Merge branch 'feat-jina-embeddings' of https://github.com/JoanFM/llama.cpp into feat-jina-embeddings-v2-zh
This commit is contained in:
commit
365af24236
82 changed files with 2117 additions and 1373 deletions
16
.flake8
16
.flake8
|
@ -1,3 +1,17 @@
|
|||
[flake8]
|
||||
max-line-length = 125
|
||||
ignore = W503
|
||||
ignore = E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503
|
||||
exclude =
|
||||
# Do not traverse examples
|
||||
examples,
|
||||
# Do not include package initializers
|
||||
__init__.py,
|
||||
# No need to traverse our git directory
|
||||
.git,
|
||||
# There's no value in checking cache directories
|
||||
__pycache__,
|
||||
# No need to include the build path
|
||||
build,
|
||||
# This contains builds that we don't want to check
|
||||
dist # This is generated with `python build .` for package releases
|
||||
# max-complexity = 10
|
||||
|
|
14
.github/workflows/bench.yml
vendored
14
.github/workflows/bench.yml
vendored
|
@ -52,7 +52,19 @@ jobs:
|
|||
ftype: q4_0
|
||||
pr_comment_enabled: "true"
|
||||
|
||||
if: ${{ github.event.inputs.gpu-series == 'Standard_NC4as_T4_v3' || github.event.schedule || github.event.pull_request || github.head_ref == 'master' || github.ref_name == 'master' || github.event.push.ref == 'refs/heads/master' }}
|
||||
if: |
|
||||
inputs.gpu-series == 'Standard_NC4as_T4_v3'
|
||||
|| (
|
||||
github.event_name == 'schedule'
|
||||
&& github.ref_name == 'master'
|
||||
&& github.repository_owner == 'ggerganov'
|
||||
)
|
||||
|| github.event_name == 'pull_request_target'
|
||||
|| (
|
||||
github.event_name == 'push'
|
||||
&& github.event.ref == 'refs/heads/master'
|
||||
&& github.repository_owner == 'ggerganov'
|
||||
)
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
|
|
2
.github/workflows/close-issue.yml
vendored
2
.github/workflows/close-issue.yml
vendored
|
@ -12,7 +12,7 @@ jobs:
|
|||
steps:
|
||||
- uses: actions/stale@v5
|
||||
with:
|
||||
exempt-issue-labels: "refactor,help wanted,good first issue,research"
|
||||
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug"
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 14
|
||||
stale-issue-label: "stale"
|
||||
|
|
3
.github/workflows/python-lint.yml
vendored
3
.github/workflows/python-lint.yml
vendored
|
@ -20,5 +20,4 @@ jobs:
|
|||
- name: flake8 Lint
|
||||
uses: py-actions/flake8@v2
|
||||
with:
|
||||
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503"
|
||||
exclude: "examples/*,examples/*/**,*/**/__init__.py,convert-hf-to-gguf-update.py"
|
||||
plugins: "flake8-no-print"
|
||||
|
|
|
@ -3,13 +3,14 @@
|
|||
exclude: prompts/.*.txt
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v3.2.0
|
||||
rev: v4.6.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- repo: https://github.com/PyCQA/flake8
|
||||
rev: 6.0.0
|
||||
rev: 7.0.0
|
||||
hooks:
|
||||
- id: flake8
|
||||
additional_dependencies: [flake8-no-print]
|
||||
|
|
3
Makefile
3
Makefile
|
@ -77,11 +77,10 @@ test: $(TEST_TARGETS)
|
|||
./$$test_target $(CURDIR)/models/ggml-vocab-llama-bpe.gguf; \
|
||||
./$$test_target $(CURDIR)/models/ggml-vocab-phi-3.gguf; \
|
||||
./$$test_target $(CURDIR)/models/ggml-vocab-falcon.gguf; \
|
||||
./$$test_target $(CURDIR)/models/ggml-vocab-deepseek-coder.gguf; \
|
||||
./$$test_target $(CURDIR)/models/ggml-vocab-deepseek-llm.gguf; \
|
||||
./$$test_target $(CURDIR)/models/ggml-vocab-bert-bge.gguf; \
|
||||
./$$test_target $(CURDIR)/models/ggml-vocab-starcoder.gguf; \
|
||||
./$$test_target $(CURDIR)/models/ggml-vocab-gpt-2.gguf; \
|
||||
./$$test_target $(CURDIR)/models/ggml-vocab-refact.gguf; \
|
||||
elif [ "$$test_target" = "tests/test-tokenizer-1-spm" ]; then \
|
||||
continue; \
|
||||
elif [ "$$test_target" = "tests/test-tokenizer-1-bpe" ]; then \
|
||||
|
|
46
README.md
46
README.md
|
@ -712,6 +712,8 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
|
||||
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
||||
|
||||
Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
||||
|
||||
```bash
|
||||
# obtain the official LLaMA model weights and place them in ./models
|
||||
ls ./models
|
||||
|
@ -977,48 +979,20 @@ Here is a demo of an interactive session running on Pixel 5 phone:
|
|||
|
||||
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
|
||||
|
||||
#### Building the Project using Termux (F-Droid)
|
||||
Termux from F-Droid offers an alternative route to execute the project on an Android device. This method empowers you to construct the project right from within the terminal, negating the requirement for a rooted device or SD Card.
|
||||
|
||||
Outlined below are the directives for installing the project using OpenBLAS and CLBlast. This combination is specifically designed to deliver peak performance on recent devices that feature a GPU.
|
||||
|
||||
If you opt to utilize OpenBLAS, you'll need to install the corresponding package.
|
||||
#### Build on Android using Termux
|
||||
[Termux](https://github.com/termux/termux-app#installation) is an alternative to execute `llama.cpp` on an Android device (no root required).
|
||||
```
|
||||
apt install libopenblas
|
||||
apt update && apt upgrade -y
|
||||
apt install git
|
||||
```
|
||||
|
||||
Subsequently, if you decide to incorporate CLBlast, you'll first need to install the requisite OpenCL packages:
|
||||
It's recommended to move your model inside the `~/` directory for best performance:
|
||||
```
|
||||
apt install ocl-icd opencl-headers opencl-clhpp clinfo
|
||||
cd storage/downloads
|
||||
mv model.gguf ~/
|
||||
```
|
||||
|
||||
In order to compile CLBlast, you'll need to first clone the respective Git repository, which can be found at this URL: https://github.com/CNugteren/CLBlast. Alongside this, clone this repository into your home directory. Once this is done, navigate to the CLBlast folder and execute the commands detailed below:
|
||||
```
|
||||
cmake .
|
||||
make
|
||||
cp libclblast.so* $PREFIX/lib
|
||||
cp ./include/clblast.h ../llama.cpp
|
||||
```
|
||||
|
||||
Following the previous steps, navigate to the LlamaCpp directory. To compile it with OpenBLAS and CLBlast, execute the command provided below:
|
||||
```
|
||||
cp /data/data/com.termux/files/usr/include/openblas/cblas.h .
|
||||
cp /data/data/com.termux/files/usr/include/openblas/openblas_config.h .
|
||||
make LLAMA_CLBLAST=1 //(sometimes you need to run this command twice)
|
||||
```
|
||||
|
||||
Upon completion of the aforementioned steps, you will have successfully compiled the project. To run it using CLBlast, a slight adjustment is required: a command must be issued to direct the operations towards your device's physical GPU, rather than the virtual one. The necessary command is detailed below:
|
||||
```
|
||||
GGML_OPENCL_PLATFORM=0
|
||||
GGML_OPENCL_DEVICE=0
|
||||
export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH
|
||||
```
|
||||
|
||||
(Note: some Android devices, like the Zenfone 8, need the following command instead - "export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH". Source: https://www.reddit.com/r/termux/comments/kc3ynp/opencl_working_in_termux_more_in_comments/ )
|
||||
|
||||
For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle.
|
||||
|
||||
Place your desired model into the `~/llama.cpp/models/` directory and execute the `./main (...)` script.
|
||||
[Follow the Linux build instructions](https://github.com/ggerganov/llama.cpp#build) to build `llama.cpp`.
|
||||
|
||||
### Docker
|
||||
|
||||
|
|
|
@ -76,7 +76,7 @@ int32_t get_num_physical_cores() {
|
|||
// enumerate the set of thread siblings, num entries is num cores
|
||||
std::unordered_set<std::string> siblings;
|
||||
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
|
||||
std::ifstream thread_siblings("/sys/devices/system/cpu"
|
||||
std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
|
||||
+ std::to_string(cpu) + "/topology/thread_siblings");
|
||||
if (!thread_siblings.is_open()) {
|
||||
break; // no more cpus
|
||||
|
|
|
@ -135,7 +135,7 @@ struct gpt_params {
|
|||
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
|
||||
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
|
||||
|
||||
bool kl_divergence = false; // compute KL-divergence
|
||||
bool kl_divergence = false; // compute KL divergence
|
||||
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
|
|
|
@ -234,7 +234,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
|||
// INTERNAL, DO NOT USE
|
||||
// USE LOG() INSTEAD
|
||||
//
|
||||
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER)
|
||||
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER) || defined(__clang__)
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
|
@ -257,7 +257,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
|||
// INTERNAL, DO NOT USE
|
||||
// USE LOG_TEE() INSTEAD
|
||||
//
|
||||
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER)
|
||||
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER) || defined(__clang__)
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
|
|
174
convert-hf-to-gguf-update.py
Normal file → Executable file
174
convert-hf-to-gguf-update.py
Normal file → Executable file
|
@ -1,3 +1,5 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
# This script downloads the tokenizer models of the specified models from Huggingface and
|
||||
# generates the get_vocab_base_pre() function for convert-hf-to-gguf.py
|
||||
#
|
||||
|
@ -21,6 +23,7 @@
|
|||
# TODO: automate the update of convert-hf-to-gguf.py
|
||||
#
|
||||
|
||||
import logging
|
||||
import os
|
||||
import requests
|
||||
import sys
|
||||
|
@ -28,12 +31,18 @@ import json
|
|||
|
||||
from hashlib import sha256
|
||||
from enum import IntEnum, auto
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
logger = logging.getLogger("convert-hf-to-gguf-update")
|
||||
|
||||
|
||||
class TOKENIZER_TYPE(IntEnum):
|
||||
SPM = auto()
|
||||
BPE = auto()
|
||||
WPM = auto()
|
||||
|
||||
|
||||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
||||
# will be updated with time - contributions welcome
|
||||
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||||
|
@ -41,39 +50,43 @@ chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶
|
|||
if len(sys.argv) == 2:
|
||||
token = sys.argv[1]
|
||||
else:
|
||||
print("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
|
||||
logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: add models here, base models preferred
|
||||
models = [
|
||||
{ "name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||||
{ "name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
|
||||
{ "name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
|
||||
{ "name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
|
||||
{ "name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||||
{ "name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
||||
{ "name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||||
{ "name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||
{ "name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||
{ "name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||||
{ "name": "jina-embeddings-v2-base-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||
{ "name": "jina-embeddings-v2-base-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
{ "name": "jina-embeddings-v2-base-zh", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-zh", },
|
||||
]
|
||||
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||||
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
|
||||
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
|
||||
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
|
||||
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||||
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
||||
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||||
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
|
||||
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
|
||||
{"name": "jina-embeddings-v2-base-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||
{"name": "jina-embeddings-v2-base-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
{"name": "jina-embeddings-v2-base-zh", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-zh", },
|
||||
]
|
||||
|
||||
# make directory "models/tokenizers" if it doesn't exist
|
||||
if not os.path.exists("models/tokenizers"):
|
||||
os.makedirs("models/tokenizers")
|
||||
|
||||
|
||||
def download_file_with_auth(url, token, save_path):
|
||||
headers = {"Authorization": f"Bearer {token}"}
|
||||
response = requests.get(url, headers=headers)
|
||||
if response.status_code == 200:
|
||||
with open(save_path, 'wb') as f:
|
||||
f.write(response.content)
|
||||
print(f"File {save_path} downloaded successfully")
|
||||
logger.info(f"File {save_path} downloaded successfully")
|
||||
else:
|
||||
print(f"Failed to download file. Status code: {response.status_code}")
|
||||
logger.info(f"Failed to download file. Status code: {response.status_code}")
|
||||
|
||||
|
||||
# download the tokenizer models
|
||||
for model in models:
|
||||
|
@ -84,10 +97,10 @@ for model in models:
|
|||
if not os.path.exists(f"models/tokenizers/{name}"):
|
||||
os.makedirs(f"models/tokenizers/{name}")
|
||||
else:
|
||||
print(f"Directory models/tokenizers/{name} already exists - skipping")
|
||||
logger.info(f"Directory models/tokenizers/{name} already exists - skipping")
|
||||
continue
|
||||
|
||||
print(f"Downloading {name} to models/tokenizers/{name}")
|
||||
logger.info(f"Downloading {name} to models/tokenizers/{name}")
|
||||
|
||||
url = f"{repo}/raw/main/config.json"
|
||||
save_path = f"models/tokenizers/{name}/config.json"
|
||||
|
@ -97,6 +110,14 @@ for model in models:
|
|||
save_path = f"models/tokenizers/{name}/tokenizer.json"
|
||||
download_file_with_auth(url, token, save_path)
|
||||
|
||||
# if downloaded file is less than 1KB, we likely need to download an LFS instead
|
||||
if os.path.getsize(save_path) < 1024:
|
||||
# remove the file
|
||||
os.remove(save_path)
|
||||
url = f"{repo}/resolve/main/tokenizer.json"
|
||||
save_path = f"models/tokenizers/{name}/tokenizer.json"
|
||||
download_file_with_auth(url, token, save_path)
|
||||
|
||||
if tokt == TOKENIZER_TYPE.SPM:
|
||||
url = f"{repo}/resolve/main/tokenizer.model"
|
||||
save_path = f"models/tokenizers/{name}/tokenizer.model"
|
||||
|
@ -118,80 +139,82 @@ for model in models:
|
|||
continue
|
||||
|
||||
# create the tokenizer
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
|
||||
chktok = tokenizer.encode(chktxt)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
print(f"model: {name}")
|
||||
print(f"tokt: {tokt}")
|
||||
print(f"repo: {model['repo']}")
|
||||
print(f"chktok: {chktok}")
|
||||
print(f"chkhsh: {chkhsh}")
|
||||
logger.info(f"model: {name}")
|
||||
logger.info(f"tokt: {tokt}")
|
||||
logger.info(f"repo: {model['repo']}")
|
||||
logger.info(f"chktok: {chktok}")
|
||||
logger.info(f"chkhsh: {chkhsh}")
|
||||
|
||||
# print the "pre_tokenizer" content from the tokenizer.json
|
||||
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
cfg = json.load(f)
|
||||
pre_tokenizer = cfg["pre_tokenizer"]
|
||||
print("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||
|
||||
print(f"\n")
|
||||
logger.info("")
|
||||
|
||||
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
|
||||
src_ifs += f" # ref: {model['repo']}\n"
|
||||
src_ifs += f" res = \"{name}\"\n"
|
||||
|
||||
src_func = ""
|
||||
src_func += " def get_vocab_base_pre(self, tokenizer) -> str:\n"
|
||||
src_func += " # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that\n"
|
||||
src_func += " # is specific for the BPE pre-tokenizer used by the model\n"
|
||||
src_func += " # we will use this unique identifier to write a \"tokenizer.ggml.pre\" entry in the GGUF file which we can\n"
|
||||
src_func += " # use in llama.cpp to implement the same pre-tokenizer\n"
|
||||
src_func += "\n"
|
||||
src_func += f" chktxt = {repr(chktxt)}\n"
|
||||
src_func += "\n"
|
||||
src_func += " chktok = tokenizer.encode(chktxt)\n"
|
||||
src_func += " chkhsh = sha256(str(chktok).encode()).hexdigest()\n"
|
||||
src_func += "\n"
|
||||
src_func += " print(f\"chktok: {chktok}\")\n"
|
||||
src_func += " print(f\"chkhsh: {chkhsh}\")\n"
|
||||
src_func += "\n"
|
||||
src_func += " res = None\n"
|
||||
src_func += "\n"
|
||||
src_func += " # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script\n"
|
||||
src_func += " # or pull the latest version of the model from Huggingface\n"
|
||||
src_func += " # don't edit the hashes manually!\n"
|
||||
src_func += f"{src_ifs}\n"
|
||||
src_func += " if res is None:\n"
|
||||
src_func += " print(\"\\n\")\n"
|
||||
src_func += " print(\"**************************************************************************************\")\n"
|
||||
src_func += " print(\"** WARNING: The BPE pre-tokenizer was not recognized!\")\n"
|
||||
src_func += " print(\"** There are 2 possible reasons for this:\")\n"
|
||||
src_func += " print(\"** - the model has not been added to convert-hf-to-gguf-update.py yet\")\n"
|
||||
src_func += " print(\"** - the pre-tokenization config has changed upstream\")\n"
|
||||
src_func += " print(\"** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.\")\n"
|
||||
src_func += " print(\"** ref: https://github.com/ggerganov/llama.cpp/pull/6920\")\n"
|
||||
src_func += " print(\"**\")\n"
|
||||
src_func += " print(f\"** chkhsh: {chkhsh}\")\n"
|
||||
src_func += " print(\"**************************************************************************************\")\n"
|
||||
src_func += " print(\"\\n\")\n"
|
||||
src_func += " raise NotImplementedError(\"BPE pre-tokenizer was not recognized - update get_vocab_base_pre()\")\n"
|
||||
src_func += "\n"
|
||||
src_func += " print(f\"tokenizer.ggml.pre: {res}\")\n"
|
||||
src_func += " print(f\"chkhsh: {chkhsh}\")\n"
|
||||
src_func += "\n"
|
||||
src_func += " return res\n"
|
||||
src_func = f"""
|
||||
def get_vocab_base_pre(self, tokenizer) -> str:
|
||||
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
|
||||
# is specific for the BPE pre-tokenizer used by the model
|
||||
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
|
||||
# use in llama.cpp to implement the same pre-tokenizer
|
||||
|
||||
print(src_func)
|
||||
chktxt = {repr(chktxt)}
|
||||
|
||||
print("\n")
|
||||
print("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
|
||||
print("\n")
|
||||
chktok = tokenizer.encode(chktxt)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
logger.debug(f"chktok: {{chktok}}")
|
||||
logger.debug(f"chkhsh: {{chkhsh}}")
|
||||
|
||||
res = None
|
||||
|
||||
# NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
|
||||
# or pull the latest version of the model from Huggingface
|
||||
# don't edit the hashes manually!
|
||||
{src_ifs}
|
||||
if res is None:
|
||||
logger.warning("\\n")
|
||||
logger.warning("**************************************************************************************")
|
||||
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
|
||||
logger.warning("** There are 2 possible reasons for this:")
|
||||
logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
|
||||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||||
logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
|
||||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||||
logger.warning("**")
|
||||
logger.warning(f"** chkhsh: {{chkhsh}}")
|
||||
logger.warning("**************************************************************************************")
|
||||
logger.warning("\\n")
|
||||
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
|
||||
|
||||
logger.debug(f"tokenizer.ggml.pre: {{repr(res)}}")
|
||||
logger.debug(f"chkhsh: {{chkhsh}}")
|
||||
|
||||
return res
|
||||
"""
|
||||
|
||||
print(src_func) # noqa: NP100
|
||||
|
||||
logger.info("\n")
|
||||
logger.info("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
|
||||
logger.info("\n")
|
||||
|
||||
# generate tests for each tokenizer model
|
||||
|
||||
tests = [
|
||||
"ied 4 ½ months",
|
||||
"Führer",
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
|
@ -253,7 +276,6 @@ for model in models:
|
|||
tokt = model["tokt"]
|
||||
|
||||
# create the tokenizer
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
|
||||
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
|
||||
|
@ -268,15 +290,15 @@ for model in models:
|
|||
f.write(f" {r}")
|
||||
f.write("\n")
|
||||
|
||||
print(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
|
||||
logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
|
||||
|
||||
# generate commands for creating vocab files
|
||||
|
||||
print("\nRun the following commands to generate the vocab files for testing:\n")
|
||||
logger.info("\nRun the following commands to generate the vocab files for testing:\n")
|
||||
|
||||
for model in models:
|
||||
name = model["name"]
|
||||
|
||||
print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only")
|
||||
print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100
|
||||
|
||||
print("\n")
|
||||
logger.info("\n")
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import contextlib
|
||||
import json
|
||||
|
@ -26,6 +27,8 @@ import gguf
|
|||
|
||||
from convert import LlamaHfVocab, permute
|
||||
|
||||
logger = logging.getLogger("hf-to-gguf")
|
||||
|
||||
|
||||
###### MODEL DEFINITIONS ######
|
||||
|
||||
|
@ -76,7 +79,7 @@ class Model(ABC):
|
|||
|
||||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||||
for part_name in self.part_names:
|
||||
print(f"gguf: loading model part '{part_name}'")
|
||||
logger.info(f"gguf: loading model part '{part_name}'")
|
||||
ctx: ContextManager[Any]
|
||||
if self.is_safetensors:
|
||||
from safetensors import safe_open
|
||||
|
@ -95,42 +98,42 @@ class Model(ABC):
|
|||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
print(f"gguf: context length = {n_ctx}")
|
||||
logger.info(f"gguf: context length = {n_ctx}")
|
||||
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
print(f"gguf: embedding length = {n_embd}")
|
||||
logger.info(f"gguf: embedding length = {n_embd}")
|
||||
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
print(f"gguf: feed forward length = {n_ff}")
|
||||
logger.info(f"gguf: feed forward length = {n_ff}")
|
||||
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
print(f"gguf: head count = {n_head}")
|
||||
logger.info(f"gguf: head count = {n_head}")
|
||||
|
||||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
print(f"gguf: key-value head count = {n_head_kv}")
|
||||
logger.info(f"gguf: key-value head count = {n_head_kv}")
|
||||
|
||||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||||
print(f"gguf: rope theta = {rope_theta}")
|
||||
logger.info(f"gguf: rope theta = {rope_theta}")
|
||||
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
print(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||||
print(f"gguf: layer norm epsilon = {f_norm_eps}")
|
||||
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
print(f"gguf: expert count = {n_experts}")
|
||||
logger.info(f"gguf: expert count = {n_experts}")
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
print(f"gguf: experts used count = {n_experts_used}")
|
||||
logger.info(f"gguf: experts used count = {n_experts_used}")
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
print(f"gguf: file type = {self.ftype}")
|
||||
logger.info(f"gguf: file type = {self.ftype}")
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
|
@ -152,8 +155,7 @@ class Model(ABC):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -170,7 +172,7 @@ class Model(ABC):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -275,8 +277,8 @@ class Model(ABC):
|
|||
chktok = tokenizer.encode(chktxt)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
print(f"chktok: {chktok}")
|
||||
print(f"chkhsh: {chkhsh}")
|
||||
logger.debug(f"chktok: {chktok}")
|
||||
logger.debug(f"chkhsh: {chkhsh}")
|
||||
|
||||
res = None
|
||||
|
||||
|
@ -307,6 +309,12 @@ class Model(ABC):
|
|||
if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
|
||||
# ref: https://huggingface.co/openai-community/gpt2
|
||||
res = "gpt-2"
|
||||
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
|
||||
# ref: https://huggingface.co/smallcloudai/Refact-1_6-base
|
||||
res = "refact"
|
||||
if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
|
||||
# ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
|
||||
res = "command-r"
|
||||
if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
|
||||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
|
||||
res = "jina-embeddings-v2-base-es"
|
||||
|
@ -318,22 +326,22 @@ class Model(ABC):
|
|||
res = "jina-embeddings-v2-base-zh"
|
||||
|
||||
if res is None:
|
||||
print("\n")
|
||||
print("**************************************************************************************")
|
||||
print("** WARNING: The BPE pre-tokenizer was not recognized!")
|
||||
print("** There are 2 possible reasons for this:")
|
||||
print("** - the model has not been added to convert-hf-to-gguf-update.py yet")
|
||||
print("** - the pre-tokenization config has changed upstream")
|
||||
print("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
|
||||
print("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||||
print("**")
|
||||
print(f"** chkhsh: {chkhsh}")
|
||||
print("**************************************************************************************")
|
||||
print("\n")
|
||||
logger.warning("\n")
|
||||
logger.warning("**************************************************************************************")
|
||||
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
|
||||
logger.warning("** There are 2 possible reasons for this:")
|
||||
logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
|
||||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||||
logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
|
||||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||||
logger.warning("**")
|
||||
logger.warning(f"** chkhsh: {chkhsh}")
|
||||
logger.warning("**************************************************************************************")
|
||||
logger.warning("\n")
|
||||
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
|
||||
|
||||
print(f"tokenizer.ggml.pre: {res}")
|
||||
print(f"chkhsh: {chkhsh}")
|
||||
logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
|
||||
logger.debug(f"chkhsh: {chkhsh}")
|
||||
|
||||
return res
|
||||
|
||||
|
@ -449,9 +457,7 @@ class Model(ABC):
|
|||
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
print(
|
||||
f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]"
|
||||
)
|
||||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||
for i in range(1, pad_count + 1):
|
||||
tokens.append(f"[PAD{i}]")
|
||||
scores.append(-1000.0)
|
||||
|
@ -563,7 +569,7 @@ class BloomModel(Model):
|
|||
),
|
||||
axis=0,
|
||||
)
|
||||
print("re-format attention.linear_qkv.weight")
|
||||
logger.info("re-format attention.linear_qkv.weight")
|
||||
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
|
||||
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
|
||||
data = np.concatenate(
|
||||
|
@ -574,13 +580,12 @@ class BloomModel(Model):
|
|||
),
|
||||
axis=0,
|
||||
)
|
||||
print("re-format attention.linear_qkv.bias")
|
||||
logger.info("re-format attention.linear_qkv.bias")
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -597,13 +602,13 @@ class BloomModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
if not has_lm_head and name == "word_embeddings.weight":
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
|
||||
@Model.register("MPTForCausalLM")
|
||||
|
@ -663,8 +668,7 @@ class MPTModel(Model):
|
|||
else:
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -681,7 +685,7 @@ class MPTModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -707,8 +711,7 @@ class OrionModel(Model):
|
|||
elif "model_max_length" in self.hparams:
|
||||
ctx_length = self.hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
sys.exit()
|
||||
raise ValueError("gguf: can not find ctx length parameter.")
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
|
@ -746,8 +749,7 @@ class OrionModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -764,7 +766,7 @@ class OrionModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
|
@ -789,8 +791,7 @@ class BaichuanModel(Model):
|
|||
elif "model_max_length" in self.hparams:
|
||||
ctx_length = self.hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
sys.exit()
|
||||
raise ValueError("gguf: can not find ctx length parameter.")
|
||||
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
||||
|
@ -819,7 +820,7 @@ class BaichuanModel(Model):
|
|||
|
||||
for i in range(block_count):
|
||||
if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
|
||||
print(f"Unpacking and permuting layer {i}")
|
||||
logger.info(f"Unpacking and permuting layer {i}")
|
||||
model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
|
||||
self._reverse_hf_permute_part(w, 0, head_count, head_count)
|
||||
model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
|
||||
|
@ -844,8 +845,7 @@ class BaichuanModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -862,7 +862,7 @@ class BaichuanModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||||
|
@ -947,8 +947,7 @@ class XverseModel(Model):
|
|||
elif "model_max_length" in self.hparams:
|
||||
ctx_length = self.hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
sys.exit()
|
||||
raise ValueError("gguf: can not find ctx length parameter.")
|
||||
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
||||
|
@ -997,8 +996,7 @@ class XverseModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1015,7 +1013,7 @@ class XverseModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||||
|
@ -1102,8 +1100,7 @@ class FalconModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1120,7 +1117,7 @@ class FalconModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1207,8 +1204,7 @@ class RefactModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1225,7 +1221,7 @@ class RefactModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1274,10 +1270,9 @@ class PersimmonModel(Model):
|
|||
data = data_torch.to(torch.float32).squeeze().numpy()
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
n_dims = len(data.shape)
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
|
@ -1342,8 +1337,7 @@ class StableLMModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1360,7 +1354,7 @@ class StableLMModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1376,8 +1370,7 @@ class StableLMModel(Model):
|
|||
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
|
||||
data = data.astype(np.float32)
|
||||
|
||||
|
@ -1385,7 +1378,7 @@ class StableLMModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1437,7 +1430,7 @@ class LlamaModel(Model):
|
|||
experts = dict()
|
||||
for name, data_torch in self.get_tensors():
|
||||
# we don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
@ -1490,10 +1483,9 @@ class LlamaModel(Model):
|
|||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
@ -1501,8 +1493,7 @@ class LlamaModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1519,7 +1510,7 @@ class LlamaModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1594,10 +1585,9 @@ class GrokModel(Model):
|
|||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
@ -1605,8 +1595,7 @@ class GrokModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1623,7 +1612,7 @@ class GrokModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1656,7 +1645,7 @@ class DbrxModel(Model):
|
|||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
print(f"gguf: file type = {self.ftype}")
|
||||
logger.info(f"gguf: file type = {self.ftype}")
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers")
|
||||
|
@ -1699,8 +1688,7 @@ class DbrxModel(Model):
|
|||
# https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
|
||||
new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1708,8 +1696,7 @@ class DbrxModel(Model):
|
|||
# Most of the codebase that takes in 1D tensors only handles F32 tensors
|
||||
# and most of the outputs tensors are F32.
|
||||
if data_dtype != np.float32 and n_dims == 1:
|
||||
print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}: all 1D tensors must be F32")
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
|
@ -1719,7 +1706,7 @@ class DbrxModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1781,8 +1768,7 @@ class MiniCPMModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1799,7 +1785,7 @@ class MiniCPMModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1865,8 +1851,7 @@ class QwenModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1883,7 +1868,7 @@ class QwenModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
|
@ -1960,10 +1945,9 @@ class Qwen2MoeModel(Model):
|
|||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
@ -1971,8 +1955,7 @@ class Qwen2MoeModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1989,7 +1972,7 @@ class Qwen2MoeModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -2034,8 +2017,7 @@ class GPT2Model(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -2052,13 +2034,13 @@ class GPT2Model(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
# note: GPT2 output is tied to (same as) wte in original model
|
||||
if new_name == "token_embd.weight":
|
||||
print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
|
||||
|
||||
|
@ -2097,8 +2079,7 @@ class Phi3MiniModel(Model):
|
|||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
raise ValueError(f'Error: Missing {tokenizer_path}')
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
|
||||
|
@ -2136,7 +2117,7 @@ class Phi3MiniModel(Model):
|
|||
for key in added_tokens_json:
|
||||
token_id = added_tokens_json[key]
|
||||
if (token_id >= vocab_size):
|
||||
print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
|
||||
tokens[token_id] = key.encode("utf-8")
|
||||
|
@ -2218,8 +2199,7 @@ class PlamoModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
# shuffle for broadcasting of gqa in ggml_mul_mat
|
||||
if new_name.endswith("attn_q.weight"):
|
||||
|
@ -2250,7 +2230,7 @@ class PlamoModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -2296,8 +2276,7 @@ class CodeShellModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -2314,13 +2293,13 @@ class CodeShellModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
if not has_lm_head and name == "transformer.wte.weight":
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
|
||||
@Model.register("InternLM2ForCausalLM")
|
||||
|
@ -2342,7 +2321,7 @@ class InternLM2Model(Model):
|
|||
toktypes: list[int] = []
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
logger.error(f'Error: Missing {tokenizer_path}')
|
||||
sys.exit(1)
|
||||
|
||||
sentencepiece_model = model.ModelProto()
|
||||
|
@ -2359,7 +2338,7 @@ class InternLM2Model(Model):
|
|||
if text == b"\x00":
|
||||
# (TODO): fixme
|
||||
# Hack here and replace the \x00 characters.
|
||||
print(f"InternLM2 convert token '{text}' to '🐉'!")
|
||||
logger.debug(f"InternLM2 convert token '{text}' to '🐉'!")
|
||||
text = "🐉"
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
|
@ -2400,7 +2379,7 @@ class InternLM2Model(Model):
|
|||
# TODO: this is a hack, should be fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
|
||||
special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
|
||||
print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
|
||||
logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
|
||||
in chat mode so that the conversation can end normally.")
|
||||
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
@ -2445,8 +2424,7 @@ in chat mode so that the conversation can end normally.")
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -2463,7 +2441,7 @@ in chat mode so that the conversation can end normally.")
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def write_tensors(self):
|
||||
|
@ -2575,8 +2553,7 @@ class BertModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
|
@ -2596,7 +2573,7 @@ class BertModel(Model):
|
|||
# if f32 desired, convert any float16 to float32
|
||||
new_dtype = np.float32
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
|
||||
|
||||
if data.dtype != new_dtype:
|
||||
data = data.astype(new_dtype)
|
||||
|
@ -2675,7 +2652,7 @@ class GemmaModel(Model):
|
|||
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model
|
||||
# To prevent errors, skip loading lm_head.weight.
|
||||
if name == "lm_head.weight":
|
||||
print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
|
||||
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
@ -2692,8 +2669,7 @@ class GemmaModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -2704,7 +2680,7 @@ class GemmaModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -2732,7 +2708,7 @@ class MambaModel(Model):
|
|||
else:
|
||||
# Use the GPT-NeoX tokenizer when no tokenizer files are present
|
||||
tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
|
||||
print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
|
||||
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
|
||||
neox_reader = gguf.GGUFReader(tokenizer_path, "r")
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
|
||||
|
@ -2804,17 +2780,16 @@ class MambaModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
if name.endswith(".A_log"):
|
||||
print("A_log --> A ==> " + new_name)
|
||||
logger.debug("A_log --> A ==> " + new_name)
|
||||
data_torch = -torch.exp(data_torch)
|
||||
|
||||
# assuming token_embd.weight is seen before output.weight
|
||||
if tok_embd is not None and new_name == output_name:
|
||||
if torch.equal(tok_embd, data_torch):
|
||||
print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
|
||||
logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
|
||||
continue
|
||||
if new_name == tok_embd_name:
|
||||
tok_embd = data_torch
|
||||
|
@ -2837,7 +2812,7 @@ class MambaModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -2896,8 +2871,7 @@ class OlmoModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -2914,7 +2888,7 @@ class OlmoModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -2984,6 +2958,7 @@ def parse_args() -> argparse.Namespace:
|
|||
)
|
||||
parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
|
||||
parser.add_argument("--model-name", type=str, default=None, help="name of the model")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
@ -2991,6 +2966,8 @@ def parse_args() -> argparse.Namespace:
|
|||
def main() -> None:
|
||||
args = parse_args()
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
dir_model = args.model
|
||||
|
||||
if args.awq_path:
|
||||
|
@ -2999,15 +2976,15 @@ def main() -> None:
|
|||
tmp_model_path = args.model / "weighted_model"
|
||||
dir_model = tmp_model_path
|
||||
if tmp_model_path.is_dir():
|
||||
print(f"{tmp_model_path} exists as a weighted model.")
|
||||
logger.info(f"{tmp_model_path} exists as a weighted model.")
|
||||
else:
|
||||
tmp_model_path.mkdir(parents=True, exist_ok=True)
|
||||
print("Saving new weighted model ...")
|
||||
logger.info("Saving new weighted model ...")
|
||||
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
||||
print(f"Saved weighted model at {tmp_model_path}.")
|
||||
logger.info(f"Saved weighted model at {tmp_model_path}.")
|
||||
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file=sys.stderr)
|
||||
logger.error(f'Error: {args.model} is not a directory')
|
||||
sys.exit(1)
|
||||
|
||||
ftype_map = {
|
||||
|
@ -3021,7 +2998,7 @@ def main() -> None:
|
|||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
|
||||
|
||||
print(f"Loading model: {dir_model.name}")
|
||||
logger.info(f"Loading model: {dir_model.name}")
|
||||
|
||||
hparams = Model.load_hparams(dir_model)
|
||||
|
||||
|
@ -3029,20 +3006,20 @@ def main() -> None:
|
|||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
|
||||
|
||||
print("Set model parameters")
|
||||
logger.info("Set model parameters")
|
||||
model_instance.set_gguf_parameters()
|
||||
|
||||
print("Set model tokenizer")
|
||||
logger.info("Set model tokenizer")
|
||||
model_instance.set_vocab()
|
||||
|
||||
if args.vocab_only:
|
||||
print(f"Exporting model vocab to '{fname_out}'")
|
||||
logger.info(f"Exporting model vocab to '{fname_out}'")
|
||||
model_instance.write_vocab()
|
||||
else:
|
||||
print(f"Exporting model to '{fname_out}'")
|
||||
logger.info(f"Exporting model to '{fname_out}'")
|
||||
model_instance.write()
|
||||
|
||||
print(f"Model successfully exported to '{fname_out}'")
|
||||
logger.info(f"Model successfully exported to '{fname_out}'")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import os
|
||||
import struct
|
||||
|
@ -14,6 +15,8 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
|||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
logger = logging.getLogger("ggml-to-gguf")
|
||||
|
||||
|
||||
class GGMLFormat(IntEnum):
|
||||
GGML = 0
|
||||
|
@ -125,7 +128,6 @@ class Tensor:
|
|||
self.start_offset = offset
|
||||
self.len_bytes = n_bytes
|
||||
offset += n_bytes
|
||||
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
|
||||
return offset - orig_offset
|
||||
|
||||
|
||||
|
@ -175,7 +177,7 @@ class GGMLModel:
|
|||
offset += self.validate_header(data, offset)
|
||||
hp = Hyperparameters()
|
||||
offset += hp.load(data, offset)
|
||||
print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
|
||||
logger.info(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
|
||||
self.validate_conversion(hp.ftype)
|
||||
vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
|
||||
offset += vocab.load(data, offset, hp.n_vocab)
|
||||
|
@ -215,12 +217,12 @@ class GGMLToGGUF:
|
|||
if float(hp.n_head) / float(x) == gqa:
|
||||
n_kv_head = x
|
||||
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
|
||||
print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
|
||||
logger.info(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
|
||||
self.n_kv_head = n_kv_head
|
||||
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
|
||||
|
||||
def save(self):
|
||||
print('* Preparing to save GGUF file')
|
||||
logger.info('* Preparing to save GGUF file')
|
||||
gguf_writer = gguf.GGUFWriter(
|
||||
self.cfg.output,
|
||||
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
|
||||
|
@ -230,11 +232,11 @@ class GGMLToGGUF:
|
|||
if self.special_vocab is not None:
|
||||
self.special_vocab.add_to_gguf(gguf_writer)
|
||||
self.add_tensors(gguf_writer)
|
||||
print(" gguf: write header")
|
||||
logger.info(" gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print(" gguf: write metadata")
|
||||
logger.info(" gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print(" gguf: write tensors")
|
||||
logger.info(" gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
gguf_writer.close()
|
||||
|
||||
|
@ -250,7 +252,7 @@ class GGMLToGGUF:
|
|||
name = cfg.name if cfg.name is not None else cfg.input.name
|
||||
except UnicodeDecodeError:
|
||||
name = None
|
||||
print('* Adding model parameters and KV items')
|
||||
logger.info('* Adding model parameters and KV items')
|
||||
if name is not None:
|
||||
gguf_writer.add_name(name)
|
||||
gguf_writer.add_description(desc)
|
||||
|
@ -287,7 +289,7 @@ class GGMLToGGUF:
|
|||
toktypes = []
|
||||
if self.vocab_override is not None:
|
||||
vo = self.vocab_override
|
||||
print('* Adding vocab item(s)')
|
||||
logger.info('* Adding vocab item(s)')
|
||||
for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
|
||||
tokens.append(vbytes)
|
||||
scores.append(score)
|
||||
|
@ -299,7 +301,7 @@ class GGMLToGGUF:
|
|||
if len(toktypes) > 0:
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
return
|
||||
print(f'* Adding {hp.n_vocab} vocab item(s)')
|
||||
logger.info(f'* Adding {hp.n_vocab} vocab item(s)')
|
||||
assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
|
||||
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
|
||||
tt = 1 # Normal
|
||||
|
@ -334,7 +336,7 @@ class GGMLToGGUF:
|
|||
def add_tensors(self, gguf_writer):
|
||||
tensor_map = self.name_map
|
||||
data = self.data
|
||||
print(f'* Adding {len(self.model.tensors)} tensor(s)')
|
||||
logger.info(f'* Adding {len(self.model.tensors)} tensor(s)')
|
||||
for tensor in self.model.tensors:
|
||||
name = str(tensor.name, 'UTF-8')
|
||||
mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
|
@ -344,7 +346,6 @@ class GGMLToGGUF:
|
|||
temp = tempdims[1]
|
||||
tempdims[1] = tempdims[0]
|
||||
tempdims[0] = temp
|
||||
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
|
||||
gguf_writer.add_tensor(
|
||||
mapped_name,
|
||||
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
|
||||
|
@ -401,33 +402,35 @@ def handle_args():
|
|||
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
||||
parser.add_argument("--vocabtype", default="spm,hfft",
|
||||
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
cfg = handle_args()
|
||||
print(f'* Using config: {cfg}')
|
||||
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
|
||||
logging.basicConfig(level=logging.DEBUG if cfg.verbose else logging.INFO)
|
||||
logger.info(f'* Using config: {cfg}')
|
||||
logger.warning('=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===')
|
||||
if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
|
||||
print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
|
||||
logger.info('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
|
||||
data = np.memmap(cfg.input, mode = 'r')
|
||||
model = GGMLModel()
|
||||
print('* Scanning GGML input file')
|
||||
logger.info('* Scanning GGML input file')
|
||||
offset = model.load(data, 0) # noqa
|
||||
print(f'* GGML model hyperparameters: {model.hyperparameters}')
|
||||
logger.info(f'* GGML model hyperparameters: {model.hyperparameters}')
|
||||
vocab_override = None
|
||||
params_override = None
|
||||
special_vocab = None
|
||||
if cfg.model_metadata_dir is not None:
|
||||
(params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
|
||||
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
|
||||
print(f'* Overriding params: {params_override}')
|
||||
print(f'* Overriding vocab: {vocab_override}')
|
||||
print(f'* Special vocab: {special_vocab}')
|
||||
logger.info('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
|
||||
logger.info(f'* Overriding params: {params_override}')
|
||||
logger.info(f'* Overriding vocab: {vocab_override}')
|
||||
logger.info(f'* Special vocab: {special_vocab}')
|
||||
else:
|
||||
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
|
||||
logger.warning('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
|
||||
if model.file_format == GGMLFormat.GGML:
|
||||
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
|
||||
logger.info('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
|
||||
converter = GGMLToGGUF(
|
||||
model, data, cfg,
|
||||
params_override = params_override,
|
||||
|
@ -435,7 +438,7 @@ def main():
|
|||
special_vocab = special_vocab
|
||||
)
|
||||
converter.save()
|
||||
print(f'* Successful completion. Output saved to: {cfg.output}')
|
||||
logger.info(f'* Successful completion. Output saved to: {cfg.output}')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
|
@ -15,6 +16,9 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
|||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
logger = logging.getLogger("lora-to-gguf")
|
||||
|
||||
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
|
||||
|
||||
|
||||
|
@ -48,11 +52,9 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty
|
|||
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) < 2:
|
||||
print(f"Usage: python {sys.argv[0]} <path> [arch]")
|
||||
print(
|
||||
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
||||
)
|
||||
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
||||
logger.info(f"Usage: python {sys.argv[0]} <path> [arch]")
|
||||
logger.info("Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'")
|
||||
logger.info(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
||||
sys.exit(1)
|
||||
|
||||
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
||||
|
@ -70,7 +72,7 @@ if __name__ == '__main__':
|
|||
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
|
||||
|
||||
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
|
||||
print(f"Error: unsupported architecture {arch_name}")
|
||||
logger.error(f"Error: unsupported architecture {arch_name}")
|
||||
sys.exit(1)
|
||||
|
||||
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
|
||||
|
@ -80,21 +82,21 @@ if __name__ == '__main__':
|
|||
params = json.load(f)
|
||||
|
||||
if params["peft_type"] != "LORA":
|
||||
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
||||
logger.error(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
||||
sys.exit(1)
|
||||
|
||||
if params["fan_in_fan_out"] is True:
|
||||
print("Error: param fan_in_fan_out is not supported")
|
||||
logger.error("Error: param fan_in_fan_out is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
if params["bias"] is not None and params["bias"] != "none":
|
||||
print("Error: param bias is not supported")
|
||||
logger.error("Error: param bias is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: these seem to be layers that have been trained but without lora.
|
||||
# doesn't seem widely used but eventually should be supported
|
||||
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
||||
print("Error: param modules_to_save is not supported")
|
||||
logger.error("Error: param modules_to_save is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
with open(output_path, "wb") as fout:
|
||||
|
@ -125,13 +127,13 @@ if __name__ == '__main__':
|
|||
suffix = k[-len(lora_suffixes[0]):]
|
||||
k = k[: -len(lora_suffixes[0])]
|
||||
else:
|
||||
print(f"Error: unrecognized tensor name {orig_k}")
|
||||
logger.error(f"Error: unrecognized tensor name {orig_k}")
|
||||
sys.exit(1)
|
||||
|
||||
tname = name_map.get_name(k)
|
||||
if tname is None:
|
||||
print(f"Error: could not map tensor name {orig_k}")
|
||||
print(" Note: the arch parameter must be specified if the model is not llama")
|
||||
logger.error(f"Error: could not map tensor name {orig_k}")
|
||||
logger.error(" Note: the arch parameter must be specified if the model is not llama")
|
||||
sys.exit(1)
|
||||
|
||||
if suffix == ".lora_A.weight":
|
||||
|
@ -141,8 +143,8 @@ if __name__ == '__main__':
|
|||
else:
|
||||
assert False
|
||||
|
||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||
logger.info(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||
t.tofile(fout)
|
||||
|
||||
print(f"Converted {input_json} and {input_model} to {output_path}")
|
||||
logger.info(f"Converted {input_json} and {input_model} to {output_path}")
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
@ -14,6 +15,8 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
|||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
logger = logging.getLogger("persimmon-to-gguf")
|
||||
|
||||
|
||||
def _flatten_dict(dct, tensors, prefix=None):
|
||||
assert isinstance(dct, dict)
|
||||
|
@ -30,9 +33,9 @@ def _flatten_dict(dct, tensors, prefix=None):
|
|||
|
||||
def _get_sentencepiece_tokenizer_info(dir_model: Path):
|
||||
tokenizer_path = dir_model / 'adept_vocab.model'
|
||||
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
|
||||
logger.info('getting sentencepiece tokenizer from', tokenizer_path)
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
print('gguf: adding tokens')
|
||||
logger.info('adding tokens')
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
@ -67,8 +70,10 @@ def main():
|
|||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
|
||||
parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
|
||||
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
|
||||
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
args = parser.parse_args()
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
sys.path.append(str(args.adept_inference_dir))
|
||||
persimmon_model = torch.load(args.ckpt_path)
|
||||
hparams = persimmon_model['args']
|
||||
|
@ -107,7 +112,7 @@ def main():
|
|||
gguf_writer.add_eos_token_id(71013)
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(arch, block_count)
|
||||
print(tensor_map)
|
||||
logger.info(tensor_map)
|
||||
for name in tensors.keys():
|
||||
data_torch = tensors[name]
|
||||
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
||||
|
@ -117,22 +122,21 @@ def main():
|
|||
data = data_torch.to(torch.float32).squeeze().numpy()
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor '{name}'")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
logger.debug(f"{new_name}, n_dims = {str(n_dims)}, {str(old_dtype)} --> {str(data.dtype)}")
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
print("gguf: write header")
|
||||
logger.info("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
logger.info("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print("gguf: write tensors")
|
||||
logger.info("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{args.outfile}'")
|
||||
print("")
|
||||
logger.info(f"gguf: model successfully exported to '{args.outfile}'")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
60
convert.py
60
convert.py
|
@ -1,6 +1,7 @@
|
|||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import concurrent.futures
|
||||
import enum
|
||||
|
@ -35,6 +36,8 @@ import gguf
|
|||
if TYPE_CHECKING:
|
||||
from typing_extensions import Self, TypeAlias
|
||||
|
||||
logger = logging.getLogger("convert")
|
||||
|
||||
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
||||
faulthandler.register(signal.SIGUSR1)
|
||||
|
||||
|
@ -643,7 +646,6 @@ class LlamaHfVocab(Vocab):
|
|||
|
||||
|
||||
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
|
||||
# print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
n_head = n_head_kv
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
|
@ -1033,12 +1035,12 @@ def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False)
|
|||
|
||||
# Check for a vocab size mismatch
|
||||
if params.n_vocab == vocab.vocab_size:
|
||||
print("Ignoring added_tokens.json since model matches vocab size without it.")
|
||||
logger.warning("Ignoring added_tokens.json since model matches vocab size without it.")
|
||||
return
|
||||
|
||||
if pad_vocab and params.n_vocab > vocab.vocab_size:
|
||||
pad_count = params.n_vocab - vocab.vocab_size
|
||||
print(
|
||||
logger.debug(
|
||||
f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
|
||||
)
|
||||
for i in range(1, pad_count + 1):
|
||||
|
@ -1166,7 +1168,7 @@ class OutputFile:
|
|||
elapsed = time.time() - start
|
||||
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
||||
padi = len(str(len(model)))
|
||||
print(
|
||||
logger.info(
|
||||
f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
|
||||
)
|
||||
self.gguf.write_tensor_data(ndarray)
|
||||
|
@ -1281,12 +1283,12 @@ def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) ->
|
|||
# HF models permut or pack some of the tensors, so we need to undo that
|
||||
for i in itertools.count():
|
||||
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
||||
print(f"Permuting layer {i}")
|
||||
logger.debug(f"Permuting layer {i}")
|
||||
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
|
||||
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
|
||||
# tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
||||
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
|
||||
print(f"Unpacking and permuting layer {i}")
|
||||
logger.debug(f"Unpacking and permuting layer {i}")
|
||||
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
|
||||
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
|
||||
tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
|
||||
|
@ -1299,15 +1301,15 @@ def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) ->
|
|||
tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
|
||||
if name_new is None:
|
||||
if skip_unknown:
|
||||
print(f"Unexpected tensor name: {name} - skipping")
|
||||
logger.warning(f"Unexpected tensor name: {name} - skipping")
|
||||
continue
|
||||
raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
|
||||
|
||||
if tensor_type in should_skip:
|
||||
print(f"skipping tensor {name_new}")
|
||||
logger.debug(f"skipping tensor {name_new}")
|
||||
continue
|
||||
|
||||
print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
|
||||
logger.debug(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
|
||||
out[name_new] = lazy_tensor
|
||||
|
||||
return out
|
||||
|
@ -1372,7 +1374,7 @@ def load_some_model(path: Path) -> ModelPlus:
|
|||
paths = find_multifile_paths(path)
|
||||
models_plus: list[ModelPlus] = []
|
||||
for path in paths:
|
||||
print(f"Loading model file {path}")
|
||||
logger.info(f"Loading model file {path}")
|
||||
models_plus.append(lazy_load_file(path))
|
||||
|
||||
model_plus = merge_multifile_models(models_plus)
|
||||
|
@ -1413,7 +1415,7 @@ class VocabFactory:
|
|||
else:
|
||||
raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}")
|
||||
|
||||
print(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}")
|
||||
logger.info(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}")
|
||||
return vocab
|
||||
|
||||
def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]:
|
||||
|
@ -1438,19 +1440,19 @@ def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
|
|||
}[file_type]
|
||||
ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
|
||||
if ret in model_paths:
|
||||
sys.stderr.write(
|
||||
logger.error(
|
||||
f"Error: Default output path ({ret}) would overwrite the input. "
|
||||
"Please explicitly specify a path using --outfile.\n")
|
||||
"Please explicitly specify a path using --outfile.")
|
||||
sys.exit(1)
|
||||
return ret
|
||||
|
||||
|
||||
def do_dump_model(model_plus: ModelPlus) -> None:
|
||||
print(f"model_plus.paths = {model_plus.paths!r}")
|
||||
print(f"model_plus.format = {model_plus.format!r}")
|
||||
print(f"model_plus.vocab = {model_plus.vocab!r}")
|
||||
print(f"model_plus.paths = {model_plus.paths!r}") # noqa: NP100
|
||||
print(f"model_plus.format = {model_plus.format!r}") # noqa: NP100
|
||||
print(f"model_plus.vocab = {model_plus.vocab!r}") # noqa: NP100
|
||||
for name, lazy_tensor in model_plus.model.items():
|
||||
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
|
||||
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") # noqa: NP100
|
||||
|
||||
|
||||
def main(args_in: list[str] | None = None) -> None:
|
||||
|
@ -1473,8 +1475,18 @@ def main(args_in: list[str] | None = None) -> None:
|
|||
parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine")
|
||||
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
args = parser.parse_args(args_in)
|
||||
|
||||
if args.verbose:
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
elif args.dump_single or args.dump:
|
||||
# Avoid printing anything besides the dump output
|
||||
logging.basicConfig(level=logging.WARNING)
|
||||
else:
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
if args.no_vocab and args.vocab_only:
|
||||
raise ValueError("--vocab-only does not make sense with --no-vocab")
|
||||
|
||||
|
@ -1491,6 +1503,7 @@ def main(args_in: list[str] | None = None) -> None:
|
|||
if args.dump:
|
||||
do_dump_model(model_plus)
|
||||
return
|
||||
|
||||
endianess = gguf.GGUFEndian.LITTLE
|
||||
if args.big_endian:
|
||||
endianess = gguf.GGUFEndian.BIG
|
||||
|
@ -1513,7 +1526,7 @@ def main(args_in: list[str] | None = None) -> None:
|
|||
"q8_0": GGMLFileType.MostlyQ8_0,
|
||||
}[args.outtype]
|
||||
|
||||
print(f"params = {params}")
|
||||
logger.info(f"params = {params}")
|
||||
|
||||
model_parent_path = model_plus.paths[0].parent
|
||||
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
|
||||
|
@ -1528,15 +1541,14 @@ def main(args_in: list[str] | None = None) -> None:
|
|||
outfile = args.outfile
|
||||
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
|
||||
endianess=endianess, pad_vocab=args.pad_vocab)
|
||||
print(f"Wrote {outfile}")
|
||||
logger.info(f"Wrote {outfile}")
|
||||
return
|
||||
|
||||
if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
|
||||
vocab = model_plus.vocab
|
||||
|
||||
print(f"Vocab info: {vocab}")
|
||||
print(f"Special vocab info: {special_vocab}")
|
||||
|
||||
logger.info(f"Vocab info: {vocab}")
|
||||
logger.info(f"Special vocab info: {special_vocab}")
|
||||
model = model_plus.model
|
||||
model = convert_model_names(model, params, args.skip_unknown)
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
|
@ -1544,11 +1556,11 @@ def main(args_in: list[str] | None = None) -> None:
|
|||
outfile = args.outfile or default_outfile(model_plus.paths, ftype)
|
||||
|
||||
params.ftype = ftype
|
||||
print(f"Writing {outfile}, format {ftype}")
|
||||
logger.info(f"Writing {outfile}, format {ftype}")
|
||||
|
||||
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
|
||||
concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab)
|
||||
print(f"Wrote {outfile}")
|
||||
logger.info(f"Wrote {outfile}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -32,6 +32,7 @@ struct split_params {
|
|||
int n_split_tensors = 128;
|
||||
std::string input;
|
||||
std::string output;
|
||||
bool no_tensor_first_split = false;
|
||||
bool dry_run = false;
|
||||
};
|
||||
|
||||
|
@ -49,6 +50,7 @@ static void split_print_usage(const char * executable) {
|
|||
printf(" --merge merge multiple GGUF to a single GGUF\n");
|
||||
printf(" --split-max-tensors max tensors in each split (default: %d)\n", default_params.n_split_tensors);
|
||||
printf(" --split-max-size N(M|G) max size per split\n");
|
||||
printf(" --no-tensor-first-split do not add tensors to the first split (disabled by default)\n");
|
||||
printf(" --dry-run only print out a split plan and exit, without writing any new files\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
@ -100,6 +102,10 @@ static void split_params_parse_ex(int argc, const char ** argv, split_params & p
|
|||
arg_found = true;
|
||||
params.dry_run = true;
|
||||
}
|
||||
if (arg == "--no-tensor-first-split") {
|
||||
arg_found = true;
|
||||
params.no_tensor_first_split = true;
|
||||
}
|
||||
|
||||
if (is_op_set) {
|
||||
throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
|
||||
|
@ -200,10 +206,10 @@ struct split_strategy {
|
|||
// because we need to know list of tensors for each file in advance, we will build all the ctx_out for all output splits
|
||||
int i_split = -1;
|
||||
struct gguf_context * ctx_out = NULL;
|
||||
auto new_ctx_out = [&]() {
|
||||
auto new_ctx_out = [&](bool allow_no_tensors) {
|
||||
i_split++;
|
||||
if (ctx_out != NULL) {
|
||||
if (gguf_get_n_tensors(ctx_out) == 0) {
|
||||
if (gguf_get_n_tensors(ctx_out) == 0 && !allow_no_tensors) {
|
||||
fprintf(stderr, "error: one of splits have 0 tensors. Maybe size or tensors limit is too small\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
@ -220,7 +226,12 @@ struct split_strategy {
|
|||
};
|
||||
|
||||
// initialize ctx_out for the first split
|
||||
new_ctx_out();
|
||||
new_ctx_out(false);
|
||||
|
||||
// skip first split if no_tensor_first_split is set
|
||||
if (params.no_tensor_first_split) {
|
||||
new_ctx_out(true);
|
||||
}
|
||||
|
||||
// process tensors one by one
|
||||
size_t curr_tensors_size = 0; // current size by counting only tensors size (without metadata)
|
||||
|
@ -230,7 +241,7 @@ struct split_strategy {
|
|||
size_t n_bytes = GGML_PAD(ggml_nbytes(t), GGUF_DEFAULT_ALIGNMENT);
|
||||
size_t next_tensors_size = curr_tensors_size + n_bytes;
|
||||
if (should_split(i, next_tensors_size)) {
|
||||
new_ctx_out();
|
||||
new_ctx_out(false);
|
||||
curr_tensors_size = n_bytes;
|
||||
} else {
|
||||
curr_tensors_size = next_tensors_size;
|
||||
|
|
|
@ -55,15 +55,15 @@ $MAIN --model $WORK_PATH/ggml-model-merge.gguf --random-prompt --n-predict 32
|
|||
echo PASS
|
||||
echo
|
||||
|
||||
# 4. Split with no tensor in metadata
|
||||
#$SPLIT --split-max-tensors 32 --no-tensor-in-metadata $WORK_PATH/ggml-model-merge.gguf $WORK_PATH/ggml-model-split-32-tensors
|
||||
#echo PASS
|
||||
#echo
|
||||
# 4. Split with no tensors in the first split
|
||||
$SPLIT --split-max-tensors 32 --no-tensor-first-split $WORK_PATH/ggml-model-merge.gguf $WORK_PATH/ggml-model-split-32-tensors
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
# 4b. Test the sharded model is loading properly
|
||||
#$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00006.gguf --random-prompt --n-predict 32
|
||||
#echo PASS
|
||||
#echo
|
||||
$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --random-prompt --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
# 5. Merge
|
||||
#$SPLIT --merge $WORK_PATH/ggml-model-split-32-tensors-00001-of-00006.gguf $WORK_PATH/ggml-model-merge-2.gguf
|
||||
|
|
|
@ -178,6 +178,7 @@ struct cmd_params {
|
|||
std::vector<std::vector<float>> tensor_split;
|
||||
std::vector<bool> use_mmap;
|
||||
std::vector<bool> embeddings;
|
||||
ggml_numa_strategy numa;
|
||||
int reps;
|
||||
bool verbose;
|
||||
output_formats output_format;
|
||||
|
@ -200,6 +201,7 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
|
||||
/* use_mmap */ {true},
|
||||
/* embeddings */ {false},
|
||||
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
|
||||
/* reps */ 5,
|
||||
/* verbose */ false,
|
||||
/* output_format */ MARKDOWN
|
||||
|
@ -224,6 +226,7 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
|
||||
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
|
||||
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
|
@ -396,6 +399,17 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
|
||||
} else if (arg == "--numa") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
} else {
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
|
||||
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
|
||||
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
|
||||
else { invalid_param = true; break; }
|
||||
}
|
||||
} else if (arg == "-fa" || arg == "--flash-attn") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -1215,6 +1229,7 @@ int main(int argc, char ** argv) {
|
|||
llama_log_set(llama_null_log_callback, NULL);
|
||||
}
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// initialize printer
|
||||
std::unique_ptr<printer> p;
|
||||
|
|
|
@ -544,7 +544,7 @@ int main(int argc, char ** argv) {
|
|||
// if we run out of context:
|
||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
||||
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) >= n_ctx) {
|
||||
if (params.n_predict == -2) {
|
||||
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
|
|
|
@ -1,8 +1,118 @@
|
|||
# perplexity
|
||||
# Perplexity
|
||||
|
||||
TODO
|
||||
The `perplexity` example can be used to calculate the so-called perplexity value of a language model over a given text corpus.
|
||||
Perplexity measures how well the model can predict the next token with lower values being better.
|
||||
Note that perplexity is **not** directly comparable between models, especially if they use different tokenizers.
|
||||
Also note that finetunes typically result in a higher perplexity value even though the human-rated quality of outputs increases.
|
||||
|
||||
Within llama.cpp the perplexity of base models is used primarily to judge the quality loss from e.g. quantized models vs. FP16.
|
||||
The convention among contributors is to use the Wikitext-2 test set for testing unless noted otherwise (can be obtained with `scripts/get-wikitext-2.sh`).
|
||||
|
||||
By default only the mean perplexity value and the corresponding uncertainty is calculated.
|
||||
The uncertainty is determined empirically by assuming a Gaussian distribution of the "correct" logits per and then applying error propagation.
|
||||
|
||||
More statistics can be obtained by recording the logits from the FP16 version of a model.
|
||||
To do this, supply `perplexity` with `--kl-divergence-base path/to/logit/binary/file.kld`.
|
||||
The program will then record all logits and save them to the provided path in binary format.
|
||||
**The logit file will be very large, 11 GiB for LLaMA 2 or 37 GiB for LLaMA 3 when using the Wikitext-2 test set.**
|
||||
Once you have the file, supply `perplexity` with the quantized model, the logits file via `--kl-divergence-base`,
|
||||
and finally the `--kl-divergence` argument to indicate that the program should calculate the so-called Kullback-Leibler divergence.
|
||||
This is a measure of how similar the FP16 and the quantized logit distributions are with a value of 0 indicating that the distribution are the same.
|
||||
The uncertainty on the mean KL divergence is calculated by assuming the KL divergence per token follows a Gaussian distribution.
|
||||
|
||||
In addition to the KL divergence the following statistics are calculated with `--kl-divergence`:
|
||||
|
||||
* Ratio of mean FP16 PPL and quantized PPL. Uncertainty is estimated on logits, then propagated. The logarithm of this metric is also calculated and printed, it is 0 if the logit distributions are the same.
|
||||
* Difference of mean FP16 PPL and quantized PPL. Uncertainty is estimated on logits, then propagated.
|
||||
* Mean change in "correct" token probability. Positive values mean the model gets better at prediction, negative values mean it gets worse.
|
||||
* Pearson correlation coefficient of the "correct" token probabilites between models.
|
||||
* Percentiles of change in "correct" token probability. Positive values mean the model gets better at prediction, negative values mean it gets worse. Can be used to judge noise vs. quality loss from quantization. If the percentiles are symmetric then the quantization is essentially just adding noise. If the negative values are significantly larger than the positive values then this indicates that the model is actually becoming worse from the quantization.
|
||||
* The root mean square of the change in token probabilities. If you were to assume that the quantization simply causes Gaussian noise on the token probabilities then this would be the standard deviation of said noise. The uncertainty on the value is calculated that the change in token probabilities follows a Gaussian distribution. Related discussion: https://github.com/ggerganov/llama.cpp/discussions/2875 .
|
||||
* Same top p: Percentage of how often the token was assigned the highest probabilites by both models. The uncertainty is calculated from the Gaussian approximation of the binomial distribution.
|
||||
|
||||
## LLaMA 3 8b Scoreboard
|
||||
|
||||
Results are sorted by Kullback-Leibler divergence relative to FP16.
|
||||
The "WT" importance matrices were created using varying numbers of Wikitext tokens and can be found [here](https://huggingface.co/JohannesGaessler/llama.cpp_importance_matrices/blob/main/imatrix-llama_3-8b-f16-2.7m_tokens.dat).
|
||||
|
||||
| Quantization | imatrix | Model size [GiB] | PPL | ΔPPL | KLD | Mean Δp | RMS Δp |
|
||||
|--------------|---------|------------------|------------------------|------------------------|-----------------------|-------------------|------------------|
|
||||
| f16 | None | 14.97 | 6.233160 ± 0.037828 | - | - | - | - |
|
||||
| q8_0 | None | 7.96 | 6.234284 ± 0.037878 | 0.002650 ± 0.001006 | 0.001355 ± 0.000006 | -0.019 ± 0.003 % | 1.198 ± 0.007 % |
|
||||
| q6_K | None | 6.14 | 6.253382 ± 0.038078 | 0.021748 ± 0.001852 | 0.005452 ± 0.000035 | -0.007 ± 0.006 % | 2.295 ± 0.019 % |
|
||||
| q5_K_M | None | 5.33 | 6.288607 ± 0.038338 | 0.056974 ± 0.002598 | 0.010762 ± 0.000079 | -0.114 ± 0.008 % | 3.160 ± 0.031 % |
|
||||
| q5_K_S | None | 5.21 | 6.336598 ± 0.038755 | 0.104964 ± 0.003331 | 0.016595 ± 0.000122 | -0.223 ± 0.010 % | 3.918 ± 0.036 % |
|
||||
| q5_1 | None | 5.65 | 6.337857 ± 0.038677 | 0.106223 ± 0.003476 | 0.018045 ± 0.000139 | -0.287 ± 0.011 % | 4.123 ± 0.039 % |
|
||||
| q5_0 | None | 5.21 | 6.363224 ± 0.038861 | 0.131591 ± 0.003894 | 0.022239 ± 0.000166 | -0.416 ± 0.012 % | 4.634 ± 0.043 % |
|
||||
| q4_K_M | WT 10m | 4.58 | 6.382937 ± 0.039055 | 0.151303 ± 0.004429 | 0.028152 ± 0.000240 | -0.389 ± 0.014 % | 5.251 ± 0.049 % |
|
||||
| q4_K_M | None | 4.58 | 6.407115 ± 0.039119 | 0.175482 ± 0.004620 | 0.031273 ± 0.000238 | -0.596 ± 0.014 % | 5.519 ± 0.050 % |
|
||||
| q4_K_S | WT 10m | 4.37 | 6.409697 ± 0.039189 | 0.178064 ± 0.004744 | 0.031951 ± 0.000259 | -0.531 ± 0.015 % | 5.645 ± 0.051 % |
|
||||
| iq4_NL | WT 10m | 4.35 | 6.455593 ± 0.039630 | 0.223959 ± 0.005201 | 0.035742 ± 0.000288 | -0.590 ± 0.016 % | 5.998 ± 0.054 % |
|
||||
| iq4_XS | WT 10m | 4.14 | 6.459705 ± 0.039595 | 0.228071 ± 0.005207 | 0.036334 ± 0.000284 | -0.668 ± 0.016 % | 6.044 ± 0.054 % |
|
||||
| q4_K_S | None | 4.37 | 6.500529 ± 0.039778 | 0.268895 ± 0.005638 | 0.043136 ± 0.000314 | -0.927 ± 0.017 % | 6.562 ± 0.055 % |
|
||||
| q4_1 | None | 4.78 | 6.682737 ± 0.041285 | 0.451103 ± 0.008030 | 0.071683 ± 0.000505 | -0.927 ± 0.017 % | 8.512 ± 0.063 % |
|
||||
| q4_0 | None | 4.34 | 6.700147 ± 0.041226 | 0.468514 ± 0.007951 | 0.071940 ± 0.000491 | -1.588 ± 0.022 % | 8.434 ± 0.061 % |
|
||||
| q3_K_L | WT 10m | 4.03 | 6.671223 ± 0.041427 | 0.439590 ± 0.008154 | 0.073077 ± 0.000529 | -0.940 ± 0.023 % | 8.662 ± 0.064 % |
|
||||
| q3_K_M | WT 10m | 3.74 | 6.734255 ± 0.041838 | 0.502622 ± 0.008901 | 0.084358 ± 0.000588 | -1.198 ± 0.024 % | 9.292 ± 0.065 % |
|
||||
| q3_K_L | None | 4.03 | 6.787876 ± 0.042104 | 0.556242 ± 0.009171 | 0.087176 ± 0.000614 | -1.532 ± 0.025 % | 9.432 ± 0.067 % |
|
||||
| q3_K_M | None | 3.74 | 6.888498 ± 0.042669 | 0.656864 ± 0.010071 | 0.101913 ± 0.000677 | -1.990 ± 0.026 % | 10.203 ± 0.068 % |
|
||||
| iq3_M | WT 10m | 3.53 | 6.898327 ± 0.041643 | 0.666694 ± 0.009449 | 0.102534 ± 0.000663 | -3.178 ± 0.026 % | 10.513 ± 0.066 % |
|
||||
| iq3_S | WT 10m | 3.42 | 6.965501 ± 0.042406 | 0.733867 ± 0.010245 | 0.111278 ± 0.000710 | -3.066 ± 0.027 % | 10.845 ± 0.068 % |
|
||||
| iq3_XS | WT 10m | 3.28 | 7.163043 ± 0.043772 | 0.931409 ± 0.012084 | 0.138693 ± 0.000857 | -3.667 ± 0.031 % | 12.148 ± 0.070 % |
|
||||
| iq3_XXS | WT 10m | 3.05 | 7.458436 ± 0.046404 | 1.226803 ± 0.015234 | 0.183625 ± 0.001042 | -3.918 ± 0.035 % | 13.836 ± 0.074 % |
|
||||
| q3_K_S | WT 10m | 3.41 | 7.602878 ± 0.046848 | 1.371244 ± 0.015688 | 0.199821 ± 0.001008 | -5.046 ± 0.037 % | 14.980 ± 0.070 % |
|
||||
| q3_K_S | None | 3.41 | 7.863786 ± 0.048885 | 1.632152 ± 0.017733 | 0.228217 ± 0.001079 | -5.604 ± 0.038 % | 15.541 ± 0.070 % |
|
||||
| iq2_M | WT 10m | 2.74 | 8.600799 ± 0.055124 | 2.369166 ± 0.025244 | 0.325989 ± 0.00160 | -6.463 ± 0.046 % | 18.519 ± 0.080 % |
|
||||
| q2_K | WT 10k | 2.96 | 8.652290 ± 0.055572 | 2.420657 ± 0.025587 | 0.331393 ± 0.001562 | -6.606 ± 0.046 % | 18.790 ± 0.078 % |
|
||||
| q2_K | WT 100k | 2.96 | 8.641993 ± 0.055406 | 2.410359 ± 0.025495 | 0.331672 ± 0.001569 | -6.628 ± 0.047 % | 18.856 ± 0.078 % |
|
||||
| q2_K | WT 10m | 2.96 | 8.647825 ± 0.055610 | 2.416191 ± 0.025683 | 0.332223 ± 0.001572 | -6.500 ± 0.047 % | 18.881 ± 0.078 % |
|
||||
| q2_K | WT 1m | 2.96 | 8.674365 ± 0.055743 | 2.442732 ± 0.025843 | 0.335308 ± 0.001576 | -6.634 ± 0.047 % | 19.009 ± 0.079 % |
|
||||
| q2_K | WT 1k | 2.96 | 8.682605 ± 0.055916 | 2.450972 ± 0.026069 | 0.337093 ± 0.001596 | -6.596 ± 0.047 % | 18.977 ± 0.079 % |
|
||||
| q2_K_S | WT 10m | 2.96 | 9.323778 ± 0.061551 | 3.092145 ± 0.031914 | 0.403360 ± 0.001787 | -7.131 ± 0.049 % | 20.050 ± 0.081 % |
|
||||
| q2_K_S | WT 1m | 2.96 | 9.329321 ± 0.061378 | 3.097688 ± 0.031816 | 0.403590 ± 0.001797 | -7.289 ± 0.049 % | 20.123 ± 0.081 % |
|
||||
| q2_K_S | WT 100k | 2.96 | 9.362973 ± 0.061740 | 3.131339 ± 0.032169 | 0.408367 ± 0.001802 | -7.198 ± 0.050 % | 20.132 ± 0.081 % |
|
||||
| q2_K_S | WT 10k | 2.96 | 9.376479 ± 0.062045 | 3.144846 ± 0.032464 | 0.408662 ± 0.001819 | -7.141 ± 0.050 % | 20.120 ± 0.081 % |
|
||||
| q2_K_S | WT 1k | 2.96 | 9.415200 ± 0.062475 | 3.183567 ± 0.032993 | 0.415865 ± 0.001846 | -7.153 ± 0.050 % | 20.311 ± 0.082 % |
|
||||
| iq2_S | WT 10m | 2.56 | 9.650781 ± 0.063209 | 3.419148 ± 0.034017 | 0.439197 ± 0.001976 | -8.319 ± 0.052 % | 21.491 ± 0.083 % |
|
||||
| q2_K | None | 2.96 | 9.751568 ± 0.063312 | 3.519934 ± 0.033863 | 0.445132 ± 0.001835 | -9.123 ± 0.051 % | 21.421 ± 0.079 % |
|
||||
| iq2_XS | WT 10m | 2.43 | 10.761424 ± 0.071056 | 4.529791 ± 0.042229 | 0.546290 ± 0.002133 | -10.576 ± 0.056 % | 23.872 ± 0.082 % |
|
||||
| iq2_XXS | WT 10m | 2.24 | 14.091782 ± 0.098396 | 7.860148 ± 0.070752 | 0.812022 ± 0.002741 | -14.363 ± 0.065 % | 28.576 ± 0.084 % |
|
||||
| iq1_M | WT 10m | 2.01 | 25.493722 ± 0.177903 | 19.262089 ± 0.152396 | 1.393084 ± 0.003529 | -24.672 ± 0.077 % | 38.287 ± 0.084 % |
|
||||
| iq1_S | WT 1m | 1.88 | 58.097760 ± 0.438604 | 51.866126 ± 0.416604 | 2.211278 ± 0.004688 | -32.471 ± 0.087 % | 46.418 ± 0.085 % |
|
||||
| iq1_S | WT 1k | 1.88 | 58.267851 ± 0.446208 | 52.036218 ± 0.424373 | 2.214858 ± 0.004778 | -31.880 ± 0.089 % | 46.330 ± 0.086 % |
|
||||
| iq1_S | WT 100k | 1.88 | 58.581498 ± 0.453145 | 52.349864 ± 0.431360 | 2.220834 ± 0.004818 | -32.261 ± 0.089 % | 46.002 ± 0.086 % |
|
||||
| iq1_S | WT 10m | 1.88 | 60.694593 ± 0.471290 | 54.462959 ± 0.449644 | 2.254554 ± 0.004868 | -31.973 ± 0.088 % | 46.271 ± 0.086 % |
|
||||
| iq1_S | WT 10k | 1.88 | 63.221324 ± 0.493077 | 56.989691 ± 0.471423 | 2.293527 ± 0.004885 | -32.261 ± 0.089 % | 46.562 ± 0.086 % |
|
||||
|
||||
There seems to be no consistent improvement from using more Wikitext tokens for the importance matrix.
|
||||
K-quants score better on mean Δp than the legacy quants than e.g. KL divergence would suggest.
|
||||
|
||||
## LLaMA 2 vs. LLaMA 3 Quantization comparison
|
||||
|
||||
| Metric | L2 7b q2_K | L3 8b q2_K | L2 7b q4_K_M | L3 8b q4_K_M | L2 7b q6_K | L3 8b q6_K | L2 7b q8_0 | L3 8b q8_0 |
|
||||
|-----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|
||||
| Mean PPL | 5.794552 ± 0.032298 | 9.751568 ± 0.063312 | 5.877078 ± 0.032781 | 6.407115 ± 0.039119 | 5.808494 ± 0.032425 | 6.253382 ± 0.038078 | 5.798542 ± 0.032366 | 6.234284 ± 0.037878 |
|
||||
| Mean PPL ratio | 1.107955 ± 0.001427 | 1.564849 ± 0.004525 | 1.014242 ± 0.000432 | 1.028160 ± 0.000723 | 1.002406 ± 0.000191 | 1.003490 ± 0.000296 | 1.000689 ± 0.000107 | 1.000425 ± 0.000161 |
|
||||
| Mean ΔPPL | 0.625552 ± 0.008725 | 3.519934 ± 0.033863 | 0.082526 ± 0.002530 | 0.175482 ± 0.004620 | 0.013941 ± 0.001110 | 0.021748 ± 0.001852 | 0.003990 ± 0.000624 | 0.002650 ± 0.001006 |
|
||||
| PPL correlation | 97.36% | 89.62% | 99.71% | 99.34% | 99.94% | 99.88% | 99.98% | 99.96% |
|
||||
| Mean KLD | 0.108903 ± 0.000645 | 0.445132 ± 0.001835 | 0.012686 ± 0.000079 | 0.031273 ± 0.000238 | 0.002098 ± 0.000014 | 0.005452 ± 0.000035 | 0.000369 ± 0.000007 | 0.001355 ± 0.000006 |
|
||||
| Mean Δp | -2.710 ± 0.023 % | -9.123 ± 0.051 % | -0.416 ± 0.008 % | -0.596 ± 0.014 % | -0.035 ± 0.003 % | -0.007 ± 0.006 % | -0.005 ± 0.002 % | -0.019 ± 0.003 % |
|
||||
| Maximum Δp | 85.136% | 94.268% | 45.209% | 95.054% | 23.593% | 53.601% | 43.925% | 28.734% |
|
||||
| 99.9% Δp | 37.184% | 50.003% | 17.461% | 27.084% | 7.798% | 13.613% | 3.387% | 6.402% |
|
||||
| 99.0% Δp | 18.131% | 25.875% | 7.798% | 12.084% | 3.838% | 6.407% | 1.867% | 3.544% |
|
||||
| Median Δp | -0.391% | -2.476% | -0.026% | -0.024% | -0.001% | 0.000% | -0.000% | -0.000% |
|
||||
| 1.0% Δp | -39.762% | -87.173% | -11.433% | -19.567% | -4.222% | -6.767% | -1.862% | -3.698% |
|
||||
| 0.1% Δp | -79.002% | -98.897% | -26.433% | -56.054% | -9.091% | -16.584% | -3.252% | -6.579% |
|
||||
| Minimum Δp | -99.915% | -99.965% | -83.383% | -98.699% | -43.142% | -68.487% | -9.343% | -24.301% |
|
||||
| RMS Δp | 9.762 ± 0.053 % | 21.421 ± 0.079 % | 3.252 ± 0.024 % | 5.519 ± 0.050 % | 1.339 ± 0.010 % | 2.295 ± 0.019 % | 0.618 ± 0.011 % | 1.198 ± 0.007 % |
|
||||
| Same top p | 85.584 ± 0.086 % | 71.138 ± 0.119 % | 94.665 ± 0.055 % | 91.901 ± 0.072 % | 97.520 ± 0.038 % | 96.031 ± 0.051 % | 98.846 ± 0.026 % | 97.674 ± 0.040 % |
|
||||
|
||||
|
||||
## Old Numbers
|
||||
|
||||
<details>
|
||||
<summary>Llama 2 70B Scoreboard</summary>
|
||||
|
||||
## Llama 2 70B Scorechart
|
||||
| Quantization | Model size (GiB) | Perplexity | Delta to fp16 |
|
||||
|--------------|------------------|------------|---------------|
|
||||
| Q4_0 | 36.20 | 3.5550 | 3.61% |
|
||||
|
@ -18,3 +128,5 @@ TODO
|
|||
| Q5_K_M | 45.41 | 3.4451 | 0.40% |
|
||||
| Q6_K | 52.70 | 3.4367 | 0.16% |
|
||||
| fp16 | 128.5 | 3.4313 | - |
|
||||
|
||||
</details>
|
||||
|
|
|
@ -216,17 +216,22 @@ static void process_logits(std::ostream& out, int n_vocab, const float * logits,
|
|||
}
|
||||
|
||||
struct kl_divergence_result {
|
||||
double sum_nll = 0;
|
||||
double sum_nll2 = 0;
|
||||
double sum_kld = 0;
|
||||
double sum_kld2 = 0;
|
||||
double sum_nll_diff = 0;
|
||||
double sum_nll_diff2 = 0;
|
||||
size_t n_same_top = 0;
|
||||
size_t count = 0;
|
||||
double sum_nll = 0.0;
|
||||
double sum_nll2 = 0.0;
|
||||
double sum_nll_base = 0.0;
|
||||
double sum_nll_base2 = 0.0;
|
||||
double sum_nll_nll_base = 0.0;
|
||||
double sum_kld = 0.0;
|
||||
double sum_kld2 = 0.0;
|
||||
double sum_p_diff = 0.0;
|
||||
double sum_p_diff2 = 0.0;
|
||||
double sum_p_diff4 = 0.0;
|
||||
float max_p_diff = 0.0f;
|
||||
size_t n_same_top = 0.0;
|
||||
size_t count = 0.0;
|
||||
};
|
||||
|
||||
static double log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
|
||||
static std::pair<double, float> log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
|
||||
float max_logit = logits[0];
|
||||
int imax = 0;
|
||||
for (int i = 1; i < n_vocab; ++i) {
|
||||
|
@ -244,12 +249,17 @@ static double log_softmax(int n_vocab, const float * logits, const uint16_t * ba
|
|||
const float scale = d[0];
|
||||
const float min_log_prob = d[1];
|
||||
base_log_prob += 4;
|
||||
float nll = max_logit + log_sum_exp - logits[tok];
|
||||
|
||||
const float nll = max_logit + log_sum_exp - logits[tok];
|
||||
kld.sum_nll += nll;
|
||||
kld.sum_nll2 += nll*nll;
|
||||
nll += (scale*base_log_prob[tok] + min_log_prob);
|
||||
kld.sum_nll_diff += nll;
|
||||
kld.sum_nll_diff2 += nll*nll;
|
||||
|
||||
const float nll_base = -(scale*base_log_prob[tok] + min_log_prob);
|
||||
kld.sum_nll_base += nll_base;
|
||||
kld.sum_nll_base2 += nll_base*nll_base;
|
||||
|
||||
kld.sum_nll_nll_base += nll*nll_base;
|
||||
|
||||
max_logit += log_sum_exp;
|
||||
double sum = 0;
|
||||
int imax_base = -1;
|
||||
|
@ -269,34 +279,50 @@ static double log_softmax(int n_vocab, const float * logits, const uint16_t * ba
|
|||
kld.sum_kld2 += sum*sum;
|
||||
++kld.count;
|
||||
if (imax == imax_base) ++kld.n_same_top;
|
||||
return sum;
|
||||
|
||||
const float p_base = expf(-nll_base);
|
||||
const float p = expf(-nll);
|
||||
const float p_diff = p - p_base;
|
||||
kld.sum_p_diff += p_diff;
|
||||
const double p_diff2 = p_diff*p_diff;
|
||||
kld.sum_p_diff2 += p_diff2;
|
||||
kld.sum_p_diff4 += p_diff2*p_diff2;
|
||||
kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff));
|
||||
|
||||
return std::make_pair(sum, p_diff);
|
||||
}
|
||||
|
||||
static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
|
||||
std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
|
||||
float * kld_values) {
|
||||
float * kld_values, float * p_diff_values) {
|
||||
std::mutex mutex;
|
||||
const int nv = 2*((n_vocab + 1)/2) + 4;
|
||||
int counter = 0;
|
||||
auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values] () {
|
||||
auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () {
|
||||
kl_divergence_result local_kld;
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
int i = counter++;
|
||||
if (i >= n_token) {
|
||||
kld.sum_nll += local_kld.sum_nll;
|
||||
kld.sum_nll2 += local_kld.sum_nll2;
|
||||
kld.sum_kld += local_kld.sum_kld;
|
||||
kld.sum_kld2 += local_kld.sum_kld2;
|
||||
kld.sum_nll_diff += local_kld.sum_nll_diff;
|
||||
kld.sum_nll_diff2 += local_kld.sum_nll_diff2;
|
||||
kld.n_same_top += local_kld.n_same_top;
|
||||
kld.count += local_kld.count;
|
||||
kld.sum_nll += local_kld.sum_nll;
|
||||
kld.sum_nll2 += local_kld.sum_nll2;
|
||||
kld.sum_nll_base += local_kld.sum_nll_base;
|
||||
kld.sum_nll_base2 += local_kld.sum_nll_base2;
|
||||
kld.sum_nll_nll_base += local_kld.sum_nll_nll_base;
|
||||
kld.sum_kld += local_kld.sum_kld;
|
||||
kld.sum_kld2 += local_kld.sum_kld2;
|
||||
kld.sum_p_diff += local_kld.sum_p_diff;
|
||||
kld.sum_p_diff2 += local_kld.sum_p_diff2;
|
||||
kld.sum_p_diff4 += local_kld.sum_p_diff4;
|
||||
kld.n_same_top += local_kld.n_same_top;
|
||||
kld.max_p_diff = std::max(kld.max_p_diff, local_kld.max_p_diff);
|
||||
kld.count += local_kld.count;
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
double v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
|
||||
kld_values[i] = (float)v;
|
||||
std::pair<double, float> v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
|
||||
kld_values[i] = (float)v.first;
|
||||
p_diff_values[i] = v.second;
|
||||
}
|
||||
};
|
||||
for (auto & w : workers) {
|
||||
|
@ -1711,7 +1737,8 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
|||
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
|
||||
|
||||
std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
|
||||
std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
|
||||
std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
|
||||
std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
|
||||
std::vector<float> logits;
|
||||
if (num_batches > 1) {
|
||||
logits.reserve(n_ctx * n_vocab);
|
||||
|
@ -1728,9 +1755,18 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
|||
df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.;
|
||||
return std::make_pair(f, df);
|
||||
};
|
||||
auto covariance = [] (double suma, double sumb, double sumab, size_t count) {
|
||||
if (count < 10) {
|
||||
return 0.0;
|
||||
}
|
||||
double var = sumab/count - (suma/count)*(sumb/count);
|
||||
var /= count - 1;
|
||||
return var;
|
||||
};
|
||||
|
||||
kl_divergence_result kld;
|
||||
auto kld_ptr = kld_values.data();
|
||||
auto kld_ptr = kld_values.data();
|
||||
auto p_diff_ptr = p_diff_values.data();
|
||||
|
||||
for (int i = 0; i < n_chunk; ++i) {
|
||||
const int start = i * n_ctx;
|
||||
|
@ -1785,24 +1821,42 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
|||
}
|
||||
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
||||
|
||||
printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL-Divergence Same top\n");
|
||||
printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n");
|
||||
}
|
||||
|
||||
const int first = n_ctx/2;
|
||||
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
||||
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
||||
workers, log_probs_uint16, kld, kld_ptr);
|
||||
kld_ptr += n_ctx - 1 - first;
|
||||
workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr);
|
||||
p_diff_ptr += n_ctx - 1 - first;
|
||||
kld_ptr += n_ctx - 1 - first;
|
||||
|
||||
auto ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
|
||||
auto log_ppl_ratio = mean_and_uncertainty(kld.sum_nll_diff, kld.sum_nll_diff2, kld.count);
|
||||
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
|
||||
auto p_top = 1.*kld.n_same_top/kld.count;
|
||||
auto d_p_top = sqrt(p_top*(1 - p_top)/(kld.count - 1));
|
||||
printf("%4d", i+1);
|
||||
|
||||
printf("%4d %10.4lf %10.5lf ± %10.5f %10.5f ± %10.5lf %.5f ± %.5f\n", i+1, exp(ppl.first),
|
||||
log_ppl_ratio.first, log_ppl_ratio.second, kl_div.first, kl_div.second,
|
||||
p_top, d_p_top);
|
||||
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
|
||||
const double ppl_val = exp(log_ppl.first);
|
||||
const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
|
||||
printf(" %9.4lf ± %9.4lf", ppl_val, ppl_unc);
|
||||
|
||||
auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
|
||||
const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
|
||||
const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
|
||||
const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
|
||||
printf(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc);
|
||||
|
||||
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
|
||||
printf(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second);
|
||||
|
||||
auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
|
||||
const double p_diff_rms_val = sqrt(p_diff_mse.first);
|
||||
const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
|
||||
printf(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
|
||||
|
||||
double p_top_val = 1.*kld.n_same_top/kld.count;
|
||||
double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1));
|
||||
printf(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc);
|
||||
|
||||
printf("\n");
|
||||
|
||||
fflush(stdout);
|
||||
|
||||
|
@ -1813,31 +1867,97 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
|||
if (kld.count < 100) return; // we do not wish to do statistics on so few values
|
||||
|
||||
std::sort(kld_values.begin(), kld_values.end());
|
||||
std::sort(p_diff_values.begin(), p_diff_values.end());
|
||||
|
||||
printf("===== KL-divergence statistics\n");
|
||||
printf("====== Perplexity statistics ======\n");
|
||||
|
||||
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
|
||||
const double ppl_val = exp(log_ppl.first);
|
||||
const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
|
||||
printf("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc);
|
||||
|
||||
auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
|
||||
const double ppl_base_val = exp(log_ppl_base.first);
|
||||
const double ppl_base_unc = ppl_base_val * log_ppl_base.second; // ppl_base_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_base.second ** 2 )
|
||||
printf("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc);
|
||||
|
||||
const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
|
||||
// printf("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov);
|
||||
const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second);
|
||||
printf("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor);
|
||||
|
||||
const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
|
||||
const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
|
||||
printf("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc);
|
||||
|
||||
const double ppl_ratio_val = exp(log_ppl_ratio_val);
|
||||
const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; // ppl_ratio_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_ratio.second ** 2 )
|
||||
printf("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc);
|
||||
|
||||
const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov;
|
||||
const double ppl_diff_val = ppl_val - ppl_base_val;
|
||||
const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov);
|
||||
printf("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc);
|
||||
|
||||
printf("\n");
|
||||
|
||||
printf("====== KL divergence statistics ======\n");
|
||||
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
|
||||
printf("Average: %10.6f ±%10.6lf\n", kl_div.first, kl_div.second);
|
||||
printf("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second);
|
||||
auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1])
|
||||
: kld_values[kld_values.size()/2];
|
||||
printf("Median : %10.6f\n", kld_median);
|
||||
|
||||
auto percentile = [&kld_values] (float fraction) {
|
||||
if (fraction <= 0) return kld_values.front();
|
||||
if (fraction >= 1) return kld_values.back();
|
||||
float p = fraction*(kld_values.size() - 1);
|
||||
auto percentile = [] (std::vector<float> values, float fraction) {
|
||||
if (fraction <= 0) return values.front();
|
||||
if (fraction >= 1) return values.back();
|
||||
float p = fraction*(values.size() - 1);
|
||||
size_t ip = size_t(p); p -= ip;
|
||||
return (1 - p)*kld_values[ip] + p*kld_values[std::min(ip+1, kld_values.size()-1)];
|
||||
return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)];
|
||||
};
|
||||
|
||||
printf("Maximum: %10.6f\n", kld_values.back());
|
||||
printf("KLD_99 : %10.6f\n", percentile(0.99f));
|
||||
printf("KLD_95 : %10.6f\n", percentile(0.95f));
|
||||
printf("KLD_90 : %10.6f\n", percentile(0.90f));
|
||||
printf("Maximum KLD: %10.6f\n", kld_values.back());
|
||||
printf("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f));
|
||||
printf("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
|
||||
printf("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
|
||||
printf("Median KLD: %10.6f\n", kld_median);
|
||||
printf("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f));
|
||||
printf(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f));
|
||||
printf(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f));
|
||||
printf("Minimum KLD: %10.6f\n", kld_values.front());
|
||||
|
||||
printf("Minimum: %10.6f\n", kld_values.front());
|
||||
printf("KLD_01 : %10.6f\n", percentile(0.01f));
|
||||
printf("KLD_05 : %10.6f\n", percentile(0.05f));
|
||||
printf("KLD_10 : %10.6f\n", percentile(0.10f));
|
||||
printf("\n");
|
||||
|
||||
printf("====== Token probability statistics ======\n");
|
||||
|
||||
auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count);
|
||||
printf("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second);
|
||||
|
||||
auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1])
|
||||
: p_diff_values[p_diff_values.size()/2];
|
||||
|
||||
printf("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back());
|
||||
printf("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f));
|
||||
printf("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f));
|
||||
printf("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f));
|
||||
printf("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f));
|
||||
printf("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f));
|
||||
printf("Median Δp: %6.3lf%%\n", 100.0*p_diff_median);
|
||||
printf("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f));
|
||||
printf("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f));
|
||||
printf(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f));
|
||||
printf(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f));
|
||||
printf(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f));
|
||||
printf("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front());
|
||||
|
||||
auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
|
||||
// printf("MSE Δp : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second);
|
||||
|
||||
const double p_diff_rms_val = sqrt(p_diff_mse.first);
|
||||
const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
|
||||
printf("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
|
||||
|
||||
const double same_top_p = 1.0*kld.n_same_top/kld.count;
|
||||
printf("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1)));
|
||||
|
||||
}
|
||||
|
||||
|
|
|
@ -1383,9 +1383,10 @@ struct server_context {
|
|||
if (!slot.params.stream && slot.stopped_word) {
|
||||
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
|
||||
|
||||
size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
|
||||
probs = std::vector<completion_token_output>(
|
||||
slot.generated_token_probs.begin(),
|
||||
slot.generated_token_probs.end() - stop_word_toks.size());
|
||||
slot.generated_token_probs.end() - safe_offset);
|
||||
} else {
|
||||
probs = std::vector<completion_token_output>(
|
||||
slot.generated_token_probs.begin(),
|
||||
|
|
|
@ -7,44 +7,16 @@ Feature: Results
|
|||
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
|
||||
And a model file test-model-00001-of-00003.gguf
|
||||
And 128 as batch size
|
||||
And 256 KV cache size
|
||||
And 1024 KV cache size
|
||||
And 128 max tokens to predict
|
||||
|
||||
Scenario Outline: Multi users completion
|
||||
Given <n_slots> slots
|
||||
And continuous batching
|
||||
|
||||
Scenario Outline: consistent results with same seed
|
||||
Given <n_slots> slots
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
Given 4 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42
|
||||
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
|
@ -55,3 +27,55 @@ Feature: Results
|
|||
| n_slots |
|
||||
| 1 |
|
||||
| 2 |
|
||||
|
||||
Scenario Outline: different results with different seed
|
||||
Given <n_slots> slots
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42
|
||||
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 43
|
||||
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 44
|
||||
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 45
|
||||
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
Then all predictions are different
|
||||
Examples:
|
||||
| n_slots |
|
||||
| 1 |
|
||||
| 2 |
|
||||
|
||||
Scenario Outline: consistent results with same seed and varying batch size
|
||||
Given 4 slots
|
||||
And <temp> temperature
|
||||
# And 0 as draft
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Given 1 prompts "Write a very long story about AI." with seed 42
|
||||
And concurrent completion requests
|
||||
# Then the server is busy # Not all slots will be utilized.
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
|
||||
Given <n_parallel> prompts "Write a very long story about AI." with seed 42
|
||||
And concurrent completion requests
|
||||
# Then the server is busy # Not all slots will be utilized.
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
|
||||
Then all predictions are equal
|
||||
Examples:
|
||||
| n_parallel | temp |
|
||||
| 1 | 0.0 |
|
||||
| 2 | 0.0 |
|
||||
| 4 | 0.0 |
|
||||
| 1 | 1.0 |
|
||||
# FIXME: These tests fail on master. The problem seems to be the unified KV cache.
|
||||
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
|
||||
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574 .
|
||||
# | 2 | 1.0 |
|
||||
# | 4 | 1.0 |
|
||||
|
|
|
@ -65,6 +65,7 @@ def step_server_config(context, server_fqdn, server_port):
|
|||
context.server_seed = None
|
||||
context.user_api_key = None
|
||||
context.response_format = None
|
||||
context.temperature = None
|
||||
|
||||
context.tasks_result = []
|
||||
context.concurrent_tasks = []
|
||||
|
@ -232,15 +233,17 @@ async def step_all_slots_status(context, expected_slot_status_string):
|
|||
@async_run_until_complete
|
||||
async def step_request_completion(context, api_error):
|
||||
expect_api_error = api_error == 'raised'
|
||||
seeds = await completions_seed(context, num_seeds=1)
|
||||
completion = await request_completion(context.prompts.pop(),
|
||||
seeds[0] if seeds is not None else seeds,
|
||||
context.base_url,
|
||||
debug=context.debug,
|
||||
n_predict=context.n_predict,
|
||||
cache_prompt=context.cache_prompt,
|
||||
id_slot=context.id_slot,
|
||||
seed=await completions_seed(context),
|
||||
expect_api_error=expect_api_error,
|
||||
user_api_key=context.user_api_key)
|
||||
user_api_key=context.user_api_key,
|
||||
temperature=context.temperature)
|
||||
context.tasks_result.append(completion)
|
||||
if context.debug:
|
||||
print(f"Completion response: {completion}")
|
||||
|
@ -269,6 +272,15 @@ async def step_predictions_equal(context):
|
|||
context.tasks_result = []
|
||||
|
||||
|
||||
@step('all predictions are different')
|
||||
@async_run_until_complete
|
||||
async def step_predictions_equal(context):
|
||||
n_completions = await gather_tasks_results(context)
|
||||
assert n_completions >= 2, "need at least 2 completions"
|
||||
assert_all_predictions_different(context.tasks_result)
|
||||
context.tasks_result = []
|
||||
|
||||
|
||||
@step('the completion is truncated')
|
||||
def step_assert_completion_truncated(context):
|
||||
step_assert_completion_truncated(context, '')
|
||||
|
@ -311,6 +323,11 @@ def step_response_format(context, response_format):
|
|||
context.response_format = json.loads(response_format)
|
||||
|
||||
|
||||
@step('{temperature:f} temperature')
|
||||
def step_temperature(context, temperature):
|
||||
context.temperature = temperature
|
||||
|
||||
|
||||
@step('streaming is {enable_streaming}')
|
||||
def step_streaming(context, enable_streaming):
|
||||
context.enable_streaming = enable_streaming == 'enabled'
|
||||
|
@ -353,7 +370,10 @@ def step_n_ubatch(context, n_ubatch):
|
|||
|
||||
@step('{seed:d} as seed')
|
||||
def step_seed(context, seed):
|
||||
context.seed = seed
|
||||
if context.seed is None:
|
||||
context.seed = [seed]
|
||||
else:
|
||||
context.seed.append(seed)
|
||||
|
||||
|
||||
@step('a prefix prompt')
|
||||
|
@ -413,7 +433,9 @@ async def step_oai_chat_completions(context, api_error):
|
|||
if context.debug:
|
||||
print(f"Submitting OAI compatible completions request...")
|
||||
expect_api_error = api_error == 'raised'
|
||||
seeds = await completions_seed(context, num_seeds=1),
|
||||
completion = await oai_chat_completions(context.prompts.pop(),
|
||||
seeds[0] if seeds is not None else seeds,
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
'/v1/chat',
|
||||
|
@ -429,8 +451,6 @@ async def step_oai_chat_completions(context, api_error):
|
|||
response_format=context.response_format
|
||||
if hasattr(context, 'response_format') else None,
|
||||
|
||||
seed=await completions_seed(context),
|
||||
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None,
|
||||
|
||||
|
@ -457,20 +477,31 @@ def step_a_prompt_prompt(context, prompt):
|
|||
context.n_prompts = len(context.prompts)
|
||||
|
||||
|
||||
@step('{num_prompts:d} prompts {prompt} with seed {seed:d}')
|
||||
def step_many_prompts(context, num_prompts, prompt, seed):
|
||||
if context.seed is None:
|
||||
context.seed = []
|
||||
for _ in range(num_prompts):
|
||||
context.seed.append(seed)
|
||||
context.prompts.append(prompt)
|
||||
context.n_prompts = len(context.prompts)
|
||||
|
||||
|
||||
@step('concurrent completion requests')
|
||||
@async_run_until_complete()
|
||||
async def step_concurrent_completion_requests(context):
|
||||
await concurrent_requests(context,
|
||||
request_completion,
|
||||
# prompt is inserted automatically
|
||||
context.base_url,
|
||||
debug=context.debug,
|
||||
prompt_prefix=context.prompt_prefix,
|
||||
prompt_suffix=context.prompt_suffix,
|
||||
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
|
||||
seed=await completions_seed(context),
|
||||
user_api_key=context.user_api_key if hasattr(context,
|
||||
'user_api_key') else None)
|
||||
await concurrent_requests(
|
||||
context,
|
||||
request_completion,
|
||||
# prompt is inserted automatically
|
||||
context.base_url,
|
||||
debug=context.debug,
|
||||
prompt_prefix=context.prompt_prefix,
|
||||
prompt_suffix=context.prompt_suffix,
|
||||
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
|
||||
user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None,
|
||||
temperature=context.temperature,
|
||||
)
|
||||
|
||||
|
||||
@step('concurrent OAI completions requests')
|
||||
|
@ -490,7 +521,6 @@ async def step_oai_chat_completions(context):
|
|||
if hasattr(context, 'enable_streaming') else None,
|
||||
response_format=context.response_format
|
||||
if hasattr(context, 'response_format') else None,
|
||||
seed=await completions_seed(context),
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
|
||||
|
@ -512,10 +542,6 @@ async def step_oai_chat_completions(context):
|
|||
if hasattr(context, 'enable_streaming') else None,
|
||||
response_format=context.response_format
|
||||
if hasattr(context, 'response_format') else None,
|
||||
seed=context.seed
|
||||
if hasattr(context, 'seed') else
|
||||
context.server_seed
|
||||
if hasattr(context, 'server_seed') else None,
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
|
||||
|
@ -544,7 +570,7 @@ async def all_prompts_are_predicted(context, expected_predicted_n=None):
|
|||
@async_run_until_complete
|
||||
async def step_compute_embedding(context):
|
||||
context.n_prompts = 1
|
||||
context.embeddings = await request_embedding(context_text(context), base_url=context.base_url)
|
||||
context.embeddings = await request_embedding(context_text(context), None, base_url=context.base_url)
|
||||
|
||||
|
||||
@step('all embeddings are the same')
|
||||
|
@ -585,7 +611,7 @@ def step_assert_embeddings(context):
|
|||
@async_run_until_complete
|
||||
async def step_oai_compute_embeddings(context):
|
||||
context.n_prompts = 1
|
||||
context.embeddings = await request_oai_embeddings(context_text(context),
|
||||
context.embeddings = await request_oai_embeddings(context_text(context), None,
|
||||
base_url=context.base_url,
|
||||
user_api_key=context.user_api_key,
|
||||
model=context.model)
|
||||
|
@ -594,7 +620,7 @@ async def step_oai_compute_embeddings(context):
|
|||
@step('an OAI compatible embeddings computation request for multiple inputs')
|
||||
@async_run_until_complete
|
||||
async def step_oai_compute_embeddings_multiple_inputs(context):
|
||||
context.embeddings = await request_oai_embeddings(context.prompts,
|
||||
context.embeddings = await request_oai_embeddings(context.prompts, None,
|
||||
base_url=context.base_url,
|
||||
user_api_key=context.user_api_key,
|
||||
model=context.model)
|
||||
|
@ -740,8 +766,9 @@ async def concurrent_requests(context, f_completion, *args, **kwargs):
|
|||
if context.debug:
|
||||
print(f"starting {context.n_prompts} concurrent completion requests...")
|
||||
assert context.n_prompts > 0
|
||||
seeds = await completions_seed(context)
|
||||
for prompt_no in range(context.n_prompts):
|
||||
shifted_args = [context.prompts.pop(), *args]
|
||||
shifted_args = [context.prompts.pop(), seeds[prompt_no], *args]
|
||||
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
|
@ -781,6 +808,7 @@ def step_server_responds_with_status_code(context, status_code):
|
|||
|
||||
|
||||
async def request_completion(prompt,
|
||||
seed,
|
||||
base_url,
|
||||
debug=False,
|
||||
prompt_prefix=None,
|
||||
|
@ -788,9 +816,9 @@ async def request_completion(prompt,
|
|||
n_predict=None,
|
||||
cache_prompt=False,
|
||||
id_slot=None,
|
||||
seed=None,
|
||||
expect_api_error=None,
|
||||
user_api_key=None):
|
||||
user_api_key=None,
|
||||
temperature=None):
|
||||
if debug:
|
||||
print(f"Sending completion request: {prompt}")
|
||||
origin = "my.super.domain"
|
||||
|
@ -811,7 +839,8 @@ async def request_completion(prompt,
|
|||
"n_predict": n_predict if n_predict is not None else -1,
|
||||
"cache_prompt": cache_prompt,
|
||||
"id_slot": id_slot,
|
||||
"seed": seed if seed is not None else 42
|
||||
"seed": seed if seed is not None else 42,
|
||||
"temperature": temperature if temperature is not None else "0.8f",
|
||||
},
|
||||
headers=headers,
|
||||
timeout=3600) as response:
|
||||
|
@ -824,6 +853,7 @@ async def request_completion(prompt,
|
|||
|
||||
|
||||
async def oai_chat_completions(user_prompt,
|
||||
seed,
|
||||
system_prompt,
|
||||
base_url,
|
||||
base_path,
|
||||
|
@ -833,7 +863,6 @@ async def oai_chat_completions(user_prompt,
|
|||
n_predict=None,
|
||||
enable_streaming=None,
|
||||
response_format=None,
|
||||
seed=None,
|
||||
user_api_key=None,
|
||||
expect_api_error=None):
|
||||
if debug:
|
||||
|
@ -952,7 +981,7 @@ async def oai_chat_completions(user_prompt,
|
|||
return completion_response
|
||||
|
||||
|
||||
async def request_embedding(content, base_url=None):
|
||||
async def request_embedding(content, seed, base_url=None):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/embedding',
|
||||
json={
|
||||
|
@ -963,7 +992,7 @@ async def request_embedding(content, base_url=None):
|
|||
return [response_json['embedding']]
|
||||
|
||||
|
||||
async def request_oai_embeddings(input,
|
||||
async def request_oai_embeddings(input, seed,
|
||||
base_url=None, user_api_key=None,
|
||||
model=None, async_client=False):
|
||||
# openai client always expects an api_key
|
||||
|
@ -1036,21 +1065,31 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
|
|||
f' {n_predicted} <> {expected_predicted_n}')
|
||||
|
||||
def assert_all_predictions_equal(completion_responses):
|
||||
content_0 = completion_responses[0]['content']
|
||||
|
||||
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||
print(f"content 0: {content_0}")
|
||||
for i, response_i in enumerate(completion_responses):
|
||||
content_i = response_i['content']
|
||||
print(f"content {i}: {content_i}")
|
||||
for i, response_i in enumerate(completion_responses):
|
||||
content_i = response_i['content']
|
||||
for j, response_j in enumerate(completion_responses):
|
||||
if i == j:
|
||||
continue
|
||||
content_j = response_j['content']
|
||||
assert content_i == content_j, "contents not equal"
|
||||
|
||||
i = 1
|
||||
for response in completion_responses[1:]:
|
||||
content = response['content']
|
||||
|
||||
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||
print(f"content {i}: {content}")
|
||||
|
||||
assert content == content_0, "contents not equal"
|
||||
|
||||
i += 1
|
||||
def assert_all_predictions_different(completion_responses):
|
||||
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||
for i, response_i in enumerate(completion_responses):
|
||||
content_i = response_i['content']
|
||||
print(f"content {i}: {content_i}")
|
||||
for i, response_i in enumerate(completion_responses):
|
||||
content_i = response_i['content']
|
||||
for j, response_j in enumerate(completion_responses):
|
||||
if i == j:
|
||||
continue
|
||||
content_j = response_j['content']
|
||||
assert content_i != content_j, "contents not different"
|
||||
|
||||
|
||||
async def gather_tasks_results(context):
|
||||
|
@ -1145,9 +1184,22 @@ def assert_slots_status(slots, expected_slots):
|
|||
f" = {expected[key]} != {slot[key]}")
|
||||
|
||||
|
||||
async def completions_seed(context):
|
||||
return context.seed if hasattr(context, 'seed') and context.seed is not None \
|
||||
else context.server_seed if hasattr(context, 'server_seed') else None
|
||||
async def completions_seed(context, num_seeds=None):
|
||||
if hasattr(context, "seed") and context.seed is not None:
|
||||
assert len(context.seed) == context.n_prompts
|
||||
if num_seeds is None:
|
||||
num_seeds = context.n_prompts
|
||||
assert num_seeds <= context.n_prompts
|
||||
seeds = context.seed[:num_seeds]
|
||||
context.seed = context.seed[num_seeds:] if num_seeds < context.n_prompts else None
|
||||
return seeds
|
||||
|
||||
if hasattr(context, "server_seed") and context.server_seed is not None:
|
||||
if num_seeds is None:
|
||||
return [context.server_seed] * context.n_prompts
|
||||
else:
|
||||
return [context.server_seed] * num_seeds
|
||||
return None
|
||||
|
||||
|
||||
def context_text(context):
|
||||
|
|
|
@ -137,7 +137,8 @@
|
|||
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
|
||||
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
|
||||
#define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
|
||||
|
||||
#define CC_PASCAL 600
|
||||
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
||||
|
@ -293,20 +294,54 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
|
|||
return x;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
#if CUDART_VERSION >= CUDART_HMAX
|
||||
return __hmax(a, b);
|
||||
#else
|
||||
return __half2float(a) > __half2float(b) ? a : b;
|
||||
#endif // CUDART_VERSION >= CUDART_HMAX
|
||||
|
||||
#else
|
||||
GGML_UNUSED(a);
|
||||
GGML_UNUSED(b);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
}
|
||||
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
#if CUDART_VERSION >= CUDART_HMAX
|
||||
return __hmax2(a, b);
|
||||
#else
|
||||
half2 ret;
|
||||
reinterpret_cast<half&>(ret.x) = __low2float(a) > __low2float(b) ? __low2half(a) : __low2half(b);
|
||||
reinterpret_cast<half&>(ret.y) = __high2float(a) > __high2float(b) ? __high2half(a) : __high2half(b);
|
||||
return ret;
|
||||
#endif // CUDART_VERSION >= CUDART_HMAX
|
||||
|
||||
#else
|
||||
GGML_UNUSED(a);
|
||||
GGML_UNUSED(b);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
}
|
||||
return x;
|
||||
#else
|
||||
GGML_UNUSED(x);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
}
|
||||
|
||||
#if CUDART_VERSION < 12000
|
||||
#if CUDART_VERSION < CUDART_HMASK
|
||||
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
|
||||
const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
|
||||
const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
|
||||
|
|
|
@ -116,7 +116,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||
sum2 = warp_reduce_sum(sum2);
|
||||
half sum = __low2half(sum2) + __high2half(sum2);
|
||||
sum += mask ? maskh[k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
kqmax_new = __hmax(kqmax_new, sum);
|
||||
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
||||
if (threadIdx.x == 0) {
|
||||
KQ[i_KQ] = sum;
|
||||
}
|
||||
|
@ -416,9 +416,9 @@ static __global__ void flash_attn_ext_f16(
|
|||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] += mask ? mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
||||
KQ_max_new = __hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
||||
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = __half2half2(warp_reduce_max(__hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
||||
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
||||
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
|
|
38
ggml-metal.m
38
ggml-metal.m
|
@ -2780,42 +2780,8 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
if (status != MTLCommandBufferStatusCompleted) {
|
||||
GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
|
||||
if (status == MTLCommandBufferStatusError) {
|
||||
MTLCommandBufferError error_code = [command_buffer error].code;
|
||||
switch (error_code) {
|
||||
case MTLCommandBufferErrorNone:
|
||||
GGML_METAL_LOG_INFO("no error code reported\n");
|
||||
break;
|
||||
case MTLCommandBufferErrorTimeout:
|
||||
GGML_METAL_LOG_INFO("timeout\n");
|
||||
break;
|
||||
case MTLCommandBufferErrorPageFault:
|
||||
GGML_METAL_LOG_INFO("unserviceable page fault\n");
|
||||
break;
|
||||
case MTLCommandBufferErrorOutOfMemory:
|
||||
GGML_METAL_LOG_INFO("out of memory\n");
|
||||
break;
|
||||
case MTLCommandBufferErrorInvalidResource:
|
||||
GGML_METAL_LOG_INFO("invalid reference to resource\n");
|
||||
break;
|
||||
case MTLCommandBufferErrorMemoryless:
|
||||
GGML_METAL_LOG_INFO("GPU ran out of one or more of its internal resources that support memoryless render pass attachments\n");
|
||||
break;
|
||||
case MTLCommandBufferErrorDeviceRemoved:
|
||||
GGML_METAL_LOG_INFO("device removed\n");
|
||||
break;
|
||||
case MTLCommandBufferErrorStackOverflow:
|
||||
GGML_METAL_LOG_INFO("kernel function of tile shader used too many stack frames\n");
|
||||
break;
|
||||
case MTLCommandBufferErrorAccessRevoked:
|
||||
GGML_METAL_LOG_INFO("access to device revoked by system\n");
|
||||
break;
|
||||
case MTLCommandBufferErrorInternal:
|
||||
GGML_METAL_LOG_INFO("internal error\n");
|
||||
break;
|
||||
default:
|
||||
GGML_METAL_LOG_INFO("unknown error %lu\n", error_code);
|
||||
break;
|
||||
}
|
||||
NSString * error_code = [command_buffer error].localizedDescription;
|
||||
GGML_METAL_LOG_INFO("error: %s\n", [error_code UTF8String]);
|
||||
}
|
||||
|
||||
return GGML_STATUS_FAILED;
|
||||
|
|
2
ggml.c
2
ggml.c
|
@ -21140,7 +21140,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||
}
|
||||
|
||||
// read the tensor infos
|
||||
{
|
||||
if (ctx->header.n_tensors > 0) {
|
||||
ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
|
||||
|
||||
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||||
|
|
|
@ -1,11 +1,14 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import asyncio
|
||||
import os
|
||||
import sys
|
||||
from tempfile import gettempdir, NamedTemporaryFile
|
||||
|
||||
logger = logging.getLogger("ggml-vk-generate-shaders")
|
||||
|
||||
shader_f32 = """
|
||||
#define FLOAT_TYPE float
|
||||
"""
|
||||
|
@ -2498,7 +2501,7 @@ async def string_to_spv(name, code, defines, fp16=True):
|
|||
|
||||
stdout, stderr = await proc.communicate()
|
||||
|
||||
print(" ".join(cmd))
|
||||
logger.info(" ".join(cmd))
|
||||
|
||||
if proc.returncode:
|
||||
raise RuntimeError(f"{name=} {f.name=} {stdout=} {stderr=}")
|
||||
|
@ -2507,7 +2510,7 @@ async def string_to_spv(name, code, defines, fp16=True):
|
|||
|
||||
cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
|
||||
code_with_lines = "\n".join([f"{i + 1}: {line}" for i, line in enumerate(preprocessed_code.splitlines())])
|
||||
print(f"ERROR compiling {name}\n\n{code_with_lines}\n\n{error}")
|
||||
logger.error(f"cannot compile {name}\n\n{code_with_lines}\n\n{error}")
|
||||
f.close()
|
||||
os.remove(f.name)
|
||||
sys.exit(proc.returncode)
|
||||
|
@ -2520,7 +2523,7 @@ async def string_to_spv(name, code, defines, fp16=True):
|
|||
|
||||
|
||||
async def main():
|
||||
print("ggml_vulkan: Generating and compiling shaders to SPIR-V")
|
||||
logger.info("ggml_vulkan: Generating and compiling shaders to SPIR-V")
|
||||
|
||||
tasks = []
|
||||
|
||||
|
@ -2768,9 +2771,12 @@ if __name__ == "__main__":
|
|||
parser = argparse.ArgumentParser(description="GGML Vulkan Shader Generator")
|
||||
|
||||
parser.add_argument("--glslc", help="Path to glslc")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
if args.glslc:
|
||||
GLSLC = args.glslc
|
||||
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
#!/usr/bin/env python3
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from gguf.gguf_reader import GGUFReader
|
||||
|
||||
logger = logging.getLogger("reader")
|
||||
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
|
||||
|
@ -18,28 +20,28 @@ def read_gguf_file(gguf_file_path):
|
|||
reader = GGUFReader(gguf_file_path)
|
||||
|
||||
# List all key-value pairs in a columnized format
|
||||
print("Key-Value Pairs:")
|
||||
print("Key-Value Pairs:") # noqa: NP100
|
||||
max_key_length = max(len(key) for key in reader.fields.keys())
|
||||
for key, field in reader.fields.items():
|
||||
value = field.parts[field.data[0]]
|
||||
print(f"{key:{max_key_length}} : {value}")
|
||||
print("----")
|
||||
print(f"{key:{max_key_length}} : {value}") # noqa: NP100
|
||||
print("----") # noqa: NP100
|
||||
|
||||
# List all tensors
|
||||
print("Tensors:")
|
||||
print("Tensors:") # noqa: NP100
|
||||
tensor_info_format = "{:<30} | Shape: {:<15} | Size: {:<12} | Quantization: {}"
|
||||
print(tensor_info_format.format("Tensor Name", "Shape", "Size", "Quantization"))
|
||||
print("-" * 80)
|
||||
print(tensor_info_format.format("Tensor Name", "Shape", "Size", "Quantization")) # noqa: NP100
|
||||
print("-" * 80) # noqa: NP100
|
||||
for tensor in reader.tensors:
|
||||
shape_str = "x".join(map(str, tensor.shape))
|
||||
size_str = str(tensor.n_elements)
|
||||
quantization_str = tensor.tensor_type.name
|
||||
print(tensor_info_format.format(tensor.name, shape_str, size_str, quantization_str))
|
||||
print(tensor_info_format.format(tensor.name, shape_str, size_str, quantization_str)) # noqa: NP100
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: reader.py <path_to_gguf_file>")
|
||||
logger.info("Usage: reader.py <path_to_gguf_file>")
|
||||
sys.exit(1)
|
||||
gguf_file_path = sys.argv[1]
|
||||
read_gguf_file(gguf_file_path)
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
from enum import Enum, IntEnum, auto
|
||||
from typing import Any
|
||||
|
||||
|
@ -872,8 +871,7 @@ class GGUFValueType(IntEnum):
|
|||
return GGUFValueType.INT32
|
||||
# TODO: need help with 64-bit types in Python
|
||||
else:
|
||||
print("Unknown type:", type(val))
|
||||
sys.exit()
|
||||
raise ValueError(f"Unknown type: {type(val)}")
|
||||
|
||||
|
||||
# Note: Does not support GGML_QKK_64
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
#
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
from collections import OrderedDict
|
||||
from typing import Any, Literal, NamedTuple, TypeVar, Union
|
||||
|
@ -27,6 +28,7 @@ from gguf.constants import (
|
|||
GGUFValueType,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
READER_SUPPORTED_VERSIONS = [2, GGUF_VERSION]
|
||||
|
||||
|
@ -142,7 +144,7 @@ class GGUFReader:
|
|||
# TODO: add option to generate error on duplicate keys
|
||||
# raise KeyError(f'Duplicate {field.name} already in list at offset {field.offset}')
|
||||
|
||||
print(f'Warning: Duplicate key {field.name} at offset {field.offset}')
|
||||
logger.warning(f'Duplicate key {field.name} at offset {field.offset}')
|
||||
self.fields[field.name + '_{}'.format(field.offset)] = field
|
||||
else:
|
||||
self.fields[field.name] = field
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import struct
|
||||
|
@ -24,6 +25,8 @@ from .constants import (
|
|||
TokenType,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WriterState(Enum):
|
||||
EMPTY = auto()
|
||||
|
@ -67,7 +70,7 @@ class GGUFWriter:
|
|||
self.use_temp_file = use_temp_file
|
||||
self.temp_file = None
|
||||
self.tensors = []
|
||||
print("gguf: This GGUF file is for {0} Endian only".format(
|
||||
logger.info("gguf: This GGUF file is for {0} Endian only".format(
|
||||
"Big" if self.endianess == GGUFEndian.BIG else "Little",
|
||||
))
|
||||
self.state = WriterState.EMPTY
|
||||
|
|
|
@ -1,13 +1,15 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable
|
||||
|
||||
from .gguf_writer import GGUFWriter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SpecialVocab:
|
||||
merges: list[str]
|
||||
|
@ -40,38 +42,29 @@ class SpecialVocab:
|
|||
def add_to_gguf(self, gw: GGUFWriter, quiet: bool = False) -> None:
|
||||
if self.merges:
|
||||
if not quiet:
|
||||
print(f'gguf: Adding {len(self.merges)} merge(s).')
|
||||
logger.info(f'Adding {len(self.merges)} merge(s).')
|
||||
gw.add_token_merges(self.merges)
|
||||
elif self.load_merges:
|
||||
print(
|
||||
'gguf: WARNING: Adding merges requested but no merges found, output may be non-functional.',
|
||||
file = sys.stderr,
|
||||
)
|
||||
logger.warning('Adding merges requested but no merges found, output may be non-functional.')
|
||||
for typ, tokid in self.special_token_ids.items():
|
||||
id_handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
|
||||
if id_handler is None:
|
||||
print(
|
||||
f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping',
|
||||
file = sys.stderr,
|
||||
)
|
||||
logger.warning(f'No handler for special token type {typ} with id {tokid} - skipping')
|
||||
continue
|
||||
if not quiet:
|
||||
print(f'gguf: Setting special token type {typ} to {tokid}')
|
||||
logger.info(f'Setting special token type {typ} to {tokid}')
|
||||
id_handler(tokid)
|
||||
for typ, value in self.add_special_token.items():
|
||||
add_handler: Callable[[bool], None] | None = getattr(gw, f'add_add_{typ}_token', None)
|
||||
if add_handler is None:
|
||||
print(
|
||||
f'gguf: WARNING: No handler for add_{typ}_token with value {value} - skipping',
|
||||
file = sys.stderr,
|
||||
)
|
||||
logger.warning(f'No handler for add_{typ}_token with value {value} - skipping')
|
||||
continue
|
||||
if not quiet:
|
||||
print(f'gguf: Setting add_{typ}_token to {value}')
|
||||
logger.info(f'Setting add_{typ}_token to {value}')
|
||||
add_handler(value)
|
||||
if self.chat_template is not None:
|
||||
if not quiet:
|
||||
print(f'gguf: Setting chat_template to {self.chat_template}')
|
||||
logger.info(f'Setting chat_template to {self.chat_template}')
|
||||
gw.add_chat_template(self.chat_template)
|
||||
|
||||
def _load(self, path: Path) -> None:
|
||||
|
@ -99,10 +92,7 @@ class SpecialVocab:
|
|||
continue
|
||||
parts = line.split(None, 3)
|
||||
if len(parts) != 2:
|
||||
print(
|
||||
f'gguf: WARNING: {merges_file.name}: Line {line_num}: Entry malformed, ignoring',
|
||||
file = sys.stderr,
|
||||
)
|
||||
logger.warning(f'{merges_file.name}: Line {line_num}: Entry malformed, ignoring')
|
||||
continue
|
||||
merges.append(f'{parts[0]} {parts[1]}')
|
||||
self.merges = merges
|
||||
|
@ -118,10 +108,7 @@ class SpecialVocab:
|
|||
return
|
||||
self.special_token_ids[typ] = tid
|
||||
return
|
||||
print(
|
||||
f'gguf: WARNING: Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping',
|
||||
file = sys.stderr,
|
||||
)
|
||||
logger.warning(f'Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping')
|
||||
|
||||
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
|
||||
tokenizer_file = path / 'tokenizer.json'
|
||||
|
@ -144,10 +131,7 @@ class SpecialVocab:
|
|||
if chat_template is None or isinstance(chat_template, (str, list)):
|
||||
self.chat_template = chat_template
|
||||
else:
|
||||
print(
|
||||
f'gguf: WARNING: Bad type for chat_template field in {tokenizer_config_file!r} - ignoring',
|
||||
file = sys.stderr
|
||||
)
|
||||
logger.warning(f'Bad type for chat_template field in {tokenizer_config_file!r} - ignoring')
|
||||
for typ in self.special_token_types:
|
||||
add_entry = tokenizer_config.get(f'add_{typ}_token')
|
||||
if isinstance(add_entry, bool):
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
from tqdm import tqdm
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
@ -14,6 +16,8 @@ if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent /
|
|||
|
||||
import gguf
|
||||
|
||||
logger = logging.getLogger("gguf-convert-endian")
|
||||
|
||||
|
||||
def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None:
|
||||
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
||||
|
@ -29,11 +33,11 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None
|
|||
else:
|
||||
file_endian = host_endian
|
||||
order = host_endian if args.order == "native" else args.order
|
||||
print(f"* Host is {host_endian.upper()} endian, GGUF file seems to be {file_endian.upper()} endian")
|
||||
logger.info(f"* Host is {host_endian.upper()} endian, GGUF file seems to be {file_endian.upper()} endian")
|
||||
if file_endian == order:
|
||||
print(f"* File is already {order.upper()} endian. Nothing to do.")
|
||||
logger.info(f"* File is already {order.upper()} endian. Nothing to do.")
|
||||
sys.exit(0)
|
||||
print("* Checking tensors for conversion compatibility")
|
||||
logger.info("* Checking tensors for conversion compatibility")
|
||||
for tensor in reader.tensors:
|
||||
if tensor.tensor_type not in (
|
||||
gguf.GGMLQuantizationType.F32,
|
||||
|
@ -41,51 +45,64 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None
|
|||
gguf.GGMLQuantizationType.Q8_0,
|
||||
):
|
||||
raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}")
|
||||
print(f"* Preparing to convert from {file_endian.upper()} to {order.upper()}")
|
||||
logger.info(f"* Preparing to convert from {file_endian.upper()} to {order.upper()}")
|
||||
if args.dry_run:
|
||||
return
|
||||
print("\n*** Warning *** Warning *** Warning **")
|
||||
print("* This conversion process may damage the file. Ensure you have a backup.")
|
||||
logger.warning("*** Warning *** Warning *** Warning **")
|
||||
logger.warning("* This conversion process may damage the file. Ensure you have a backup.")
|
||||
if order != host_endian:
|
||||
print("* Requested endian differs from host, you will not be able to load the model on this machine.")
|
||||
print("* The file will be modified immediately, so if conversion fails or is interrupted")
|
||||
print("* the file will be corrupted. Enter exactly YES if you are positive you want to proceed:")
|
||||
logger.warning("* Requested endian differs from host, you will not be able to load the model on this machine.")
|
||||
logger.warning("* The file will be modified immediately, so if conversion fails or is interrupted")
|
||||
logger.warning("* the file will be corrupted. Enter exactly YES if you are positive you want to proceed:")
|
||||
response = input("YES, I am sure> ")
|
||||
if response != "YES":
|
||||
print("You didn't enter YES. Okay then, see ya!")
|
||||
logger.warning("You didn't enter YES. Okay then, see ya!")
|
||||
sys.exit(0)
|
||||
print(f"\n* Converting fields ({len(reader.fields)})")
|
||||
logger.info(f"* Converting fields ({len(reader.fields)})")
|
||||
for idx, field in enumerate(reader.fields.values()):
|
||||
print(f"- {idx:4}: Converting field {repr(field.name)}, part count: {len(field.parts)}")
|
||||
logger.info(f"- {idx:4}: Converting field {repr(field.name)}, part count: {len(field.parts)}")
|
||||
for part in field.parts:
|
||||
part.byteswap(inplace=True)
|
||||
print(f"\n* Converting tensors ({len(reader.tensors)})")
|
||||
for idx, tensor in enumerate(reader.tensors):
|
||||
print(
|
||||
f" - {idx:4}: Converting tensor {repr(tensor.name)}, type={tensor.tensor_type.name}, "
|
||||
f"elements={tensor.n_elements}... ",
|
||||
end="",
|
||||
logger.info(f"* Converting tensors ({len(reader.tensors)})")
|
||||
|
||||
for idx, tensor in enumerate(pbar := tqdm(reader.tensors, desc="Converting tensor")):
|
||||
log_message = (
|
||||
f"Converting tensor {repr(tensor.name)}, "
|
||||
f"type={tensor.tensor_type.name}, "
|
||||
f"elements={tensor.n_elements} "
|
||||
)
|
||||
tensor_type = tensor.tensor_type
|
||||
|
||||
# Byte-swap each part of the tensor's field
|
||||
for part in tensor.field.parts:
|
||||
part.byteswap(inplace=True)
|
||||
if tensor_type != gguf.GGMLQuantizationType.Q8_0:
|
||||
|
||||
# Byte-swap tensor data if necessary
|
||||
if tensor.tensor_type == gguf.GGMLQuantizationType.Q8_0:
|
||||
# Handle Q8_0 tensor blocks (block_q8_0)
|
||||
# Specific handling of block_q8_0 is required.
|
||||
# Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations.
|
||||
|
||||
block_size = 34 # 34 bytes = <f16 delta scaling factor> + 32 * <int8 quant>
|
||||
|
||||
n_blocks = len(tensor.data) // block_size
|
||||
for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
|
||||
block_offs = block_num * block_size
|
||||
|
||||
# Byte-Swap f16 sized delta field
|
||||
delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
|
||||
delta.byteswap(inplace=True)
|
||||
|
||||
# Byte-Swap Q8 weights
|
||||
if block_num % 100000 == 0:
|
||||
inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
|
||||
|
||||
else:
|
||||
# Handle other tensor types
|
||||
tensor.data.byteswap(inplace=True)
|
||||
print()
|
||||
continue
|
||||
# A Q8_0 block consists of a f16 delta followed by 32 int8 quants, so 34 bytes
|
||||
block_size = 34
|
||||
n_blocks = len(tensor.data) // block_size
|
||||
for block_num in range(n_blocks):
|
||||
block_offs = block_num * block_size
|
||||
# I know I said f16, but it doesn't matter here - any simple 16 bit type works.
|
||||
delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
|
||||
delta.byteswap(inplace=True)
|
||||
if block_num % 100000 == 0:
|
||||
print(f"[{(n_blocks - block_num) // 1000}K]", end="")
|
||||
sys.stdout.flush()
|
||||
print()
|
||||
print("* Completion")
|
||||
|
||||
pbar.set_description(log_message)
|
||||
|
||||
logger.info("* Completion")
|
||||
|
||||
|
||||
def main() -> None:
|
||||
|
@ -102,8 +119,13 @@ def main() -> None:
|
|||
"--dry-run", action="store_true",
|
||||
help="Don't actually change anything",
|
||||
)
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
|
||||
print(f'* Loading: {args.model}')
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
logger.info(f'* Loading: {args.model}')
|
||||
reader = gguf.GGUFReader(args.model, 'r' if args.dry_run else 'r+')
|
||||
convert_byteorder(reader, args)
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
@ -15,6 +16,8 @@ if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent /
|
|||
|
||||
from gguf import GGUFReader, GGUFValueType # noqa: E402
|
||||
|
||||
logger = logging.getLogger("gguf-dump")
|
||||
|
||||
|
||||
def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
|
||||
host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
|
||||
|
@ -29,8 +32,8 @@ def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
|
|||
# please see the comments in the modify_gguf.py example.
|
||||
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
|
||||
host_endian, file_endian = get_file_host_endian(reader)
|
||||
print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.')
|
||||
print(f'\n* Dumping {len(reader.fields)} key/value pair(s)')
|
||||
print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100
|
||||
print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100
|
||||
for n, field in enumerate(reader.fields.values(), 1):
|
||||
if not field.types:
|
||||
pretty_type = 'N/A'
|
||||
|
@ -39,20 +42,21 @@ def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
|
|||
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
|
||||
else:
|
||||
pretty_type = str(field.types[-1].name)
|
||||
print(f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}', end = '')
|
||||
|
||||
log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
|
||||
if len(field.types) == 1:
|
||||
curr_type = field.types[0]
|
||||
if curr_type == GGUFValueType.STRING:
|
||||
print(' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf8')[:60])), end = '')
|
||||
log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf8')[:60]))
|
||||
elif field.types[0] in reader.gguf_scalar_to_np:
|
||||
print(' = {0}'.format(field.parts[-1][0]), end = '')
|
||||
print()
|
||||
log_message += ' = {0}'.format(field.parts[-1][0])
|
||||
print(log_message) # noqa: NP100
|
||||
if args.no_tensors:
|
||||
return
|
||||
print(f'\n* Dumping {len(reader.tensors)} tensor(s)')
|
||||
print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100
|
||||
for n, tensor in enumerate(reader.tensors, 1):
|
||||
prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
|
||||
print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}')
|
||||
print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100
|
||||
|
||||
|
||||
def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
|
||||
|
@ -103,10 +107,17 @@ def main() -> None:
|
|||
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
|
||||
parser.add_argument("--json", action="store_true", help="Produce JSON output")
|
||||
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
if not args.json:
|
||||
print(f'* Loading: {args.model}')
|
||||
logger.info(f'* Loading: {args.model}')
|
||||
|
||||
reader = GGUFReader(args.model, 'r')
|
||||
|
||||
if args.json:
|
||||
dump_metadata_json(reader, args)
|
||||
else:
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python3
|
||||
import logging
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
@ -10,6 +11,8 @@ if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent /
|
|||
|
||||
from gguf import GGUFReader # noqa: E402
|
||||
|
||||
logger = logging.getLogger("gguf-set-metadata")
|
||||
|
||||
|
||||
def minimal_example(filename: str) -> None:
|
||||
reader = GGUFReader(filename, 'r+')
|
||||
|
@ -41,36 +44,33 @@ def minimal_example(filename: str) -> None:
|
|||
def set_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
|
||||
field = reader.get_field(args.key)
|
||||
if field is None:
|
||||
print(f'! Field {repr(args.key)} not found', file = sys.stderr)
|
||||
logger.error(f'! Field {repr(args.key)} not found')
|
||||
sys.exit(1)
|
||||
# Note that field.types is a list of types. This is because the GGUF
|
||||
# format supports arrays. For example, an array of UINT32 would
|
||||
# look like [GGUFValueType.ARRAY, GGUFValueType.UINT32]
|
||||
handler = reader.gguf_scalar_to_np.get(field.types[0]) if field.types else None
|
||||
if handler is None:
|
||||
print(
|
||||
f'! This tool only supports changing simple values, {repr(args.key)} has unsupported type {field.types}',
|
||||
file = sys.stderr,
|
||||
)
|
||||
logger.error(f'! This tool only supports changing simple values, {repr(args.key)} has unsupported type {field.types}')
|
||||
sys.exit(1)
|
||||
current_value = field.parts[field.data[0]][0]
|
||||
new_value = handler(args.value)
|
||||
print(f'* Preparing to change field {repr(args.key)} from {current_value} to {new_value}')
|
||||
logger.info(f'* Preparing to change field {repr(args.key)} from {current_value} to {new_value}')
|
||||
if current_value == new_value:
|
||||
print(f'- Key {repr(args.key)} already set to requested value {current_value}')
|
||||
logger.info(f'- Key {repr(args.key)} already set to requested value {current_value}')
|
||||
sys.exit(0)
|
||||
if args.dry_run:
|
||||
sys.exit(0)
|
||||
if not args.force:
|
||||
print('*** Warning *** Warning *** Warning **')
|
||||
print('* Changing fields in a GGUF file can make it unusable. Proceed at your own risk.')
|
||||
print('* Enter exactly YES if you are positive you want to proceed:')
|
||||
logger.warning('*** Warning *** Warning *** Warning **')
|
||||
logger.warning('* Changing fields in a GGUF file can make it unusable. Proceed at your own risk.')
|
||||
logger.warning('* Enter exactly YES if you are positive you want to proceed:')
|
||||
response = input('YES, I am sure> ')
|
||||
if response != 'YES':
|
||||
print("You didn't enter YES. Okay then, see ya!")
|
||||
logger.info("You didn't enter YES. Okay then, see ya!")
|
||||
sys.exit(0)
|
||||
field.parts[field.data[0]][0] = new_value
|
||||
print('* Field changed. Successful completion.')
|
||||
logger.info('* Field changed. Successful completion.')
|
||||
|
||||
|
||||
def main() -> None:
|
||||
|
@ -80,8 +80,13 @@ def main() -> None:
|
|||
parser.add_argument("value", type=str, help="Metadata value to set")
|
||||
parser.add_argument("--dry-run", action="store_true", help="Don't actually change anything")
|
||||
parser.add_argument("--force", action="store_true", help="Change the field without confirmation")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
|
||||
print(f'* Loading: {args.model}')
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
logger.info(f'* Loading: {args.model}')
|
||||
reader = GGUFReader(args.model, 'r' if args.dry_run else 'r+')
|
||||
set_metadata(reader, args)
|
||||
|
||||
|
|
27
llama.cpp
27
llama.cpp
|
@ -2380,7 +2380,7 @@ static bool llama_kv_cache_init(
|
|||
cache.recurrent = model.arch == LLM_ARCH_MAMBA;
|
||||
cache.v_trans = !cparams.flash_attn;
|
||||
|
||||
// TODO: support mixed reccurent Transformer architectues
|
||||
// TODO: support mixed recurrent Transformer architectures
|
||||
// NOTE: (!a || b) is a logical implication (a -> b)
|
||||
GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
|
||||
GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
|
||||
|
@ -4417,6 +4417,12 @@ static void llm_load_vocab(
|
|||
} else if (
|
||||
tokenizer_pre == "gpt-2") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
|
||||
|
||||
} else if (tokenizer_pre == "refact") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
|
||||
} else if (
|
||||
tokenizer_pre == "command-r") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
|
||||
} else if (
|
||||
tokenizer_pre == "jina-embeddings-v2-base-es") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JINA_EMBEDDINGS_V2_ES;
|
||||
|
@ -12086,7 +12092,7 @@ static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id
|
|||
static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
|
||||
GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
|
||||
GGML_ASSERT(llama_is_byte_token(vocab, id));
|
||||
const auto& token_data = vocab.id_to_token.at(id);
|
||||
const auto & token_data = vocab.id_to_token.at(id);
|
||||
switch (llama_vocab_get_type(vocab)) {
|
||||
case LLAMA_VOCAB_TYPE_SPM: {
|
||||
auto buf = token_data.text.substr(3, 2);
|
||||
|
@ -12346,14 +12352,13 @@ struct llm_tokenizer_bpe {
|
|||
"\\s?\\p{L}+",
|
||||
"\\s?\\p{P}+",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
"\\p{N}+",
|
||||
"\\p{N}",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_FALCON:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
"[\\p{P}\\$\\+<=>\\^~\\|]+",
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
"\\p{N}+",
|
||||
"[0-9][0-9][0-9]",
|
||||
});
|
||||
break;
|
||||
|
@ -12369,6 +12374,13 @@ struct llm_tokenizer_bpe {
|
|||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_STARCODER:
|
||||
case LLAMA_VOCAB_PRE_TYPE_REFACT:
|
||||
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
"\\p{N}",
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_GPT2:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
|
@ -17606,9 +17618,10 @@ int32_t llama_tokenize(
|
|||
|
||||
static std::string llama_decode_text(const std::string & text) {
|
||||
std::string decoded_text;
|
||||
auto unicode_sequences = unicode_cpts_from_utf8(text);
|
||||
for (auto & unicode_sequence : unicode_sequences) {
|
||||
decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
|
||||
|
||||
const auto cpts = unicode_cpts_from_utf8(text);
|
||||
for (const auto cpt : cpts) {
|
||||
decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt));
|
||||
}
|
||||
|
||||
return decoded_text;
|
||||
|
|
27
llama.h
27
llama.h
|
@ -71,17 +71,20 @@ extern "C" {
|
|||
|
||||
// pre-tokenization types
|
||||
enum llama_vocab_pre_type {
|
||||
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
|
||||
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
|
||||
LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
|
||||
LLAMA_VOCAB_PRE_TYPE_MPT = 5,
|
||||
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
|
||||
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
|
||||
LLAMA_VOCAB_PRE_TYPE_JINA_EMBEDDINGS_V2_ES = 8,
|
||||
LLAMA_VOCAB_PRE_TYPE_JINA_EMBEDDINGS_V2_DE = 9,
|
||||
LLAMA_VOCAB_PRE_TYPE_JINA_EMBEDDINGS_V2_ZH = 10,
|
||||
|
||||
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
|
||||
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
|
||||
LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
|
||||
LLAMA_VOCAB_PRE_TYPE_MPT = 5,
|
||||
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
|
||||
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
|
||||
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
|
||||
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
|
||||
LLAMA_VOCAB_PRE_TYPE_JINA_EMBEDDINGS_V2_ES = 10,
|
||||
LLAMA_VOCAB_PRE_TYPE_JINA_EMBEDDINGS_V2_DE = 11,
|
||||
LLAMA_VOCAB_PRE_TYPE_JINA_EMBEDDINGS_V2_ZH = 12,
|
||||
};
|
||||
|
||||
// note: these values should be synchronized with ggml_rope
|
||||
|
@ -174,7 +177,7 @@ extern "C" {
|
|||
bool sorted;
|
||||
} llama_token_data_array;
|
||||
|
||||
typedef bool (*llama_progress_callback)(float progress, void *ctx);
|
||||
typedef bool (*llama_progress_callback)(float progress, void * user_data);
|
||||
|
||||
// Input data for llama_decode
|
||||
// A llama_batch object can contain input about one or many sequences
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
29464 2094 1018 1092 2706
|
||||
11865 17875
|
||||
|
||||
|
||||
|
||||
|
|
BIN
models/ggml-vocab-command-r.gguf
Normal file
BIN
models/ggml-vocab-command-r.gguf
Normal file
Binary file not shown.
106
models/ggml-vocab-command-r.gguf.inp
Normal file
106
models/ggml-vocab-command-r.gguf.inp
Normal file
|
@ -0,0 +1,106 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
||||
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
||||
__ggml_vocab_test__
|
||||
Hello world
|
||||
__ggml_vocab_test__
|
||||
Hello world
|
||||
__ggml_vocab_test__
|
||||
Hello World
|
||||
__ggml_vocab_test__
|
||||
Hello World
|
||||
__ggml_vocab_test__
|
||||
Hello World!
|
||||
__ggml_vocab_test__
|
||||
Hello, world!
|
||||
__ggml_vocab_test__
|
||||
Hello, world!
|
||||
__ggml_vocab_test__
|
||||
this is 🦙.cpp
|
||||
__ggml_vocab_test__
|
||||
w048 7tuijk dsdfhu
|
||||
__ggml_vocab_test__
|
||||
нещо на Български
|
||||
__ggml_vocab_test__
|
||||
កាន់តែពិសេសអាចខលចេញ
|
||||
__ggml_vocab_test__
|
||||
🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
(
|
||||
__ggml_vocab_test__
|
||||
|
||||
=
|
||||
__ggml_vocab_test__
|
||||
' era
|
||||
__ggml_vocab_test__
|
||||
Hello, y'all! How are you 😁 ?我想在apple工作1314151天~
|
||||
__ggml_vocab_test__
|
||||
3
|
||||
__ggml_vocab_test__
|
||||
33
|
||||
__ggml_vocab_test__
|
||||
333
|
||||
__ggml_vocab_test__
|
||||
3333
|
||||
__ggml_vocab_test__
|
||||
33333
|
||||
__ggml_vocab_test__
|
||||
333333
|
||||
__ggml_vocab_test__
|
||||
3333333
|
||||
__ggml_vocab_test__
|
||||
33333333
|
||||
__ggml_vocab_test__
|
||||
333333333
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL
|
||||
__ggml_vocab_test__
|
43
models/ggml-vocab-command-r.gguf.out
Normal file
43
models/ggml-vocab-command-r.gguf.out
Normal file
|
@ -0,0 +1,43 @@
|
|||
2536 228 27 228 22957 6983
|
||||
45 193433
|
||||
|
||||
228
|
||||
1667
|
||||
1742
|
||||
205
|
||||
206
|
||||
2126
|
||||
11516
|
||||
34777
|
||||
28339 3845
|
||||
46609 3845
|
||||
28339 3930
|
||||
46609 3930
|
||||
46609 3930 8
|
||||
28339 19 3845 8
|
||||
46609 19 3845 8
|
||||
2075 1801 11254 107 255 21 19317
|
||||
94 23 27 31 228 30 21213 20752 39267 6405 9980
|
||||
4929 40071 2196 3236 8750 1764 37097 41168
|
||||
38111 230 174833 38111 249 86325 241 38111 245 86325 232 38111 252 38111 123 38111 261 165 24629 38111 261 38111 103 174833 38111 235 38111 231 38111 257 38111 235 165 24629 38111 239
|
||||
2226 256 230 1737 18258 16 80503 122 35927 2226 242 112 57462 1737 54457 223165 106230 2096 16 48389 1737 10203 109160 1875 2222 2517 3342 12523 16
|
||||
28339
|
||||
46609
|
||||
228 46609
|
||||
1667 46609
|
||||
1742 46609
|
||||
1742 46609 1856 46609
|
||||
1737
|
||||
206 1857
|
||||
14 4515
|
||||
28339 19 1770 14 1954 8 4070 1955 1933 80503 231 5691 12081 13336 2648 29325 14315 24 26 24 27 24 28 24 5123 18372
|
||||
26
|
||||
26 26
|
||||
26 26 26
|
||||
26 26 26 26
|
||||
26 26 26 26 26
|
||||
26 26 26 26 26 26
|
||||
26 26 26 26 26 26 26
|
||||
26 26 26 26 26 26 26 26
|
||||
26 26 26 26 26 26 26 26 26
|
||||
127731 51628 205 57788 18494 97469 126134 206 2226 256 230 1737 18258 16 80503 122 35927 2226 242 112 57462 1737 54457 223165 106230 2096 16 48389 11254 107 255 2226 107 255 228 26 228 26 26 228 26 26 26 228 26 26 26 26 228 26 26 26 26 26 228 26 26 26 26 26 26 228 26 26 26 26 26 26 26 228 26 26 26 26 26 26 26 26 228 26 21 26 228 26 2271 26 228 26 3834 26 182018 230 174833 38111 249 86325 241 38111 245 86325 232 38111 252 38111 123 38111 261 165 24629 38111 261 38111 103 174833 38111 235 188568 231 5691 12081 13336 2648 29325 14315 24 26 24 27 24 28 24 5123 18372 8391 158343 3512 40071 2196 3236 8750 1764 37097 41168 29721 32797 25646 3802 4975 4975 116167 57178 10251 154048 27292 1767 5125 2632 2155 91 2378 1919 1914 2782 19 2155 3354 1933 5470 38 2155 52 2068 5470 1767 4961 3059 1894 19 2155 43 1933 3026 2725 23186 38 2930 14 20676 1671 14 83 51
|
|
@ -1,3 +1,7 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
1050 207 19 207 19192 4217
|
||||
37 32009 71 6247
|
||||
|
||||
207
|
||||
243
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
1052 207 19 207 19109 4223
|
||||
37 100014 71 6245
|
||||
|
||||
207
|
||||
243
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
878 204 31 3068 133 2137
|
||||
28611 132 30042
|
||||
|
||||
204
|
||||
258
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
798 604 25208 1933
|
||||
37 9116 71 11751
|
||||
|
||||
220
|
||||
220 220
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
1142 220 19 220 27154 4038
|
||||
37 51853 261
|
||||
|
||||
220
|
||||
256
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
474 287 29871 29946 29871 30226 7378
|
||||
383 4000 261
|
||||
|
||||
259
|
||||
1678
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
728 577 24142 2607
|
||||
39 26288 6554
|
||||
|
||||
209
|
||||
50276
|
||||
|
|
Binary file not shown.
|
@ -1,3 +1,7 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
474 287 29871 29946 29871 30226 7378
|
||||
383 4000 261
|
||||
|
||||
259
|
||||
1678
|
||||
|
|
Binary file not shown.
106
models/ggml-vocab-refact.gguf.inp
Normal file
106
models/ggml-vocab-refact.gguf.inp
Normal file
|
@ -0,0 +1,106 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
||||
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
||||
__ggml_vocab_test__
|
||||
Hello world
|
||||
__ggml_vocab_test__
|
||||
Hello world
|
||||
__ggml_vocab_test__
|
||||
Hello World
|
||||
__ggml_vocab_test__
|
||||
Hello World
|
||||
__ggml_vocab_test__
|
||||
Hello World!
|
||||
__ggml_vocab_test__
|
||||
Hello, world!
|
||||
__ggml_vocab_test__
|
||||
Hello, world!
|
||||
__ggml_vocab_test__
|
||||
this is 🦙.cpp
|
||||
__ggml_vocab_test__
|
||||
w048 7tuijk dsdfhu
|
||||
__ggml_vocab_test__
|
||||
нещо на Български
|
||||
__ggml_vocab_test__
|
||||
កាន់តែពិសេសអាចខលចេញ
|
||||
__ggml_vocab_test__
|
||||
🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
Hello
|
||||
Hello
|
||||
__ggml_vocab_test__
|
||||
(
|
||||
__ggml_vocab_test__
|
||||
|
||||
=
|
||||
__ggml_vocab_test__
|
||||
' era
|
||||
__ggml_vocab_test__
|
||||
Hello, y'all! How are you 😁 ?我想在apple工作1314151天~
|
||||
__ggml_vocab_test__
|
||||
3
|
||||
__ggml_vocab_test__
|
||||
33
|
||||
__ggml_vocab_test__
|
||||
333
|
||||
__ggml_vocab_test__
|
||||
3333
|
||||
__ggml_vocab_test__
|
||||
33333
|
||||
__ggml_vocab_test__
|
||||
333333
|
||||
__ggml_vocab_test__
|
||||
3333333
|
||||
__ggml_vocab_test__
|
||||
33333333
|
||||
__ggml_vocab_test__
|
||||
333333333
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL
|
||||
__ggml_vocab_test__
|
43
models/ggml-vocab-refact.gguf.out
Normal file
43
models/ggml-vocab-refact.gguf.out
Normal file
|
@ -0,0 +1,43 @@
|
|||
4833 225 38 225 143 140 17723
|
||||
56 2006 3935 265
|
||||
|
||||
225
|
||||
261
|
||||
264
|
||||
202
|
||||
203
|
||||
478
|
||||
2831
|
||||
15773
|
||||
8279 5788
|
||||
12000 5788
|
||||
8279 10896
|
||||
12000 10896
|
||||
12000 10896 19
|
||||
8279 30 5788 19
|
||||
12000 30 5788 19
|
||||
458 438 5945 118 252 32 3766
|
||||
105 34 38 42 225 41 102 1707 12530 10180 1479 8278
|
||||
39862 8372 1039 9446 40242 13852 2053 8949 12531 1520 10700
|
||||
14574 227 14574 133 14574 246 30457 238 14574 242 30457 229 14574 249 14574 134 14574 258 30457 228 14574 258 14574 114 14574 133 14574 232 14574 228 14574 254 14574 232 30457 228 14574 236
|
||||
3807 253 227 308 4382 27 18458 133 46113 44967 123 13868 308 12565 19775 33071 40824 733 27 41889 308 2585 22680 688 1401 2819 4369 2404 27
|
||||
8279
|
||||
12000
|
||||
225 12000
|
||||
261 12000
|
||||
264 12000
|
||||
264 12000 284 12000
|
||||
308
|
||||
203 280
|
||||
25 34666
|
||||
8279 30 533 25 464 19 4971 884 844 18458 228 1018 4982 13368 2909 9513 17827 35 37 35 38 35 39 35 11873 47838
|
||||
37
|
||||
37 37
|
||||
37 37 37
|
||||
37 37 37 37
|
||||
37 37 37 37 37
|
||||
37 37 37 37 37 37
|
||||
37 37 37 37 37 37 37
|
||||
37 37 37 37 37 37 37 37
|
||||
37 37 37 37 37 37 37 37 37
|
||||
334 719 8878 202 10885 4222 16104 28570 203 3807 253 227 308 4382 27 18458 133 46113 44967 123 13868 308 12565 19775 33071 40824 733 27 41889 5945 118 252 3807 118 252 225 37 225 37 37 225 37 37 37 225 37 37 37 37 225 37 37 37 37 37 225 37 37 37 37 37 37 225 37 37 37 37 37 37 37 225 37 37 37 37 37 37 37 37 225 37 32 37 225 37 497 37 225 37 1179 37 225 14574 227 14574 133 14574 246 30457 238 14574 242 30457 229 14574 249 14574 134 14574 258 30457 228 14574 258 14574 114 14574 133 14574 232 36628 228 1018 4982 13368 2909 9513 17827 35 37 35 38 35 39 35 11873 47838 20921 16623 13028 8372 1039 9446 40242 13852 2053 8949 12531 1520 10700 5881 9592 13299 914 31753 31359 9163 3202 35472 10397 439 4763 2583 330 102 1455 938 1182 2017 30 330 613 844 3654 49 330 63 646 3654 439 4621 1930 561 30 330 54 844 2124 1629 35993 49 2688 25 7709 312 25 94 62
|
|
@ -1,3 +1,7 @@
|
|||
ied 4 ½ months
|
||||
__ggml_vocab_test__
|
||||
Führer
|
||||
__ggml_vocab_test__
|
||||
|
||||
__ggml_vocab_test__
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
4850 244 57 244 162 159 17722
|
||||
75 2022 3943 284
|
||||
|
||||
244
|
||||
280
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
numpy~=1.24.4
|
||||
sentencepiece~=0.1.98
|
||||
transformers>=4.35.2,<5.0.0
|
||||
transformers>=4.40.1,<5.0.0
|
||||
gguf>=0.1.0
|
||||
protobuf>=4.21.0,<5.0.0
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import heapq
|
||||
import sys
|
||||
|
@ -11,9 +12,11 @@ try:
|
|||
import git
|
||||
from tabulate import tabulate
|
||||
except ImportError as e:
|
||||
print("ERROR: the following Python libraries are required: GitPython, tabulate.")
|
||||
print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
|
||||
raise e
|
||||
|
||||
logger = logging.getLogger("compare-llama-bench")
|
||||
|
||||
# Properties by which to differentiate results per commit:
|
||||
KEY_PROPERTIES = [
|
||||
"cpu_info", "gpu_info", "n_gpu_layers", "main_gpu", "cuda", "opencl", "metal", "gpu_blas",
|
||||
|
@ -94,8 +97,7 @@ parser.add_argument("-s", "--show", help=help_s)
|
|||
known_args, unknown_args = parser.parse_known_args()
|
||||
|
||||
if unknown_args:
|
||||
print(f"ERROR: Received unknown args: {unknown_args}.")
|
||||
print()
|
||||
logger.error(f"Received unknown args: {unknown_args}.")
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
|
||||
|
@ -108,8 +110,7 @@ if input_file is None:
|
|||
input_file = sqlite_files[0]
|
||||
|
||||
if input_file is None:
|
||||
print("ERROR: Cannot find a suitable input file, please provide one.")
|
||||
print()
|
||||
logger.error("Cannot find a suitable input file, please provide one.")
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
|
||||
|
@ -194,23 +195,19 @@ if known_args.baseline is not None:
|
|||
hexsha8_baseline = get_commit_hexsha8(known_args.baseline)
|
||||
name_baseline = known_args.baseline
|
||||
if hexsha8_baseline is None:
|
||||
print(f"ERROR: cannot find data for baseline={known_args.baseline}.")
|
||||
logger.error(f"cannot find data for baseline={known_args.baseline}.")
|
||||
sys.exit(1)
|
||||
# Otherwise, search for the most recent parent of master for which there is data:
|
||||
elif repo is not None:
|
||||
hexsha8_baseline = find_parent_in_data(repo.heads.master.commit)
|
||||
|
||||
if hexsha8_baseline is None:
|
||||
print("ERROR: No baseline was provided and did not find data for any master branch commits.")
|
||||
print()
|
||||
logger.error("No baseline was provided and did not find data for any master branch commits.")
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
else:
|
||||
print(
|
||||
"ERROR: No baseline was provided and the current working directory "
|
||||
"is not part of a git repository from which a baseline could be inferred."
|
||||
)
|
||||
print()
|
||||
logger.error("No baseline was provided and the current working directory "
|
||||
"is not part of a git repository from which a baseline could be inferred.")
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
|
||||
|
@ -227,7 +224,7 @@ if known_args.compare is not None:
|
|||
hexsha8_compare = get_commit_hexsha8(known_args.compare)
|
||||
name_compare = known_args.compare
|
||||
if hexsha8_compare is None:
|
||||
print(f"ERROR: cannot find data for compare={known_args.compare}.")
|
||||
logger.error(f"cannot find data for compare={known_args.compare}.")
|
||||
sys.exit(1)
|
||||
# Otherwise, search for the commit for llama-bench was most recently run
|
||||
# and that is not a parent of master:
|
||||
|
@ -241,16 +238,12 @@ elif repo is not None:
|
|||
break
|
||||
|
||||
if hexsha8_compare is None:
|
||||
print("ERROR: No compare target was provided and did not find data for any non-master commits.")
|
||||
print()
|
||||
logger.error("No compare target was provided and did not find data for any non-master commits.")
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
else:
|
||||
print(
|
||||
"ERROR: No compare target was provided and the current working directory "
|
||||
"is not part of a git repository from which a compare target could be inferred."
|
||||
)
|
||||
print()
|
||||
logger.error("No compare target was provided and the current working directory "
|
||||
"is not part of a git repository from which a compare target could be inferred.\n")
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
|
||||
|
@ -284,8 +277,7 @@ if known_args.show is not None:
|
|||
if prop not in KEY_PROPERTIES[:-2]: # Last two values are n_prompt, n_gen.
|
||||
unknown_cols.append(prop)
|
||||
if unknown_cols:
|
||||
print(f"ERROR: Unknown values for --show: {', '.join(unknown_cols)}")
|
||||
print()
|
||||
logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}")
|
||||
parser.print_usage()
|
||||
sys.exit(1)
|
||||
rows_show = get_rows(show)
|
||||
|
@ -369,7 +361,7 @@ if "gpu_info" in show:
|
|||
headers = [PRETTY_NAMES[p] for p in show]
|
||||
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
|
||||
|
||||
print(tabulate(
|
||||
logger.info(tabulate(
|
||||
table,
|
||||
headers=headers,
|
||||
floatfmt=".2f",
|
||||
|
|
66
scripts/gen-unicode-data.py
Normal file
66
scripts/gen-unicode-data.py
Normal file
|
@ -0,0 +1,66 @@
|
|||
import regex
|
||||
|
||||
|
||||
def cpt_to_utf8_str(cpt):
|
||||
if cpt <= 0xFF:
|
||||
return bytes([cpt, 0, 0, 0])
|
||||
elif cpt <= 0xFFFF:
|
||||
return bytes([cpt & 0xFF, cpt >> 8, 0, 0])
|
||||
elif cpt <= 0xFFFFFF:
|
||||
return bytes([cpt & 0xFF, (cpt >> 8) & 0xFF, (cpt >> 16) & 0xFF, 0])
|
||||
else:
|
||||
return bytes([cpt & 0xFF, (cpt >> 8) & 0xFF, (cpt >> 16) & 0xFF, cpt >> 24])
|
||||
|
||||
|
||||
def is_match(codepoint, regex_expr):
|
||||
try:
|
||||
res = regex.match(regex_expr, cpt_to_utf8_str(codepoint).decode('utf-32'))
|
||||
return res is not None
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def get_matches(regex_expr):
|
||||
unicode_ranges = []
|
||||
current_range = None
|
||||
|
||||
for codepoint in range(0x110000):
|
||||
if is_match(codepoint, regex_expr):
|
||||
if current_range is None:
|
||||
current_range = [codepoint, codepoint]
|
||||
else:
|
||||
current_range[1] = codepoint
|
||||
elif current_range is not None:
|
||||
unicode_ranges.append(tuple(current_range))
|
||||
current_range = None
|
||||
|
||||
if current_range is not None:
|
||||
unicode_ranges.append(tuple(current_range))
|
||||
|
||||
return unicode_ranges
|
||||
|
||||
|
||||
def print_cat(cat, ranges):
|
||||
print("const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_{} = {{".format(cat)) # noqa: NP100
|
||||
cnt = 0
|
||||
for start, end in ranges:
|
||||
if cnt % 4 != 0:
|
||||
print(" ", end="") # noqa: NP100
|
||||
print("{{0x{:08X}, 0x{:08X}}},".format(start, end), end="") # noqa: NP100
|
||||
if cnt % 4 == 3:
|
||||
print("") # noqa: NP100
|
||||
cnt += 1
|
||||
|
||||
if cnt % 4 != 0:
|
||||
print("") # noqa: NP100
|
||||
print("};") # noqa: NP100
|
||||
print("") # noqa: NP100
|
||||
|
||||
|
||||
print_cat("number", get_matches(r'\p{N}'))
|
||||
print_cat("letter", get_matches(r'\p{L}'))
|
||||
print_cat("whitespace", get_matches(r'\p{Z}'))
|
||||
print_cat("accent_mark", get_matches(r'\p{M}'))
|
||||
print_cat("punctuation", get_matches(r'\p{P}'))
|
||||
print_cat("symbol", get_matches(r'\p{S}'))
|
||||
print_cat("control", get_matches(r'\p{C}'))
|
|
@ -1,5 +1,6 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import os
|
||||
import subprocess
|
||||
|
@ -7,6 +8,8 @@ import sys
|
|||
|
||||
import yaml
|
||||
|
||||
logger = logging.getLogger("run-with-preset")
|
||||
|
||||
CLI_ARGS_MAIN_PERPLEXITY = [
|
||||
"batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape",
|
||||
"export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag",
|
||||
|
@ -56,6 +59,7 @@ parser.add_argument("-bin", "--binary", help="The binary to run.")
|
|||
parser.add_argument("yaml_files", nargs="*",
|
||||
help="Arbitrary number of YAML files from which to read preset values. "
|
||||
"If two files specify the same values the later one will be used.")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
known_args, unknown_args = parser.parse_known_args()
|
||||
|
||||
|
@ -63,6 +67,8 @@ if not known_args.yaml_files and not unknown_args:
|
|||
parser.print_help()
|
||||
sys.exit(0)
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
|
||||
|
||||
props = dict()
|
||||
|
||||
for yaml_file in known_args.yaml_files:
|
||||
|
@ -85,7 +91,7 @@ elif binary.lower().endswith("llama-bench"):
|
|||
elif binary.lower().endswith("server"):
|
||||
cli_args = CLI_ARGS_SERVER
|
||||
else:
|
||||
print(f"Unknown binary: {binary}")
|
||||
logger.error(f"Unknown binary: {binary}")
|
||||
sys.exit(1)
|
||||
|
||||
command_list = [binary]
|
||||
|
@ -121,11 +127,11 @@ for cli_arg in cli_args:
|
|||
|
||||
num_unused = len(props)
|
||||
if num_unused > 10:
|
||||
print(f"The preset file contained a total of {num_unused} unused properties.")
|
||||
logger.info(f"The preset file contained a total of {num_unused} unused properties.")
|
||||
elif num_unused > 0:
|
||||
print("The preset file contained the following unused properties:")
|
||||
logger.info("The preset file contained the following unused properties:")
|
||||
for prop, value in props.items():
|
||||
print(f" {prop}: {value}")
|
||||
logger.info(f" {prop}: {value}")
|
||||
|
||||
command_list += unknown_args
|
||||
|
||||
|
|
|
@ -1,8 +1,11 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import logging
|
||||
import os
|
||||
import hashlib
|
||||
|
||||
logger = logging.getLogger("verify-checksum-models")
|
||||
|
||||
|
||||
def sha256sum(file):
|
||||
block_size = 16 * 1024 * 1024 # 16 MB block size
|
||||
|
@ -27,7 +30,7 @@ hash_list_file = os.path.join(llama_path, "SHA256SUMS")
|
|||
|
||||
# Check if the hash list file exists
|
||||
if not os.path.exists(hash_list_file):
|
||||
print(f"Hash list file not found: {hash_list_file}")
|
||||
logger.error(f"Hash list file not found: {hash_list_file}")
|
||||
exit(1)
|
||||
|
||||
# Read the hash file content and split it into an array of lines
|
||||
|
@ -46,7 +49,7 @@ for line in hash_list:
|
|||
file_path = os.path.join(llama_path, filename)
|
||||
|
||||
# Informing user of the progress of the integrity check
|
||||
print(f"Verifying the checksum of {file_path}")
|
||||
logger.info(f"Verifying the checksum of {file_path}")
|
||||
|
||||
# Check if the file exists
|
||||
if os.path.exists(file_path):
|
||||
|
@ -73,9 +76,9 @@ for line in hash_list:
|
|||
|
||||
|
||||
# Print column headers for results table
|
||||
print("\n" + "filename".ljust(40) + "valid checksum".center(20) + "file missing".center(20))
|
||||
print("-" * 80)
|
||||
print("filename".ljust(40) + "valid checksum".center(20) + "file missing".center(20)) # noqa: NP100
|
||||
print("-" * 80) # noqa: NP100
|
||||
|
||||
# Output the results as a table
|
||||
for r in results:
|
||||
print(f"{r['filename']:40} {r['valid checksum']:^20} {r['file missing']:^20}")
|
||||
print(f"{r['filename']:40} {r['valid checksum']:^20} {r['file missing']:^20}") # noqa: NP100
|
||||
|
|
|
@ -74,13 +74,16 @@ llama_test(test-tokenizer-0 NAME test-tokenizer-0-llama-spm ARGS ${CMAKE
|
|||
llama_test(test-tokenizer-0 NAME test-tokenizer-0-llama-bpe ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf)
|
||||
llama_test(test-tokenizer-0 NAME test-tokenizer-0-phi-3 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-phi-3.gguf)
|
||||
llama_test(test-tokenizer-0 NAME test-tokenizer-0-falcon ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||
llama_test(test-tokenizer-0 NAME test-tokenizer-0-deepseek-llm ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-deepseek-llm.gguf)
|
||||
llama_test(test-tokenizer-0 NAME test-tokenizer-0-deepseek-coder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-deepseek-coder.gguf)
|
||||
llama_test(test-tokenizer-0 NAME test-tokenizer-0-bert-bge ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bert-bge.gguf)
|
||||
# TODO: enable when fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/7036
|
||||
#llama_test(test-tokenizer-0 NAME test-tokenizer-0-mpt ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
|
||||
#llama_test(test-tokenizer-0 NAME test-tokenizer-0-deepseek-llm ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-deepseek-llm.gguf)
|
||||
#llama_test(test-tokenizer-0 NAME test-tokenizer-0-deepseek-coder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-deepseek-coder.gguf)
|
||||
llama_test(test-tokenizer-0 NAME test-tokenizer-0-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
|
||||
llama_test(test-tokenizer-0 NAME test-tokenizer-0-gpt-2 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-2.gguf)
|
||||
llama_test(test-tokenizer-0 NAME test-tokenizer-0-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
|
||||
llama_test(test-tokenizer-0 NAME test-tokenizer-0-command-r ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-command-r.gguf)
|
||||
|
||||
# build test-tokenizer-1-bpe target once and add many tests
|
||||
add_executable(test-tokenizer-1-bpe test-tokenizer-1-bpe.cpp)
|
||||
|
|
|
@ -1,117 +0,0 @@
|
|||
# tests with BPE tokenizer
|
||||
#
|
||||
# sample usage:
|
||||
#
|
||||
# python3 tests/test-tokenizer-0-bpe.py ~/Data/huggingface/Meta-Llama-3-8B-Instruct/
|
||||
# python3 tests/test-tokenizer-0-bpe.py ~/Data/huggingface/falcon-7b/
|
||||
# python3 tests/test-tokenizer-0-bpe.py ~/Data/huggingface/deepseek-coder-6.7b-instruct/
|
||||
#
|
||||
|
||||
import argparse
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
|
||||
parser.add_argument("--fname-tok", help="path to a text file to tokenize")
|
||||
args = parser.parse_args()
|
||||
|
||||
dir_tokenizer = args.dir_tokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
|
||||
|
||||
tests = [
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
" ",
|
||||
"\t",
|
||||
"\n",
|
||||
"\n\n",
|
||||
"\n\n\n",
|
||||
"\t\n",
|
||||
"Hello world",
|
||||
" Hello world",
|
||||
"Hello World",
|
||||
" Hello World",
|
||||
" Hello World!",
|
||||
"Hello, world!",
|
||||
" Hello, world!",
|
||||
" this is 🦙.cpp",
|
||||
"w048 7tuijk dsdfhu",
|
||||
"нещо на Български",
|
||||
"កាន់តែពិសេសអាចខលចេញ",
|
||||
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
||||
"Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello\n Hello",
|
||||
" (",
|
||||
"\n =",
|
||||
"' era",
|
||||
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
|
||||
"3",
|
||||
"33",
|
||||
"333",
|
||||
"3333",
|
||||
"33333",
|
||||
"333333",
|
||||
"3333333",
|
||||
"33333333",
|
||||
"333333333",
|
||||
]
|
||||
|
||||
for text in tests:
|
||||
print('text: ', text)
|
||||
print(tokenizer.encode(text))
|
||||
print(tokenizer.decode(tokenizer.encode(text)))
|
||||
|
||||
print("\n\ntests for C++:\n")
|
||||
for text in tests:
|
||||
res = tokenizer.encode(text)
|
||||
|
||||
k = text.replace('\n', '\\n')
|
||||
k = k.replace('\t', '\\t')
|
||||
k = '"' + k + '"'
|
||||
print("{ %-24s, { " % k, end='')
|
||||
for x in res:
|
||||
print("%7d," % x, end='')
|
||||
print(" }, },")
|
||||
|
||||
print(tokenizer.encode('hello'))
|
||||
print(tokenizer.encode('world'))
|
||||
print(tokenizer.encode(' world'))
|
||||
print(tokenizer.encode('hello world'))
|
||||
|
||||
fname_tok = args.fname_tok
|
||||
if fname_tok:
|
||||
print('tokenizing file: ', fname_tok)
|
||||
fname_out = fname_tok + '.tok'
|
||||
with open(fname_tok, 'r', encoding='utf-8') as f:
|
||||
lines = f.readlines()
|
||||
s = ''.join(lines)
|
||||
res = tokenizer.encode(s)
|
||||
# write to file
|
||||
with open(fname_out, 'w', encoding='utf-8') as f:
|
||||
for x in res:
|
||||
# LLaMA v3 for some reason strips the space for these tokens (and others)
|
||||
# if x == 662:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# elif x == 1174:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# elif x == 2564:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# elif x == 758:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# elif x == 949:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# elif x == 5354:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# else:
|
||||
# f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n')
|
||||
f.write(str(x) + ' \'' + tokenizer.decode(x).strip() + '\'\n')
|
||||
print('len(res): ', len(res))
|
||||
print('len(lines): ', len(lines))
|
||||
print('results written to: ', fname_out)
|
|
@ -1,114 +0,0 @@
|
|||
# tests with SPM tokenizer
|
||||
#
|
||||
# sample usage:
|
||||
#
|
||||
# python3 tests/test-tokenizer-0-spm.py ~/Data/huggingface/Llama-2-7b-hf/
|
||||
# python3 tests/test-tokenizer-0-spm.py ~/Data/huggingface/CodeLlama-34b-Instruct-hf/
|
||||
#
|
||||
|
||||
|
||||
import argparse
|
||||
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
|
||||
parser.add_argument("--fname-tok", help="path to a text file to tokenize")
|
||||
args = parser.parse_args()
|
||||
|
||||
dir_tokenizer = args.dir_tokenizer
|
||||
|
||||
tokenizer = SentencePieceProcessor(dir_tokenizer + '/tokenizer.model')
|
||||
|
||||
tests = [
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
" ",
|
||||
"\t",
|
||||
"\n",
|
||||
"\n\n",
|
||||
"\n\n\n",
|
||||
"\t\n",
|
||||
"Hello world",
|
||||
" Hello world",
|
||||
"Hello World",
|
||||
" Hello World",
|
||||
" Hello World!",
|
||||
"Hello, world!",
|
||||
" Hello, world!",
|
||||
" this is 🦙.cpp",
|
||||
"w048 7tuijk dsdfhu",
|
||||
"нещо на Български",
|
||||
"កាន់តែពិសេសអាចខលចេញ",
|
||||
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
||||
"Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello\n Hello",
|
||||
" (",
|
||||
"\n =",
|
||||
"' era",
|
||||
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
|
||||
"3",
|
||||
"33",
|
||||
"333",
|
||||
"3333",
|
||||
"33333",
|
||||
"333333",
|
||||
"3333333",
|
||||
"33333333",
|
||||
"333333333",
|
||||
]
|
||||
|
||||
|
||||
for text in tests:
|
||||
print('text: ', text)
|
||||
print('\nwith bos:')
|
||||
print(tokenizer.encode(text, add_bos=True))
|
||||
print(tokenizer.decode(tokenizer.encode(text, add_bos=True)))
|
||||
print('\nwithout bos:')
|
||||
print(tokenizer.encode(text, add_bos=False))
|
||||
print(tokenizer.decode(tokenizer.encode(text, add_bos=False)))
|
||||
|
||||
print("'" + tokenizer.id_to_piece(15043) + "'") # '_Hello'
|
||||
print("'" + tokenizer.id_to_piece(29871) + "'") # '_'
|
||||
print("'" + tokenizer.decode([15043]) + "'") # 'Hello'
|
||||
print("'" + tokenizer.decode([15043, 15043]) + "'") # 'Hello Hello'
|
||||
print("'" + tokenizer.decode([29871, 15043]) + "'") # ' Hello'
|
||||
print("'" + tokenizer.decode([29871, 15043, 29871, 15043]) + "'") # ' Hello Hello'
|
||||
|
||||
print("\n\ntests for C++:\n")
|
||||
for text in tests:
|
||||
res = tokenizer.encode(text, add_bos=False)
|
||||
|
||||
k = text.replace('\n', '\\n')
|
||||
k = k.replace('\t', '\\t')
|
||||
k = '"' + k + '"'
|
||||
print("{ %-24s, { " % k, end='')
|
||||
for x in res:
|
||||
print("%7d," % x, end='')
|
||||
print(" }, },")
|
||||
|
||||
print(tokenizer.encode('hello'))
|
||||
print(tokenizer.encode('world'))
|
||||
print(tokenizer.encode(' world'))
|
||||
print(tokenizer.encode('hello world'))
|
||||
|
||||
fname_tok = args.fname_tok
|
||||
if fname_tok:
|
||||
print('tokenizing file: ', fname_tok)
|
||||
fname_out = fname_tok + '.tok'
|
||||
with open(fname_tok, 'r', encoding='utf-8') as f:
|
||||
lines = f.readlines()
|
||||
s = ''.join(lines)
|
||||
res = tokenizer.encode(s, add_bos=True)
|
||||
# write to file
|
||||
with open(fname_out, 'w', encoding='utf-8') as f:
|
||||
for x in res:
|
||||
f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n')
|
||||
print('len(res): ', len(res))
|
||||
print('len(lines): ', len(lines))
|
||||
print('results written to: ', fname_out)
|
|
@ -55,8 +55,10 @@
|
|||
// return _k_tests;
|
||||
//}
|
||||
|
||||
static std::map<std::string, std::vector<llama_token>> read_tests(const std::string & fname_inp, const std::string & fname_out) {
|
||||
std::map<std::string, std::vector<llama_token>> tests;
|
||||
using llama_tests = std::map<std::string, std::vector<llama_token>>;
|
||||
|
||||
static llama_tests read_tests(const std::string & fname_inp, const std::string & fname_out) {
|
||||
llama_tests tests;
|
||||
|
||||
std::ifstream ifs_inp(fname_inp);
|
||||
if (!ifs_inp) {
|
||||
|
@ -175,12 +177,20 @@ int main(int argc, char **argv) {
|
|||
|
||||
bool success = true;
|
||||
|
||||
const auto k_tests = read_tests(fname_inp, fname_out);
|
||||
const auto k_tests = [&]() -> llama_tests {
|
||||
if (!fname_text.empty()) {
|
||||
return {};
|
||||
}
|
||||
|
||||
if (k_tests.empty()) {
|
||||
fprintf(stderr, "%s : error: no tests found\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
const auto res = read_tests(fname_inp, fname_out);
|
||||
|
||||
if (res.empty()) {
|
||||
fprintf(stderr, "%s : error: no tests found\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
return res;
|
||||
}();
|
||||
|
||||
const bool add_special = false;
|
||||
|
||||
|
@ -238,7 +248,17 @@ int main(int argc, char **argv) {
|
|||
|
||||
fprintf(stderr, "%s : text size: %zu\n", __func__, text.size());
|
||||
|
||||
const std::vector<llama_token> res = llama_tokenize(ctx, text, add_special);
|
||||
std::vector<llama_token> res;
|
||||
|
||||
{
|
||||
const auto t_start = ggml_time_us();
|
||||
|
||||
res = llama_tokenize(ctx, text, add_special);
|
||||
|
||||
const auto t_end = ggml_time_us();
|
||||
|
||||
fprintf(stderr, "%s : tokenized in %.3f ms (cpp)\n", __func__, (t_end - t_start) / 1000.0);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size());
|
||||
|
||||
|
@ -252,7 +272,8 @@ int main(int argc, char **argv) {
|
|||
}
|
||||
|
||||
for (const auto & tok : res) {
|
||||
ofs << tok << " '" << string_strip(llama_detokenize_bpe(ctx, std::vector<int>{tok})) << "'" << std::endl;
|
||||
//ofs << tok << " '" << string_strip(llama_detokenize_bpe(ctx, std::vector<int>{tok})) << "'" << std::endl;
|
||||
ofs << tok << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
|
|
46
tests/test-tokenizer-0.py
Normal file
46
tests/test-tokenizer-0.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
import time
|
||||
import argparse
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
|
||||
parser.add_argument("--fname-tok", help="path to a text file to tokenize", required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
dir_tokenizer = args.dir_tokenizer
|
||||
fname_tok = args.fname_tok
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
|
||||
|
||||
print('tokenizing file: ', fname_tok) # noqa: NP100
|
||||
fname_out = fname_tok + '.tok'
|
||||
with open(fname_tok, 'r', encoding='utf-8') as f:
|
||||
lines = f.readlines()
|
||||
s = ''.join(lines)
|
||||
t_start = time.time()
|
||||
res = tokenizer.encode(s, add_special_tokens=False)
|
||||
t_end = time.time()
|
||||
print('\nmain : tokenized in', "{:.3f}".format(1000.0 * (t_end - t_start)), 'ms (py)') # noqa: NP100
|
||||
with open(fname_out, 'w', encoding='utf-8') as f:
|
||||
for x in res:
|
||||
# LLaMA v3 for some reason strips the space for these tokens (and others)
|
||||
# if x == 662:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# elif x == 1174:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# elif x == 2564:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# elif x == 758:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# elif x == 949:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# elif x == 5354:
|
||||
# f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n')
|
||||
# else:
|
||||
# f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n')
|
||||
# f.write(str(x) + ' \'' + tokenizer.decode(x).strip() + '\'\n')
|
||||
f.write(str(x) + '\n')
|
||||
print('len(res): ', len(res)) # noqa: NP100
|
||||
print('len(lines): ', len(lines)) # noqa: NP100
|
||||
print('results written to: ', fname_out) # noqa: NP100
|
34
tests/test-tokenizer-0.sh
Executable file
34
tests/test-tokenizer-0.sh
Executable file
|
@ -0,0 +1,34 @@
|
|||
#!/bin/bash
|
||||
#
|
||||
# Usage:
|
||||
#
|
||||
# test-tokenizer-0.sh <name> <input>
|
||||
#
|
||||
|
||||
if [ $# -ne 2 ]; then
|
||||
printf "Usage: $0 <name> <input>\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
name=$1
|
||||
input=$2
|
||||
|
||||
make -j tests/test-tokenizer-0
|
||||
|
||||
printf "Testing %s on %s ...\n" $name $input
|
||||
|
||||
python3 ./tests/test-tokenizer-0.py ./models/tokenizers/$name --fname-tok $input > /tmp/test-tokenizer-0-$name-py.log 2>&1
|
||||
cat /tmp/test-tokenizer-0-$name-py.log | grep "tokenized in"
|
||||
|
||||
./tests/test-tokenizer-0 ./models/ggml-vocab-$name.gguf $input > /tmp/test-tokenizer-0-$name-cpp.log 2>&1
|
||||
cat /tmp/test-tokenizer-0-$name-cpp.log | grep "tokenized in"
|
||||
|
||||
diff $input.tok $input.tokcpp > /dev/null 2>&1
|
||||
|
||||
if [ $? -eq 0 ]; then
|
||||
printf "Tokenization is correct!\n"
|
||||
else
|
||||
diff $input.tok $input.tokcpp | head -n 32
|
||||
|
||||
printf "Tokenization differs!\n"
|
||||
fi
|
874
unicode-data.cpp
874
unicode-data.cpp
|
@ -5,27 +5,47 @@
|
|||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_digit = {
|
||||
{0x00000030, 0x00000039}, {0x000000B2, 0x000000B3}, {0x000000B9, 0x000000B9}, {0x00000660, 0x00000669},
|
||||
{0x000006F0, 0x000006F9}, {0x000007C0, 0x000007C9}, {0x00000966, 0x0000096F}, {0x000009E6, 0x000009EF},
|
||||
{0x00000A66, 0x00000A6F}, {0x00000AE6, 0x00000AEF}, {0x00000B66, 0x00000B6F}, {0x00000BE6, 0x00000BEF},
|
||||
{0x00000C66, 0x00000C6F}, {0x00000CE6, 0x00000CEF}, {0x00000D66, 0x00000D6F}, {0x00000DE6, 0x00000DEF},
|
||||
{0x00000E50, 0x00000E59}, {0x00000ED0, 0x00000ED9}, {0x00000F20, 0x00000F29}, {0x00001040, 0x00001049},
|
||||
{0x00001090, 0x00001099}, {0x00001369, 0x00001371}, {0x000017E0, 0x000017E9}, {0x00001810, 0x00001819},
|
||||
{0x00001946, 0x0000194F}, {0x000019D0, 0x000019DA}, {0x00001A80, 0x00001A89}, {0x00001A90, 0x00001A99},
|
||||
{0x00001B50, 0x00001B59}, {0x00001BB0, 0x00001BB9}, {0x00001C40, 0x00001C49}, {0x00001C50, 0x00001C59},
|
||||
{0x00002070, 0x00002070}, {0x00002074, 0x00002079}, {0x00002080, 0x00002089}, {0x00002460, 0x00002468},
|
||||
{0x00002474, 0x0000247C}, {0x00002488, 0x00002490}, {0x000024EA, 0x000024EA}, {0x000024F5, 0x000024FD},
|
||||
{0x000024FF, 0x000024FF}, {0x00002776, 0x0000277E}, {0x00002780, 0x00002788}, {0x0000278A, 0x00002792},
|
||||
{0x0000A620, 0x0000A629}, {0x0000A8D0, 0x0000A8D9}, {0x0000A900, 0x0000A909}, {0x0000A9D0, 0x0000A9D9},
|
||||
{0x0000A9F0, 0x0000A9F9}, {0x0000AA50, 0x0000AA59}, {0x0000ABF0, 0x0000ABF9}, {0x0000FF10, 0x0000FF19},
|
||||
{0x000104A0, 0x000104A9}, {0x00010A40, 0x00010A43}, {0x00010D30, 0x00010D39}, {0x00010E60, 0x00010E68},
|
||||
{0x00011052, 0x0001105A}, {0x00011066, 0x0001106F}, {0x000110F0, 0x000110F9}, {0x00011136, 0x0001113F},
|
||||
{0x000111D0, 0x000111D9}, {0x000112F0, 0x000112F9}, {0x00011450, 0x00011459}, {0x000114D0, 0x000114D9},
|
||||
{0x00011650, 0x00011659}, {0x000116C0, 0x000116C9}, {0x00011730, 0x00011739}, {0x000118E0, 0x000118E9},
|
||||
{0x00011950, 0x00011959}, {0x00011C50, 0x00011C59}, {0x00011D50, 0x00011D59}, {0x00011DA0, 0x00011DA9},
|
||||
{0x00016A60, 0x00016A69}, {0x00016B50, 0x00016B59}, {0x0001D7CE, 0x0001D7FF}, {0x0001E140, 0x0001E149},
|
||||
{0x0001E2F0, 0x0001E2F9}, {0x0001E950, 0x0001E959}, {0x0001F100, 0x0001F10A}, {0x0001FBF0, 0x0001FBF9},
|
||||
// generated with scripts/gen-unicode-data.py
|
||||
//
|
||||
// TODO: generate unicode_map_lowercase
|
||||
// TODO: generate unicode_map_nfd
|
||||
|
||||
const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_number = {
|
||||
{0x00000030, 0x00000039}, {0x000000B2, 0x000000B3}, {0x000000B9, 0x000000B9}, {0x000000BC, 0x000000BE},
|
||||
{0x00000660, 0x00000669}, {0x000006F0, 0x000006F9}, {0x000007C0, 0x000007C9}, {0x00000966, 0x0000096F},
|
||||
{0x000009E6, 0x000009EF}, {0x000009F4, 0x000009F9}, {0x00000A66, 0x00000A6F}, {0x00000AE6, 0x00000AEF},
|
||||
{0x00000B66, 0x00000B6F}, {0x00000B72, 0x00000B77}, {0x00000BE6, 0x00000BF2}, {0x00000C66, 0x00000C6F},
|
||||
{0x00000C78, 0x00000C7E}, {0x00000CE6, 0x00000CEF}, {0x00000D58, 0x00000D5E}, {0x00000D66, 0x00000D78},
|
||||
{0x00000DE6, 0x00000DEF}, {0x00000E50, 0x00000E59}, {0x00000ED0, 0x00000ED9}, {0x00000F20, 0x00000F33},
|
||||
{0x00001040, 0x00001049}, {0x00001090, 0x00001099}, {0x00001369, 0x0000137C}, {0x000016EE, 0x000016F0},
|
||||
{0x000017E0, 0x000017E9}, {0x000017F0, 0x000017F9}, {0x00001810, 0x00001819}, {0x00001946, 0x0000194F},
|
||||
{0x000019D0, 0x000019DA}, {0x00001A80, 0x00001A89}, {0x00001A90, 0x00001A99}, {0x00001B50, 0x00001B59},
|
||||
{0x00001BB0, 0x00001BB9}, {0x00001C40, 0x00001C49}, {0x00001C50, 0x00001C59}, {0x00002070, 0x00002070},
|
||||
{0x00002074, 0x00002079}, {0x00002080, 0x00002089}, {0x00002150, 0x00002182}, {0x00002185, 0x00002189},
|
||||
{0x00002460, 0x0000249B}, {0x000024EA, 0x000024FF}, {0x00002776, 0x00002793}, {0x00002CFD, 0x00002CFD},
|
||||
{0x00003007, 0x00003007}, {0x00003021, 0x00003029}, {0x00003038, 0x0000303A}, {0x00003192, 0x00003195},
|
||||
{0x00003220, 0x00003229}, {0x00003248, 0x0000324F}, {0x00003251, 0x0000325F}, {0x00003280, 0x00003289},
|
||||
{0x000032B1, 0x000032BF}, {0x0000A620, 0x0000A629}, {0x0000A6E6, 0x0000A6EF}, {0x0000A830, 0x0000A835},
|
||||
{0x0000A8D0, 0x0000A8D9}, {0x0000A900, 0x0000A909}, {0x0000A9D0, 0x0000A9D9}, {0x0000A9F0, 0x0000A9F9},
|
||||
{0x0000AA50, 0x0000AA59}, {0x0000ABF0, 0x0000ABF9}, {0x0000FF10, 0x0000FF19}, {0x00010107, 0x00010133},
|
||||
{0x00010140, 0x00010178}, {0x0001018A, 0x0001018B}, {0x000102E1, 0x000102FB}, {0x00010320, 0x00010323},
|
||||
{0x00010341, 0x00010341}, {0x0001034A, 0x0001034A}, {0x000103D1, 0x000103D5}, {0x000104A0, 0x000104A9},
|
||||
{0x00010858, 0x0001085F}, {0x00010879, 0x0001087F}, {0x000108A7, 0x000108AF}, {0x000108FB, 0x000108FF},
|
||||
{0x00010916, 0x0001091B}, {0x000109BC, 0x000109BD}, {0x000109C0, 0x000109CF}, {0x000109D2, 0x000109FF},
|
||||
{0x00010A40, 0x00010A48}, {0x00010A7D, 0x00010A7E}, {0x00010A9D, 0x00010A9F}, {0x00010AEB, 0x00010AEF},
|
||||
{0x00010B58, 0x00010B5F}, {0x00010B78, 0x00010B7F}, {0x00010BA9, 0x00010BAF}, {0x00010CFA, 0x00010CFF},
|
||||
{0x00010D30, 0x00010D39}, {0x00010E60, 0x00010E7E}, {0x00010F1D, 0x00010F26}, {0x00010F51, 0x00010F54},
|
||||
{0x00010FC5, 0x00010FCB}, {0x00011052, 0x0001106F}, {0x000110F0, 0x000110F9}, {0x00011136, 0x0001113F},
|
||||
{0x000111D0, 0x000111D9}, {0x000111E1, 0x000111F4}, {0x000112F0, 0x000112F9}, {0x00011450, 0x00011459},
|
||||
{0x000114D0, 0x000114D9}, {0x00011650, 0x00011659}, {0x000116C0, 0x000116C9}, {0x00011730, 0x0001173B},
|
||||
{0x000118E0, 0x000118F2}, {0x00011950, 0x00011959}, {0x00011C50, 0x00011C6C}, {0x00011D50, 0x00011D59},
|
||||
{0x00011DA0, 0x00011DA9}, {0x00011F50, 0x00011F59}, {0x00011FC0, 0x00011FD4}, {0x00012400, 0x0001246E},
|
||||
{0x00016A60, 0x00016A69}, {0x00016AC0, 0x00016AC9}, {0x00016B50, 0x00016B59}, {0x00016B5B, 0x00016B61},
|
||||
{0x00016E80, 0x00016E96}, {0x0001D2C0, 0x0001D2D3}, {0x0001D2E0, 0x0001D2F3}, {0x0001D360, 0x0001D378},
|
||||
{0x0001D7CE, 0x0001D7FF}, {0x0001E140, 0x0001E149}, {0x0001E2F0, 0x0001E2F9}, {0x0001E4F0, 0x0001E4F9},
|
||||
{0x0001E8C7, 0x0001E8CF}, {0x0001E950, 0x0001E959}, {0x0001EC71, 0x0001ECAB}, {0x0001ECAD, 0x0001ECAF},
|
||||
{0x0001ECB1, 0x0001ECB4}, {0x0001ED01, 0x0001ED2D}, {0x0001ED2F, 0x0001ED3D}, {0x0001F100, 0x0001F10C},
|
||||
{0x0001FBF0, 0x0001FBF9},
|
||||
};
|
||||
|
||||
const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter = {
|
||||
|
@ -41,73 +61,73 @@ const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter = {
|
|||
{0x00000710, 0x00000710}, {0x00000712, 0x0000072F}, {0x0000074D, 0x000007A5}, {0x000007B1, 0x000007B1},
|
||||
{0x000007CA, 0x000007EA}, {0x000007F4, 0x000007F5}, {0x000007FA, 0x000007FA}, {0x00000800, 0x00000815},
|
||||
{0x0000081A, 0x0000081A}, {0x00000824, 0x00000824}, {0x00000828, 0x00000828}, {0x00000840, 0x00000858},
|
||||
{0x00000860, 0x0000086A}, {0x000008A0, 0x000008B4}, {0x000008B6, 0x000008C7}, {0x00000904, 0x00000939},
|
||||
{0x0000093D, 0x0000093D}, {0x00000950, 0x00000950}, {0x00000958, 0x00000961}, {0x00000971, 0x00000980},
|
||||
{0x00000985, 0x0000098C}, {0x0000098F, 0x00000990}, {0x00000993, 0x000009A8}, {0x000009AA, 0x000009B0},
|
||||
{0x000009B2, 0x000009B2}, {0x000009B6, 0x000009B9}, {0x000009BD, 0x000009BD}, {0x000009CE, 0x000009CE},
|
||||
{0x000009DC, 0x000009DD}, {0x000009DF, 0x000009E1}, {0x000009F0, 0x000009F1}, {0x000009FC, 0x000009FC},
|
||||
{0x00000A05, 0x00000A0A}, {0x00000A0F, 0x00000A10}, {0x00000A13, 0x00000A28}, {0x00000A2A, 0x00000A30},
|
||||
{0x00000A32, 0x00000A33}, {0x00000A35, 0x00000A36}, {0x00000A38, 0x00000A39}, {0x00000A59, 0x00000A5C},
|
||||
{0x00000A5E, 0x00000A5E}, {0x00000A72, 0x00000A74}, {0x00000A85, 0x00000A8D}, {0x00000A8F, 0x00000A91},
|
||||
{0x00000A93, 0x00000AA8}, {0x00000AAA, 0x00000AB0}, {0x00000AB2, 0x00000AB3}, {0x00000AB5, 0x00000AB9},
|
||||
{0x00000ABD, 0x00000ABD}, {0x00000AD0, 0x00000AD0}, {0x00000AE0, 0x00000AE1}, {0x00000AF9, 0x00000AF9},
|
||||
{0x00000B05, 0x00000B0C}, {0x00000B0F, 0x00000B10}, {0x00000B13, 0x00000B28}, {0x00000B2A, 0x00000B30},
|
||||
{0x00000B32, 0x00000B33}, {0x00000B35, 0x00000B39}, {0x00000B3D, 0x00000B3D}, {0x00000B5C, 0x00000B5D},
|
||||
{0x00000B5F, 0x00000B61}, {0x00000B71, 0x00000B71}, {0x00000B83, 0x00000B83}, {0x00000B85, 0x00000B8A},
|
||||
{0x00000B8E, 0x00000B90}, {0x00000B92, 0x00000B95}, {0x00000B99, 0x00000B9A}, {0x00000B9C, 0x00000B9C},
|
||||
{0x00000B9E, 0x00000B9F}, {0x00000BA3, 0x00000BA4}, {0x00000BA8, 0x00000BAA}, {0x00000BAE, 0x00000BB9},
|
||||
{0x00000BD0, 0x00000BD0}, {0x00000C05, 0x00000C0C}, {0x00000C0E, 0x00000C10}, {0x00000C12, 0x00000C28},
|
||||
{0x00000C2A, 0x00000C39}, {0x00000C3D, 0x00000C3D}, {0x00000C58, 0x00000C5A}, {0x00000C60, 0x00000C61},
|
||||
{0x00000C80, 0x00000C80}, {0x00000C85, 0x00000C8C}, {0x00000C8E, 0x00000C90}, {0x00000C92, 0x00000CA8},
|
||||
{0x00000CAA, 0x00000CB3}, {0x00000CB5, 0x00000CB9}, {0x00000CBD, 0x00000CBD}, {0x00000CDE, 0x00000CDE},
|
||||
{0x00000CE0, 0x00000CE1}, {0x00000CF1, 0x00000CF2}, {0x00000D04, 0x00000D0C}, {0x00000D0E, 0x00000D10},
|
||||
{0x00000D12, 0x00000D3A}, {0x00000D3D, 0x00000D3D}, {0x00000D4E, 0x00000D4E}, {0x00000D54, 0x00000D56},
|
||||
{0x00000D5F, 0x00000D61}, {0x00000D7A, 0x00000D7F}, {0x00000D85, 0x00000D96}, {0x00000D9A, 0x00000DB1},
|
||||
{0x00000DB3, 0x00000DBB}, {0x00000DBD, 0x00000DBD}, {0x00000DC0, 0x00000DC6}, {0x00000E01, 0x00000E30},
|
||||
{0x00000E32, 0x00000E33}, {0x00000E40, 0x00000E46}, {0x00000E81, 0x00000E82}, {0x00000E84, 0x00000E84},
|
||||
{0x00000E86, 0x00000E8A}, {0x00000E8C, 0x00000EA3}, {0x00000EA5, 0x00000EA5}, {0x00000EA7, 0x00000EB0},
|
||||
{0x00000EB2, 0x00000EB3}, {0x00000EBD, 0x00000EBD}, {0x00000EC0, 0x00000EC4}, {0x00000EC6, 0x00000EC6},
|
||||
{0x00000EDC, 0x00000EDF}, {0x00000F00, 0x00000F00}, {0x00000F40, 0x00000F47}, {0x00000F49, 0x00000F6C},
|
||||
{0x00000F88, 0x00000F8C}, {0x00001000, 0x0000102A}, {0x0000103F, 0x0000103F}, {0x00001050, 0x00001055},
|
||||
{0x0000105A, 0x0000105D}, {0x00001061, 0x00001061}, {0x00001065, 0x00001066}, {0x0000106E, 0x00001070},
|
||||
{0x00001075, 0x00001081}, {0x0000108E, 0x0000108E}, {0x000010A0, 0x000010C5}, {0x000010C7, 0x000010C7},
|
||||
{0x000010CD, 0x000010CD}, {0x000010D0, 0x000010FA}, {0x000010FC, 0x00001248}, {0x0000124A, 0x0000124D},
|
||||
{0x00001250, 0x00001256}, {0x00001258, 0x00001258}, {0x0000125A, 0x0000125D}, {0x00001260, 0x00001288},
|
||||
{0x0000128A, 0x0000128D}, {0x00001290, 0x000012B0}, {0x000012B2, 0x000012B5}, {0x000012B8, 0x000012BE},
|
||||
{0x000012C0, 0x000012C0}, {0x000012C2, 0x000012C5}, {0x000012C8, 0x000012D6}, {0x000012D8, 0x00001310},
|
||||
{0x00001312, 0x00001315}, {0x00001318, 0x0000135A}, {0x00001380, 0x0000138F}, {0x000013A0, 0x000013F5},
|
||||
{0x000013F8, 0x000013FD}, {0x00001401, 0x0000166C}, {0x0000166F, 0x0000167F}, {0x00001681, 0x0000169A},
|
||||
{0x000016A0, 0x000016EA}, {0x000016F1, 0x000016F8}, {0x00001700, 0x0000170C}, {0x0000170E, 0x00001711},
|
||||
{0x00001720, 0x00001731}, {0x00001740, 0x00001751}, {0x00001760, 0x0000176C}, {0x0000176E, 0x00001770},
|
||||
{0x00001780, 0x000017B3}, {0x000017D7, 0x000017D7}, {0x000017DC, 0x000017DC}, {0x00001820, 0x00001878},
|
||||
{0x00001880, 0x00001884}, {0x00001887, 0x000018A8}, {0x000018AA, 0x000018AA}, {0x000018B0, 0x000018F5},
|
||||
{0x00001900, 0x0000191E}, {0x00001950, 0x0000196D}, {0x00001970, 0x00001974}, {0x00001980, 0x000019AB},
|
||||
{0x000019B0, 0x000019C9}, {0x00001A00, 0x00001A16}, {0x00001A20, 0x00001A54}, {0x00001AA7, 0x00001AA7},
|
||||
{0x00001B05, 0x00001B33}, {0x00001B45, 0x00001B4B}, {0x00001B83, 0x00001BA0}, {0x00001BAE, 0x00001BAF},
|
||||
{0x00001BBA, 0x00001BE5}, {0x00001C00, 0x00001C23}, {0x00001C4D, 0x00001C4F}, {0x00001C5A, 0x00001C7D},
|
||||
{0x00001C80, 0x00001C88}, {0x00001C90, 0x00001CBA}, {0x00001CBD, 0x00001CBF}, {0x00001CE9, 0x00001CEC},
|
||||
{0x00001CEE, 0x00001CF3}, {0x00001CF5, 0x00001CF6}, {0x00001CFA, 0x00001CFA}, {0x00001D00, 0x00001DBF},
|
||||
{0x00001E00, 0x00001F15}, {0x00001F18, 0x00001F1D}, {0x00001F20, 0x00001F45}, {0x00001F48, 0x00001F4D},
|
||||
{0x00001F50, 0x00001F57}, {0x00001F59, 0x00001F59}, {0x00001F5B, 0x00001F5B}, {0x00001F5D, 0x00001F5D},
|
||||
{0x00001F5F, 0x00001F7D}, {0x00001F80, 0x00001FB4}, {0x00001FB6, 0x00001FBC}, {0x00001FBE, 0x00001FBE},
|
||||
{0x00001FC2, 0x00001FC4}, {0x00001FC6, 0x00001FCC}, {0x00001FD0, 0x00001FD3}, {0x00001FD6, 0x00001FDB},
|
||||
{0x00001FE0, 0x00001FEC}, {0x00001FF2, 0x00001FF4}, {0x00001FF6, 0x00001FFC}, {0x00002071, 0x00002071},
|
||||
{0x0000207F, 0x0000207F}, {0x00002090, 0x0000209C}, {0x00002102, 0x00002102}, {0x00002107, 0x00002107},
|
||||
{0x0000210A, 0x00002113}, {0x00002115, 0x00002115}, {0x00002119, 0x0000211D}, {0x00002124, 0x00002124},
|
||||
{0x00002126, 0x00002126}, {0x00002128, 0x00002128}, {0x0000212A, 0x0000212D}, {0x0000212F, 0x00002139},
|
||||
{0x0000213C, 0x0000213F}, {0x00002145, 0x00002149}, {0x0000214E, 0x0000214E}, {0x00002183, 0x00002184},
|
||||
{0x00002C00, 0x00002C2E}, {0x00002C30, 0x00002C5E}, {0x00002C60, 0x00002CE4}, {0x00002CEB, 0x00002CEE},
|
||||
{0x00002CF2, 0x00002CF3}, {0x00002D00, 0x00002D25}, {0x00002D27, 0x00002D27}, {0x00002D2D, 0x00002D2D},
|
||||
{0x00002D30, 0x00002D67}, {0x00002D6F, 0x00002D6F}, {0x00002D80, 0x00002D96}, {0x00002DA0, 0x00002DA6},
|
||||
{0x00002DA8, 0x00002DAE}, {0x00002DB0, 0x00002DB6}, {0x00002DB8, 0x00002DBE}, {0x00002DC0, 0x00002DC6},
|
||||
{0x00002DC8, 0x00002DCE}, {0x00002DD0, 0x00002DD6}, {0x00002DD8, 0x00002DDE}, {0x00002E2F, 0x00002E2F},
|
||||
{0x00003005, 0x00003006}, {0x00003031, 0x00003035}, {0x0000303B, 0x0000303C}, {0x00003041, 0x00003096},
|
||||
{0x0000309D, 0x0000309F}, {0x000030A1, 0x000030FA}, {0x000030FC, 0x000030FF}, {0x00003105, 0x0000312F},
|
||||
{0x00003131, 0x0000318E}, {0x000031A0, 0x000031BF}, {0x000031F0, 0x000031FF}, {0x00003400, 0x00004DBF},
|
||||
{0x00004E00, 0x00009FFC}, {0x0000A000, 0x0000A48C}, {0x0000A4D0, 0x0000A4FD}, {0x0000A500, 0x0000A60C},
|
||||
{0x0000A610, 0x0000A61F}, {0x0000A62A, 0x0000A62B}, {0x0000A640, 0x0000A66E}, {0x0000A67F, 0x0000A69D},
|
||||
{0x0000A6A0, 0x0000A6E5}, {0x0000A717, 0x0000A71F}, {0x0000A722, 0x0000A788}, {0x0000A78B, 0x0000A7BF},
|
||||
{0x0000A7C2, 0x0000A7CA}, {0x0000A7F5, 0x0000A801}, {0x0000A803, 0x0000A805}, {0x0000A807, 0x0000A80A},
|
||||
{0x00000860, 0x0000086A}, {0x00000870, 0x00000887}, {0x00000889, 0x0000088E}, {0x000008A0, 0x000008C9},
|
||||
{0x00000904, 0x00000939}, {0x0000093D, 0x0000093D}, {0x00000950, 0x00000950}, {0x00000958, 0x00000961},
|
||||
{0x00000971, 0x00000980}, {0x00000985, 0x0000098C}, {0x0000098F, 0x00000990}, {0x00000993, 0x000009A8},
|
||||
{0x000009AA, 0x000009B0}, {0x000009B2, 0x000009B2}, {0x000009B6, 0x000009B9}, {0x000009BD, 0x000009BD},
|
||||
{0x000009CE, 0x000009CE}, {0x000009DC, 0x000009DD}, {0x000009DF, 0x000009E1}, {0x000009F0, 0x000009F1},
|
||||
{0x000009FC, 0x000009FC}, {0x00000A05, 0x00000A0A}, {0x00000A0F, 0x00000A10}, {0x00000A13, 0x00000A28},
|
||||
{0x00000A2A, 0x00000A30}, {0x00000A32, 0x00000A33}, {0x00000A35, 0x00000A36}, {0x00000A38, 0x00000A39},
|
||||
{0x00000A59, 0x00000A5C}, {0x00000A5E, 0x00000A5E}, {0x00000A72, 0x00000A74}, {0x00000A85, 0x00000A8D},
|
||||
{0x00000A8F, 0x00000A91}, {0x00000A93, 0x00000AA8}, {0x00000AAA, 0x00000AB0}, {0x00000AB2, 0x00000AB3},
|
||||
{0x00000AB5, 0x00000AB9}, {0x00000ABD, 0x00000ABD}, {0x00000AD0, 0x00000AD0}, {0x00000AE0, 0x00000AE1},
|
||||
{0x00000AF9, 0x00000AF9}, {0x00000B05, 0x00000B0C}, {0x00000B0F, 0x00000B10}, {0x00000B13, 0x00000B28},
|
||||
{0x00000B2A, 0x00000B30}, {0x00000B32, 0x00000B33}, {0x00000B35, 0x00000B39}, {0x00000B3D, 0x00000B3D},
|
||||
{0x00000B5C, 0x00000B5D}, {0x00000B5F, 0x00000B61}, {0x00000B71, 0x00000B71}, {0x00000B83, 0x00000B83},
|
||||
{0x00000B85, 0x00000B8A}, {0x00000B8E, 0x00000B90}, {0x00000B92, 0x00000B95}, {0x00000B99, 0x00000B9A},
|
||||
{0x00000B9C, 0x00000B9C}, {0x00000B9E, 0x00000B9F}, {0x00000BA3, 0x00000BA4}, {0x00000BA8, 0x00000BAA},
|
||||
{0x00000BAE, 0x00000BB9}, {0x00000BD0, 0x00000BD0}, {0x00000C05, 0x00000C0C}, {0x00000C0E, 0x00000C10},
|
||||
{0x00000C12, 0x00000C28}, {0x00000C2A, 0x00000C39}, {0x00000C3D, 0x00000C3D}, {0x00000C58, 0x00000C5A},
|
||||
{0x00000C5D, 0x00000C5D}, {0x00000C60, 0x00000C61}, {0x00000C80, 0x00000C80}, {0x00000C85, 0x00000C8C},
|
||||
{0x00000C8E, 0x00000C90}, {0x00000C92, 0x00000CA8}, {0x00000CAA, 0x00000CB3}, {0x00000CB5, 0x00000CB9},
|
||||
{0x00000CBD, 0x00000CBD}, {0x00000CDD, 0x00000CDE}, {0x00000CE0, 0x00000CE1}, {0x00000CF1, 0x00000CF2},
|
||||
{0x00000D04, 0x00000D0C}, {0x00000D0E, 0x00000D10}, {0x00000D12, 0x00000D3A}, {0x00000D3D, 0x00000D3D},
|
||||
{0x00000D4E, 0x00000D4E}, {0x00000D54, 0x00000D56}, {0x00000D5F, 0x00000D61}, {0x00000D7A, 0x00000D7F},
|
||||
{0x00000D85, 0x00000D96}, {0x00000D9A, 0x00000DB1}, {0x00000DB3, 0x00000DBB}, {0x00000DBD, 0x00000DBD},
|
||||
{0x00000DC0, 0x00000DC6}, {0x00000E01, 0x00000E30}, {0x00000E32, 0x00000E33}, {0x00000E40, 0x00000E46},
|
||||
{0x00000E81, 0x00000E82}, {0x00000E84, 0x00000E84}, {0x00000E86, 0x00000E8A}, {0x00000E8C, 0x00000EA3},
|
||||
{0x00000EA5, 0x00000EA5}, {0x00000EA7, 0x00000EB0}, {0x00000EB2, 0x00000EB3}, {0x00000EBD, 0x00000EBD},
|
||||
{0x00000EC0, 0x00000EC4}, {0x00000EC6, 0x00000EC6}, {0x00000EDC, 0x00000EDF}, {0x00000F00, 0x00000F00},
|
||||
{0x00000F40, 0x00000F47}, {0x00000F49, 0x00000F6C}, {0x00000F88, 0x00000F8C}, {0x00001000, 0x0000102A},
|
||||
{0x0000103F, 0x0000103F}, {0x00001050, 0x00001055}, {0x0000105A, 0x0000105D}, {0x00001061, 0x00001061},
|
||||
{0x00001065, 0x00001066}, {0x0000106E, 0x00001070}, {0x00001075, 0x00001081}, {0x0000108E, 0x0000108E},
|
||||
{0x000010A0, 0x000010C5}, {0x000010C7, 0x000010C7}, {0x000010CD, 0x000010CD}, {0x000010D0, 0x000010FA},
|
||||
{0x000010FC, 0x00001248}, {0x0000124A, 0x0000124D}, {0x00001250, 0x00001256}, {0x00001258, 0x00001258},
|
||||
{0x0000125A, 0x0000125D}, {0x00001260, 0x00001288}, {0x0000128A, 0x0000128D}, {0x00001290, 0x000012B0},
|
||||
{0x000012B2, 0x000012B5}, {0x000012B8, 0x000012BE}, {0x000012C0, 0x000012C0}, {0x000012C2, 0x000012C5},
|
||||
{0x000012C8, 0x000012D6}, {0x000012D8, 0x00001310}, {0x00001312, 0x00001315}, {0x00001318, 0x0000135A},
|
||||
{0x00001380, 0x0000138F}, {0x000013A0, 0x000013F5}, {0x000013F8, 0x000013FD}, {0x00001401, 0x0000166C},
|
||||
{0x0000166F, 0x0000167F}, {0x00001681, 0x0000169A}, {0x000016A0, 0x000016EA}, {0x000016F1, 0x000016F8},
|
||||
{0x00001700, 0x00001711}, {0x0000171F, 0x00001731}, {0x00001740, 0x00001751}, {0x00001760, 0x0000176C},
|
||||
{0x0000176E, 0x00001770}, {0x00001780, 0x000017B3}, {0x000017D7, 0x000017D7}, {0x000017DC, 0x000017DC},
|
||||
{0x00001820, 0x00001878}, {0x00001880, 0x00001884}, {0x00001887, 0x000018A8}, {0x000018AA, 0x000018AA},
|
||||
{0x000018B0, 0x000018F5}, {0x00001900, 0x0000191E}, {0x00001950, 0x0000196D}, {0x00001970, 0x00001974},
|
||||
{0x00001980, 0x000019AB}, {0x000019B0, 0x000019C9}, {0x00001A00, 0x00001A16}, {0x00001A20, 0x00001A54},
|
||||
{0x00001AA7, 0x00001AA7}, {0x00001B05, 0x00001B33}, {0x00001B45, 0x00001B4C}, {0x00001B83, 0x00001BA0},
|
||||
{0x00001BAE, 0x00001BAF}, {0x00001BBA, 0x00001BE5}, {0x00001C00, 0x00001C23}, {0x00001C4D, 0x00001C4F},
|
||||
{0x00001C5A, 0x00001C7D}, {0x00001C80, 0x00001C88}, {0x00001C90, 0x00001CBA}, {0x00001CBD, 0x00001CBF},
|
||||
{0x00001CE9, 0x00001CEC}, {0x00001CEE, 0x00001CF3}, {0x00001CF5, 0x00001CF6}, {0x00001CFA, 0x00001CFA},
|
||||
{0x00001D00, 0x00001DBF}, {0x00001E00, 0x00001F15}, {0x00001F18, 0x00001F1D}, {0x00001F20, 0x00001F45},
|
||||
{0x00001F48, 0x00001F4D}, {0x00001F50, 0x00001F57}, {0x00001F59, 0x00001F59}, {0x00001F5B, 0x00001F5B},
|
||||
{0x00001F5D, 0x00001F5D}, {0x00001F5F, 0x00001F7D}, {0x00001F80, 0x00001FB4}, {0x00001FB6, 0x00001FBC},
|
||||
{0x00001FBE, 0x00001FBE}, {0x00001FC2, 0x00001FC4}, {0x00001FC6, 0x00001FCC}, {0x00001FD0, 0x00001FD3},
|
||||
{0x00001FD6, 0x00001FDB}, {0x00001FE0, 0x00001FEC}, {0x00001FF2, 0x00001FF4}, {0x00001FF6, 0x00001FFC},
|
||||
{0x00002071, 0x00002071}, {0x0000207F, 0x0000207F}, {0x00002090, 0x0000209C}, {0x00002102, 0x00002102},
|
||||
{0x00002107, 0x00002107}, {0x0000210A, 0x00002113}, {0x00002115, 0x00002115}, {0x00002119, 0x0000211D},
|
||||
{0x00002124, 0x00002124}, {0x00002126, 0x00002126}, {0x00002128, 0x00002128}, {0x0000212A, 0x0000212D},
|
||||
{0x0000212F, 0x00002139}, {0x0000213C, 0x0000213F}, {0x00002145, 0x00002149}, {0x0000214E, 0x0000214E},
|
||||
{0x00002183, 0x00002184}, {0x00002C00, 0x00002CE4}, {0x00002CEB, 0x00002CEE}, {0x00002CF2, 0x00002CF3},
|
||||
{0x00002D00, 0x00002D25}, {0x00002D27, 0x00002D27}, {0x00002D2D, 0x00002D2D}, {0x00002D30, 0x00002D67},
|
||||
{0x00002D6F, 0x00002D6F}, {0x00002D80, 0x00002D96}, {0x00002DA0, 0x00002DA6}, {0x00002DA8, 0x00002DAE},
|
||||
{0x00002DB0, 0x00002DB6}, {0x00002DB8, 0x00002DBE}, {0x00002DC0, 0x00002DC6}, {0x00002DC8, 0x00002DCE},
|
||||
{0x00002DD0, 0x00002DD6}, {0x00002DD8, 0x00002DDE}, {0x00002E2F, 0x00002E2F}, {0x00003005, 0x00003006},
|
||||
{0x00003031, 0x00003035}, {0x0000303B, 0x0000303C}, {0x00003041, 0x00003096}, {0x0000309D, 0x0000309F},
|
||||
{0x000030A1, 0x000030FA}, {0x000030FC, 0x000030FF}, {0x00003105, 0x0000312F}, {0x00003131, 0x0000318E},
|
||||
{0x000031A0, 0x000031BF}, {0x000031F0, 0x000031FF}, {0x00003400, 0x00004DBF}, {0x00004E00, 0x0000A48C},
|
||||
{0x0000A4D0, 0x0000A4FD}, {0x0000A500, 0x0000A60C}, {0x0000A610, 0x0000A61F}, {0x0000A62A, 0x0000A62B},
|
||||
{0x0000A640, 0x0000A66E}, {0x0000A67F, 0x0000A69D}, {0x0000A6A0, 0x0000A6E5}, {0x0000A717, 0x0000A71F},
|
||||
{0x0000A722, 0x0000A788}, {0x0000A78B, 0x0000A7CA}, {0x0000A7D0, 0x0000A7D1}, {0x0000A7D3, 0x0000A7D3},
|
||||
{0x0000A7D5, 0x0000A7D9}, {0x0000A7F2, 0x0000A801}, {0x0000A803, 0x0000A805}, {0x0000A807, 0x0000A80A},
|
||||
{0x0000A80C, 0x0000A822}, {0x0000A840, 0x0000A873}, {0x0000A882, 0x0000A8B3}, {0x0000A8F2, 0x0000A8F7},
|
||||
{0x0000A8FB, 0x0000A8FB}, {0x0000A8FD, 0x0000A8FE}, {0x0000A90A, 0x0000A925}, {0x0000A930, 0x0000A946},
|
||||
{0x0000A960, 0x0000A97C}, {0x0000A984, 0x0000A9B2}, {0x0000A9CF, 0x0000A9CF}, {0x0000A9E0, 0x0000A9E4},
|
||||
|
@ -129,51 +149,60 @@ const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter = {
|
|||
{0x000102A0, 0x000102D0}, {0x00010300, 0x0001031F}, {0x0001032D, 0x00010340}, {0x00010342, 0x00010349},
|
||||
{0x00010350, 0x00010375}, {0x00010380, 0x0001039D}, {0x000103A0, 0x000103C3}, {0x000103C8, 0x000103CF},
|
||||
{0x00010400, 0x0001049D}, {0x000104B0, 0x000104D3}, {0x000104D8, 0x000104FB}, {0x00010500, 0x00010527},
|
||||
{0x00010530, 0x00010563}, {0x00010600, 0x00010736}, {0x00010740, 0x00010755}, {0x00010760, 0x00010767},
|
||||
{0x00010800, 0x00010805}, {0x00010808, 0x00010808}, {0x0001080A, 0x00010835}, {0x00010837, 0x00010838},
|
||||
{0x0001083C, 0x0001083C}, {0x0001083F, 0x00010855}, {0x00010860, 0x00010876}, {0x00010880, 0x0001089E},
|
||||
{0x000108E0, 0x000108F2}, {0x000108F4, 0x000108F5}, {0x00010900, 0x00010915}, {0x00010920, 0x00010939},
|
||||
{0x00010980, 0x000109B7}, {0x000109BE, 0x000109BF}, {0x00010A00, 0x00010A00}, {0x00010A10, 0x00010A13},
|
||||
{0x00010A15, 0x00010A17}, {0x00010A19, 0x00010A35}, {0x00010A60, 0x00010A7C}, {0x00010A80, 0x00010A9C},
|
||||
{0x00010AC0, 0x00010AC7}, {0x00010AC9, 0x00010AE4}, {0x00010B00, 0x00010B35}, {0x00010B40, 0x00010B55},
|
||||
{0x00010B60, 0x00010B72}, {0x00010B80, 0x00010B91}, {0x00010C00, 0x00010C48}, {0x00010C80, 0x00010CB2},
|
||||
{0x00010CC0, 0x00010CF2}, {0x00010D00, 0x00010D23}, {0x00010E80, 0x00010EA9}, {0x00010EB0, 0x00010EB1},
|
||||
{0x00010F00, 0x00010F1C}, {0x00010F27, 0x00010F27}, {0x00010F30, 0x00010F45}, {0x00010FB0, 0x00010FC4},
|
||||
{0x00010FE0, 0x00010FF6}, {0x00011003, 0x00011037}, {0x00011083, 0x000110AF}, {0x000110D0, 0x000110E8},
|
||||
{0x00011103, 0x00011126}, {0x00011144, 0x00011144}, {0x00011147, 0x00011147}, {0x00011150, 0x00011172},
|
||||
{0x00011176, 0x00011176}, {0x00011183, 0x000111B2}, {0x000111C1, 0x000111C4}, {0x000111DA, 0x000111DA},
|
||||
{0x000111DC, 0x000111DC}, {0x00011200, 0x00011211}, {0x00011213, 0x0001122B}, {0x00011280, 0x00011286},
|
||||
{0x00011288, 0x00011288}, {0x0001128A, 0x0001128D}, {0x0001128F, 0x0001129D}, {0x0001129F, 0x000112A8},
|
||||
{0x000112B0, 0x000112DE}, {0x00011305, 0x0001130C}, {0x0001130F, 0x00011310}, {0x00011313, 0x00011328},
|
||||
{0x0001132A, 0x00011330}, {0x00011332, 0x00011333}, {0x00011335, 0x00011339}, {0x0001133D, 0x0001133D},
|
||||
{0x00011350, 0x00011350}, {0x0001135D, 0x00011361}, {0x00011400, 0x00011434}, {0x00011447, 0x0001144A},
|
||||
{0x0001145F, 0x00011461}, {0x00011480, 0x000114AF}, {0x000114C4, 0x000114C5}, {0x000114C7, 0x000114C7},
|
||||
{0x00011580, 0x000115AE}, {0x000115D8, 0x000115DB}, {0x00011600, 0x0001162F}, {0x00011644, 0x00011644},
|
||||
{0x00011680, 0x000116AA}, {0x000116B8, 0x000116B8}, {0x00011700, 0x0001171A}, {0x00011800, 0x0001182B},
|
||||
{0x00010530, 0x00010563}, {0x00010570, 0x0001057A}, {0x0001057C, 0x0001058A}, {0x0001058C, 0x00010592},
|
||||
{0x00010594, 0x00010595}, {0x00010597, 0x000105A1}, {0x000105A3, 0x000105B1}, {0x000105B3, 0x000105B9},
|
||||
{0x000105BB, 0x000105BC}, {0x00010600, 0x00010736}, {0x00010740, 0x00010755}, {0x00010760, 0x00010767},
|
||||
{0x00010780, 0x00010785}, {0x00010787, 0x000107B0}, {0x000107B2, 0x000107BA}, {0x00010800, 0x00010805},
|
||||
{0x00010808, 0x00010808}, {0x0001080A, 0x00010835}, {0x00010837, 0x00010838}, {0x0001083C, 0x0001083C},
|
||||
{0x0001083F, 0x00010855}, {0x00010860, 0x00010876}, {0x00010880, 0x0001089E}, {0x000108E0, 0x000108F2},
|
||||
{0x000108F4, 0x000108F5}, {0x00010900, 0x00010915}, {0x00010920, 0x00010939}, {0x00010980, 0x000109B7},
|
||||
{0x000109BE, 0x000109BF}, {0x00010A00, 0x00010A00}, {0x00010A10, 0x00010A13}, {0x00010A15, 0x00010A17},
|
||||
{0x00010A19, 0x00010A35}, {0x00010A60, 0x00010A7C}, {0x00010A80, 0x00010A9C}, {0x00010AC0, 0x00010AC7},
|
||||
{0x00010AC9, 0x00010AE4}, {0x00010B00, 0x00010B35}, {0x00010B40, 0x00010B55}, {0x00010B60, 0x00010B72},
|
||||
{0x00010B80, 0x00010B91}, {0x00010C00, 0x00010C48}, {0x00010C80, 0x00010CB2}, {0x00010CC0, 0x00010CF2},
|
||||
{0x00010D00, 0x00010D23}, {0x00010E80, 0x00010EA9}, {0x00010EB0, 0x00010EB1}, {0x00010F00, 0x00010F1C},
|
||||
{0x00010F27, 0x00010F27}, {0x00010F30, 0x00010F45}, {0x00010F70, 0x00010F81}, {0x00010FB0, 0x00010FC4},
|
||||
{0x00010FE0, 0x00010FF6}, {0x00011003, 0x00011037}, {0x00011071, 0x00011072}, {0x00011075, 0x00011075},
|
||||
{0x00011083, 0x000110AF}, {0x000110D0, 0x000110E8}, {0x00011103, 0x00011126}, {0x00011144, 0x00011144},
|
||||
{0x00011147, 0x00011147}, {0x00011150, 0x00011172}, {0x00011176, 0x00011176}, {0x00011183, 0x000111B2},
|
||||
{0x000111C1, 0x000111C4}, {0x000111DA, 0x000111DA}, {0x000111DC, 0x000111DC}, {0x00011200, 0x00011211},
|
||||
{0x00011213, 0x0001122B}, {0x0001123F, 0x00011240}, {0x00011280, 0x00011286}, {0x00011288, 0x00011288},
|
||||
{0x0001128A, 0x0001128D}, {0x0001128F, 0x0001129D}, {0x0001129F, 0x000112A8}, {0x000112B0, 0x000112DE},
|
||||
{0x00011305, 0x0001130C}, {0x0001130F, 0x00011310}, {0x00011313, 0x00011328}, {0x0001132A, 0x00011330},
|
||||
{0x00011332, 0x00011333}, {0x00011335, 0x00011339}, {0x0001133D, 0x0001133D}, {0x00011350, 0x00011350},
|
||||
{0x0001135D, 0x00011361}, {0x00011400, 0x00011434}, {0x00011447, 0x0001144A}, {0x0001145F, 0x00011461},
|
||||
{0x00011480, 0x000114AF}, {0x000114C4, 0x000114C5}, {0x000114C7, 0x000114C7}, {0x00011580, 0x000115AE},
|
||||
{0x000115D8, 0x000115DB}, {0x00011600, 0x0001162F}, {0x00011644, 0x00011644}, {0x00011680, 0x000116AA},
|
||||
{0x000116B8, 0x000116B8}, {0x00011700, 0x0001171A}, {0x00011740, 0x00011746}, {0x00011800, 0x0001182B},
|
||||
{0x000118A0, 0x000118DF}, {0x000118FF, 0x00011906}, {0x00011909, 0x00011909}, {0x0001190C, 0x00011913},
|
||||
{0x00011915, 0x00011916}, {0x00011918, 0x0001192F}, {0x0001193F, 0x0001193F}, {0x00011941, 0x00011941},
|
||||
{0x000119A0, 0x000119A7}, {0x000119AA, 0x000119D0}, {0x000119E1, 0x000119E1}, {0x000119E3, 0x000119E3},
|
||||
{0x00011A00, 0x00011A00}, {0x00011A0B, 0x00011A32}, {0x00011A3A, 0x00011A3A}, {0x00011A50, 0x00011A50},
|
||||
{0x00011A5C, 0x00011A89}, {0x00011A9D, 0x00011A9D}, {0x00011AC0, 0x00011AF8}, {0x00011C00, 0x00011C08},
|
||||
{0x00011A5C, 0x00011A89}, {0x00011A9D, 0x00011A9D}, {0x00011AB0, 0x00011AF8}, {0x00011C00, 0x00011C08},
|
||||
{0x00011C0A, 0x00011C2E}, {0x00011C40, 0x00011C40}, {0x00011C72, 0x00011C8F}, {0x00011D00, 0x00011D06},
|
||||
{0x00011D08, 0x00011D09}, {0x00011D0B, 0x00011D30}, {0x00011D46, 0x00011D46}, {0x00011D60, 0x00011D65},
|
||||
{0x00011D67, 0x00011D68}, {0x00011D6A, 0x00011D89}, {0x00011D98, 0x00011D98}, {0x00011EE0, 0x00011EF2},
|
||||
{0x00011FB0, 0x00011FB0}, {0x00012000, 0x00012399}, {0x00012480, 0x00012543}, {0x00013000, 0x0001342E},
|
||||
{0x00014400, 0x00014646}, {0x00016800, 0x00016A38}, {0x00016A40, 0x00016A5E}, {0x00016AD0, 0x00016AED},
|
||||
{0x00016B00, 0x00016B2F}, {0x00016B40, 0x00016B43}, {0x00016B63, 0x00016B77}, {0x00016B7D, 0x00016B8F},
|
||||
{0x00016E40, 0x00016E7F}, {0x00016F00, 0x00016F4A}, {0x00016F50, 0x00016F50}, {0x00016F93, 0x00016F9F},
|
||||
{0x00016FE0, 0x00016FE1}, {0x00016FE3, 0x00016FE3}, {0x00017000, 0x000187F7}, {0x00018800, 0x00018CD5},
|
||||
{0x00018D00, 0x00018D08}, {0x0001B000, 0x0001B11E}, {0x0001B150, 0x0001B152}, {0x0001B164, 0x0001B167},
|
||||
{0x0001B170, 0x0001B2FB}, {0x0001BC00, 0x0001BC6A}, {0x0001BC70, 0x0001BC7C}, {0x0001BC80, 0x0001BC88},
|
||||
{0x0001BC90, 0x0001BC99}, {0x0001D400, 0x0001D454}, {0x0001D456, 0x0001D49C}, {0x0001D49E, 0x0001D49F},
|
||||
{0x0001D4A2, 0x0001D4A2}, {0x0001D4A5, 0x0001D4A6}, {0x0001D4A9, 0x0001D4AC}, {0x0001D4AE, 0x0001D4B9},
|
||||
{0x0001D4BB, 0x0001D4BB}, {0x0001D4BD, 0x0001D4C3}, {0x0001D4C5, 0x0001D505}, {0x0001D507, 0x0001D50A},
|
||||
{0x0001D50D, 0x0001D514}, {0x0001D516, 0x0001D51C}, {0x0001D51E, 0x0001D539}, {0x0001D53B, 0x0001D53E},
|
||||
{0x0001D540, 0x0001D544}, {0x0001D546, 0x0001D546}, {0x0001D54A, 0x0001D550}, {0x0001D552, 0x0001D6A5},
|
||||
{0x0001D6A8, 0x0001D6C0}, {0x0001D6C2, 0x0001D6DA}, {0x0001D6DC, 0x0001D6FA}, {0x0001D6FC, 0x0001D714},
|
||||
{0x0001D716, 0x0001D734}, {0x0001D736, 0x0001D74E}, {0x0001D750, 0x0001D76E}, {0x0001D770, 0x0001D788},
|
||||
{0x0001D78A, 0x0001D7A8}, {0x0001D7AA, 0x0001D7C2}, {0x0001D7C4, 0x0001D7CB}, {0x0001E100, 0x0001E12C},
|
||||
{0x0001E137, 0x0001E13D}, {0x0001E14E, 0x0001E14E}, {0x0001E2C0, 0x0001E2EB}, {0x0001E800, 0x0001E8C4},
|
||||
{0x00011F02, 0x00011F02}, {0x00011F04, 0x00011F10}, {0x00011F12, 0x00011F33}, {0x00011FB0, 0x00011FB0},
|
||||
{0x00012000, 0x00012399}, {0x00012480, 0x00012543}, {0x00012F90, 0x00012FF0}, {0x00013000, 0x0001342F},
|
||||
{0x00013441, 0x00013446}, {0x00014400, 0x00014646}, {0x00016800, 0x00016A38}, {0x00016A40, 0x00016A5E},
|
||||
{0x00016A70, 0x00016ABE}, {0x00016AD0, 0x00016AED}, {0x00016B00, 0x00016B2F}, {0x00016B40, 0x00016B43},
|
||||
{0x00016B63, 0x00016B77}, {0x00016B7D, 0x00016B8F}, {0x00016E40, 0x00016E7F}, {0x00016F00, 0x00016F4A},
|
||||
{0x00016F50, 0x00016F50}, {0x00016F93, 0x00016F9F}, {0x00016FE0, 0x00016FE1}, {0x00016FE3, 0x00016FE3},
|
||||
{0x00017000, 0x000187F7}, {0x00018800, 0x00018CD5}, {0x00018D00, 0x00018D08}, {0x0001AFF0, 0x0001AFF3},
|
||||
{0x0001AFF5, 0x0001AFFB}, {0x0001AFFD, 0x0001AFFE}, {0x0001B000, 0x0001B122}, {0x0001B132, 0x0001B132},
|
||||
{0x0001B150, 0x0001B152}, {0x0001B155, 0x0001B155}, {0x0001B164, 0x0001B167}, {0x0001B170, 0x0001B2FB},
|
||||
{0x0001BC00, 0x0001BC6A}, {0x0001BC70, 0x0001BC7C}, {0x0001BC80, 0x0001BC88}, {0x0001BC90, 0x0001BC99},
|
||||
{0x0001D400, 0x0001D454}, {0x0001D456, 0x0001D49C}, {0x0001D49E, 0x0001D49F}, {0x0001D4A2, 0x0001D4A2},
|
||||
{0x0001D4A5, 0x0001D4A6}, {0x0001D4A9, 0x0001D4AC}, {0x0001D4AE, 0x0001D4B9}, {0x0001D4BB, 0x0001D4BB},
|
||||
{0x0001D4BD, 0x0001D4C3}, {0x0001D4C5, 0x0001D505}, {0x0001D507, 0x0001D50A}, {0x0001D50D, 0x0001D514},
|
||||
{0x0001D516, 0x0001D51C}, {0x0001D51E, 0x0001D539}, {0x0001D53B, 0x0001D53E}, {0x0001D540, 0x0001D544},
|
||||
{0x0001D546, 0x0001D546}, {0x0001D54A, 0x0001D550}, {0x0001D552, 0x0001D6A5}, {0x0001D6A8, 0x0001D6C0},
|
||||
{0x0001D6C2, 0x0001D6DA}, {0x0001D6DC, 0x0001D6FA}, {0x0001D6FC, 0x0001D714}, {0x0001D716, 0x0001D734},
|
||||
{0x0001D736, 0x0001D74E}, {0x0001D750, 0x0001D76E}, {0x0001D770, 0x0001D788}, {0x0001D78A, 0x0001D7A8},
|
||||
{0x0001D7AA, 0x0001D7C2}, {0x0001D7C4, 0x0001D7CB}, {0x0001DF00, 0x0001DF1E}, {0x0001DF25, 0x0001DF2A},
|
||||
{0x0001E030, 0x0001E06D}, {0x0001E100, 0x0001E12C}, {0x0001E137, 0x0001E13D}, {0x0001E14E, 0x0001E14E},
|
||||
{0x0001E290, 0x0001E2AD}, {0x0001E2C0, 0x0001E2EB}, {0x0001E4D0, 0x0001E4EB}, {0x0001E7E0, 0x0001E7E6},
|
||||
{0x0001E7E8, 0x0001E7EB}, {0x0001E7ED, 0x0001E7EE}, {0x0001E7F0, 0x0001E7FE}, {0x0001E800, 0x0001E8C4},
|
||||
{0x0001E900, 0x0001E943}, {0x0001E94B, 0x0001E94B}, {0x0001EE00, 0x0001EE03}, {0x0001EE05, 0x0001EE1F},
|
||||
{0x0001EE21, 0x0001EE22}, {0x0001EE24, 0x0001EE24}, {0x0001EE27, 0x0001EE27}, {0x0001EE29, 0x0001EE32},
|
||||
{0x0001EE34, 0x0001EE37}, {0x0001EE39, 0x0001EE39}, {0x0001EE3B, 0x0001EE3B}, {0x0001EE42, 0x0001EE42},
|
||||
|
@ -182,15 +211,14 @@ const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter = {
|
|||
{0x0001EE5B, 0x0001EE5B}, {0x0001EE5D, 0x0001EE5D}, {0x0001EE5F, 0x0001EE5F}, {0x0001EE61, 0x0001EE62},
|
||||
{0x0001EE64, 0x0001EE64}, {0x0001EE67, 0x0001EE6A}, {0x0001EE6C, 0x0001EE72}, {0x0001EE74, 0x0001EE77},
|
||||
{0x0001EE79, 0x0001EE7C}, {0x0001EE7E, 0x0001EE7E}, {0x0001EE80, 0x0001EE89}, {0x0001EE8B, 0x0001EE9B},
|
||||
{0x0001EEA1, 0x0001EEA3}, {0x0001EEA5, 0x0001EEA9}, {0x0001EEAB, 0x0001EEBB}, {0x00020000, 0x0002A6DD},
|
||||
{0x0002A700, 0x0002B734}, {0x0002B740, 0x0002B81D}, {0x0002B820, 0x0002CEA1}, {0x0002CEB0, 0x0002EBE0},
|
||||
{0x0002F800, 0x0002FA1D}, {0x00030000, 0x0003134A},
|
||||
{0x0001EEA1, 0x0001EEA3}, {0x0001EEA5, 0x0001EEA9}, {0x0001EEAB, 0x0001EEBB}, {0x00020000, 0x0002A6DF},
|
||||
{0x0002A700, 0x0002B739}, {0x0002B740, 0x0002B81D}, {0x0002B820, 0x0002CEA1}, {0x0002CEB0, 0x0002EBE0},
|
||||
{0x0002F800, 0x0002FA1D}, {0x00030000, 0x0003134A}, {0x00031350, 0x000323AF},
|
||||
};
|
||||
|
||||
const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace = {
|
||||
{0x00000009, 0x0000000D}, {0x0000001C, 0x00000020}, {0x00000085, 0x00000085}, {0x000000A0, 0x000000A0},
|
||||
{0x00001680, 0x00001680}, {0x00002000, 0x0000200A}, {0x00002028, 0x00002029}, {0x0000202F, 0x0000202F},
|
||||
{0x0000205F, 0x0000205F}, {0x00003000, 0x00003000},
|
||||
{0x00000020, 0x00000020}, {0x000000A0, 0x000000A0}, {0x00001680, 0x00001680}, {0x00002000, 0x0000200A},
|
||||
{0x00002028, 0x00002029}, {0x0000202F, 0x0000202F}, {0x0000205F, 0x0000205F}, {0x00003000, 0x00003000},
|
||||
};
|
||||
|
||||
const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark = {
|
||||
|
@ -200,72 +228,77 @@ const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark = {
|
|||
{0x000006E7, 0x000006E8}, {0x000006EA, 0x000006ED}, {0x00000711, 0x00000711}, {0x00000730, 0x0000074A},
|
||||
{0x000007A6, 0x000007B0}, {0x000007EB, 0x000007F3}, {0x000007FD, 0x000007FD}, {0x00000816, 0x00000819},
|
||||
{0x0000081B, 0x00000823}, {0x00000825, 0x00000827}, {0x00000829, 0x0000082D}, {0x00000859, 0x0000085B},
|
||||
{0x000008D3, 0x000008E1}, {0x000008E3, 0x00000903}, {0x0000093A, 0x0000093C}, {0x0000093E, 0x0000094F},
|
||||
{0x00000951, 0x00000957}, {0x00000962, 0x00000963}, {0x00000981, 0x00000983}, {0x000009BC, 0x000009BC},
|
||||
{0x000009BE, 0x000009C4}, {0x000009C7, 0x000009C8}, {0x000009CB, 0x000009CD}, {0x000009D7, 0x000009D7},
|
||||
{0x000009E2, 0x000009E3}, {0x000009FE, 0x000009FE}, {0x00000A01, 0x00000A03}, {0x00000A3C, 0x00000A3C},
|
||||
{0x00000A3E, 0x00000A42}, {0x00000A47, 0x00000A48}, {0x00000A4B, 0x00000A4D}, {0x00000A51, 0x00000A51},
|
||||
{0x00000A70, 0x00000A71}, {0x00000A75, 0x00000A75}, {0x00000A81, 0x00000A83}, {0x00000ABC, 0x00000ABC},
|
||||
{0x00000ABE, 0x00000AC5}, {0x00000AC7, 0x00000AC9}, {0x00000ACB, 0x00000ACD}, {0x00000AE2, 0x00000AE3},
|
||||
{0x00000AFA, 0x00000AFF}, {0x00000B01, 0x00000B03}, {0x00000B3C, 0x00000B3C}, {0x00000B3E, 0x00000B44},
|
||||
{0x00000B47, 0x00000B48}, {0x00000B4B, 0x00000B4D}, {0x00000B55, 0x00000B57}, {0x00000B62, 0x00000B63},
|
||||
{0x00000B82, 0x00000B82}, {0x00000BBE, 0x00000BC2}, {0x00000BC6, 0x00000BC8}, {0x00000BCA, 0x00000BCD},
|
||||
{0x00000BD7, 0x00000BD7}, {0x00000C00, 0x00000C04}, {0x00000C3E, 0x00000C44}, {0x00000C46, 0x00000C48},
|
||||
{0x00000C4A, 0x00000C4D}, {0x00000C55, 0x00000C56}, {0x00000C62, 0x00000C63}, {0x00000C81, 0x00000C83},
|
||||
{0x00000CBC, 0x00000CBC}, {0x00000CBE, 0x00000CC4}, {0x00000CC6, 0x00000CC8}, {0x00000CCA, 0x00000CCD},
|
||||
{0x00000CD5, 0x00000CD6}, {0x00000CE2, 0x00000CE3}, {0x00000D00, 0x00000D03}, {0x00000D3B, 0x00000D3C},
|
||||
{0x00000D3E, 0x00000D44}, {0x00000D46, 0x00000D48}, {0x00000D4A, 0x00000D4D}, {0x00000D57, 0x00000D57},
|
||||
{0x00000D62, 0x00000D63}, {0x00000D81, 0x00000D83}, {0x00000DCA, 0x00000DCA}, {0x00000DCF, 0x00000DD4},
|
||||
{0x00000DD6, 0x00000DD6}, {0x00000DD8, 0x00000DDF}, {0x00000DF2, 0x00000DF3}, {0x00000E31, 0x00000E31},
|
||||
{0x00000E34, 0x00000E3A}, {0x00000E47, 0x00000E4E}, {0x00000EB1, 0x00000EB1}, {0x00000EB4, 0x00000EBC},
|
||||
{0x00000EC8, 0x00000ECD}, {0x00000F18, 0x00000F19}, {0x00000F35, 0x00000F35}, {0x00000F37, 0x00000F37},
|
||||
{0x00000F39, 0x00000F39}, {0x00000F3E, 0x00000F3F}, {0x00000F71, 0x00000F84}, {0x00000F86, 0x00000F87},
|
||||
{0x00000F8D, 0x00000F97}, {0x00000F99, 0x00000FBC}, {0x00000FC6, 0x00000FC6}, {0x0000102B, 0x0000103E},
|
||||
{0x00001056, 0x00001059}, {0x0000105E, 0x00001060}, {0x00001062, 0x00001064}, {0x00001067, 0x0000106D},
|
||||
{0x00001071, 0x00001074}, {0x00001082, 0x0000108D}, {0x0000108F, 0x0000108F}, {0x0000109A, 0x0000109D},
|
||||
{0x0000135D, 0x0000135F}, {0x00001712, 0x00001714}, {0x00001732, 0x00001734}, {0x00001752, 0x00001753},
|
||||
{0x00001772, 0x00001773}, {0x000017B4, 0x000017D3}, {0x000017DD, 0x000017DD}, {0x0000180B, 0x0000180D},
|
||||
{0x00000898, 0x0000089F}, {0x000008CA, 0x000008E1}, {0x000008E3, 0x00000903}, {0x0000093A, 0x0000093C},
|
||||
{0x0000093E, 0x0000094F}, {0x00000951, 0x00000957}, {0x00000962, 0x00000963}, {0x00000981, 0x00000983},
|
||||
{0x000009BC, 0x000009BC}, {0x000009BE, 0x000009C4}, {0x000009C7, 0x000009C8}, {0x000009CB, 0x000009CD},
|
||||
{0x000009D7, 0x000009D7}, {0x000009E2, 0x000009E3}, {0x000009FE, 0x000009FE}, {0x00000A01, 0x00000A03},
|
||||
{0x00000A3C, 0x00000A3C}, {0x00000A3E, 0x00000A42}, {0x00000A47, 0x00000A48}, {0x00000A4B, 0x00000A4D},
|
||||
{0x00000A51, 0x00000A51}, {0x00000A70, 0x00000A71}, {0x00000A75, 0x00000A75}, {0x00000A81, 0x00000A83},
|
||||
{0x00000ABC, 0x00000ABC}, {0x00000ABE, 0x00000AC5}, {0x00000AC7, 0x00000AC9}, {0x00000ACB, 0x00000ACD},
|
||||
{0x00000AE2, 0x00000AE3}, {0x00000AFA, 0x00000AFF}, {0x00000B01, 0x00000B03}, {0x00000B3C, 0x00000B3C},
|
||||
{0x00000B3E, 0x00000B44}, {0x00000B47, 0x00000B48}, {0x00000B4B, 0x00000B4D}, {0x00000B55, 0x00000B57},
|
||||
{0x00000B62, 0x00000B63}, {0x00000B82, 0x00000B82}, {0x00000BBE, 0x00000BC2}, {0x00000BC6, 0x00000BC8},
|
||||
{0x00000BCA, 0x00000BCD}, {0x00000BD7, 0x00000BD7}, {0x00000C00, 0x00000C04}, {0x00000C3C, 0x00000C3C},
|
||||
{0x00000C3E, 0x00000C44}, {0x00000C46, 0x00000C48}, {0x00000C4A, 0x00000C4D}, {0x00000C55, 0x00000C56},
|
||||
{0x00000C62, 0x00000C63}, {0x00000C81, 0x00000C83}, {0x00000CBC, 0x00000CBC}, {0x00000CBE, 0x00000CC4},
|
||||
{0x00000CC6, 0x00000CC8}, {0x00000CCA, 0x00000CCD}, {0x00000CD5, 0x00000CD6}, {0x00000CE2, 0x00000CE3},
|
||||
{0x00000CF3, 0x00000CF3}, {0x00000D00, 0x00000D03}, {0x00000D3B, 0x00000D3C}, {0x00000D3E, 0x00000D44},
|
||||
{0x00000D46, 0x00000D48}, {0x00000D4A, 0x00000D4D}, {0x00000D57, 0x00000D57}, {0x00000D62, 0x00000D63},
|
||||
{0x00000D81, 0x00000D83}, {0x00000DCA, 0x00000DCA}, {0x00000DCF, 0x00000DD4}, {0x00000DD6, 0x00000DD6},
|
||||
{0x00000DD8, 0x00000DDF}, {0x00000DF2, 0x00000DF3}, {0x00000E31, 0x00000E31}, {0x00000E34, 0x00000E3A},
|
||||
{0x00000E47, 0x00000E4E}, {0x00000EB1, 0x00000EB1}, {0x00000EB4, 0x00000EBC}, {0x00000EC8, 0x00000ECE},
|
||||
{0x00000F18, 0x00000F19}, {0x00000F35, 0x00000F35}, {0x00000F37, 0x00000F37}, {0x00000F39, 0x00000F39},
|
||||
{0x00000F3E, 0x00000F3F}, {0x00000F71, 0x00000F84}, {0x00000F86, 0x00000F87}, {0x00000F8D, 0x00000F97},
|
||||
{0x00000F99, 0x00000FBC}, {0x00000FC6, 0x00000FC6}, {0x0000102B, 0x0000103E}, {0x00001056, 0x00001059},
|
||||
{0x0000105E, 0x00001060}, {0x00001062, 0x00001064}, {0x00001067, 0x0000106D}, {0x00001071, 0x00001074},
|
||||
{0x00001082, 0x0000108D}, {0x0000108F, 0x0000108F}, {0x0000109A, 0x0000109D}, {0x0000135D, 0x0000135F},
|
||||
{0x00001712, 0x00001715}, {0x00001732, 0x00001734}, {0x00001752, 0x00001753}, {0x00001772, 0x00001773},
|
||||
{0x000017B4, 0x000017D3}, {0x000017DD, 0x000017DD}, {0x0000180B, 0x0000180D}, {0x0000180F, 0x0000180F},
|
||||
{0x00001885, 0x00001886}, {0x000018A9, 0x000018A9}, {0x00001920, 0x0000192B}, {0x00001930, 0x0000193B},
|
||||
{0x00001A17, 0x00001A1B}, {0x00001A55, 0x00001A5E}, {0x00001A60, 0x00001A7C}, {0x00001A7F, 0x00001A7F},
|
||||
{0x00001AB0, 0x00001AC0}, {0x00001B00, 0x00001B04}, {0x00001B34, 0x00001B44}, {0x00001B6B, 0x00001B73},
|
||||
{0x00001AB0, 0x00001ACE}, {0x00001B00, 0x00001B04}, {0x00001B34, 0x00001B44}, {0x00001B6B, 0x00001B73},
|
||||
{0x00001B80, 0x00001B82}, {0x00001BA1, 0x00001BAD}, {0x00001BE6, 0x00001BF3}, {0x00001C24, 0x00001C37},
|
||||
{0x00001CD0, 0x00001CD2}, {0x00001CD4, 0x00001CE8}, {0x00001CED, 0x00001CED}, {0x00001CF4, 0x00001CF4},
|
||||
{0x00001CF7, 0x00001CF9}, {0x00001DC0, 0x00001DF9}, {0x00001DFB, 0x00001DFF}, {0x000020D0, 0x000020F0},
|
||||
{0x00002CEF, 0x00002CF1}, {0x00002D7F, 0x00002D7F}, {0x00002DE0, 0x00002DFF}, {0x0000302A, 0x0000302F},
|
||||
{0x00003099, 0x0000309A}, {0x0000A66F, 0x0000A672}, {0x0000A674, 0x0000A67D}, {0x0000A69E, 0x0000A69F},
|
||||
{0x0000A6F0, 0x0000A6F1}, {0x0000A802, 0x0000A802}, {0x0000A806, 0x0000A806}, {0x0000A80B, 0x0000A80B},
|
||||
{0x0000A823, 0x0000A827}, {0x0000A82C, 0x0000A82C}, {0x0000A880, 0x0000A881}, {0x0000A8B4, 0x0000A8C5},
|
||||
{0x0000A8E0, 0x0000A8F1}, {0x0000A8FF, 0x0000A8FF}, {0x0000A926, 0x0000A92D}, {0x0000A947, 0x0000A953},
|
||||
{0x0000A980, 0x0000A983}, {0x0000A9B3, 0x0000A9C0}, {0x0000A9E5, 0x0000A9E5}, {0x0000AA29, 0x0000AA36},
|
||||
{0x0000AA43, 0x0000AA43}, {0x0000AA4C, 0x0000AA4D}, {0x0000AA7B, 0x0000AA7D}, {0x0000AAB0, 0x0000AAB0},
|
||||
{0x0000AAB2, 0x0000AAB4}, {0x0000AAB7, 0x0000AAB8}, {0x0000AABE, 0x0000AABF}, {0x0000AAC1, 0x0000AAC1},
|
||||
{0x0000AAEB, 0x0000AAEF}, {0x0000AAF5, 0x0000AAF6}, {0x0000ABE3, 0x0000ABEA}, {0x0000ABEC, 0x0000ABED},
|
||||
{0x0000FB1E, 0x0000FB1E}, {0x0000FE00, 0x0000FE0F}, {0x0000FE20, 0x0000FE2F}, {0x000101FD, 0x000101FD},
|
||||
{0x000102E0, 0x000102E0}, {0x00010376, 0x0001037A}, {0x00010A01, 0x00010A03}, {0x00010A05, 0x00010A06},
|
||||
{0x00010A0C, 0x00010A0F}, {0x00010A38, 0x00010A3A}, {0x00010A3F, 0x00010A3F}, {0x00010AE5, 0x00010AE6},
|
||||
{0x00010D24, 0x00010D27}, {0x00010EAB, 0x00010EAC}, {0x00010F46, 0x00010F50}, {0x00011000, 0x00011002},
|
||||
{0x00011038, 0x00011046}, {0x0001107F, 0x00011082}, {0x000110B0, 0x000110BA}, {0x00011100, 0x00011102},
|
||||
{0x00001CF7, 0x00001CF9}, {0x00001DC0, 0x00001DFF}, {0x000020D0, 0x000020F0}, {0x00002CEF, 0x00002CF1},
|
||||
{0x00002D7F, 0x00002D7F}, {0x00002DE0, 0x00002DFF}, {0x0000302A, 0x0000302F}, {0x00003099, 0x0000309A},
|
||||
{0x0000A66F, 0x0000A672}, {0x0000A674, 0x0000A67D}, {0x0000A69E, 0x0000A69F}, {0x0000A6F0, 0x0000A6F1},
|
||||
{0x0000A802, 0x0000A802}, {0x0000A806, 0x0000A806}, {0x0000A80B, 0x0000A80B}, {0x0000A823, 0x0000A827},
|
||||
{0x0000A82C, 0x0000A82C}, {0x0000A880, 0x0000A881}, {0x0000A8B4, 0x0000A8C5}, {0x0000A8E0, 0x0000A8F1},
|
||||
{0x0000A8FF, 0x0000A8FF}, {0x0000A926, 0x0000A92D}, {0x0000A947, 0x0000A953}, {0x0000A980, 0x0000A983},
|
||||
{0x0000A9B3, 0x0000A9C0}, {0x0000A9E5, 0x0000A9E5}, {0x0000AA29, 0x0000AA36}, {0x0000AA43, 0x0000AA43},
|
||||
{0x0000AA4C, 0x0000AA4D}, {0x0000AA7B, 0x0000AA7D}, {0x0000AAB0, 0x0000AAB0}, {0x0000AAB2, 0x0000AAB4},
|
||||
{0x0000AAB7, 0x0000AAB8}, {0x0000AABE, 0x0000AABF}, {0x0000AAC1, 0x0000AAC1}, {0x0000AAEB, 0x0000AAEF},
|
||||
{0x0000AAF5, 0x0000AAF6}, {0x0000ABE3, 0x0000ABEA}, {0x0000ABEC, 0x0000ABED}, {0x0000FB1E, 0x0000FB1E},
|
||||
{0x0000FE00, 0x0000FE0F}, {0x0000FE20, 0x0000FE2F}, {0x000101FD, 0x000101FD}, {0x000102E0, 0x000102E0},
|
||||
{0x00010376, 0x0001037A}, {0x00010A01, 0x00010A03}, {0x00010A05, 0x00010A06}, {0x00010A0C, 0x00010A0F},
|
||||
{0x00010A38, 0x00010A3A}, {0x00010A3F, 0x00010A3F}, {0x00010AE5, 0x00010AE6}, {0x00010D24, 0x00010D27},
|
||||
{0x00010EAB, 0x00010EAC}, {0x00010EFD, 0x00010EFF}, {0x00010F46, 0x00010F50}, {0x00010F82, 0x00010F85},
|
||||
{0x00011000, 0x00011002}, {0x00011038, 0x00011046}, {0x00011070, 0x00011070}, {0x00011073, 0x00011074},
|
||||
{0x0001107F, 0x00011082}, {0x000110B0, 0x000110BA}, {0x000110C2, 0x000110C2}, {0x00011100, 0x00011102},
|
||||
{0x00011127, 0x00011134}, {0x00011145, 0x00011146}, {0x00011173, 0x00011173}, {0x00011180, 0x00011182},
|
||||
{0x000111B3, 0x000111C0}, {0x000111C9, 0x000111CC}, {0x000111CE, 0x000111CF}, {0x0001122C, 0x00011237},
|
||||
{0x0001123E, 0x0001123E}, {0x000112DF, 0x000112EA}, {0x00011300, 0x00011303}, {0x0001133B, 0x0001133C},
|
||||
{0x0001133E, 0x00011344}, {0x00011347, 0x00011348}, {0x0001134B, 0x0001134D}, {0x00011357, 0x00011357},
|
||||
{0x00011362, 0x00011363}, {0x00011366, 0x0001136C}, {0x00011370, 0x00011374}, {0x00011435, 0x00011446},
|
||||
{0x0001145E, 0x0001145E}, {0x000114B0, 0x000114C3}, {0x000115AF, 0x000115B5}, {0x000115B8, 0x000115C0},
|
||||
{0x000115DC, 0x000115DD}, {0x00011630, 0x00011640}, {0x000116AB, 0x000116B7}, {0x0001171D, 0x0001172B},
|
||||
{0x0001182C, 0x0001183A}, {0x00011930, 0x00011935}, {0x00011937, 0x00011938}, {0x0001193B, 0x0001193E},
|
||||
{0x00011940, 0x00011940}, {0x00011942, 0x00011943}, {0x000119D1, 0x000119D7}, {0x000119DA, 0x000119E0},
|
||||
{0x000119E4, 0x000119E4}, {0x00011A01, 0x00011A0A}, {0x00011A33, 0x00011A39}, {0x00011A3B, 0x00011A3E},
|
||||
{0x00011A47, 0x00011A47}, {0x00011A51, 0x00011A5B}, {0x00011A8A, 0x00011A99}, {0x00011C2F, 0x00011C36},
|
||||
{0x00011C38, 0x00011C3F}, {0x00011C92, 0x00011CA7}, {0x00011CA9, 0x00011CB6}, {0x00011D31, 0x00011D36},
|
||||
{0x00011D3A, 0x00011D3A}, {0x00011D3C, 0x00011D3D}, {0x00011D3F, 0x00011D45}, {0x00011D47, 0x00011D47},
|
||||
{0x00011D8A, 0x00011D8E}, {0x00011D90, 0x00011D91}, {0x00011D93, 0x00011D97}, {0x00011EF3, 0x00011EF6},
|
||||
{0x00016AF0, 0x00016AF4}, {0x00016B30, 0x00016B36}, {0x00016F4F, 0x00016F4F}, {0x00016F51, 0x00016F87},
|
||||
{0x00016F8F, 0x00016F92}, {0x00016FE4, 0x00016FE4}, {0x00016FF0, 0x00016FF1}, {0x0001BC9D, 0x0001BC9E},
|
||||
{0x0001D165, 0x0001D169}, {0x0001D16D, 0x0001D172}, {0x0001D17B, 0x0001D182}, {0x0001D185, 0x0001D18B},
|
||||
{0x0001D1AA, 0x0001D1AD}, {0x0001D242, 0x0001D244}, {0x0001DA00, 0x0001DA36}, {0x0001DA3B, 0x0001DA6C},
|
||||
{0x0001DA75, 0x0001DA75}, {0x0001DA84, 0x0001DA84}, {0x0001DA9B, 0x0001DA9F}, {0x0001DAA1, 0x0001DAAF},
|
||||
{0x0001E000, 0x0001E006}, {0x0001E008, 0x0001E018}, {0x0001E01B, 0x0001E021}, {0x0001E023, 0x0001E024},
|
||||
{0x0001E026, 0x0001E02A}, {0x0001E130, 0x0001E136}, {0x0001E2EC, 0x0001E2EF}, {0x0001E8D0, 0x0001E8D6},
|
||||
{0x0001123E, 0x0001123E}, {0x00011241, 0x00011241}, {0x000112DF, 0x000112EA}, {0x00011300, 0x00011303},
|
||||
{0x0001133B, 0x0001133C}, {0x0001133E, 0x00011344}, {0x00011347, 0x00011348}, {0x0001134B, 0x0001134D},
|
||||
{0x00011357, 0x00011357}, {0x00011362, 0x00011363}, {0x00011366, 0x0001136C}, {0x00011370, 0x00011374},
|
||||
{0x00011435, 0x00011446}, {0x0001145E, 0x0001145E}, {0x000114B0, 0x000114C3}, {0x000115AF, 0x000115B5},
|
||||
{0x000115B8, 0x000115C0}, {0x000115DC, 0x000115DD}, {0x00011630, 0x00011640}, {0x000116AB, 0x000116B7},
|
||||
{0x0001171D, 0x0001172B}, {0x0001182C, 0x0001183A}, {0x00011930, 0x00011935}, {0x00011937, 0x00011938},
|
||||
{0x0001193B, 0x0001193E}, {0x00011940, 0x00011940}, {0x00011942, 0x00011943}, {0x000119D1, 0x000119D7},
|
||||
{0x000119DA, 0x000119E0}, {0x000119E4, 0x000119E4}, {0x00011A01, 0x00011A0A}, {0x00011A33, 0x00011A39},
|
||||
{0x00011A3B, 0x00011A3E}, {0x00011A47, 0x00011A47}, {0x00011A51, 0x00011A5B}, {0x00011A8A, 0x00011A99},
|
||||
{0x00011C2F, 0x00011C36}, {0x00011C38, 0x00011C3F}, {0x00011C92, 0x00011CA7}, {0x00011CA9, 0x00011CB6},
|
||||
{0x00011D31, 0x00011D36}, {0x00011D3A, 0x00011D3A}, {0x00011D3C, 0x00011D3D}, {0x00011D3F, 0x00011D45},
|
||||
{0x00011D47, 0x00011D47}, {0x00011D8A, 0x00011D8E}, {0x00011D90, 0x00011D91}, {0x00011D93, 0x00011D97},
|
||||
{0x00011EF3, 0x00011EF6}, {0x00011F00, 0x00011F01}, {0x00011F03, 0x00011F03}, {0x00011F34, 0x00011F3A},
|
||||
{0x00011F3E, 0x00011F42}, {0x00013440, 0x00013440}, {0x00013447, 0x00013455}, {0x00016AF0, 0x00016AF4},
|
||||
{0x00016B30, 0x00016B36}, {0x00016F4F, 0x00016F4F}, {0x00016F51, 0x00016F87}, {0x00016F8F, 0x00016F92},
|
||||
{0x00016FE4, 0x00016FE4}, {0x00016FF0, 0x00016FF1}, {0x0001BC9D, 0x0001BC9E}, {0x0001CF00, 0x0001CF2D},
|
||||
{0x0001CF30, 0x0001CF46}, {0x0001D165, 0x0001D169}, {0x0001D16D, 0x0001D172}, {0x0001D17B, 0x0001D182},
|
||||
{0x0001D185, 0x0001D18B}, {0x0001D1AA, 0x0001D1AD}, {0x0001D242, 0x0001D244}, {0x0001DA00, 0x0001DA36},
|
||||
{0x0001DA3B, 0x0001DA6C}, {0x0001DA75, 0x0001DA75}, {0x0001DA84, 0x0001DA84}, {0x0001DA9B, 0x0001DA9F},
|
||||
{0x0001DAA1, 0x0001DAAF}, {0x0001E000, 0x0001E006}, {0x0001E008, 0x0001E018}, {0x0001E01B, 0x0001E021},
|
||||
{0x0001E023, 0x0001E024}, {0x0001E026, 0x0001E02A}, {0x0001E08F, 0x0001E08F}, {0x0001E130, 0x0001E136},
|
||||
{0x0001E2AE, 0x0001E2AE}, {0x0001E2EC, 0x0001E2EF}, {0x0001E4EC, 0x0001E4EF}, {0x0001E8D0, 0x0001E8D6},
|
||||
{0x0001E944, 0x0001E94A}, {0x000E0100, 0x000E01EF},
|
||||
};
|
||||
|
||||
|
@ -276,7 +309,7 @@ const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation = {
|
|||
{0x000000B6, 0x000000B7}, {0x000000BB, 0x000000BB}, {0x000000BF, 0x000000BF}, {0x0000037E, 0x0000037E},
|
||||
{0x00000387, 0x00000387}, {0x0000055A, 0x0000055F}, {0x00000589, 0x0000058A}, {0x000005BE, 0x000005BE},
|
||||
{0x000005C0, 0x000005C0}, {0x000005C3, 0x000005C3}, {0x000005C6, 0x000005C6}, {0x000005F3, 0x000005F4},
|
||||
{0x00000609, 0x0000060A}, {0x0000060C, 0x0000060D}, {0x0000061B, 0x0000061B}, {0x0000061E, 0x0000061F},
|
||||
{0x00000609, 0x0000060A}, {0x0000060C, 0x0000060D}, {0x0000061B, 0x0000061B}, {0x0000061D, 0x0000061F},
|
||||
{0x0000066A, 0x0000066D}, {0x000006D4, 0x000006D4}, {0x00000700, 0x0000070D}, {0x000007F7, 0x000007F9},
|
||||
{0x00000830, 0x0000083E}, {0x0000085E, 0x0000085E}, {0x00000964, 0x00000965}, {0x00000970, 0x00000970},
|
||||
{0x000009FD, 0x000009FD}, {0x00000A76, 0x00000A76}, {0x00000AF0, 0x00000AF0}, {0x00000C77, 0x00000C77},
|
||||
|
@ -286,37 +319,38 @@ const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation = {
|
|||
{0x00001360, 0x00001368}, {0x00001400, 0x00001400}, {0x0000166E, 0x0000166E}, {0x0000169B, 0x0000169C},
|
||||
{0x000016EB, 0x000016ED}, {0x00001735, 0x00001736}, {0x000017D4, 0x000017D6}, {0x000017D8, 0x000017DA},
|
||||
{0x00001800, 0x0000180A}, {0x00001944, 0x00001945}, {0x00001A1E, 0x00001A1F}, {0x00001AA0, 0x00001AA6},
|
||||
{0x00001AA8, 0x00001AAD}, {0x00001B5A, 0x00001B60}, {0x00001BFC, 0x00001BFF}, {0x00001C3B, 0x00001C3F},
|
||||
{0x00001C7E, 0x00001C7F}, {0x00001CC0, 0x00001CC7}, {0x00001CD3, 0x00001CD3}, {0x00002010, 0x00002027},
|
||||
{0x00002030, 0x00002043}, {0x00002045, 0x00002051}, {0x00002053, 0x0000205E}, {0x0000207D, 0x0000207E},
|
||||
{0x0000208D, 0x0000208E}, {0x00002308, 0x0000230B}, {0x00002329, 0x0000232A}, {0x00002768, 0x00002775},
|
||||
{0x000027C5, 0x000027C6}, {0x000027E6, 0x000027EF}, {0x00002983, 0x00002998}, {0x000029D8, 0x000029DB},
|
||||
{0x000029FC, 0x000029FD}, {0x00002CF9, 0x00002CFC}, {0x00002CFE, 0x00002CFF}, {0x00002D70, 0x00002D70},
|
||||
{0x00002E00, 0x00002E2E}, {0x00002E30, 0x00002E4F}, {0x00002E52, 0x00002E52}, {0x00003001, 0x00003003},
|
||||
{0x00003008, 0x00003011}, {0x00003014, 0x0000301F}, {0x00003030, 0x00003030}, {0x0000303D, 0x0000303D},
|
||||
{0x000030A0, 0x000030A0}, {0x000030FB, 0x000030FB}, {0x0000A4FE, 0x0000A4FF}, {0x0000A60D, 0x0000A60F},
|
||||
{0x0000A673, 0x0000A673}, {0x0000A67E, 0x0000A67E}, {0x0000A6F2, 0x0000A6F7}, {0x0000A874, 0x0000A877},
|
||||
{0x0000A8CE, 0x0000A8CF}, {0x0000A8F8, 0x0000A8FA}, {0x0000A8FC, 0x0000A8FC}, {0x0000A92E, 0x0000A92F},
|
||||
{0x0000A95F, 0x0000A95F}, {0x0000A9C1, 0x0000A9CD}, {0x0000A9DE, 0x0000A9DF}, {0x0000AA5C, 0x0000AA5F},
|
||||
{0x0000AADE, 0x0000AADF}, {0x0000AAF0, 0x0000AAF1}, {0x0000ABEB, 0x0000ABEB}, {0x0000FD3E, 0x0000FD3F},
|
||||
{0x0000FE10, 0x0000FE19}, {0x0000FE30, 0x0000FE52}, {0x0000FE54, 0x0000FE61}, {0x0000FE63, 0x0000FE63},
|
||||
{0x0000FE68, 0x0000FE68}, {0x0000FE6A, 0x0000FE6B}, {0x0000FF01, 0x0000FF03}, {0x0000FF05, 0x0000FF0A},
|
||||
{0x0000FF0C, 0x0000FF0F}, {0x0000FF1A, 0x0000FF1B}, {0x0000FF1F, 0x0000FF20}, {0x0000FF3B, 0x0000FF3D},
|
||||
{0x0000FF3F, 0x0000FF3F}, {0x0000FF5B, 0x0000FF5B}, {0x0000FF5D, 0x0000FF5D}, {0x0000FF5F, 0x0000FF65},
|
||||
{0x00010100, 0x00010102}, {0x0001039F, 0x0001039F}, {0x000103D0, 0x000103D0}, {0x0001056F, 0x0001056F},
|
||||
{0x00010857, 0x00010857}, {0x0001091F, 0x0001091F}, {0x0001093F, 0x0001093F}, {0x00010A50, 0x00010A58},
|
||||
{0x00010A7F, 0x00010A7F}, {0x00010AF0, 0x00010AF6}, {0x00010B39, 0x00010B3F}, {0x00010B99, 0x00010B9C},
|
||||
{0x00010EAD, 0x00010EAD}, {0x00010F55, 0x00010F59}, {0x00011047, 0x0001104D}, {0x000110BB, 0x000110BC},
|
||||
{0x000110BE, 0x000110C1}, {0x00011140, 0x00011143}, {0x00011174, 0x00011175}, {0x000111C5, 0x000111C8},
|
||||
{0x000111CD, 0x000111CD}, {0x000111DB, 0x000111DB}, {0x000111DD, 0x000111DF}, {0x00011238, 0x0001123D},
|
||||
{0x000112A9, 0x000112A9}, {0x0001144B, 0x0001144F}, {0x0001145A, 0x0001145B}, {0x0001145D, 0x0001145D},
|
||||
{0x000114C6, 0x000114C6}, {0x000115C1, 0x000115D7}, {0x00011641, 0x00011643}, {0x00011660, 0x0001166C},
|
||||
{0x0001173C, 0x0001173E}, {0x0001183B, 0x0001183B}, {0x00011944, 0x00011946}, {0x000119E2, 0x000119E2},
|
||||
{0x00011A3F, 0x00011A46}, {0x00011A9A, 0x00011A9C}, {0x00011A9E, 0x00011AA2}, {0x00011C41, 0x00011C45},
|
||||
{0x00011C70, 0x00011C71}, {0x00011EF7, 0x00011EF8}, {0x00011FFF, 0x00011FFF}, {0x00012470, 0x00012474},
|
||||
{0x00016A6E, 0x00016A6F}, {0x00016AF5, 0x00016AF5}, {0x00016B37, 0x00016B3B}, {0x00016B44, 0x00016B44},
|
||||
{0x00016E97, 0x00016E9A}, {0x00016FE2, 0x00016FE2}, {0x0001BC9F, 0x0001BC9F}, {0x0001DA87, 0x0001DA8B},
|
||||
{0x0001E95E, 0x0001E95F},
|
||||
{0x00001AA8, 0x00001AAD}, {0x00001B5A, 0x00001B60}, {0x00001B7D, 0x00001B7E}, {0x00001BFC, 0x00001BFF},
|
||||
{0x00001C3B, 0x00001C3F}, {0x00001C7E, 0x00001C7F}, {0x00001CC0, 0x00001CC7}, {0x00001CD3, 0x00001CD3},
|
||||
{0x00002010, 0x00002027}, {0x00002030, 0x00002043}, {0x00002045, 0x00002051}, {0x00002053, 0x0000205E},
|
||||
{0x0000207D, 0x0000207E}, {0x0000208D, 0x0000208E}, {0x00002308, 0x0000230B}, {0x00002329, 0x0000232A},
|
||||
{0x00002768, 0x00002775}, {0x000027C5, 0x000027C6}, {0x000027E6, 0x000027EF}, {0x00002983, 0x00002998},
|
||||
{0x000029D8, 0x000029DB}, {0x000029FC, 0x000029FD}, {0x00002CF9, 0x00002CFC}, {0x00002CFE, 0x00002CFF},
|
||||
{0x00002D70, 0x00002D70}, {0x00002E00, 0x00002E2E}, {0x00002E30, 0x00002E4F}, {0x00002E52, 0x00002E5D},
|
||||
{0x00003001, 0x00003003}, {0x00003008, 0x00003011}, {0x00003014, 0x0000301F}, {0x00003030, 0x00003030},
|
||||
{0x0000303D, 0x0000303D}, {0x000030A0, 0x000030A0}, {0x000030FB, 0x000030FB}, {0x0000A4FE, 0x0000A4FF},
|
||||
{0x0000A60D, 0x0000A60F}, {0x0000A673, 0x0000A673}, {0x0000A67E, 0x0000A67E}, {0x0000A6F2, 0x0000A6F7},
|
||||
{0x0000A874, 0x0000A877}, {0x0000A8CE, 0x0000A8CF}, {0x0000A8F8, 0x0000A8FA}, {0x0000A8FC, 0x0000A8FC},
|
||||
{0x0000A92E, 0x0000A92F}, {0x0000A95F, 0x0000A95F}, {0x0000A9C1, 0x0000A9CD}, {0x0000A9DE, 0x0000A9DF},
|
||||
{0x0000AA5C, 0x0000AA5F}, {0x0000AADE, 0x0000AADF}, {0x0000AAF0, 0x0000AAF1}, {0x0000ABEB, 0x0000ABEB},
|
||||
{0x0000FD3E, 0x0000FD3F}, {0x0000FE10, 0x0000FE19}, {0x0000FE30, 0x0000FE52}, {0x0000FE54, 0x0000FE61},
|
||||
{0x0000FE63, 0x0000FE63}, {0x0000FE68, 0x0000FE68}, {0x0000FE6A, 0x0000FE6B}, {0x0000FF01, 0x0000FF03},
|
||||
{0x0000FF05, 0x0000FF0A}, {0x0000FF0C, 0x0000FF0F}, {0x0000FF1A, 0x0000FF1B}, {0x0000FF1F, 0x0000FF20},
|
||||
{0x0000FF3B, 0x0000FF3D}, {0x0000FF3F, 0x0000FF3F}, {0x0000FF5B, 0x0000FF5B}, {0x0000FF5D, 0x0000FF5D},
|
||||
{0x0000FF5F, 0x0000FF65}, {0x00010100, 0x00010102}, {0x0001039F, 0x0001039F}, {0x000103D0, 0x000103D0},
|
||||
{0x0001056F, 0x0001056F}, {0x00010857, 0x00010857}, {0x0001091F, 0x0001091F}, {0x0001093F, 0x0001093F},
|
||||
{0x00010A50, 0x00010A58}, {0x00010A7F, 0x00010A7F}, {0x00010AF0, 0x00010AF6}, {0x00010B39, 0x00010B3F},
|
||||
{0x00010B99, 0x00010B9C}, {0x00010EAD, 0x00010EAD}, {0x00010F55, 0x00010F59}, {0x00010F86, 0x00010F89},
|
||||
{0x00011047, 0x0001104D}, {0x000110BB, 0x000110BC}, {0x000110BE, 0x000110C1}, {0x00011140, 0x00011143},
|
||||
{0x00011174, 0x00011175}, {0x000111C5, 0x000111C8}, {0x000111CD, 0x000111CD}, {0x000111DB, 0x000111DB},
|
||||
{0x000111DD, 0x000111DF}, {0x00011238, 0x0001123D}, {0x000112A9, 0x000112A9}, {0x0001144B, 0x0001144F},
|
||||
{0x0001145A, 0x0001145B}, {0x0001145D, 0x0001145D}, {0x000114C6, 0x000114C6}, {0x000115C1, 0x000115D7},
|
||||
{0x00011641, 0x00011643}, {0x00011660, 0x0001166C}, {0x000116B9, 0x000116B9}, {0x0001173C, 0x0001173E},
|
||||
{0x0001183B, 0x0001183B}, {0x00011944, 0x00011946}, {0x000119E2, 0x000119E2}, {0x00011A3F, 0x00011A46},
|
||||
{0x00011A9A, 0x00011A9C}, {0x00011A9E, 0x00011AA2}, {0x00011B00, 0x00011B09}, {0x00011C41, 0x00011C45},
|
||||
{0x00011C70, 0x00011C71}, {0x00011EF7, 0x00011EF8}, {0x00011F43, 0x00011F4F}, {0x00011FFF, 0x00011FFF},
|
||||
{0x00012470, 0x00012474}, {0x00012FF1, 0x00012FF2}, {0x00016A6E, 0x00016A6F}, {0x00016AF5, 0x00016AF5},
|
||||
{0x00016B37, 0x00016B3B}, {0x00016B44, 0x00016B44}, {0x00016E97, 0x00016E9A}, {0x00016FE2, 0x00016FE2},
|
||||
{0x0001BC9F, 0x0001BC9F}, {0x0001DA87, 0x0001DA8B}, {0x0001E95E, 0x0001E95F},
|
||||
};
|
||||
|
||||
const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_symbol = {
|
||||
|
@ -328,40 +362,41 @@ const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_symbol = {
|
|||
{0x00000375, 0x00000375}, {0x00000384, 0x00000385}, {0x000003F6, 0x000003F6}, {0x00000482, 0x00000482},
|
||||
{0x0000058D, 0x0000058F}, {0x00000606, 0x00000608}, {0x0000060B, 0x0000060B}, {0x0000060E, 0x0000060F},
|
||||
{0x000006DE, 0x000006DE}, {0x000006E9, 0x000006E9}, {0x000006FD, 0x000006FE}, {0x000007F6, 0x000007F6},
|
||||
{0x000007FE, 0x000007FF}, {0x000009F2, 0x000009F3}, {0x000009FA, 0x000009FB}, {0x00000AF1, 0x00000AF1},
|
||||
{0x00000B70, 0x00000B70}, {0x00000BF3, 0x00000BFA}, {0x00000C7F, 0x00000C7F}, {0x00000D4F, 0x00000D4F},
|
||||
{0x00000D79, 0x00000D79}, {0x00000E3F, 0x00000E3F}, {0x00000F01, 0x00000F03}, {0x00000F13, 0x00000F13},
|
||||
{0x00000F15, 0x00000F17}, {0x00000F1A, 0x00000F1F}, {0x00000F34, 0x00000F34}, {0x00000F36, 0x00000F36},
|
||||
{0x00000F38, 0x00000F38}, {0x00000FBE, 0x00000FC5}, {0x00000FC7, 0x00000FCC}, {0x00000FCE, 0x00000FCF},
|
||||
{0x00000FD5, 0x00000FD8}, {0x0000109E, 0x0000109F}, {0x00001390, 0x00001399}, {0x0000166D, 0x0000166D},
|
||||
{0x000017DB, 0x000017DB}, {0x00001940, 0x00001940}, {0x000019DE, 0x000019FF}, {0x00001B61, 0x00001B6A},
|
||||
{0x00001B74, 0x00001B7C}, {0x00001FBD, 0x00001FBD}, {0x00001FBF, 0x00001FC1}, {0x00001FCD, 0x00001FCF},
|
||||
{0x00001FDD, 0x00001FDF}, {0x00001FED, 0x00001FEF}, {0x00001FFD, 0x00001FFE}, {0x00002044, 0x00002044},
|
||||
{0x00002052, 0x00002052}, {0x0000207A, 0x0000207C}, {0x0000208A, 0x0000208C}, {0x000020A0, 0x000020BF},
|
||||
{0x00002100, 0x00002101}, {0x00002103, 0x00002106}, {0x00002108, 0x00002109}, {0x00002114, 0x00002114},
|
||||
{0x00002116, 0x00002118}, {0x0000211E, 0x00002123}, {0x00002125, 0x00002125}, {0x00002127, 0x00002127},
|
||||
{0x00002129, 0x00002129}, {0x0000212E, 0x0000212E}, {0x0000213A, 0x0000213B}, {0x00002140, 0x00002144},
|
||||
{0x0000214A, 0x0000214D}, {0x0000214F, 0x0000214F}, {0x0000218A, 0x0000218B}, {0x00002190, 0x00002307},
|
||||
{0x0000230C, 0x00002328}, {0x0000232B, 0x00002426}, {0x00002440, 0x0000244A}, {0x0000249C, 0x000024E9},
|
||||
{0x00002500, 0x00002767}, {0x00002794, 0x000027C4}, {0x000027C7, 0x000027E5}, {0x000027F0, 0x00002982},
|
||||
{0x00002999, 0x000029D7}, {0x000029DC, 0x000029FB}, {0x000029FE, 0x00002B73}, {0x00002B76, 0x00002B95},
|
||||
{0x00002B97, 0x00002BFF}, {0x00002CE5, 0x00002CEA}, {0x00002E50, 0x00002E51}, {0x00002E80, 0x00002E99},
|
||||
{0x00002E9B, 0x00002EF3}, {0x00002F00, 0x00002FD5}, {0x00002FF0, 0x00002FFB}, {0x00003004, 0x00003004},
|
||||
{0x00003012, 0x00003013}, {0x00003020, 0x00003020}, {0x00003036, 0x00003037}, {0x0000303E, 0x0000303F},
|
||||
{0x0000309B, 0x0000309C}, {0x00003190, 0x00003191}, {0x00003196, 0x0000319F}, {0x000031C0, 0x000031E3},
|
||||
{0x00003200, 0x0000321E}, {0x0000322A, 0x00003247}, {0x00003250, 0x00003250}, {0x00003260, 0x0000327F},
|
||||
{0x0000328A, 0x000032B0}, {0x000032C0, 0x000033FF}, {0x00004DC0, 0x00004DFF}, {0x0000A490, 0x0000A4C6},
|
||||
{0x0000A700, 0x0000A716}, {0x0000A720, 0x0000A721}, {0x0000A789, 0x0000A78A}, {0x0000A828, 0x0000A82B},
|
||||
{0x0000A836, 0x0000A839}, {0x0000AA77, 0x0000AA79}, {0x0000AB5B, 0x0000AB5B}, {0x0000AB6A, 0x0000AB6B},
|
||||
{0x0000FB29, 0x0000FB29}, {0x0000FBB2, 0x0000FBC1}, {0x0000FDFC, 0x0000FDFD}, {0x0000FE62, 0x0000FE62},
|
||||
{0x0000FE64, 0x0000FE66}, {0x0000FE69, 0x0000FE69}, {0x0000FF04, 0x0000FF04}, {0x0000FF0B, 0x0000FF0B},
|
||||
{0x0000FF1C, 0x0000FF1E}, {0x0000FF3E, 0x0000FF3E}, {0x0000FF40, 0x0000FF40}, {0x0000FF5C, 0x0000FF5C},
|
||||
{0x0000FF5E, 0x0000FF5E}, {0x0000FFE0, 0x0000FFE6}, {0x0000FFE8, 0x0000FFEE}, {0x0000FFFC, 0x0000FFFD},
|
||||
{0x00010137, 0x0001013F}, {0x00010179, 0x00010189}, {0x0001018C, 0x0001018E}, {0x00010190, 0x0001019C},
|
||||
{0x000101A0, 0x000101A0}, {0x000101D0, 0x000101FC}, {0x00010877, 0x00010878}, {0x00010AC8, 0x00010AC8},
|
||||
{0x0001173F, 0x0001173F}, {0x00011FD5, 0x00011FF1}, {0x00016B3C, 0x00016B3F}, {0x00016B45, 0x00016B45},
|
||||
{0x0001BC9C, 0x0001BC9C}, {0x0001D000, 0x0001D0F5}, {0x0001D100, 0x0001D126}, {0x0001D129, 0x0001D164},
|
||||
{0x0001D16A, 0x0001D16C}, {0x0001D183, 0x0001D184}, {0x0001D18C, 0x0001D1A9}, {0x0001D1AE, 0x0001D1E8},
|
||||
{0x000007FE, 0x000007FF}, {0x00000888, 0x00000888}, {0x000009F2, 0x000009F3}, {0x000009FA, 0x000009FB},
|
||||
{0x00000AF1, 0x00000AF1}, {0x00000B70, 0x00000B70}, {0x00000BF3, 0x00000BFA}, {0x00000C7F, 0x00000C7F},
|
||||
{0x00000D4F, 0x00000D4F}, {0x00000D79, 0x00000D79}, {0x00000E3F, 0x00000E3F}, {0x00000F01, 0x00000F03},
|
||||
{0x00000F13, 0x00000F13}, {0x00000F15, 0x00000F17}, {0x00000F1A, 0x00000F1F}, {0x00000F34, 0x00000F34},
|
||||
{0x00000F36, 0x00000F36}, {0x00000F38, 0x00000F38}, {0x00000FBE, 0x00000FC5}, {0x00000FC7, 0x00000FCC},
|
||||
{0x00000FCE, 0x00000FCF}, {0x00000FD5, 0x00000FD8}, {0x0000109E, 0x0000109F}, {0x00001390, 0x00001399},
|
||||
{0x0000166D, 0x0000166D}, {0x000017DB, 0x000017DB}, {0x00001940, 0x00001940}, {0x000019DE, 0x000019FF},
|
||||
{0x00001B61, 0x00001B6A}, {0x00001B74, 0x00001B7C}, {0x00001FBD, 0x00001FBD}, {0x00001FBF, 0x00001FC1},
|
||||
{0x00001FCD, 0x00001FCF}, {0x00001FDD, 0x00001FDF}, {0x00001FED, 0x00001FEF}, {0x00001FFD, 0x00001FFE},
|
||||
{0x00002044, 0x00002044}, {0x00002052, 0x00002052}, {0x0000207A, 0x0000207C}, {0x0000208A, 0x0000208C},
|
||||
{0x000020A0, 0x000020C0}, {0x00002100, 0x00002101}, {0x00002103, 0x00002106}, {0x00002108, 0x00002109},
|
||||
{0x00002114, 0x00002114}, {0x00002116, 0x00002118}, {0x0000211E, 0x00002123}, {0x00002125, 0x00002125},
|
||||
{0x00002127, 0x00002127}, {0x00002129, 0x00002129}, {0x0000212E, 0x0000212E}, {0x0000213A, 0x0000213B},
|
||||
{0x00002140, 0x00002144}, {0x0000214A, 0x0000214D}, {0x0000214F, 0x0000214F}, {0x0000218A, 0x0000218B},
|
||||
{0x00002190, 0x00002307}, {0x0000230C, 0x00002328}, {0x0000232B, 0x00002426}, {0x00002440, 0x0000244A},
|
||||
{0x0000249C, 0x000024E9}, {0x00002500, 0x00002767}, {0x00002794, 0x000027C4}, {0x000027C7, 0x000027E5},
|
||||
{0x000027F0, 0x00002982}, {0x00002999, 0x000029D7}, {0x000029DC, 0x000029FB}, {0x000029FE, 0x00002B73},
|
||||
{0x00002B76, 0x00002B95}, {0x00002B97, 0x00002BFF}, {0x00002CE5, 0x00002CEA}, {0x00002E50, 0x00002E51},
|
||||
{0x00002E80, 0x00002E99}, {0x00002E9B, 0x00002EF3}, {0x00002F00, 0x00002FD5}, {0x00002FF0, 0x00002FFB},
|
||||
{0x00003004, 0x00003004}, {0x00003012, 0x00003013}, {0x00003020, 0x00003020}, {0x00003036, 0x00003037},
|
||||
{0x0000303E, 0x0000303F}, {0x0000309B, 0x0000309C}, {0x00003190, 0x00003191}, {0x00003196, 0x0000319F},
|
||||
{0x000031C0, 0x000031E3}, {0x00003200, 0x0000321E}, {0x0000322A, 0x00003247}, {0x00003250, 0x00003250},
|
||||
{0x00003260, 0x0000327F}, {0x0000328A, 0x000032B0}, {0x000032C0, 0x000033FF}, {0x00004DC0, 0x00004DFF},
|
||||
{0x0000A490, 0x0000A4C6}, {0x0000A700, 0x0000A716}, {0x0000A720, 0x0000A721}, {0x0000A789, 0x0000A78A},
|
||||
{0x0000A828, 0x0000A82B}, {0x0000A836, 0x0000A839}, {0x0000AA77, 0x0000AA79}, {0x0000AB5B, 0x0000AB5B},
|
||||
{0x0000AB6A, 0x0000AB6B}, {0x0000FB29, 0x0000FB29}, {0x0000FBB2, 0x0000FBC2}, {0x0000FD40, 0x0000FD4F},
|
||||
{0x0000FDCF, 0x0000FDCF}, {0x0000FDFC, 0x0000FDFF}, {0x0000FE62, 0x0000FE62}, {0x0000FE64, 0x0000FE66},
|
||||
{0x0000FE69, 0x0000FE69}, {0x0000FF04, 0x0000FF04}, {0x0000FF0B, 0x0000FF0B}, {0x0000FF1C, 0x0000FF1E},
|
||||
{0x0000FF3E, 0x0000FF3E}, {0x0000FF40, 0x0000FF40}, {0x0000FF5C, 0x0000FF5C}, {0x0000FF5E, 0x0000FF5E},
|
||||
{0x0000FFE0, 0x0000FFE6}, {0x0000FFE8, 0x0000FFEE}, {0x0000FFFC, 0x0000FFFD}, {0x00010137, 0x0001013F},
|
||||
{0x00010179, 0x00010189}, {0x0001018C, 0x0001018E}, {0x00010190, 0x0001019C}, {0x000101A0, 0x000101A0},
|
||||
{0x000101D0, 0x000101FC}, {0x00010877, 0x00010878}, {0x00010AC8, 0x00010AC8}, {0x0001173F, 0x0001173F},
|
||||
{0x00011FD5, 0x00011FF1}, {0x00016B3C, 0x00016B3F}, {0x00016B45, 0x00016B45}, {0x0001BC9C, 0x0001BC9C},
|
||||
{0x0001CF50, 0x0001CFC3}, {0x0001D000, 0x0001D0F5}, {0x0001D100, 0x0001D126}, {0x0001D129, 0x0001D164},
|
||||
{0x0001D16A, 0x0001D16C}, {0x0001D183, 0x0001D184}, {0x0001D18C, 0x0001D1A9}, {0x0001D1AE, 0x0001D1EA},
|
||||
{0x0001D200, 0x0001D241}, {0x0001D245, 0x0001D245}, {0x0001D300, 0x0001D356}, {0x0001D6C1, 0x0001D6C1},
|
||||
{0x0001D6DB, 0x0001D6DB}, {0x0001D6FB, 0x0001D6FB}, {0x0001D715, 0x0001D715}, {0x0001D735, 0x0001D735},
|
||||
{0x0001D74F, 0x0001D74F}, {0x0001D76F, 0x0001D76F}, {0x0001D789, 0x0001D789}, {0x0001D7A9, 0x0001D7A9},
|
||||
|
@ -371,102 +406,100 @@ const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_symbol = {
|
|||
{0x0001F000, 0x0001F02B}, {0x0001F030, 0x0001F093}, {0x0001F0A0, 0x0001F0AE}, {0x0001F0B1, 0x0001F0BF},
|
||||
{0x0001F0C1, 0x0001F0CF}, {0x0001F0D1, 0x0001F0F5}, {0x0001F10D, 0x0001F1AD}, {0x0001F1E6, 0x0001F202},
|
||||
{0x0001F210, 0x0001F23B}, {0x0001F240, 0x0001F248}, {0x0001F250, 0x0001F251}, {0x0001F260, 0x0001F265},
|
||||
{0x0001F300, 0x0001F6D7}, {0x0001F6E0, 0x0001F6EC}, {0x0001F6F0, 0x0001F6FC}, {0x0001F700, 0x0001F773},
|
||||
{0x0001F780, 0x0001F7D8}, {0x0001F7E0, 0x0001F7EB}, {0x0001F800, 0x0001F80B}, {0x0001F810, 0x0001F847},
|
||||
{0x0001F850, 0x0001F859}, {0x0001F860, 0x0001F887}, {0x0001F890, 0x0001F8AD}, {0x0001F8B0, 0x0001F8B1},
|
||||
{0x0001F900, 0x0001F978}, {0x0001F97A, 0x0001F9CB}, {0x0001F9CD, 0x0001FA53}, {0x0001FA60, 0x0001FA6D},
|
||||
{0x0001FA70, 0x0001FA74}, {0x0001FA78, 0x0001FA7A}, {0x0001FA80, 0x0001FA86}, {0x0001FA90, 0x0001FAA8},
|
||||
{0x0001FAB0, 0x0001FAB6}, {0x0001FAC0, 0x0001FAC2}, {0x0001FAD0, 0x0001FAD6}, {0x0001FB00, 0x0001FB92},
|
||||
{0x0001FB94, 0x0001FBCA},
|
||||
{0x0001F300, 0x0001F6D7}, {0x0001F6DC, 0x0001F6EC}, {0x0001F6F0, 0x0001F6FC}, {0x0001F700, 0x0001F776},
|
||||
{0x0001F77B, 0x0001F7D9}, {0x0001F7E0, 0x0001F7EB}, {0x0001F7F0, 0x0001F7F0}, {0x0001F800, 0x0001F80B},
|
||||
{0x0001F810, 0x0001F847}, {0x0001F850, 0x0001F859}, {0x0001F860, 0x0001F887}, {0x0001F890, 0x0001F8AD},
|
||||
{0x0001F8B0, 0x0001F8B1}, {0x0001F900, 0x0001FA53}, {0x0001FA60, 0x0001FA6D}, {0x0001FA70, 0x0001FA7C},
|
||||
{0x0001FA80, 0x0001FA88}, {0x0001FA90, 0x0001FABD}, {0x0001FABF, 0x0001FAC5}, {0x0001FACE, 0x0001FADB},
|
||||
{0x0001FAE0, 0x0001FAE8}, {0x0001FAF0, 0x0001FAF8}, {0x0001FB00, 0x0001FB92}, {0x0001FB94, 0x0001FBCA},
|
||||
};
|
||||
|
||||
const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_control = {
|
||||
{0x00000000, 0x00000008}, {0x0000000E, 0x0000001B}, {0x0000007F, 0x00000084}, {0x00000086, 0x0000009F},
|
||||
{0x000000AD, 0x000000AD}, {0x00000378, 0x00000379}, {0x00000380, 0x00000383}, {0x0000038B, 0x0000038B},
|
||||
{0x0000038D, 0x0000038D}, {0x000003A2, 0x000003A2}, {0x00000530, 0x00000530}, {0x00000557, 0x00000558},
|
||||
{0x0000058B, 0x0000058C}, {0x00000590, 0x00000590}, {0x000005C8, 0x000005CF}, {0x000005EB, 0x000005EE},
|
||||
{0x000005F5, 0x00000605}, {0x0000061C, 0x0000061D}, {0x000006DD, 0x000006DD}, {0x0000070E, 0x0000070F},
|
||||
{0x0000074B, 0x0000074C}, {0x000007B2, 0x000007BF}, {0x000007FB, 0x000007FC}, {0x0000082E, 0x0000082F},
|
||||
{0x0000083F, 0x0000083F}, {0x0000085C, 0x0000085D}, {0x0000085F, 0x0000085F}, {0x0000086B, 0x0000089F},
|
||||
{0x000008B5, 0x000008B5}, {0x000008C8, 0x000008D2}, {0x000008E2, 0x000008E2}, {0x00000984, 0x00000984},
|
||||
{0x0000098D, 0x0000098E}, {0x00000991, 0x00000992}, {0x000009A9, 0x000009A9}, {0x000009B1, 0x000009B1},
|
||||
{0x000009B3, 0x000009B5}, {0x000009BA, 0x000009BB}, {0x000009C5, 0x000009C6}, {0x000009C9, 0x000009CA},
|
||||
{0x000009CF, 0x000009D6}, {0x000009D8, 0x000009DB}, {0x000009DE, 0x000009DE}, {0x000009E4, 0x000009E5},
|
||||
{0x000009FF, 0x00000A00}, {0x00000A04, 0x00000A04}, {0x00000A0B, 0x00000A0E}, {0x00000A11, 0x00000A12},
|
||||
{0x00000A29, 0x00000A29}, {0x00000A31, 0x00000A31}, {0x00000A34, 0x00000A34}, {0x00000A37, 0x00000A37},
|
||||
{0x00000A3A, 0x00000A3B}, {0x00000A3D, 0x00000A3D}, {0x00000A43, 0x00000A46}, {0x00000A49, 0x00000A4A},
|
||||
{0x00000A4E, 0x00000A50}, {0x00000A52, 0x00000A58}, {0x00000A5D, 0x00000A5D}, {0x00000A5F, 0x00000A65},
|
||||
{0x00000A77, 0x00000A80}, {0x00000A84, 0x00000A84}, {0x00000A8E, 0x00000A8E}, {0x00000A92, 0x00000A92},
|
||||
{0x00000AA9, 0x00000AA9}, {0x00000AB1, 0x00000AB1}, {0x00000AB4, 0x00000AB4}, {0x00000ABA, 0x00000ABB},
|
||||
{0x00000AC6, 0x00000AC6}, {0x00000ACA, 0x00000ACA}, {0x00000ACE, 0x00000ACF}, {0x00000AD1, 0x00000ADF},
|
||||
{0x00000AE4, 0x00000AE5}, {0x00000AF2, 0x00000AF8}, {0x00000B00, 0x00000B00}, {0x00000B04, 0x00000B04},
|
||||
{0x00000B0D, 0x00000B0E}, {0x00000B11, 0x00000B12}, {0x00000B29, 0x00000B29}, {0x00000B31, 0x00000B31},
|
||||
{0x00000B34, 0x00000B34}, {0x00000B3A, 0x00000B3B}, {0x00000B45, 0x00000B46}, {0x00000B49, 0x00000B4A},
|
||||
{0x00000B4E, 0x00000B54}, {0x00000B58, 0x00000B5B}, {0x00000B5E, 0x00000B5E}, {0x00000B64, 0x00000B65},
|
||||
{0x00000B78, 0x00000B81}, {0x00000B84, 0x00000B84}, {0x00000B8B, 0x00000B8D}, {0x00000B91, 0x00000B91},
|
||||
{0x00000B96, 0x00000B98}, {0x00000B9B, 0x00000B9B}, {0x00000B9D, 0x00000B9D}, {0x00000BA0, 0x00000BA2},
|
||||
{0x00000BA5, 0x00000BA7}, {0x00000BAB, 0x00000BAD}, {0x00000BBA, 0x00000BBD}, {0x00000BC3, 0x00000BC5},
|
||||
{0x00000BC9, 0x00000BC9}, {0x00000BCE, 0x00000BCF}, {0x00000BD1, 0x00000BD6}, {0x00000BD8, 0x00000BE5},
|
||||
{0x00000BFB, 0x00000BFF}, {0x00000C0D, 0x00000C0D}, {0x00000C11, 0x00000C11}, {0x00000C29, 0x00000C29},
|
||||
{0x00000C3A, 0x00000C3C}, {0x00000C45, 0x00000C45}, {0x00000C49, 0x00000C49}, {0x00000C4E, 0x00000C54},
|
||||
{0x00000C57, 0x00000C57}, {0x00000C5B, 0x00000C5F}, {0x00000C64, 0x00000C65}, {0x00000C70, 0x00000C76},
|
||||
{0x00000C8D, 0x00000C8D}, {0x00000C91, 0x00000C91}, {0x00000CA9, 0x00000CA9}, {0x00000CB4, 0x00000CB4},
|
||||
{0x00000CBA, 0x00000CBB}, {0x00000CC5, 0x00000CC5}, {0x00000CC9, 0x00000CC9}, {0x00000CCE, 0x00000CD4},
|
||||
{0x00000CD7, 0x00000CDD}, {0x00000CDF, 0x00000CDF}, {0x00000CE4, 0x00000CE5}, {0x00000CF0, 0x00000CF0},
|
||||
{0x00000CF3, 0x00000CFF}, {0x00000D0D, 0x00000D0D}, {0x00000D11, 0x00000D11}, {0x00000D45, 0x00000D45},
|
||||
{0x00000D49, 0x00000D49}, {0x00000D50, 0x00000D53}, {0x00000D64, 0x00000D65}, {0x00000D80, 0x00000D80},
|
||||
{0x00000D84, 0x00000D84}, {0x00000D97, 0x00000D99}, {0x00000DB2, 0x00000DB2}, {0x00000DBC, 0x00000DBC},
|
||||
{0x00000DBE, 0x00000DBF}, {0x00000DC7, 0x00000DC9}, {0x00000DCB, 0x00000DCE}, {0x00000DD5, 0x00000DD5},
|
||||
{0x00000DD7, 0x00000DD7}, {0x00000DE0, 0x00000DE5}, {0x00000DF0, 0x00000DF1}, {0x00000DF5, 0x00000E00},
|
||||
{0x00000E3B, 0x00000E3E}, {0x00000E5C, 0x00000E80}, {0x00000E83, 0x00000E83}, {0x00000E85, 0x00000E85},
|
||||
{0x00000E8B, 0x00000E8B}, {0x00000EA4, 0x00000EA4}, {0x00000EA6, 0x00000EA6}, {0x00000EBE, 0x00000EBF},
|
||||
{0x00000EC5, 0x00000EC5}, {0x00000EC7, 0x00000EC7}, {0x00000ECE, 0x00000ECF}, {0x00000EDA, 0x00000EDB},
|
||||
{0x00000EE0, 0x00000EFF}, {0x00000F48, 0x00000F48}, {0x00000F6D, 0x00000F70}, {0x00000F98, 0x00000F98},
|
||||
{0x00000FBD, 0x00000FBD}, {0x00000FCD, 0x00000FCD}, {0x00000FDB, 0x00000FFF}, {0x000010C6, 0x000010C6},
|
||||
{0x000010C8, 0x000010CC}, {0x000010CE, 0x000010CF}, {0x00001249, 0x00001249}, {0x0000124E, 0x0000124F},
|
||||
{0x00001257, 0x00001257}, {0x00001259, 0x00001259}, {0x0000125E, 0x0000125F}, {0x00001289, 0x00001289},
|
||||
{0x0000128E, 0x0000128F}, {0x000012B1, 0x000012B1}, {0x000012B6, 0x000012B7}, {0x000012BF, 0x000012BF},
|
||||
{0x000012C1, 0x000012C1}, {0x000012C6, 0x000012C7}, {0x000012D7, 0x000012D7}, {0x00001311, 0x00001311},
|
||||
{0x00001316, 0x00001317}, {0x0000135B, 0x0000135C}, {0x0000137D, 0x0000137F}, {0x0000139A, 0x0000139F},
|
||||
{0x000013F6, 0x000013F7}, {0x000013FE, 0x000013FF}, {0x0000169D, 0x0000169F}, {0x000016F9, 0x000016FF},
|
||||
{0x0000170D, 0x0000170D}, {0x00001715, 0x0000171F}, {0x00001737, 0x0000173F}, {0x00001754, 0x0000175F},
|
||||
{0x0000176D, 0x0000176D}, {0x00001771, 0x00001771}, {0x00001774, 0x0000177F}, {0x000017DE, 0x000017DF},
|
||||
{0x000017EA, 0x000017EF}, {0x000017FA, 0x000017FF}, {0x0000180E, 0x0000180F}, {0x0000181A, 0x0000181F},
|
||||
{0x00001879, 0x0000187F}, {0x000018AB, 0x000018AF}, {0x000018F6, 0x000018FF}, {0x0000191F, 0x0000191F},
|
||||
{0x0000192C, 0x0000192F}, {0x0000193C, 0x0000193F}, {0x00001941, 0x00001943}, {0x0000196E, 0x0000196F},
|
||||
{0x00001975, 0x0000197F}, {0x000019AC, 0x000019AF}, {0x000019CA, 0x000019CF}, {0x000019DB, 0x000019DD},
|
||||
{0x00001A1C, 0x00001A1D}, {0x00001A5F, 0x00001A5F}, {0x00001A7D, 0x00001A7E}, {0x00001A8A, 0x00001A8F},
|
||||
{0x00001A9A, 0x00001A9F}, {0x00001AAE, 0x00001AAF}, {0x00001AC1, 0x00001AFF}, {0x00001B4C, 0x00001B4F},
|
||||
{0x00001B7D, 0x00001B7F}, {0x00001BF4, 0x00001BFB}, {0x00001C38, 0x00001C3A}, {0x00001C4A, 0x00001C4C},
|
||||
{0x00001C89, 0x00001C8F}, {0x00001CBB, 0x00001CBC}, {0x00001CC8, 0x00001CCF}, {0x00001CFB, 0x00001CFF},
|
||||
{0x00001DFA, 0x00001DFA}, {0x00001F16, 0x00001F17}, {0x00001F1E, 0x00001F1F}, {0x00001F46, 0x00001F47},
|
||||
{0x00000000, 0x0000001F}, {0x0000007F, 0x0000009F}, {0x000000AD, 0x000000AD}, {0x00000378, 0x00000379},
|
||||
{0x00000380, 0x00000383}, {0x0000038B, 0x0000038B}, {0x0000038D, 0x0000038D}, {0x000003A2, 0x000003A2},
|
||||
{0x00000530, 0x00000530}, {0x00000557, 0x00000558}, {0x0000058B, 0x0000058C}, {0x00000590, 0x00000590},
|
||||
{0x000005C8, 0x000005CF}, {0x000005EB, 0x000005EE}, {0x000005F5, 0x00000605}, {0x0000061C, 0x0000061C},
|
||||
{0x000006DD, 0x000006DD}, {0x0000070E, 0x0000070F}, {0x0000074B, 0x0000074C}, {0x000007B2, 0x000007BF},
|
||||
{0x000007FB, 0x000007FC}, {0x0000082E, 0x0000082F}, {0x0000083F, 0x0000083F}, {0x0000085C, 0x0000085D},
|
||||
{0x0000085F, 0x0000085F}, {0x0000086B, 0x0000086F}, {0x0000088F, 0x00000897}, {0x000008E2, 0x000008E2},
|
||||
{0x00000984, 0x00000984}, {0x0000098D, 0x0000098E}, {0x00000991, 0x00000992}, {0x000009A9, 0x000009A9},
|
||||
{0x000009B1, 0x000009B1}, {0x000009B3, 0x000009B5}, {0x000009BA, 0x000009BB}, {0x000009C5, 0x000009C6},
|
||||
{0x000009C9, 0x000009CA}, {0x000009CF, 0x000009D6}, {0x000009D8, 0x000009DB}, {0x000009DE, 0x000009DE},
|
||||
{0x000009E4, 0x000009E5}, {0x000009FF, 0x00000A00}, {0x00000A04, 0x00000A04}, {0x00000A0B, 0x00000A0E},
|
||||
{0x00000A11, 0x00000A12}, {0x00000A29, 0x00000A29}, {0x00000A31, 0x00000A31}, {0x00000A34, 0x00000A34},
|
||||
{0x00000A37, 0x00000A37}, {0x00000A3A, 0x00000A3B}, {0x00000A3D, 0x00000A3D}, {0x00000A43, 0x00000A46},
|
||||
{0x00000A49, 0x00000A4A}, {0x00000A4E, 0x00000A50}, {0x00000A52, 0x00000A58}, {0x00000A5D, 0x00000A5D},
|
||||
{0x00000A5F, 0x00000A65}, {0x00000A77, 0x00000A80}, {0x00000A84, 0x00000A84}, {0x00000A8E, 0x00000A8E},
|
||||
{0x00000A92, 0x00000A92}, {0x00000AA9, 0x00000AA9}, {0x00000AB1, 0x00000AB1}, {0x00000AB4, 0x00000AB4},
|
||||
{0x00000ABA, 0x00000ABB}, {0x00000AC6, 0x00000AC6}, {0x00000ACA, 0x00000ACA}, {0x00000ACE, 0x00000ACF},
|
||||
{0x00000AD1, 0x00000ADF}, {0x00000AE4, 0x00000AE5}, {0x00000AF2, 0x00000AF8}, {0x00000B00, 0x00000B00},
|
||||
{0x00000B04, 0x00000B04}, {0x00000B0D, 0x00000B0E}, {0x00000B11, 0x00000B12}, {0x00000B29, 0x00000B29},
|
||||
{0x00000B31, 0x00000B31}, {0x00000B34, 0x00000B34}, {0x00000B3A, 0x00000B3B}, {0x00000B45, 0x00000B46},
|
||||
{0x00000B49, 0x00000B4A}, {0x00000B4E, 0x00000B54}, {0x00000B58, 0x00000B5B}, {0x00000B5E, 0x00000B5E},
|
||||
{0x00000B64, 0x00000B65}, {0x00000B78, 0x00000B81}, {0x00000B84, 0x00000B84}, {0x00000B8B, 0x00000B8D},
|
||||
{0x00000B91, 0x00000B91}, {0x00000B96, 0x00000B98}, {0x00000B9B, 0x00000B9B}, {0x00000B9D, 0x00000B9D},
|
||||
{0x00000BA0, 0x00000BA2}, {0x00000BA5, 0x00000BA7}, {0x00000BAB, 0x00000BAD}, {0x00000BBA, 0x00000BBD},
|
||||
{0x00000BC3, 0x00000BC5}, {0x00000BC9, 0x00000BC9}, {0x00000BCE, 0x00000BCF}, {0x00000BD1, 0x00000BD6},
|
||||
{0x00000BD8, 0x00000BE5}, {0x00000BFB, 0x00000BFF}, {0x00000C0D, 0x00000C0D}, {0x00000C11, 0x00000C11},
|
||||
{0x00000C29, 0x00000C29}, {0x00000C3A, 0x00000C3B}, {0x00000C45, 0x00000C45}, {0x00000C49, 0x00000C49},
|
||||
{0x00000C4E, 0x00000C54}, {0x00000C57, 0x00000C57}, {0x00000C5B, 0x00000C5C}, {0x00000C5E, 0x00000C5F},
|
||||
{0x00000C64, 0x00000C65}, {0x00000C70, 0x00000C76}, {0x00000C8D, 0x00000C8D}, {0x00000C91, 0x00000C91},
|
||||
{0x00000CA9, 0x00000CA9}, {0x00000CB4, 0x00000CB4}, {0x00000CBA, 0x00000CBB}, {0x00000CC5, 0x00000CC5},
|
||||
{0x00000CC9, 0x00000CC9}, {0x00000CCE, 0x00000CD4}, {0x00000CD7, 0x00000CDC}, {0x00000CDF, 0x00000CDF},
|
||||
{0x00000CE4, 0x00000CE5}, {0x00000CF0, 0x00000CF0}, {0x00000CF4, 0x00000CFF}, {0x00000D0D, 0x00000D0D},
|
||||
{0x00000D11, 0x00000D11}, {0x00000D45, 0x00000D45}, {0x00000D49, 0x00000D49}, {0x00000D50, 0x00000D53},
|
||||
{0x00000D64, 0x00000D65}, {0x00000D80, 0x00000D80}, {0x00000D84, 0x00000D84}, {0x00000D97, 0x00000D99},
|
||||
{0x00000DB2, 0x00000DB2}, {0x00000DBC, 0x00000DBC}, {0x00000DBE, 0x00000DBF}, {0x00000DC7, 0x00000DC9},
|
||||
{0x00000DCB, 0x00000DCE}, {0x00000DD5, 0x00000DD5}, {0x00000DD7, 0x00000DD7}, {0x00000DE0, 0x00000DE5},
|
||||
{0x00000DF0, 0x00000DF1}, {0x00000DF5, 0x00000E00}, {0x00000E3B, 0x00000E3E}, {0x00000E5C, 0x00000E80},
|
||||
{0x00000E83, 0x00000E83}, {0x00000E85, 0x00000E85}, {0x00000E8B, 0x00000E8B}, {0x00000EA4, 0x00000EA4},
|
||||
{0x00000EA6, 0x00000EA6}, {0x00000EBE, 0x00000EBF}, {0x00000EC5, 0x00000EC5}, {0x00000EC7, 0x00000EC7},
|
||||
{0x00000ECF, 0x00000ECF}, {0x00000EDA, 0x00000EDB}, {0x00000EE0, 0x00000EFF}, {0x00000F48, 0x00000F48},
|
||||
{0x00000F6D, 0x00000F70}, {0x00000F98, 0x00000F98}, {0x00000FBD, 0x00000FBD}, {0x00000FCD, 0x00000FCD},
|
||||
{0x00000FDB, 0x00000FFF}, {0x000010C6, 0x000010C6}, {0x000010C8, 0x000010CC}, {0x000010CE, 0x000010CF},
|
||||
{0x00001249, 0x00001249}, {0x0000124E, 0x0000124F}, {0x00001257, 0x00001257}, {0x00001259, 0x00001259},
|
||||
{0x0000125E, 0x0000125F}, {0x00001289, 0x00001289}, {0x0000128E, 0x0000128F}, {0x000012B1, 0x000012B1},
|
||||
{0x000012B6, 0x000012B7}, {0x000012BF, 0x000012BF}, {0x000012C1, 0x000012C1}, {0x000012C6, 0x000012C7},
|
||||
{0x000012D7, 0x000012D7}, {0x00001311, 0x00001311}, {0x00001316, 0x00001317}, {0x0000135B, 0x0000135C},
|
||||
{0x0000137D, 0x0000137F}, {0x0000139A, 0x0000139F}, {0x000013F6, 0x000013F7}, {0x000013FE, 0x000013FF},
|
||||
{0x0000169D, 0x0000169F}, {0x000016F9, 0x000016FF}, {0x00001716, 0x0000171E}, {0x00001737, 0x0000173F},
|
||||
{0x00001754, 0x0000175F}, {0x0000176D, 0x0000176D}, {0x00001771, 0x00001771}, {0x00001774, 0x0000177F},
|
||||
{0x000017DE, 0x000017DF}, {0x000017EA, 0x000017EF}, {0x000017FA, 0x000017FF}, {0x0000180E, 0x0000180E},
|
||||
{0x0000181A, 0x0000181F}, {0x00001879, 0x0000187F}, {0x000018AB, 0x000018AF}, {0x000018F6, 0x000018FF},
|
||||
{0x0000191F, 0x0000191F}, {0x0000192C, 0x0000192F}, {0x0000193C, 0x0000193F}, {0x00001941, 0x00001943},
|
||||
{0x0000196E, 0x0000196F}, {0x00001975, 0x0000197F}, {0x000019AC, 0x000019AF}, {0x000019CA, 0x000019CF},
|
||||
{0x000019DB, 0x000019DD}, {0x00001A1C, 0x00001A1D}, {0x00001A5F, 0x00001A5F}, {0x00001A7D, 0x00001A7E},
|
||||
{0x00001A8A, 0x00001A8F}, {0x00001A9A, 0x00001A9F}, {0x00001AAE, 0x00001AAF}, {0x00001ACF, 0x00001AFF},
|
||||
{0x00001B4D, 0x00001B4F}, {0x00001B7F, 0x00001B7F}, {0x00001BF4, 0x00001BFB}, {0x00001C38, 0x00001C3A},
|
||||
{0x00001C4A, 0x00001C4C}, {0x00001C89, 0x00001C8F}, {0x00001CBB, 0x00001CBC}, {0x00001CC8, 0x00001CCF},
|
||||
{0x00001CFB, 0x00001CFF}, {0x00001F16, 0x00001F17}, {0x00001F1E, 0x00001F1F}, {0x00001F46, 0x00001F47},
|
||||
{0x00001F4E, 0x00001F4F}, {0x00001F58, 0x00001F58}, {0x00001F5A, 0x00001F5A}, {0x00001F5C, 0x00001F5C},
|
||||
{0x00001F5E, 0x00001F5E}, {0x00001F7E, 0x00001F7F}, {0x00001FB5, 0x00001FB5}, {0x00001FC5, 0x00001FC5},
|
||||
{0x00001FD4, 0x00001FD5}, {0x00001FDC, 0x00001FDC}, {0x00001FF0, 0x00001FF1}, {0x00001FF5, 0x00001FF5},
|
||||
{0x00001FFF, 0x00001FFF}, {0x0000200B, 0x0000200F}, {0x0000202A, 0x0000202E}, {0x00002060, 0x0000206F},
|
||||
{0x00002072, 0x00002073}, {0x0000208F, 0x0000208F}, {0x0000209D, 0x0000209F}, {0x000020C0, 0x000020CF},
|
||||
{0x00002072, 0x00002073}, {0x0000208F, 0x0000208F}, {0x0000209D, 0x0000209F}, {0x000020C1, 0x000020CF},
|
||||
{0x000020F1, 0x000020FF}, {0x0000218C, 0x0000218F}, {0x00002427, 0x0000243F}, {0x0000244B, 0x0000245F},
|
||||
{0x00002B74, 0x00002B75}, {0x00002B96, 0x00002B96}, {0x00002C2F, 0x00002C2F}, {0x00002C5F, 0x00002C5F},
|
||||
{0x00002CF4, 0x00002CF8}, {0x00002D26, 0x00002D26}, {0x00002D28, 0x00002D2C}, {0x00002D2E, 0x00002D2F},
|
||||
{0x00002D68, 0x00002D6E}, {0x00002D71, 0x00002D7E}, {0x00002D97, 0x00002D9F}, {0x00002DA7, 0x00002DA7},
|
||||
{0x00002DAF, 0x00002DAF}, {0x00002DB7, 0x00002DB7}, {0x00002DBF, 0x00002DBF}, {0x00002DC7, 0x00002DC7},
|
||||
{0x00002DCF, 0x00002DCF}, {0x00002DD7, 0x00002DD7}, {0x00002DDF, 0x00002DDF}, {0x00002E53, 0x00002E7F},
|
||||
{0x00002E9A, 0x00002E9A}, {0x00002EF4, 0x00002EFF}, {0x00002FD6, 0x00002FEF}, {0x00002FFC, 0x00002FFF},
|
||||
{0x00003040, 0x00003040}, {0x00003097, 0x00003098}, {0x00003100, 0x00003104}, {0x00003130, 0x00003130},
|
||||
{0x0000318F, 0x0000318F}, {0x000031E4, 0x000031EF}, {0x0000321F, 0x0000321F}, {0x00009FFD, 0x00009FFF},
|
||||
{0x0000A48D, 0x0000A48F}, {0x0000A4C7, 0x0000A4CF}, {0x0000A62C, 0x0000A63F}, {0x0000A6F8, 0x0000A6FF},
|
||||
{0x0000A7C0, 0x0000A7C1}, {0x0000A7CB, 0x0000A7F4}, {0x0000A82D, 0x0000A82F}, {0x0000A83A, 0x0000A83F},
|
||||
{0x0000A878, 0x0000A87F}, {0x0000A8C6, 0x0000A8CD}, {0x0000A8DA, 0x0000A8DF}, {0x0000A954, 0x0000A95E},
|
||||
{0x0000A97D, 0x0000A97F}, {0x0000A9CE, 0x0000A9CE}, {0x0000A9DA, 0x0000A9DD}, {0x0000A9FF, 0x0000A9FF},
|
||||
{0x0000AA37, 0x0000AA3F}, {0x0000AA4E, 0x0000AA4F}, {0x0000AA5A, 0x0000AA5B}, {0x0000AAC3, 0x0000AADA},
|
||||
{0x0000AAF7, 0x0000AB00}, {0x0000AB07, 0x0000AB08}, {0x0000AB0F, 0x0000AB10}, {0x0000AB17, 0x0000AB1F},
|
||||
{0x0000AB27, 0x0000AB27}, {0x0000AB2F, 0x0000AB2F}, {0x0000AB6C, 0x0000AB6F}, {0x0000ABEE, 0x0000ABEF},
|
||||
{0x0000ABFA, 0x0000ABFF}, {0x0000D7A4, 0x0000D7AF}, {0x0000D7C7, 0x0000D7CA}, {0x0000D7FC, 0x0000F8FF},
|
||||
{0x00002B74, 0x00002B75}, {0x00002B96, 0x00002B96}, {0x00002CF4, 0x00002CF8}, {0x00002D26, 0x00002D26},
|
||||
{0x00002D28, 0x00002D2C}, {0x00002D2E, 0x00002D2F}, {0x00002D68, 0x00002D6E}, {0x00002D71, 0x00002D7E},
|
||||
{0x00002D97, 0x00002D9F}, {0x00002DA7, 0x00002DA7}, {0x00002DAF, 0x00002DAF}, {0x00002DB7, 0x00002DB7},
|
||||
{0x00002DBF, 0x00002DBF}, {0x00002DC7, 0x00002DC7}, {0x00002DCF, 0x00002DCF}, {0x00002DD7, 0x00002DD7},
|
||||
{0x00002DDF, 0x00002DDF}, {0x00002E5E, 0x00002E7F}, {0x00002E9A, 0x00002E9A}, {0x00002EF4, 0x00002EFF},
|
||||
{0x00002FD6, 0x00002FEF}, {0x00002FFC, 0x00002FFF}, {0x00003040, 0x00003040}, {0x00003097, 0x00003098},
|
||||
{0x00003100, 0x00003104}, {0x00003130, 0x00003130}, {0x0000318F, 0x0000318F}, {0x000031E4, 0x000031EF},
|
||||
{0x0000321F, 0x0000321F}, {0x0000A48D, 0x0000A48F}, {0x0000A4C7, 0x0000A4CF}, {0x0000A62C, 0x0000A63F},
|
||||
{0x0000A6F8, 0x0000A6FF}, {0x0000A7CB, 0x0000A7CF}, {0x0000A7D2, 0x0000A7D2}, {0x0000A7D4, 0x0000A7D4},
|
||||
{0x0000A7DA, 0x0000A7F1}, {0x0000A82D, 0x0000A82F}, {0x0000A83A, 0x0000A83F}, {0x0000A878, 0x0000A87F},
|
||||
{0x0000A8C6, 0x0000A8CD}, {0x0000A8DA, 0x0000A8DF}, {0x0000A954, 0x0000A95E}, {0x0000A97D, 0x0000A97F},
|
||||
{0x0000A9CE, 0x0000A9CE}, {0x0000A9DA, 0x0000A9DD}, {0x0000A9FF, 0x0000A9FF}, {0x0000AA37, 0x0000AA3F},
|
||||
{0x0000AA4E, 0x0000AA4F}, {0x0000AA5A, 0x0000AA5B}, {0x0000AAC3, 0x0000AADA}, {0x0000AAF7, 0x0000AB00},
|
||||
{0x0000AB07, 0x0000AB08}, {0x0000AB0F, 0x0000AB10}, {0x0000AB17, 0x0000AB1F}, {0x0000AB27, 0x0000AB27},
|
||||
{0x0000AB2F, 0x0000AB2F}, {0x0000AB6C, 0x0000AB6F}, {0x0000ABEE, 0x0000ABEF}, {0x0000ABFA, 0x0000ABFF},
|
||||
{0x0000D7A4, 0x0000D7AF}, {0x0000D7C7, 0x0000D7CA}, {0x0000D7FC, 0x0000D7FF}, {0x0000E000, 0x0000F8FF},
|
||||
{0x0000FA6E, 0x0000FA6F}, {0x0000FADA, 0x0000FAFF}, {0x0000FB07, 0x0000FB12}, {0x0000FB18, 0x0000FB1C},
|
||||
{0x0000FB37, 0x0000FB37}, {0x0000FB3D, 0x0000FB3D}, {0x0000FB3F, 0x0000FB3F}, {0x0000FB42, 0x0000FB42},
|
||||
{0x0000FB45, 0x0000FB45}, {0x0000FBC2, 0x0000FBD2}, {0x0000FD40, 0x0000FD4F}, {0x0000FD90, 0x0000FD91},
|
||||
{0x0000FDC8, 0x0000FDEF}, {0x0000FDFE, 0x0000FDFF}, {0x0000FE1A, 0x0000FE1F}, {0x0000FE53, 0x0000FE53},
|
||||
{0x0000FE67, 0x0000FE67}, {0x0000FE6C, 0x0000FE6F}, {0x0000FE75, 0x0000FE75}, {0x0000FEFD, 0x0000FF00},
|
||||
{0x0000FB45, 0x0000FB45}, {0x0000FBC3, 0x0000FBD2}, {0x0000FD90, 0x0000FD91}, {0x0000FDC8, 0x0000FDCE},
|
||||
{0x0000FDD0, 0x0000FDEF}, {0x0000FE1A, 0x0000FE1F}, {0x0000FE53, 0x0000FE53}, {0x0000FE67, 0x0000FE67},
|
||||
{0x0000FE6C, 0x0000FE6F}, {0x0000FE75, 0x0000FE75}, {0x0000FEFD, 0x0000FEFE}, {0x0000FF00, 0x0000FF00},
|
||||
{0x0000FFBF, 0x0000FFC1}, {0x0000FFC8, 0x0000FFC9}, {0x0000FFD0, 0x0000FFD1}, {0x0000FFD8, 0x0000FFD9},
|
||||
{0x0000FFDD, 0x0000FFDF}, {0x0000FFE7, 0x0000FFE7}, {0x0000FFEF, 0x0000FFFB}, {0x0000FFFE, 0x0000FFFF},
|
||||
{0x0001000C, 0x0001000C}, {0x00010027, 0x00010027}, {0x0001003B, 0x0001003B}, {0x0001003E, 0x0001003E},
|
||||
|
@ -476,82 +509,91 @@ const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_control = {
|
|||
{0x00010324, 0x0001032C}, {0x0001034B, 0x0001034F}, {0x0001037B, 0x0001037F}, {0x0001039E, 0x0001039E},
|
||||
{0x000103C4, 0x000103C7}, {0x000103D6, 0x000103FF}, {0x0001049E, 0x0001049F}, {0x000104AA, 0x000104AF},
|
||||
{0x000104D4, 0x000104D7}, {0x000104FC, 0x000104FF}, {0x00010528, 0x0001052F}, {0x00010564, 0x0001056E},
|
||||
{0x00010570, 0x000105FF}, {0x00010737, 0x0001073F}, {0x00010756, 0x0001075F}, {0x00010768, 0x000107FF},
|
||||
{0x00010806, 0x00010807}, {0x00010809, 0x00010809}, {0x00010836, 0x00010836}, {0x00010839, 0x0001083B},
|
||||
{0x0001083D, 0x0001083E}, {0x00010856, 0x00010856}, {0x0001089F, 0x000108A6}, {0x000108B0, 0x000108DF},
|
||||
{0x000108F3, 0x000108F3}, {0x000108F6, 0x000108FA}, {0x0001091C, 0x0001091E}, {0x0001093A, 0x0001093E},
|
||||
{0x00010940, 0x0001097F}, {0x000109B8, 0x000109BB}, {0x000109D0, 0x000109D1}, {0x00010A04, 0x00010A04},
|
||||
{0x00010A07, 0x00010A0B}, {0x00010A14, 0x00010A14}, {0x00010A18, 0x00010A18}, {0x00010A36, 0x00010A37},
|
||||
{0x00010A3B, 0x00010A3E}, {0x00010A49, 0x00010A4F}, {0x00010A59, 0x00010A5F}, {0x00010AA0, 0x00010ABF},
|
||||
{0x00010AE7, 0x00010AEA}, {0x00010AF7, 0x00010AFF}, {0x00010B36, 0x00010B38}, {0x00010B56, 0x00010B57},
|
||||
{0x00010B73, 0x00010B77}, {0x00010B92, 0x00010B98}, {0x00010B9D, 0x00010BA8}, {0x00010BB0, 0x00010BFF},
|
||||
{0x00010C49, 0x00010C7F}, {0x00010CB3, 0x00010CBF}, {0x00010CF3, 0x00010CF9}, {0x00010D28, 0x00010D2F},
|
||||
{0x00010D3A, 0x00010E5F}, {0x00010E7F, 0x00010E7F}, {0x00010EAA, 0x00010EAA}, {0x00010EAE, 0x00010EAF},
|
||||
{0x00010EB2, 0x00010EFF}, {0x00010F28, 0x00010F2F}, {0x00010F5A, 0x00010FAF}, {0x00010FCC, 0x00010FDF},
|
||||
{0x00010FF7, 0x00010FFF}, {0x0001104E, 0x00011051}, {0x00011070, 0x0001107E}, {0x000110BD, 0x000110BD},
|
||||
{0x000110C2, 0x000110CF}, {0x000110E9, 0x000110EF}, {0x000110FA, 0x000110FF}, {0x00011135, 0x00011135},
|
||||
{0x00011148, 0x0001114F}, {0x00011177, 0x0001117F}, {0x000111E0, 0x000111E0}, {0x000111F5, 0x000111FF},
|
||||
{0x00011212, 0x00011212}, {0x0001123F, 0x0001127F}, {0x00011287, 0x00011287}, {0x00011289, 0x00011289},
|
||||
{0x0001128E, 0x0001128E}, {0x0001129E, 0x0001129E}, {0x000112AA, 0x000112AF}, {0x000112EB, 0x000112EF},
|
||||
{0x000112FA, 0x000112FF}, {0x00011304, 0x00011304}, {0x0001130D, 0x0001130E}, {0x00011311, 0x00011312},
|
||||
{0x00011329, 0x00011329}, {0x00011331, 0x00011331}, {0x00011334, 0x00011334}, {0x0001133A, 0x0001133A},
|
||||
{0x00011345, 0x00011346}, {0x00011349, 0x0001134A}, {0x0001134E, 0x0001134F}, {0x00011351, 0x00011356},
|
||||
{0x00011358, 0x0001135C}, {0x00011364, 0x00011365}, {0x0001136D, 0x0001136F}, {0x00011375, 0x000113FF},
|
||||
{0x0001145C, 0x0001145C}, {0x00011462, 0x0001147F}, {0x000114C8, 0x000114CF}, {0x000114DA, 0x0001157F},
|
||||
{0x000115B6, 0x000115B7}, {0x000115DE, 0x000115FF}, {0x00011645, 0x0001164F}, {0x0001165A, 0x0001165F},
|
||||
{0x0001166D, 0x0001167F}, {0x000116B9, 0x000116BF}, {0x000116CA, 0x000116FF}, {0x0001171B, 0x0001171C},
|
||||
{0x0001172C, 0x0001172F}, {0x00011740, 0x000117FF}, {0x0001183C, 0x0001189F}, {0x000118F3, 0x000118FE},
|
||||
{0x00011907, 0x00011908}, {0x0001190A, 0x0001190B}, {0x00011914, 0x00011914}, {0x00011917, 0x00011917},
|
||||
{0x00011936, 0x00011936}, {0x00011939, 0x0001193A}, {0x00011947, 0x0001194F}, {0x0001195A, 0x0001199F},
|
||||
{0x000119A8, 0x000119A9}, {0x000119D8, 0x000119D9}, {0x000119E5, 0x000119FF}, {0x00011A48, 0x00011A4F},
|
||||
{0x00011AA3, 0x00011ABF}, {0x00011AF9, 0x00011BFF}, {0x00011C09, 0x00011C09}, {0x00011C37, 0x00011C37},
|
||||
{0x0001057B, 0x0001057B}, {0x0001058B, 0x0001058B}, {0x00010593, 0x00010593}, {0x00010596, 0x00010596},
|
||||
{0x000105A2, 0x000105A2}, {0x000105B2, 0x000105B2}, {0x000105BA, 0x000105BA}, {0x000105BD, 0x000105FF},
|
||||
{0x00010737, 0x0001073F}, {0x00010756, 0x0001075F}, {0x00010768, 0x0001077F}, {0x00010786, 0x00010786},
|
||||
{0x000107B1, 0x000107B1}, {0x000107BB, 0x000107FF}, {0x00010806, 0x00010807}, {0x00010809, 0x00010809},
|
||||
{0x00010836, 0x00010836}, {0x00010839, 0x0001083B}, {0x0001083D, 0x0001083E}, {0x00010856, 0x00010856},
|
||||
{0x0001089F, 0x000108A6}, {0x000108B0, 0x000108DF}, {0x000108F3, 0x000108F3}, {0x000108F6, 0x000108FA},
|
||||
{0x0001091C, 0x0001091E}, {0x0001093A, 0x0001093E}, {0x00010940, 0x0001097F}, {0x000109B8, 0x000109BB},
|
||||
{0x000109D0, 0x000109D1}, {0x00010A04, 0x00010A04}, {0x00010A07, 0x00010A0B}, {0x00010A14, 0x00010A14},
|
||||
{0x00010A18, 0x00010A18}, {0x00010A36, 0x00010A37}, {0x00010A3B, 0x00010A3E}, {0x00010A49, 0x00010A4F},
|
||||
{0x00010A59, 0x00010A5F}, {0x00010AA0, 0x00010ABF}, {0x00010AE7, 0x00010AEA}, {0x00010AF7, 0x00010AFF},
|
||||
{0x00010B36, 0x00010B38}, {0x00010B56, 0x00010B57}, {0x00010B73, 0x00010B77}, {0x00010B92, 0x00010B98},
|
||||
{0x00010B9D, 0x00010BA8}, {0x00010BB0, 0x00010BFF}, {0x00010C49, 0x00010C7F}, {0x00010CB3, 0x00010CBF},
|
||||
{0x00010CF3, 0x00010CF9}, {0x00010D28, 0x00010D2F}, {0x00010D3A, 0x00010E5F}, {0x00010E7F, 0x00010E7F},
|
||||
{0x00010EAA, 0x00010EAA}, {0x00010EAE, 0x00010EAF}, {0x00010EB2, 0x00010EFC}, {0x00010F28, 0x00010F2F},
|
||||
{0x00010F5A, 0x00010F6F}, {0x00010F8A, 0x00010FAF}, {0x00010FCC, 0x00010FDF}, {0x00010FF7, 0x00010FFF},
|
||||
{0x0001104E, 0x00011051}, {0x00011076, 0x0001107E}, {0x000110BD, 0x000110BD}, {0x000110C3, 0x000110CF},
|
||||
{0x000110E9, 0x000110EF}, {0x000110FA, 0x000110FF}, {0x00011135, 0x00011135}, {0x00011148, 0x0001114F},
|
||||
{0x00011177, 0x0001117F}, {0x000111E0, 0x000111E0}, {0x000111F5, 0x000111FF}, {0x00011212, 0x00011212},
|
||||
{0x00011242, 0x0001127F}, {0x00011287, 0x00011287}, {0x00011289, 0x00011289}, {0x0001128E, 0x0001128E},
|
||||
{0x0001129E, 0x0001129E}, {0x000112AA, 0x000112AF}, {0x000112EB, 0x000112EF}, {0x000112FA, 0x000112FF},
|
||||
{0x00011304, 0x00011304}, {0x0001130D, 0x0001130E}, {0x00011311, 0x00011312}, {0x00011329, 0x00011329},
|
||||
{0x00011331, 0x00011331}, {0x00011334, 0x00011334}, {0x0001133A, 0x0001133A}, {0x00011345, 0x00011346},
|
||||
{0x00011349, 0x0001134A}, {0x0001134E, 0x0001134F}, {0x00011351, 0x00011356}, {0x00011358, 0x0001135C},
|
||||
{0x00011364, 0x00011365}, {0x0001136D, 0x0001136F}, {0x00011375, 0x000113FF}, {0x0001145C, 0x0001145C},
|
||||
{0x00011462, 0x0001147F}, {0x000114C8, 0x000114CF}, {0x000114DA, 0x0001157F}, {0x000115B6, 0x000115B7},
|
||||
{0x000115DE, 0x000115FF}, {0x00011645, 0x0001164F}, {0x0001165A, 0x0001165F}, {0x0001166D, 0x0001167F},
|
||||
{0x000116BA, 0x000116BF}, {0x000116CA, 0x000116FF}, {0x0001171B, 0x0001171C}, {0x0001172C, 0x0001172F},
|
||||
{0x00011747, 0x000117FF}, {0x0001183C, 0x0001189F}, {0x000118F3, 0x000118FE}, {0x00011907, 0x00011908},
|
||||
{0x0001190A, 0x0001190B}, {0x00011914, 0x00011914}, {0x00011917, 0x00011917}, {0x00011936, 0x00011936},
|
||||
{0x00011939, 0x0001193A}, {0x00011947, 0x0001194F}, {0x0001195A, 0x0001199F}, {0x000119A8, 0x000119A9},
|
||||
{0x000119D8, 0x000119D9}, {0x000119E5, 0x000119FF}, {0x00011A48, 0x00011A4F}, {0x00011AA3, 0x00011AAF},
|
||||
{0x00011AF9, 0x00011AFF}, {0x00011B0A, 0x00011BFF}, {0x00011C09, 0x00011C09}, {0x00011C37, 0x00011C37},
|
||||
{0x00011C46, 0x00011C4F}, {0x00011C6D, 0x00011C6F}, {0x00011C90, 0x00011C91}, {0x00011CA8, 0x00011CA8},
|
||||
{0x00011CB7, 0x00011CFF}, {0x00011D07, 0x00011D07}, {0x00011D0A, 0x00011D0A}, {0x00011D37, 0x00011D39},
|
||||
{0x00011D3B, 0x00011D3B}, {0x00011D3E, 0x00011D3E}, {0x00011D48, 0x00011D4F}, {0x00011D5A, 0x00011D5F},
|
||||
{0x00011D66, 0x00011D66}, {0x00011D69, 0x00011D69}, {0x00011D8F, 0x00011D8F}, {0x00011D92, 0x00011D92},
|
||||
{0x00011D99, 0x00011D9F}, {0x00011DAA, 0x00011EDF}, {0x00011EF9, 0x00011FAF}, {0x00011FB1, 0x00011FBF},
|
||||
{0x00011FF2, 0x00011FFE}, {0x0001239A, 0x000123FF}, {0x0001246F, 0x0001246F}, {0x00012475, 0x0001247F},
|
||||
{0x00012544, 0x00012FFF}, {0x0001342F, 0x000143FF}, {0x00014647, 0x000167FF}, {0x00016A39, 0x00016A3F},
|
||||
{0x00016A5F, 0x00016A5F}, {0x00016A6A, 0x00016A6D}, {0x00016A70, 0x00016ACF}, {0x00016AEE, 0x00016AEF},
|
||||
{0x00016AF6, 0x00016AFF}, {0x00016B46, 0x00016B4F}, {0x00016B5A, 0x00016B5A}, {0x00016B62, 0x00016B62},
|
||||
{0x00016B78, 0x00016B7C}, {0x00016B90, 0x00016E3F}, {0x00016E9B, 0x00016EFF}, {0x00016F4B, 0x00016F4E},
|
||||
{0x00016F88, 0x00016F8E}, {0x00016FA0, 0x00016FDF}, {0x00016FE5, 0x00016FEF}, {0x00016FF2, 0x00016FFF},
|
||||
{0x000187F8, 0x000187FF}, {0x00018CD6, 0x00018CFF}, {0x00018D09, 0x0001AFFF}, {0x0001B11F, 0x0001B14F},
|
||||
{0x0001B153, 0x0001B163}, {0x0001B168, 0x0001B16F}, {0x0001B2FC, 0x0001BBFF}, {0x0001BC6B, 0x0001BC6F},
|
||||
{0x0001BC7D, 0x0001BC7F}, {0x0001BC89, 0x0001BC8F}, {0x0001BC9A, 0x0001BC9B}, {0x0001BCA0, 0x0001CFFF},
|
||||
{0x0001D0F6, 0x0001D0FF}, {0x0001D127, 0x0001D128}, {0x0001D173, 0x0001D17A}, {0x0001D1E9, 0x0001D1FF},
|
||||
{0x0001D246, 0x0001D2DF}, {0x0001D2F4, 0x0001D2FF}, {0x0001D357, 0x0001D35F}, {0x0001D379, 0x0001D3FF},
|
||||
{0x0001D455, 0x0001D455}, {0x0001D49D, 0x0001D49D}, {0x0001D4A0, 0x0001D4A1}, {0x0001D4A3, 0x0001D4A4},
|
||||
{0x0001D4A7, 0x0001D4A8}, {0x0001D4AD, 0x0001D4AD}, {0x0001D4BA, 0x0001D4BA}, {0x0001D4BC, 0x0001D4BC},
|
||||
{0x0001D4C4, 0x0001D4C4}, {0x0001D506, 0x0001D506}, {0x0001D50B, 0x0001D50C}, {0x0001D515, 0x0001D515},
|
||||
{0x0001D51D, 0x0001D51D}, {0x0001D53A, 0x0001D53A}, {0x0001D53F, 0x0001D53F}, {0x0001D545, 0x0001D545},
|
||||
{0x0001D547, 0x0001D549}, {0x0001D551, 0x0001D551}, {0x0001D6A6, 0x0001D6A7}, {0x0001D7CC, 0x0001D7CD},
|
||||
{0x0001DA8C, 0x0001DA9A}, {0x0001DAA0, 0x0001DAA0}, {0x0001DAB0, 0x0001DFFF}, {0x0001E007, 0x0001E007},
|
||||
{0x0001E019, 0x0001E01A}, {0x0001E022, 0x0001E022}, {0x0001E025, 0x0001E025}, {0x0001E02B, 0x0001E0FF},
|
||||
{0x0001E12D, 0x0001E12F}, {0x0001E13E, 0x0001E13F}, {0x0001E14A, 0x0001E14D}, {0x0001E150, 0x0001E2BF},
|
||||
{0x0001E2FA, 0x0001E2FE}, {0x0001E300, 0x0001E7FF}, {0x0001E8C5, 0x0001E8C6}, {0x0001E8D7, 0x0001E8FF},
|
||||
{0x0001E94C, 0x0001E94F}, {0x0001E95A, 0x0001E95D}, {0x0001E960, 0x0001EC70}, {0x0001ECB5, 0x0001ED00},
|
||||
{0x0001ED3E, 0x0001EDFF}, {0x0001EE04, 0x0001EE04}, {0x0001EE20, 0x0001EE20}, {0x0001EE23, 0x0001EE23},
|
||||
{0x0001EE25, 0x0001EE26}, {0x0001EE28, 0x0001EE28}, {0x0001EE33, 0x0001EE33}, {0x0001EE38, 0x0001EE38},
|
||||
{0x0001EE3A, 0x0001EE3A}, {0x0001EE3C, 0x0001EE41}, {0x0001EE43, 0x0001EE46}, {0x0001EE48, 0x0001EE48},
|
||||
{0x0001EE4A, 0x0001EE4A}, {0x0001EE4C, 0x0001EE4C}, {0x0001EE50, 0x0001EE50}, {0x0001EE53, 0x0001EE53},
|
||||
{0x0001EE55, 0x0001EE56}, {0x0001EE58, 0x0001EE58}, {0x0001EE5A, 0x0001EE5A}, {0x0001EE5C, 0x0001EE5C},
|
||||
{0x0001EE5E, 0x0001EE5E}, {0x0001EE60, 0x0001EE60}, {0x0001EE63, 0x0001EE63}, {0x0001EE65, 0x0001EE66},
|
||||
{0x0001EE6B, 0x0001EE6B}, {0x0001EE73, 0x0001EE73}, {0x0001EE78, 0x0001EE78}, {0x0001EE7D, 0x0001EE7D},
|
||||
{0x0001EE7F, 0x0001EE7F}, {0x0001EE8A, 0x0001EE8A}, {0x0001EE9C, 0x0001EEA0}, {0x0001EEA4, 0x0001EEA4},
|
||||
{0x0001EEAA, 0x0001EEAA}, {0x0001EEBC, 0x0001EEEF}, {0x0001EEF2, 0x0001EFFF}, {0x0001F02C, 0x0001F02F},
|
||||
{0x0001F094, 0x0001F09F}, {0x0001F0AF, 0x0001F0B0}, {0x0001F0C0, 0x0001F0C0}, {0x0001F0D0, 0x0001F0D0},
|
||||
{0x0001F0F6, 0x0001F0FF}, {0x0001F1AE, 0x0001F1E5}, {0x0001F203, 0x0001F20F}, {0x0001F23C, 0x0001F23F},
|
||||
{0x0001F249, 0x0001F24F}, {0x0001F252, 0x0001F25F}, {0x0001F266, 0x0001F2FF}, {0x0001F6D8, 0x0001F6DF},
|
||||
{0x0001F6ED, 0x0001F6EF}, {0x0001F6FD, 0x0001F6FF}, {0x0001F774, 0x0001F77F}, {0x0001F7D9, 0x0001F7DF},
|
||||
{0x0001F7EC, 0x0001F7FF}, {0x0001F80C, 0x0001F80F}, {0x0001F848, 0x0001F84F}, {0x0001F85A, 0x0001F85F},
|
||||
{0x0001F888, 0x0001F88F}, {0x0001F8AE, 0x0001F8AF}, {0x0001F8B2, 0x0001F8FF}, {0x0001F979, 0x0001F979},
|
||||
{0x0001F9CC, 0x0001F9CC}, {0x0001FA54, 0x0001FA5F}, {0x0001FA6E, 0x0001FA6F}, {0x0001FA75, 0x0001FA77},
|
||||
{0x0001FA7B, 0x0001FA7F}, {0x0001FA87, 0x0001FA8F}, {0x0001FAA9, 0x0001FAAF}, {0x0001FAB7, 0x0001FABF},
|
||||
{0x0001FAC3, 0x0001FACF}, {0x0001FAD7, 0x0001FAFF}, {0x0001FB93, 0x0001FB93}, {0x0001FBCB, 0x0001FBEF},
|
||||
{0x0001FBFA, 0x0001FFFF}, {0x0002A6DE, 0x0002A6FF}, {0x0002B735, 0x0002B73F}, {0x0002B81E, 0x0002B81F},
|
||||
{0x0002CEA2, 0x0002CEAF}, {0x0002EBE1, 0x0002F7FF}, {0x0002FA1E, 0x0002FFFF}, {0x0003134B, 0x000E00FF},
|
||||
{0x000E01F0, 0x0010FFFF},
|
||||
{0x00011D99, 0x00011D9F}, {0x00011DAA, 0x00011EDF}, {0x00011EF9, 0x00011EFF}, {0x00011F11, 0x00011F11},
|
||||
{0x00011F3B, 0x00011F3D}, {0x00011F5A, 0x00011FAF}, {0x00011FB1, 0x00011FBF}, {0x00011FF2, 0x00011FFE},
|
||||
{0x0001239A, 0x000123FF}, {0x0001246F, 0x0001246F}, {0x00012475, 0x0001247F}, {0x00012544, 0x00012F8F},
|
||||
{0x00012FF3, 0x00012FFF}, {0x00013430, 0x0001343F}, {0x00013456, 0x000143FF}, {0x00014647, 0x000167FF},
|
||||
{0x00016A39, 0x00016A3F}, {0x00016A5F, 0x00016A5F}, {0x00016A6A, 0x00016A6D}, {0x00016ABF, 0x00016ABF},
|
||||
{0x00016ACA, 0x00016ACF}, {0x00016AEE, 0x00016AEF}, {0x00016AF6, 0x00016AFF}, {0x00016B46, 0x00016B4F},
|
||||
{0x00016B5A, 0x00016B5A}, {0x00016B62, 0x00016B62}, {0x00016B78, 0x00016B7C}, {0x00016B90, 0x00016E3F},
|
||||
{0x00016E9B, 0x00016EFF}, {0x00016F4B, 0x00016F4E}, {0x00016F88, 0x00016F8E}, {0x00016FA0, 0x00016FDF},
|
||||
{0x00016FE5, 0x00016FEF}, {0x00016FF2, 0x00016FFF}, {0x000187F8, 0x000187FF}, {0x00018CD6, 0x00018CFF},
|
||||
{0x00018D09, 0x0001AFEF}, {0x0001AFF4, 0x0001AFF4}, {0x0001AFFC, 0x0001AFFC}, {0x0001AFFF, 0x0001AFFF},
|
||||
{0x0001B123, 0x0001B131}, {0x0001B133, 0x0001B14F}, {0x0001B153, 0x0001B154}, {0x0001B156, 0x0001B163},
|
||||
{0x0001B168, 0x0001B16F}, {0x0001B2FC, 0x0001BBFF}, {0x0001BC6B, 0x0001BC6F}, {0x0001BC7D, 0x0001BC7F},
|
||||
{0x0001BC89, 0x0001BC8F}, {0x0001BC9A, 0x0001BC9B}, {0x0001BCA0, 0x0001CEFF}, {0x0001CF2E, 0x0001CF2F},
|
||||
{0x0001CF47, 0x0001CF4F}, {0x0001CFC4, 0x0001CFFF}, {0x0001D0F6, 0x0001D0FF}, {0x0001D127, 0x0001D128},
|
||||
{0x0001D173, 0x0001D17A}, {0x0001D1EB, 0x0001D1FF}, {0x0001D246, 0x0001D2BF}, {0x0001D2D4, 0x0001D2DF},
|
||||
{0x0001D2F4, 0x0001D2FF}, {0x0001D357, 0x0001D35F}, {0x0001D379, 0x0001D3FF}, {0x0001D455, 0x0001D455},
|
||||
{0x0001D49D, 0x0001D49D}, {0x0001D4A0, 0x0001D4A1}, {0x0001D4A3, 0x0001D4A4}, {0x0001D4A7, 0x0001D4A8},
|
||||
{0x0001D4AD, 0x0001D4AD}, {0x0001D4BA, 0x0001D4BA}, {0x0001D4BC, 0x0001D4BC}, {0x0001D4C4, 0x0001D4C4},
|
||||
{0x0001D506, 0x0001D506}, {0x0001D50B, 0x0001D50C}, {0x0001D515, 0x0001D515}, {0x0001D51D, 0x0001D51D},
|
||||
{0x0001D53A, 0x0001D53A}, {0x0001D53F, 0x0001D53F}, {0x0001D545, 0x0001D545}, {0x0001D547, 0x0001D549},
|
||||
{0x0001D551, 0x0001D551}, {0x0001D6A6, 0x0001D6A7}, {0x0001D7CC, 0x0001D7CD}, {0x0001DA8C, 0x0001DA9A},
|
||||
{0x0001DAA0, 0x0001DAA0}, {0x0001DAB0, 0x0001DEFF}, {0x0001DF1F, 0x0001DF24}, {0x0001DF2B, 0x0001DFFF},
|
||||
{0x0001E007, 0x0001E007}, {0x0001E019, 0x0001E01A}, {0x0001E022, 0x0001E022}, {0x0001E025, 0x0001E025},
|
||||
{0x0001E02B, 0x0001E02F}, {0x0001E06E, 0x0001E08E}, {0x0001E090, 0x0001E0FF}, {0x0001E12D, 0x0001E12F},
|
||||
{0x0001E13E, 0x0001E13F}, {0x0001E14A, 0x0001E14D}, {0x0001E150, 0x0001E28F}, {0x0001E2AF, 0x0001E2BF},
|
||||
{0x0001E2FA, 0x0001E2FE}, {0x0001E300, 0x0001E4CF}, {0x0001E4FA, 0x0001E7DF}, {0x0001E7E7, 0x0001E7E7},
|
||||
{0x0001E7EC, 0x0001E7EC}, {0x0001E7EF, 0x0001E7EF}, {0x0001E7FF, 0x0001E7FF}, {0x0001E8C5, 0x0001E8C6},
|
||||
{0x0001E8D7, 0x0001E8FF}, {0x0001E94C, 0x0001E94F}, {0x0001E95A, 0x0001E95D}, {0x0001E960, 0x0001EC70},
|
||||
{0x0001ECB5, 0x0001ED00}, {0x0001ED3E, 0x0001EDFF}, {0x0001EE04, 0x0001EE04}, {0x0001EE20, 0x0001EE20},
|
||||
{0x0001EE23, 0x0001EE23}, {0x0001EE25, 0x0001EE26}, {0x0001EE28, 0x0001EE28}, {0x0001EE33, 0x0001EE33},
|
||||
{0x0001EE38, 0x0001EE38}, {0x0001EE3A, 0x0001EE3A}, {0x0001EE3C, 0x0001EE41}, {0x0001EE43, 0x0001EE46},
|
||||
{0x0001EE48, 0x0001EE48}, {0x0001EE4A, 0x0001EE4A}, {0x0001EE4C, 0x0001EE4C}, {0x0001EE50, 0x0001EE50},
|
||||
{0x0001EE53, 0x0001EE53}, {0x0001EE55, 0x0001EE56}, {0x0001EE58, 0x0001EE58}, {0x0001EE5A, 0x0001EE5A},
|
||||
{0x0001EE5C, 0x0001EE5C}, {0x0001EE5E, 0x0001EE5E}, {0x0001EE60, 0x0001EE60}, {0x0001EE63, 0x0001EE63},
|
||||
{0x0001EE65, 0x0001EE66}, {0x0001EE6B, 0x0001EE6B}, {0x0001EE73, 0x0001EE73}, {0x0001EE78, 0x0001EE78},
|
||||
{0x0001EE7D, 0x0001EE7D}, {0x0001EE7F, 0x0001EE7F}, {0x0001EE8A, 0x0001EE8A}, {0x0001EE9C, 0x0001EEA0},
|
||||
{0x0001EEA4, 0x0001EEA4}, {0x0001EEAA, 0x0001EEAA}, {0x0001EEBC, 0x0001EEEF}, {0x0001EEF2, 0x0001EFFF},
|
||||
{0x0001F02C, 0x0001F02F}, {0x0001F094, 0x0001F09F}, {0x0001F0AF, 0x0001F0B0}, {0x0001F0C0, 0x0001F0C0},
|
||||
{0x0001F0D0, 0x0001F0D0}, {0x0001F0F6, 0x0001F0FF}, {0x0001F1AE, 0x0001F1E5}, {0x0001F203, 0x0001F20F},
|
||||
{0x0001F23C, 0x0001F23F}, {0x0001F249, 0x0001F24F}, {0x0001F252, 0x0001F25F}, {0x0001F266, 0x0001F2FF},
|
||||
{0x0001F6D8, 0x0001F6DB}, {0x0001F6ED, 0x0001F6EF}, {0x0001F6FD, 0x0001F6FF}, {0x0001F777, 0x0001F77A},
|
||||
{0x0001F7DA, 0x0001F7DF}, {0x0001F7EC, 0x0001F7EF}, {0x0001F7F1, 0x0001F7FF}, {0x0001F80C, 0x0001F80F},
|
||||
{0x0001F848, 0x0001F84F}, {0x0001F85A, 0x0001F85F}, {0x0001F888, 0x0001F88F}, {0x0001F8AE, 0x0001F8AF},
|
||||
{0x0001F8B2, 0x0001F8FF}, {0x0001FA54, 0x0001FA5F}, {0x0001FA6E, 0x0001FA6F}, {0x0001FA7D, 0x0001FA7F},
|
||||
{0x0001FA89, 0x0001FA8F}, {0x0001FABE, 0x0001FABE}, {0x0001FAC6, 0x0001FACD}, {0x0001FADC, 0x0001FADF},
|
||||
{0x0001FAE9, 0x0001FAEF}, {0x0001FAF9, 0x0001FAFF}, {0x0001FB93, 0x0001FB93}, {0x0001FBCB, 0x0001FBEF},
|
||||
{0x0001FBFA, 0x0001FFFF}, {0x0002A6E0, 0x0002A6FF}, {0x0002B73A, 0x0002B73F}, {0x0002B81E, 0x0002B81F},
|
||||
{0x0002CEA2, 0x0002CEAF}, {0x0002EBE1, 0x0002F7FF}, {0x0002FA1E, 0x0002FFFF}, {0x0003134B, 0x0003134F},
|
||||
{0x000323B0, 0x000E00FF}, {0x000E01F0, 0x0010FFFF},
|
||||
};
|
||||
|
||||
const std::multimap<uint32_t, uint32_t> unicode_map_nfd = {
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_digit;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_number;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark;
|
||||
|
|
22
unicode.cpp
22
unicode.cpp
|
@ -112,9 +112,9 @@ static uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset)
|
|||
|
||||
static std::unordered_map<uint32_t, int> unicode_cpt_type_map() {
|
||||
std::unordered_map<uint32_t, int> cpt_types;
|
||||
for (auto p : unicode_ranges_digit) {
|
||||
for (auto p : unicode_ranges_number) {
|
||||
for (auto i = p.first; i <= p.second; ++ i) {
|
||||
cpt_types[i] = CODEPOINT_TYPE_DIGIT;
|
||||
cpt_types[i] = CODEPOINT_TYPE_NUMBER;
|
||||
}
|
||||
}
|
||||
for (auto p : unicode_ranges_letter) {
|
||||
|
@ -302,13 +302,13 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
|
|||
collecting_letter = true;
|
||||
collecting = true;
|
||||
}
|
||||
else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
|
||||
else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_NUMBER || (token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_NUMBER)) {
|
||||
collecting_numeric = true;
|
||||
collecting = true;
|
||||
}
|
||||
else if (
|
||||
((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
|
||||
(token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
|
||||
((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_NUMBER) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
|
||||
(token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_NUMBER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
|
||||
) {
|
||||
collecting_special = true;
|
||||
collecting = true;
|
||||
|
@ -325,13 +325,13 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
|
|||
if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
|
||||
split_condition = true;
|
||||
}
|
||||
else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
|
||||
else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_NUMBER) {
|
||||
split_condition = true;
|
||||
}
|
||||
else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
|
||||
else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_NUMBER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
|
||||
split_condition = true;
|
||||
}
|
||||
else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
|
||||
else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_NUMBER)) {
|
||||
split_condition = true;
|
||||
}
|
||||
}
|
||||
|
@ -596,19 +596,19 @@ char32_t unicode_tolower(char32_t cp) {
|
|||
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
|
||||
// unicode categories
|
||||
static const std::map<std::string, int> k_ucat_enum = {
|
||||
{ "\\p{N}", CODEPOINT_TYPE_DIGIT },
|
||||
{ "\\p{N}", CODEPOINT_TYPE_NUMBER },
|
||||
{ "\\p{L}", CODEPOINT_TYPE_LETTER },
|
||||
{ "\\p{P}", CODEPOINT_TYPE_PUNCTUATION },
|
||||
};
|
||||
|
||||
static const std::map<int, int> k_ucat_cpt = {
|
||||
{ CODEPOINT_TYPE_DIGIT, 0xD1 },
|
||||
{ CODEPOINT_TYPE_NUMBER, 0xD1 },
|
||||
{ CODEPOINT_TYPE_LETTER, 0xD2 },
|
||||
{ CODEPOINT_TYPE_PUNCTUATION, 0xD3 },
|
||||
};
|
||||
|
||||
static const std::map<int, std::string> k_ucat_map = {
|
||||
{ CODEPOINT_TYPE_DIGIT, "\x30-\x39" }, // 0-9
|
||||
{ CODEPOINT_TYPE_NUMBER, "\x30-\x39" }, // 0-9
|
||||
{ CODEPOINT_TYPE_LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
|
||||
{ CODEPOINT_TYPE_PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
|
||||
};
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
#include <vector>
|
||||
|
||||
#define CODEPOINT_TYPE_UNIDENTIFIED 0
|
||||
#define CODEPOINT_TYPE_DIGIT 1
|
||||
#define CODEPOINT_TYPE_NUMBER 1
|
||||
#define CODEPOINT_TYPE_LETTER 2
|
||||
#define CODEPOINT_TYPE_WHITESPACE 3
|
||||
#define CODEPOINT_TYPE_ACCENT_MARK 4
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue