Add example clip cli and enhance tensor name processing in Janus converter
This commit is contained in:
parent
b7fafb7f2a
commit
3667a0a4a3
2 changed files with 182 additions and 35 deletions
|
@ -37,17 +37,64 @@ def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: b
|
|||
return False
|
||||
|
||||
|
||||
def get_tensor_name(name: str) -> str:
|
||||
if "projection" in name:
|
||||
return name
|
||||
if "mm_projector" in name:
|
||||
name = name.replace("model.mm_projector", "mm")
|
||||
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
|
||||
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
|
||||
return name
|
||||
def get_tensor_name_from_janus(name: str) -> str:
|
||||
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.attn\.qkv\.(weight|bias)$', r'v.blk.\1.attn_qkv.\2',name)
|
||||
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.norm1\.(.*)$', r'v.blk.\1.ln1.\2', name)
|
||||
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.attn\.proj\.(.*)$', r'v.blk.\1.attn_out.\2', name)
|
||||
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.norm2\.(.*)$', r'v.blk.\1.ln2.\2', name)
|
||||
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.mlp\.fc1\.(.*)$', r'v.blk.\1.ffn_down.\2', name)
|
||||
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.mlp\.fc2\.(.*)$', r'v.blk.\1.ffn_up.\2', name)
|
||||
name = re.sub(r'^vision_tower\.patch_embed\.proj\.(.*)$', r'v.patch_embd.\1', name)
|
||||
name = re.sub(r'^vision_tower\.pos_embed$', r'v.position_embd.weight', name)
|
||||
name = re.sub(r'^vision_tower\.norm\.(weight|bias)$', r'v.post_ln.\1', name)
|
||||
|
||||
name = name.replace("vision_tower", "v")
|
||||
name = name.replace("text_model", "t")
|
||||
name = name.replace("vision_model", "v")
|
||||
name = name.replace("encoder.layers", "blk")
|
||||
name = name.replace("blocks", "blk")
|
||||
name = name.replace("embeddings.", "")
|
||||
name = name.replace("_proj", "")
|
||||
name = name.replace("self_attn.", "attn_")
|
||||
name = name.replace("layer_norm", "ln")
|
||||
name = name.replace("layernorm", "ln")
|
||||
name = name.replace("mlp.fc1", "ffn_down")
|
||||
name = name.replace("mlp.fc2", "ffn_up")
|
||||
name = name.replace("embedding", "embd")
|
||||
name = name.replace("final", "post")
|
||||
name = name.replace("layrnorm", "ln")
|
||||
|
||||
return name
|
||||
|
||||
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
||||
|
||||
def process_and_save_tensor(tensor: torch.Tensor, new_name: str, ftype: int, fout) -> None:
|
||||
"""Process a tensor (squeeze, cast dtype, log) and save it to `fout`."""
|
||||
data = tensor.squeeze().numpy()
|
||||
n_dims = len(data.shape)
|
||||
ftype_str = {0: "f32", 1: "f16"}
|
||||
|
||||
ftype_cur = 0
|
||||
if n_dims == 4:
|
||||
print(f"tensor {new_name} is always saved in f16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
elif ftype == 1:
|
||||
if new_name.endswith(".weight") and n_dims == 2:
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
print(f"{new_name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||||
fout.add_tensor(new_name, data)
|
||||
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
|
@ -261,35 +308,17 @@ for name, data in state_dict.items():
|
|||
print(f"skipping parameter: {name}")
|
||||
continue
|
||||
|
||||
name = get_tensor_name(name)
|
||||
data = data.squeeze().numpy()
|
||||
name = get_tensor_name_from_janus(name)
|
||||
|
||||
n_dims = len(data.shape)
|
||||
# Handle the qkv projection weights and biases
|
||||
if "qkv" in name:
|
||||
q_tensor, k_tensor, v_tensor = torch.chunk(data, 3, dim=0)
|
||||
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype_cur = 0
|
||||
if n_dims == 4:
|
||||
print(f"tensor {name} is always saved in f16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
elif ftype == 1:
|
||||
if name[-7:] == ".weight" and n_dims == 2:
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
process_and_save_tensor(q_tensor, name.replace("qkv", "q"), ftype, fout)
|
||||
process_and_save_tensor(k_tensor, name.replace("qkv", "k"), ftype, fout)
|
||||
process_and_save_tensor(v_tensor, name.replace("qkv", "v"), ftype, fout)
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||||
fout.add_tensor(name, data)
|
||||
|
||||
process_and_save_tensor(data, name, ftype, fout)
|
||||
|
||||
fout.write_header_to_file()
|
||||
fout.write_kv_data_to_file()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue