT(nba0 == sizeof(ggml_fp16_t)); - GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t)); - GGML_ASSERT(nbb10 == sizeof(float)); - GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t)); - GGML_ASSERT(nbc10 == sizeof(float)); - - GGML_ASSERT(neb00 == D); - GGML_ASSERT(neb01 == M); - GGML_ASSERT(neb10 == M); - GGML_ASSERT(neb11 == 1); - - GGML_ASSERT(nec00 == M); - GGML_ASSERT(nec01 == D); - GGML_ASSERT(nec10 == D); - GGML_ASSERT(nec11 == 1); - - // dst cannot be transposed or permuted - GGML_ASSERT(nb0 == sizeof(float)); - GGML_ASSERT(nb0 <= nb1); - GGML_ASSERT(nb1 <= nb2); - GGML_ASSERT(nb2 <= nb3); - - if (params->type == GGML_TASK_TYPE_INIT) { - return; - } - - if (params->type == GGML_TASK_TYPE_FINALIZE) { - return; - } - - // parallelize by a rows using ggml_vec_dot_f32 - - // total rows in a - const int nr = nea1*nea2*nea3; - - // rows per thread - const int dr = (nr + nth - 1)/nth; - - // row range for this thread - const int ir0 = dr*ith; - const int ir1 = MIN(ir0 + dr, nr); - - for (int ir = ir0; ir < ir1; ++ir) { - // a indices - const int ia3 = ir/(nea2*nea1); - const int ia2 = (ir - ia3*nea2*nea1)/nea1; - const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1); - - float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32); - - for (int64_t ic = 0; ic < neb01; ++ic) { - // b0 indices - const int ib03 = ia3; - const int ib02 = ia2; - const int ib01 = ic; - - // S indices - const int i1 = ib01; - - ggml_vec_dot_f16(nea0, - S + i1, 0, - (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0, - (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1); - } - - ggml_vec_add_f32(neb01, S, S, (float *) b1->data); - //ggml_vec_gelu_f32(neb01, S, S); - - ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M); - - for (int64_t i = 0; i < M; i++) { - S16[i] = GGML_FP32_TO_FP16(S[i]); - } - - ggml_vec_gelu_f16(neb01, S16, S16); - - { - // dst indices - const int i1 = ia1; - const int i2 = ia2; - const int i3 = ia3; - - for (int64_t ic = 0; ic < nec01; ++ic) { - - ggml_vec_dot_f16(neb01, - (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0, - (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0, - S16, 0, 1); - } - - ggml_vec_add_f32(nec01, - (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)), - (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)), - (float *) c1->data); - } - } -} - -static void ggml_compute_forward_flash_ff( - const struct ggml_compute_params * params, - struct ggml_tensor * dst) { - - const struct ggml_tensor * b0 = dst->src[1]; - - switch (b0->type) { - case GGML_TYPE_F16: - { - ggml_compute_forward_flash_ff_f16(params, dst); - } break; - case GGML_TYPE_F32: - { - GGML_ASSERT(false); // TODO - } break; - default: - { - GGML_ASSERT(false); - } break; - } -} - // ggml_compute_forward_flash_attn_back static void ggml_compute_forward_flash_attn_back_f32( @@ -18003,21 +17446,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_leaky_relu(params, tensor); } break; - case GGML_OP_FLASH_ATTN: - { - const int32_t t = ggml_get_op_params_i32(tensor, 0); - GGML_ASSERT(t == 0 || t == 1); - const bool masked = t != 0; - ggml_compute_forward_flash_attn(params, masked, tensor); - } break; case GGML_OP_FLASH_ATTN_EXT: { ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor); } break; - case GGML_OP_FLASH_FF: - { - ggml_compute_forward_flash_ff(params, tensor); - } break; case GGML_OP_FLASH_ATTN_BACK: { int32_t t = ggml_get_op_params_i32(tensor, 0); @@ -18387,6 +17819,7 @@ static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct gg static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) { struct ggml_tensor * src0 = tensor->src[0]; struct ggml_tensor * src1 = tensor->src[1]; + struct ggml_tensor * src2 = tensor->src[2]; switch (tensor->op) { case GGML_OP_DUP: @@ -18918,6 +18351,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor ggml_rope_back(ctx, tensor->grad, src1, + src2, n_dims, mode, n_ctx, @@ -18957,6 +18391,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor ggml_rope_impl(ctx, tensor->grad, src1, + src2, n_dims, mode, n_ctx, @@ -19021,7 +18456,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // TODO: not implemented } break; - case GGML_OP_FLASH_ATTN: case GGML_OP_FLASH_ATTN_EXT: { struct ggml_tensor * flash_grad = NULL; @@ -19038,7 +18472,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor masked); } - struct ggml_tensor * src2 = tensor->src[2]; const int64_t elem_q = ggml_nelements(src0); const int64_t elem_k = ggml_nelements(src1); const int64_t elem_v = ggml_nelements(src2); @@ -19076,10 +18509,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor zero_table); } } break; - case GGML_OP_FLASH_FF: - { - GGML_ASSERT(false); // not supported - } break; case GGML_OP_FLASH_ATTN_BACK: { GGML_ASSERT(false); // not supported @@ -19766,15 +19195,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_ { n_tasks = n_threads; } break; - case GGML_OP_FLASH_ATTN: case GGML_OP_FLASH_ATTN_EXT: { n_tasks = n_threads; } break; - case GGML_OP_FLASH_FF: - { - n_tasks = n_threads; - } break; case GGML_OP_FLASH_ATTN_BACK: { n_tasks = n_threads; @@ -20171,40 +19595,12 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03; cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12; } break; - case GGML_OP_FLASH_ATTN: - { - const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL); - - if (node->src[1]->type == GGML_TYPE_F32) { - cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 - } else if (node->src[1]->type == GGML_TYPE_F16) { - cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 - } else if (node->src[1]->type == GGML_TYPE_BF16) { - cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 - } - } break; case GGML_OP_FLASH_ATTN_EXT: { const int64_t ne00 = node->src[0]->ne[0]; // D cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread } break; - case GGML_OP_FLASH_FF: - { - if (node->src[1]->type == GGML_TYPE_F32) { - cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2 - } else if (node->src[1]->type == GGML_TYPE_F16) { - cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2 - } else if (node->src[1]->type == GGML_TYPE_BF16) { - cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2 - } - } break; case GGML_OP_FLASH_ATTN_BACK: { const int64_t D = node->src[0]->ne[0]; @@ -22045,11 +21441,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; -#if QK_K == 64 - case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; -#else case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; -#endif case GGML_TYPE_F16: { size_t elemsize = sizeof(ggml_fp16_t); diff --git a/ggml.h b/ggml.h index 774757101..be81e0c52 100644 --- a/ggml.h +++ b/ggml.h @@ -481,9 +481,7 @@ extern "C" { GGML_OP_ARGSORT, GGML_OP_LEAKY_RELU, - GGML_OP_FLASH_ATTN, GGML_OP_FLASH_ATTN_EXT, - GGML_OP_FLASH_FF, GGML_OP_FLASH_ATTN_BACK, GGML_OP_SSM_CONV, GGML_OP_SSM_SCAN, @@ -1460,11 +1458,12 @@ extern "C" { struct ggml_tensor * b); // rotary position embedding - // if mode & 1 == 1, skip n_past elements (DEPRECATED) + // if mode & 1 == 1, skip n_past elements (NOT SUPPORTED) // if mode & 2 == 1, GPT-NeoX style // if mode & 4 == 1, ChatGLM style // // b is an int32 vector with size a->ne[2], it contains the positions + // c is freq factors (e.g. phi3-128k), (optional) GGML_API struct ggml_tensor * ggml_rope( struct ggml_context * ctx, struct ggml_tensor * a, @@ -1483,10 +1482,11 @@ extern "C" { int n_ctx); // custom RoPE - GGML_API struct ggml_tensor * ggml_rope_custom( + GGML_API struct ggml_tensor * ggml_rope_ext( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, + struct ggml_tensor * c, int n_dims, int mode, int n_ctx, @@ -1499,7 +1499,23 @@ extern "C" { float beta_slow); // in-place, returns view(a) - GGML_API struct ggml_tensor * ggml_rope_custom_inplace( + GGML_API struct ggml_tensor * ggml_rope_ext_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + int n_dims, + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, @@ -1512,20 +1528,28 @@ extern "C" { float ext_factor, float attn_factor, float beta_fast, - float beta_slow); + float beta_slow), + "use ggml_rope_ext instead"); - // compute correction dims for YaRN RoPE scaling - GGML_CALL void ggml_rope_yarn_corr_dims( - int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]); - - // xPos RoPE, in-place, returns view(a) - GGML_API struct ggml_tensor * ggml_rope_xpos_inplace( + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, int n_dims, - float base, - bool down); + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow), + "use ggml_rope_ext_inplace instead"); + + // compute correction dims for YaRN RoPE scaling + GGML_CALL void ggml_rope_yarn_corr_dims( + int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]); // rotary position embedding backward, i.e compute dx from dy // a - dy @@ -1533,6 +1557,7 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, + struct ggml_tensor * c, int n_dims, int mode, int n_ctx, @@ -1734,13 +1759,6 @@ extern "C" { struct ggml_tensor * a, int k); - GGML_API struct ggml_tensor * ggml_flash_attn( - struct ggml_context * ctx, - struct ggml_tensor * q, - struct ggml_tensor * k, - struct ggml_tensor * v, - bool masked); - #define GGML_KQ_MASK_PAD 32 // q: [n_embd, n_batch, n_head, 1] @@ -1761,6 +1779,7 @@ extern "C" { struct ggml_tensor * a, enum ggml_prec prec); + // TODO: needs to be adapted to ggml_flash_attn_ext GGML_API struct ggml_tensor * ggml_flash_attn_back( struct ggml_context * ctx, struct ggml_tensor * q, @@ -1769,14 +1788,6 @@ extern "C" { struct ggml_tensor * d, bool masked); - GGML_API struct ggml_tensor * ggml_flash_ff( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b0, - struct ggml_tensor * b1, - struct ggml_tensor * c0, - struct ggml_tensor * c1); - GGML_API struct ggml_tensor * ggml_ssm_conv( struct ggml_context * ctx, struct ggml_tensor * s, diff --git a/ggml_vk_generate_shaders.py b/ggml_vk_generate_shaders.py index 8096c03b7..a8f7373df 100644 --- a/ggml_vk_generate_shaders.py +++ b/ggml_vk_generate_shaders.py @@ -2609,7 +2609,8 @@ layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) readonly buffer Y {int data_b[];}; -layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; +layout (binding = 2) readonly buffer Z {float data_freq_factors[];}; +layout (binding = 3) writeonly buffer D {D_TYPE data_d[];}; layout (push_constant) uniform parameter { uint ncols; @@ -2622,6 +2623,7 @@ layout (push_constant) uniform parameter { float corr_dims[4]; float theta_scale; float inv_ndims; + uint has_freq_facs; } p; float rope_yarn_ramp(const float low, const float high, const uint i0) { @@ -2671,7 +2673,8 @@ void main() { const float cur_rot = p.inv_ndims * ic - ib; const int pos = data_b[i2]; - const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f); + const float freq_factor = p.has_freq_facs != 0 ? data_freq_factors[ic/2] : 1.0f; + const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f) / freq_factor; float cos_theta, sin_theta; rope_yarn(theta_base, uint(cur_rot), cos_theta, sin_theta); diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 692120f4d..67e23dcc1 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -57,12 +57,13 @@ class Keys: CAUSAL = "{arch}.attention.causal" class Rope: - DIMENSION_COUNT = "{arch}.rope.dimension_count" - FREQ_BASE = "{arch}.rope.freq_base" - SCALING_TYPE = "{arch}.rope.scaling.type" - SCALING_FACTOR = "{arch}.rope.scaling.factor" - SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length" - SCALING_FINETUNED = "{arch}.rope.scaling.finetuned" + DIMENSION_COUNT = "{arch}.rope.dimension_count" + FREQ_BASE = "{arch}.rope.freq_base" + SCALING_TYPE = "{arch}.rope.scaling.type" + SCALING_FACTOR = "{arch}.rope.scaling.factor" + SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor" + SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length" + SCALING_FINETUNED = "{arch}.rope.scaling.finetuned" class SSM: CONV_KERNEL = "{arch}.ssm.conv_kernel" @@ -148,6 +149,8 @@ class MODEL_TENSOR(IntEnum): OUTPUT = auto() OUTPUT_NORM = auto() ROPE_FREQS = auto() + ROPE_FACTORS_LONG = auto() + ROPE_FACTORS_SHORT = auto() ATTN_Q = auto() ATTN_K = auto() ATTN_V = auto() @@ -225,6 +228,8 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.ROPE_FREQS: "rope_freqs", + MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long", + MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short", MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", @@ -900,9 +905,8 @@ class GGUFValueType(IntEnum): raise ValueError(f"Unknown type: {type(val)}") -# Note: Does not support GGML_QKK_64 -QK_K = 256 # Items here are (block size, type size) +QK_K = 256 GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = { GGMLQuantizationType.F32: (1, 4), GGMLQuantizationType.F16: (1, 2), diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index d5e323a52..8b41b54ea 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -433,6 +433,9 @@ class GGUFWriter: def add_rope_scaling_factor(self, value: float) -> None: self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value) + def add_rope_scaling_attn_factors(self, value: Sequence[float]) -> None: + self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value) + def add_rope_scaling_orig_ctx_len(self, value: int) -> None: self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value) diff --git a/llama.cpp b/llama.cpp index e2ebe1752..15c660775 100644 --- a/llama.cpp +++ b/llama.cpp @@ -26,13 +26,9 @@ #ifdef GGML_USE_METAL # include "ggml-metal.h" #endif -#ifndef QK_K -# ifdef GGML_QKK_64 -# define QK_K 64 -# else -# define QK_K 256 -# endif -#endif + +// TODO: replace with ggml API call +#define QK_K 256 #ifdef __has_include #if __has_include() @@ -304,6 +300,7 @@ enum llm_kv { LLM_KV_ROPE_SCALE_LINEAR, LLM_KV_ROPE_SCALING_TYPE, LLM_KV_ROPE_SCALING_FACTOR, + LLM_KV_ROPE_SCALING_ATTN_FACTOR, LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, LLM_KV_ROPE_SCALING_FINETUNED, @@ -381,6 +378,7 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, + { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, @@ -436,6 +434,8 @@ enum llm_tensor { LLM_TENSOR_OUTPUT, LLM_TENSOR_OUTPUT_NORM, LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ROPE_FACTORS_LONG, + LLM_TENSOR_ROPE_FACTORS_SHORT, LLM_TENSOR_ATTN_Q, LLM_TENSOR_ATTN_K, LLM_TENSOR_ATTN_V, @@ -803,18 +803,20 @@ static const std::map> LLM_TENSOR_NA { LLM_ARCH_PHI3, { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" }, + { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { @@ -1690,17 +1692,24 @@ static llama_state g_state; // available llama models enum e_model { MODEL_UNKNOWN, + MODEL_14M, MODEL_17M, MODEL_22M, MODEL_33M, + MODEL_70M, MODEL_109M, MODEL_137M, + MODEL_160M, MODEL_335M, + MODEL_410M, MODEL_0_5B, MODEL_1B, + MODEL_1_4B, MODEL_2B, + MODEL_2_8B, MODEL_3B, MODEL_4B, + MODEL_6_9B, MODEL_7B, MODEL_8B, MODEL_12B, @@ -1732,6 +1741,7 @@ static const size_t GiB = 1024*MiB; struct llama_hparams { bool vocab_only; bool rope_finetuned; + bool use_par_res; uint32_t n_vocab; uint32_t n_ctx_train; // context size the model was trained on @@ -1750,6 +1760,7 @@ struct llama_hparams { float f_norm_eps; float f_norm_rms_eps; + float rope_attn_factor = 1.0f; float rope_freq_base_train; float rope_freq_scale_train; uint32_t n_yarn_orig_ctx; @@ -1798,6 +1809,7 @@ struct llama_hparams { if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true; if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true; + if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true; if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; @@ -1932,6 +1944,10 @@ struct llama_layer { // mamba bias struct ggml_tensor * ssm_conv1d_b; struct ggml_tensor * ssm_dt_b; + + // long rope factors + struct ggml_tensor * rope_long = nullptr; + struct ggml_tensor * rope_short = nullptr; }; struct llama_kv_cell { @@ -2467,7 +2483,6 @@ static bool llama_kv_cache_init( static bool llama_kv_cache_find_slot( struct llama_kv_cache & cache, const struct llama_batch & batch) { - const uint32_t n_ctx = cache.size; const uint32_t n_tokens = batch.n_tokens; if (cache.recurrent) { @@ -2518,16 +2533,16 @@ static bool llama_kv_cache_find_slot( } // otherwise, one cell per token. - if (n_tokens > n_ctx) { - LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx); + if (n_tokens > cache.size) { + LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size); return false; } uint32_t n_tested = 0; while (true) { - if (cache.head + n_tokens > n_ctx) { - n_tested += n_ctx - cache.head; + if (cache.head + n_tokens > cache.size) { + n_tested += cache.size - cache.head; cache.head = 0; continue; } @@ -2546,7 +2561,7 @@ static bool llama_kv_cache_find_slot( break; } - if (n_tested >= n_ctx) { + if (n_tested >= cache.size) { //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); return false; } @@ -3306,6 +3321,39 @@ struct llama_model_loader { return get_arr_n(llm_kv(kid), result, required); } + template + bool get_arr(const std::string & key, std::vector & result, const bool required = true) { + const int kid = gguf_find_key(meta, key.c_str()); + + if (kid < 0) { + if (required) { + throw std::runtime_error(format("key not found in model: %s", key.c_str())); + } + return false; + } + + struct GGUFMeta::ArrayInfo arr_info = + GGUFMeta::GKV::get_kv(meta, kid); + + if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) { + throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str())); + } + + // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T)); + GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same::value)); + GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same::value)); + + result.resize(arr_info.length); + result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length); + + return true; + } + + template + bool get_arr(const enum llm_kv kid, T& result, const bool required = true) { + return get_arr(llm_kv(kid), result, required); + } + template bool get_key(const std::string & key, T & result, const bool required = true) { auto it = kv_overrides.find(key); @@ -3380,11 +3428,15 @@ struct llama_model_loader { return get_tensor_meta(get_tensor_name(i)); } - struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) { + struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) { struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); ggml_set_name(tensor, ggml_get_name(cur)); - n_created++; + if (duplicated) { + size_data += ggml_nbytes(cur); + } else { + n_created++; + } return tensor; } @@ -3419,14 +3471,17 @@ struct llama_model_loader { return cur; } - struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, bool required = true) { - const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); + static const int TENSOR_NOT_REQUIRED = 1; + static const int TENSOR_DUPLICATED = 2; + + struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, int flags = 0) { + const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED)); if (cur == NULL) { return NULL; } - return create_tensor_for(ctx, cur); + return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED); } struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector & ne, size_t offset, bool required = true) { @@ -3726,14 +3781,24 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { static const char * llama_model_type_name(e_model type) { switch (type) { + case MODEL_14M: return "14M"; + case MODEL_17M: return "17M"; case MODEL_22M: return "22M"; case MODEL_33M: return "33M"; + case MODEL_70M: return "70M"; case MODEL_109M: return "109M"; case MODEL_137M: return "137M"; + case MODEL_160M: return "160M"; + case MODEL_335M: return "335M"; + case MODEL_410M: return "410M"; case MODEL_0_5B: return "0.5B"; case MODEL_1B: return "1B"; + case MODEL_1_4B: return "1.4B"; case MODEL_2B: return "2B"; + case MODEL_2_8B: return "2.8B"; case MODEL_3B: return "3B"; + case MODEL_4B: return "4B"; + case MODEL_6_9B: return "6.9B"; case MODEL_7B: return "7B"; case MODEL_8B: return "8B"; case MODEL_12B: return "12B"; @@ -3849,6 +3914,8 @@ static void llm_load_hparams( } hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale; + ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false); + // sanity check for n_rot (optional) { hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; @@ -4089,6 +4156,7 @@ static void llm_load_hparams( switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; + case 40: model.type = e_model::MODEL_14B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; @@ -4229,6 +4297,52 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_GPTNEOX: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res); + switch (hparams.n_layer) { + case 6: + switch (hparams.n_ff) { + case 512: model.type = e_model::MODEL_14M; break; + case 2048: model.type = e_model::MODEL_70M; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 12: + switch (hparams.n_ff) { + case 3072: model.type = e_model::MODEL_160M; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 16: + switch (hparams.n_ff) { + case 8192: model.type = e_model::MODEL_1B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 24: + switch (hparams.n_ff) { + case 4096: model.type = e_model::MODEL_410M; break; + case 8192: model.type = e_model::MODEL_1_4B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 32: + switch (hparams.n_ff) { + case 10240: model.type = e_model::MODEL_2_8B; break; + case 16384: model.type = e_model::MODEL_6_9B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 36: + switch (hparams.n_ff) { + case 20480: model.type = e_model::MODEL_12B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 44: + switch (hparams.n_ff) { + case 24576: model.type = e_model::MODEL_20B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -4880,6 +4994,7 @@ static bool llm_load_tensors( // create tensors for the weights { const int64_t n_embd = hparams.n_embd; + const int64_t n_embd_head = n_embd / hparams.n_head; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = n_embd_v_gqa; @@ -4914,12 +5029,10 @@ static bool llm_load_tensors( { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); if (model.arch != LLM_ARCH_MINICPM){ - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } } } @@ -4938,10 +5051,10 @@ static bool llm_load_tensors( layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); // optional bias tensors - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false); + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); @@ -4952,7 +5065,7 @@ static bool llm_load_tensors( } else { layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED); if (layer.ffn_gate_exps) { layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); @@ -4994,12 +5107,10 @@ static bool llm_load_tensors( // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } } @@ -5022,7 +5133,7 @@ static bool llm_load_tensors( layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED); if (layer.ffn_gate_exps) { layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); @@ -5124,11 +5235,9 @@ static bool llm_load_tensors( model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); if (!model.output) { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU } } @@ -5141,8 +5250,8 @@ static bool llm_load_tensors( layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false); - layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false); + layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); @@ -5160,12 +5269,10 @@ static bool llm_load_tensors( { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); if (!model.output) { // needs to be on GPU - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } } @@ -5263,14 +5370,14 @@ static bool llm_load_tensors( layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false); - layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false); + layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false); - layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false); + layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); @@ -5332,18 +5439,16 @@ static bool llm_load_tensors( case LLM_ARCH_MPT: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false); + model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); if (!model.output) { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU } } @@ -5354,31 +5459,31 @@ static bool llm_load_tensors( auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false); - layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false); + layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false); - layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false); + layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); // AWQ ScaleActivation layer - layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false); + layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_STABLELM: @@ -5407,17 +5512,17 @@ static bool llm_load_tensors( layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); // optional bias tensors, present in Stable LM 2 1.6B - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false); + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); // optional q and k layernorms, present in StableLM 2 12B - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false); + layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED); // optional FFN norm, not present in StableLM 2 12B which uses parallel residual - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); @@ -5460,12 +5565,10 @@ static bool llm_load_tensors( // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } } @@ -5563,8 +5666,8 @@ static bool llm_load_tensors( layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false); + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); if (layer.wqkv == nullptr) { layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); @@ -5601,17 +5704,20 @@ static bool llm_load_tensors( ggml_context* ctx_layer = ctx_for_layer(i); ggml_context* ctx_split = ctx_for_layer_split(i); - auto& layer = model.layers[i]; + auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }); + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }); + + layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); } } break; case LLM_ARCH_PLAMO: @@ -5780,9 +5886,7 @@ static bool llm_load_tensors( // output model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading const int64_t n_ff = hparams.n_ff; const int64_t n_embd_head_k = hparams.n_embd_head_k; @@ -5817,12 +5921,10 @@ static bool llm_load_tensors( model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } } @@ -5873,12 +5975,10 @@ static bool llm_load_tensors( { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed, duplicated to allow offloading if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } } @@ -5939,9 +6039,7 @@ static bool llm_load_tensors( { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); // init output from the input tok embed - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { @@ -5973,12 +6071,10 @@ static bool llm_load_tensors( // output { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - ml.n_created--; // artificial tensor - ml.size_data += ggml_nbytes(model.output); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } } @@ -5998,6 +6094,41 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; + case LLM_ARCH_GPTNEOX: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -6587,7 +6718,7 @@ static struct ggml_tensor * llm_build_kqv( cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias); - if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) { + if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) { ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); } @@ -6596,7 +6727,7 @@ static struct ggml_tensor * llm_build_kqv( struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); cb(kq, "kq", il); - if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) { + if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) { // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847 ggml_mul_mat_set_prec(kq, GGML_PREC_F32); @@ -6821,17 +6952,20 @@ struct llm_build_context { cb(lctx.inp_K_shift, "K_shift", -1); ggml_set_input(lctx.inp_K_shift); + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * rope_factors = build_rope_factors(il); struct ggml_tensor * tmp = // we rotate only the first n_rot dimensions - ggml_rope_custom_inplace(ctx0, + ggml_rope_ext_inplace(ctx0, ggml_view_3d(ctx0, kv_self.k_l[il], n_embd_head_k, n_head_kv, n_ctx, ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), 0), - lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + lctx.inp_K_shift, rope_factors, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); + cb(tmp, "K_shifted", il); ggml_build_forward_expand(gf, tmp); } @@ -6934,6 +7068,17 @@ struct llm_build_context { return lctx.inp_pos; } + struct ggml_tensor * build_rope_factors(int il) { + // choose long/short freq factors based on the context size + const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max; + + if (n_ctx_pre_seq > hparams.n_yarn_orig_ctx) { + return model.layers[il].rope_long; + } + + return model.layers[il].rope_short; + } + struct ggml_tensor * build_inp_out_ids() { lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs); cb(lctx.inp_out_ids, "inp_out_ids", -1); @@ -7041,15 +7186,15 @@ struct llm_build_context { cb(Vcur, "Vcur", il); } - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -7171,13 +7316,13 @@ struct llm_build_context { switch (model.type) { case MODEL_7B: - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -7283,15 +7428,15 @@ struct llm_build_context { struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -7404,14 +7549,14 @@ struct llm_build_context { Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); // using mode = 2 for neox mode - Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -7527,15 +7672,15 @@ struct llm_build_context { cb(Vcur, "Vcur", il); } - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -7679,15 +7824,15 @@ struct llm_build_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -8032,15 +8177,15 @@ struct llm_build_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -8472,15 +8617,15 @@ struct llm_build_context { } - Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -8592,14 +8737,14 @@ struct llm_build_context { Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); // using mode = 2 for neox mode - Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -8703,15 +8848,15 @@ struct llm_build_context { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -8817,15 +8962,15 @@ struct llm_build_context { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -8969,8 +9114,8 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); @@ -8980,8 +9125,8 @@ struct llm_build_context { Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head))); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -9057,6 +9202,9 @@ struct llm_build_context { // self-attention { + // rope freq factors for 128k context + struct ggml_tensor * rope_factors = build_rope_factors(il); + struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, @@ -9088,8 +9236,8 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); @@ -9097,8 +9245,8 @@ struct llm_build_context { Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -9204,14 +9352,14 @@ struct llm_build_context { struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr, n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr, n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Kcur, "Kcur", il); @@ -9412,15 +9560,15 @@ struct llm_build_context { cb(tmpk, "tmpk", il); cb(Vcur, "Vcur", il); - struct ggml_tensor * Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, + struct ggml_tensor * Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - struct ggml_tensor * Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, + struct ggml_tensor * Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -9528,15 +9676,15 @@ struct llm_build_context { // cb(Vcur, "Vcur", il); // } - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -9645,15 +9793,15 @@ struct llm_build_context { cb(Vcur, "Vcur", il); } - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -9775,15 +9923,15 @@ struct llm_build_context { cb(Vcur, "Vcur", il); } - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -9895,8 +10043,8 @@ struct llm_build_context { struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr, n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); @@ -9904,8 +10052,8 @@ struct llm_build_context { Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); cb(Qcur, "Qcur_scaled", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr, n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Kcur, "Kcur", il); @@ -10015,15 +10163,15 @@ struct llm_build_context { cb(Vcur, "Vcur", il); } - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -10305,15 +10453,15 @@ struct llm_build_context { cb(Kcur, "Kcur", il); } - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -10436,15 +10584,15 @@ struct llm_build_context { cb(Vcur, "Vcur", il); } - Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -10508,6 +10656,140 @@ struct llm_build_context { return gf; } + + struct ggml_cgraph * build_gptneox() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + + struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + // ffn + if (hparams.use_par_res) { + // attention and ffn are computed in parallel + // x = x + attn(ln1(x)) + ffn(ln2(x)) + + struct ggml_tensor * attn_out = cur; + + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + + cur = ggml_add(ctx0, cur, inpL); + cb(cur, "ffn_out", il); + + inpL = ggml_add(ctx0, cur, attn_out); + cb(inpL, "l_out", il); + } else { + // attention and ffn are computed sequentially + // x = x + attn(ln1(x)) + // x = x + ffn(ln2(x)) + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); + cb(ffn_inp, "ffn_inp", il); + + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + + inpL = ggml_add(ctx0, cur, ffn_inp); + cb(inpL, "l_out", il); + } + } + + cur = llm_build_norm(ctx0, inpL, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { @@ -10718,6 +11000,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_olmo(); } break; + case LLM_ARCH_GPTNEOX: + { + result = llm.build_gptneox(); + } break; default: GGML_ASSERT(false); } @@ -12498,15 +12784,16 @@ static std::vector llama_tokenize_internal(const llama_vocab & // tokenizer.encode('', add_special_tokens=True) returns [1] // tokenizer.encode('', add_special_tokens=False) returns [] - if (add_special && vocab.special_add_bos != 0) { - GGML_ASSERT(vocab.special_bos_id != -1); - output.push_back(vocab.special_bos_id); - } - static const bool rtrim = true; //TODO: as param bool is_prev_special = false; bool special_token_rtrim = false; + if (add_special && vocab.special_add_bos != 0) { + GGML_ASSERT(vocab.special_bos_id != -1); + output.push_back(vocab.special_bos_id); + is_prev_special = true; + } + for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { // without adding this leading whitespace, we do not get the same results as the original tokenizer @@ -14250,8 +14537,6 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; - else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && - (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; if (qs.model.type == MODEL_70B) { // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with @@ -15416,6 +15701,7 @@ struct llama_context * llama_new_context_with_model( cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f; } + cparams.yarn_attn_factor *= hparams.rope_attn_factor; cparams.causal_attn = hparams.causal_attn; if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { @@ -15710,7 +15996,6 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { // these models do not use RoPE case LLM_ARCH_GPT2: case LLM_ARCH_GPTJ: - case LLM_ARCH_GPTNEOX: case LLM_ARCH_MPT: case LLM_ARCH_REFACT: case LLM_ARCH_BLOOM: @@ -15746,6 +16031,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_PHI3: case LLM_ARCH_GEMMA: case LLM_ARCH_STARCODER2: + case LLM_ARCH_GPTNEOX: return LLAMA_ROPE_TYPE_NEOX; // all model arches should be listed explicitly here @@ -17124,6 +17410,14 @@ void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_ ctx->cparams.n_threads_batch = n_threads_batch; } +uint32_t llama_n_threads(struct llama_context * ctx) { + return ctx->cparams.n_threads; +} + +uint32_t llama_n_threads_batch(struct llama_context * ctx) { + return ctx->cparams.n_threads_batch; +} + void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) { ctx->abort_callback = abort_callback; ctx->abort_callback_data = abort_callback_data; @@ -17558,6 +17852,15 @@ static int32_t llama_chat_apply_template_internal( } } // llama2 templates seem to not care about "add_generation_prompt" + } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) { + // Phi 3 + for (auto message : chat) { + std::string role(message->role); + ss << "<|" << role << "|>\n" << message->content << "<|end|>\n"; + } + if (add_ass) { + ss << "<|assistant|>\n"; + } } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) { // zephyr template for (auto message : chat) { @@ -17690,15 +17993,6 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|start_header_id|>assistant<|end_header_id|>\n\n"; } - } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) { - // Phi 3 - for (auto message : chat) { - std::string role(message->role); - ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n"; - } - if (add_ass) { - ss << "<|assistant|>\n"; - } } else { // template not supported return -1; diff --git a/llama.h b/llama.h index b7bf2afcb..16cece5db 100644 --- a/llama.h +++ b/llama.h @@ -759,6 +759,12 @@ extern "C" { // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens) LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch); + // Get the number of threads used for generation of a single token. + LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx); + + // Get the number of threads used for prompt and batch processing (multiple token). + LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx); + // Set whether to use causal attention or not // If set to true, the model will only attend to the past tokens LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn); diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index c74e253db..de74585da 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1142,20 +1142,22 @@ struct test_rope : public test_case { int n_dims; int mode; int n_ctx; + bool ff; std::string vars() override { - return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx); + return VARS_TO_STR6(type, ne, n_dims, mode, n_ctx, ff); } test_rope(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 1}, - int n_dims = 10, int mode = 0, int n_ctx = 512) - : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {} + int n_dims = 10, int mode = 0, int n_ctx = 512, bool ff = false) + : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx), ff(ff) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]); - ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx); + ggml_tensor * freq = ff ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2) : nullptr; + ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f); return out; } @@ -1169,7 +1171,12 @@ struct test_rope : public test_case { } ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int)); } else { - init_tensor_uniform(t); + if (t->ne[0] == n_dims/2) { + // frequency factors in the range [0.9f, 1.1f] + init_tensor_uniform(t, 0.9f, 1.1f); + } else { + init_tensor_uniform(t); + } } } } @@ -1763,14 +1770,14 @@ struct test_llama : public test_llm { struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur); struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur); - Qcur = ggml_rope_custom( - ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, + Qcur = ggml_rope_ext( + ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr, hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); - Kcur = ggml_rope_custom( - ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, + Kcur = ggml_rope_ext( + ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr, hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -1889,13 +1896,13 @@ struct test_falcon : public test_llm { Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens); // using mode = 2 for neox mode - Qcur = ggml_rope_custom( - ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx, + Qcur = ggml_rope_ext( + ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, 0, hp.n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); - Kcur = ggml_rope_custom( - ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx, + Kcur = ggml_rope_ext( + ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, 0, hp.n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -2188,16 +2195,20 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f)); for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { - test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B - test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B - test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512)); // llama 30B - test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512)); // llama 65B - test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512)); // neox (falcon 7B) - test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512)); // neox (falcon 7B) - test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B) - test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B) - test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm) - test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2) + // TODO: ff not supported yet for !neox + test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512, false)); // llama 7B + test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512, false)); // llama 13B + test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512, false)); // llama 30B + test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512, false)); // llama 65B + + for (bool ff : {false, true}) { // freq_factors + test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512, ff)); // neox (falcon 7B) + test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512, ff)); // neox (falcon 7B) + test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512, ff)); // neox (falcon 40B) + test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512, ff)); // neox (falcon 40B) + test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512, ff)); // neox (stablelm) + test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512, ff)); // neox (phi-2) + } } test_cases.emplace_back(new test_concat(GGML_TYPE_F32)); diff --git a/tests/test-chat-template.cpp b/tests/test-chat-template.cpp index 4fe9183b9..cef9a650b 100644 --- a/tests/test-chat-template.cpp +++ b/tests/test-chat-template.cpp @@ -49,8 +49,14 @@ int main(void) { "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}", // Llama-3 "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}", - // Phi-3 - "{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + ' ' + message['content'] + '<|end|> ' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|> ' }}{% else %}{{ eos_token }}{% endif %}" + //Phi-3-mini + "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}", + //Phi-3-small + "{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}", + //Phi-3-medium + "{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}", + //Phi-3-vision + "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}" }; std::vector expected_output = { // teknium/OpenHermes-2.5-Mistral-7B @@ -79,8 +85,14 @@ int main(void) { "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Who are you<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I am an assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Another question<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>", // Llama 3 "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI am an assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nAnother question<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", - // Phi 3 - "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\nI am an assistant<|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", + //Phi-3-mini + "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", + //Phi-3-small + "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", + //Phi-3-medium + "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", + //Phi-3-vision + "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", }; std::vector formatted_chat(1024); int32_t res; diff --git a/tests/test-grad0.cpp b/tests/test-grad0.cpp index 8ff76c891..21ca43be3 100644 --- a/tests/test-grad0.cpp +++ b/tests/test-grad0.cpp @@ -1515,90 +1515,50 @@ int main(int argc, const char ** argv) { } // flash_attn f32 - { - srand(seed); - const int nargs = 3; + // TODO: adapt to ggml_flash_attn_ext() changes + //{ + // srand(seed); + // const int nargs = 3; - int64_t ne2[4]; + // int64_t ne2[4]; - get_random_dims(ne2, 4); - int64_t D = ne2[0]; - int64_t N = ne2[1]; - int64_t M = ne2[2] + N; - int64_t B = ne2[3]; + // get_random_dims(ne2, 4); + // int64_t D = ne2[0]; + // int64_t N = ne2[1]; + // int64_t M = ne2[2] + N; + // int64_t B = ne2[3]; - for (int masked = 0; masked <= 1; ++masked) { - for (int ndims = 2; ndims <= 4; ++ndims) { - int max_nrep = (ndims >= 3) ? 2 : 1; - for (int nrep = 1; nrep < max_nrep; ++nrep) { - int64_t neq[4] = { D, N, B*nrep, ne[3] }; - int64_t nek[4] = { D, M, B, ne[3] }; - int64_t nev[4] = { M, D, B, ne[3] }; - if (ndims == 2) { - neq[2] = 1; neq[3] = 1; - nek[2] = 1; nek[3] = 1; - nev[2] = 1; nev[3] = 1; - } else if (ndims == 3) { - neq[3] = 1; - nek[3] = 1; - nev[3] = 1; - } - x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f); - x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f); - x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f); - ggml_set_param(ctx0, x[0]); - ggml_set_param(ctx0, x[1]); - ggml_set_param(ctx0, x[2]); + // for (int masked = 0; masked <= 1; ++masked) { + // for (int ndims = 2; ndims <= 4; ++ndims) { + // int max_nrep = (ndims >= 3) ? 2 : 1; + // for (int nrep = 1; nrep < max_nrep; ++nrep) { + // int64_t neq[4] = { D, N, B*nrep, ne[3] }; + // int64_t nek[4] = { D, M, B, ne[3] }; + // int64_t nev[4] = { M, D, B, ne[3] }; + // if (ndims == 2) { + // neq[2] = 1; neq[3] = 1; + // nek[2] = 1; nek[3] = 1; + // nev[2] = 1; nev[3] = 1; + // } else if (ndims == 3) { + // neq[3] = 1; + // nek[3] = 1; + // nev[3] = 1; + // } + // x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f); + // x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f); + // x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f); + // ggml_set_param(ctx0, x[0]); + // ggml_set_param(ctx0, x[1]); + // ggml_set_param(ctx0, x[2]); - struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); + // struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); - check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY); - } - } - } - } + // check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY); + // } + // } + // } + //} - // flash_attn f16, not yet fully implemented - if(0) - { - srand(seed); - const int nargs = 3; - - int64_t ne2[4]; - - get_random_dims(ne2, 4); - int64_t D = ne2[0]; - int64_t N = ne2[1]; - int64_t M = ne2[2] + N; - int64_t B = ne2[3]; - - for (int masked = 0; masked <= 1; ++masked) { - for (int ndims = 2; ndims <= 4; ++ndims) { - int64_t neq[4] = { D, N, B, ne[3] }; - int64_t nek[4] = { D, M, B, ne[3] }; - int64_t nev[4] = { M, D, B, ne[3] }; - if (ndims == 2) { - neq[2] = 1; neq[3] = 1; - nek[2] = 1; nek[3] = 1; - nev[2] = 1; nev[3] = 1; - } else if (ndims == 3) { - neq[3] = 1; - nek[3] = 1; - nev[3] = 1; - } - x[0] = get_random_tensor_f16(ctx0, ndims, neq, -0.1250f, 0.1250f); - x[1] = get_random_tensor_f16(ctx0, ndims, nek, -0.1250f, 0.1250f); - x[2] = get_random_tensor_f16(ctx0, ndims, nev, -0.1250f, 0.1250f); - ggml_set_param(ctx0, x[0]); - ggml_set_param(ctx0, x[1]); - ggml_set_param(ctx0, x[2]); - - struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); - - check_gradient("flash_attn f16", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY); - } - } - } ggml_free(ctx0); } diff --git a/tests/test-tokenizer-0.sh b/tests/test-tokenizer-0.sh index 2fb8632d8..1fec8bbf1 100755 --- a/tests/test-tokenizer-0.sh +++ b/tests/test-tokenizer-0.sh @@ -17,10 +17,15 @@ make -j tests/test-tokenizer-0 printf "Testing %s on %s ...\n" $name $input -python3 ./tests/test-tokenizer-0.py ./models/tokenizers/$name --fname-tok $input > /tmp/test-tokenizer-0-$name-py.log 2>&1 -cat /tmp/test-tokenizer-0-$name-py.log | grep "tokenized in" +set -e +printf "Tokenizing using (py) Python AutoTokenizer ...\n" +python3 ./tests/test-tokenizer-0.py ./models/tokenizers/$name --fname-tok $input > /tmp/test-tokenizer-0-$name-py.log 2>&1 + +printf "Tokenizing using (cpp) llama.cpp ...\n" ./tests/test-tokenizer-0 ./models/ggml-vocab-$name.gguf $input > /tmp/test-tokenizer-0-$name-cpp.log 2>&1 + +cat /tmp/test-tokenizer-0-$name-py.log | grep "tokenized in" cat /tmp/test-tokenizer-0-$name-cpp.log | grep "tokenized in" diff $input.tok $input.tokcpp > /dev/null 2>&1 diff --git a/tests/test-tokenizer-random.py b/tests/test-tokenizer-random.py index 1166ac1e4..7e1b656e5 100644 --- a/tests/test-tokenizer-random.py +++ b/tests/test-tokenizer-random.py @@ -154,19 +154,22 @@ def generator_custom_text_edge_cases() -> Iterator[str]: '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM) 'Cửa Việt', # llama-3, ignore_merges = true 'a', # Phi-3 fail - '<|endoftext|>' # Phi-3 fail + '<|endoftext|>', # Phi-3 fail 'a\na', # TODO: Bert fail ] -def generator_random_special_tokens(special_tokens:list[str], iterations=100) -> Iterator[str]: - special_tokens = set(special_tokens) +def generator_random_special_tokens(tokenizer, iterations=100) -> Iterator[str]: + special_tokens = set(tokenizer.all_special_tokens) special_tokens.update([" ", "\n", "\t", "-", "!", "one", "1", "", ""]) special_tokens = list(sorted(special_tokens)) rand = random.Random() for m in range(iterations): rand.seed(m) words = rand.choices(special_tokens, k=500) + if tokenizer.add_bos_token: # skip spam warning of double BOS + while words and words[0] == tokenizer.bos_token: + words.pop(0) yield "".join(words) @@ -290,18 +293,19 @@ def main(argv: list[str] = None): model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096)) tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer) - def func_tokenize2(text: str): - return tokenizer.encode(text, add_special_tokens=False) - - parse_special = all(len(func_tokenize2(t)) == 1 for t in tokenizer.all_special_tokens) + tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", True) + tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", False) def func_tokenize1(text: str): - return model.tokenize(text, add_special=False, parse_special=parse_special) + return model.tokenize(text, add_special=True, parse_special=True) + + def func_tokenize2(text: str): + return tokenizer.encode(text, add_special_tokens=True) vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True))) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text()) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases()) - test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer.all_special_tokens, 10_000)) + test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer, 10_000)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))