Add example clip cli and enhance tensor name processing in Janus converter

This commit is contained in:
ravenouse 2025-02-05 20:42:35 +00:00
parent b7fafb7f2a
commit 3667a0a4a3
2 changed files with 182 additions and 35 deletions

118
examples/llava/clip-cli.cpp Normal file
View file

@ -0,0 +1,118 @@
//
// Example usage of just the vision encoder (CLIP) part of the LLAVA codebase.
// It loads a CLIP model (gguf file) and an image file,
// computes the image embedding, and prints out (a few elements of) the embedding.
//
// Build and run (for example):
// ./bin/llama-clip-cli -c model.gguf -i input.png --threads 1 --verbosity 1
// ./bin/llama-clip-cli -c clip.gguf -i input.png --threads 1 --verbosity 1
#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "clip.h"
#include "llava.h"
#include "ggml.h"
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>
#include <algorithm>
// Structure to hold our command line parameters.
struct vision_params {
std::string clip_model; // Path to the CLIP model file (gguf)
std::string image_file; // Path to the image file to process
int n_threads = 1; // Number of CPU threads to use
int verbosity = 1; // Verbosity level for model loading
};
static void print_usage(const char* progname) {
LOG("\nUsage: %s -c <clip_model_path> -i <image_file> [--threads <n_threads>] [--verbosity <level>]\n\n", progname);
}
int main(int argc, char ** argv) {
ggml_time_init();
vision_params params;
// Simple command line parsing
if (argc < 5) {
print_usage(argv[0]);
return 1;
}
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-c" || arg == "--clip") {
if (i + 1 < argc) {
params.clip_model = argv[++i];
} else {
print_usage(argv[0]);
return 1;
}
} else if (arg == "-i" || arg == "--image") {
if (i + 1 < argc) {
params.image_file = argv[++i];
} else {
print_usage(argv[0]);
return 1;
}
} else if (arg == "--threads") {
if (i + 1 < argc) {
params.n_threads = std::atoi(argv[++i]);
} else {
print_usage(argv[0]);
return 1;
}
} else if (arg == "--verbosity") {
if (i + 1 < argc) {
params.verbosity = std::atoi(argv[++i]);
} else {
print_usage(argv[0]);
return 1;
}
} else {
// Unknown argument.
print_usage(argv[0]);
return 1;
}
}
if (params.clip_model.empty() || params.image_file.empty()) {
print_usage(argv[0]);
return 1;
}
// Load the CLIP model.
struct clip_ctx * ctx_clip = clip_model_load(params.clip_model.c_str(), params.verbosity);
if (!ctx_clip) {
LOG_ERR("Failed to load clip model from %s\n", params.clip_model.c_str());
return 1;
}
LOG_INF("Clip model loaded from %s\n", params.clip_model.c_str());
// Load and process the image.
llava_image_embed * embed = llava_image_embed_make_with_filename(ctx_clip, params.n_threads, params.image_file.c_str());
if (!embed) {
LOG_ERR("Failed to load or process image from %s\n", params.image_file.c_str());
clip_free(ctx_clip);
return 1;
}
LOG_INF("Image loaded and processed from %s\n", params.image_file.c_str());
LOG_INF("Image embedding computed with %d positions.\n", embed->n_image_pos);
int print_count = (embed->n_image_pos < 10 ? embed->n_image_pos : 10);
LOG_INF("First %d elements: ", print_count);
for (int i = 0; i < print_count; i++) {
LOG_INF("%f ", embed->embed[i]);
}
LOG_INF("\n");
llava_image_embed_free(embed);
clip_free(ctx_clip);
return 0;
}

View file

@ -37,17 +37,64 @@ def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: b
return False
def get_tensor_name(name: str) -> str:
if "projection" in name:
return name
if "mm_projector" in name:
name = name.replace("model.mm_projector", "mm")
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
def get_tensor_name_from_janus(name: str) -> str:
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.attn\.qkv\.(weight|bias)$', r'v.blk.\1.attn_qkv.\2',name)
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.norm1\.(.*)$', r'v.blk.\1.ln1.\2', name)
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.attn\.proj\.(.*)$', r'v.blk.\1.attn_out.\2', name)
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.norm2\.(.*)$', r'v.blk.\1.ln2.\2', name)
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.mlp\.fc1\.(.*)$', r'v.blk.\1.ffn_down.\2', name)
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.mlp\.fc2\.(.*)$', r'v.blk.\1.ffn_up.\2', name)
name = re.sub(r'^vision_tower\.patch_embed\.proj\.(.*)$', r'v.patch_embd.\1', name)
name = re.sub(r'^vision_tower\.pos_embed$', r'v.position_embd.weight', name)
name = re.sub(r'^vision_tower\.norm\.(weight|bias)$', r'v.post_ln.\1', name)
name = name.replace("vision_tower", "v")
name = name.replace("text_model", "t")
name = name.replace("vision_model", "v")
name = name.replace("encoder.layers", "blk")
name = name.replace("blocks", "blk")
name = name.replace("embeddings.", "")
name = name.replace("_proj", "")
name = name.replace("self_attn.", "attn_")
name = name.replace("layer_norm", "ln")
name = name.replace("layernorm", "ln")
name = name.replace("mlp.fc1", "ffn_down")
name = name.replace("mlp.fc2", "ffn_up")
name = name.replace("embedding", "embd")
name = name.replace("final", "post")
name = name.replace("layrnorm", "ln")
return name
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
def process_and_save_tensor(tensor: torch.Tensor, new_name: str, ftype: int, fout) -> None:
"""Process a tensor (squeeze, cast dtype, log) and save it to `fout`."""
data = tensor.squeeze().numpy()
n_dims = len(data.shape)
ftype_str = {0: "f32", 1: "f16"}
ftype_cur = 0
if n_dims == 4:
print(f"tensor {new_name} is always saved in f16")
data = data.astype(np.float16)
ftype_cur = 1
elif ftype == 1:
if new_name.endswith(".weight") and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
print(f"{new_name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
fout.add_tensor(new_name, data)
def bytes_to_unicode():
"""
@ -261,35 +308,17 @@ for name, data in state_dict.items():
print(f"skipping parameter: {name}")
continue
name = get_tensor_name(name)
data = data.squeeze().numpy()
name = get_tensor_name_from_janus(name)
n_dims = len(data.shape)
# Handle the qkv projection weights and biases
if "qkv" in name:
q_tensor, k_tensor, v_tensor = torch.chunk(data, 3, dim=0)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if n_dims == 4:
print(f"tensor {name} is always saved in f16")
data = data.astype(np.float16)
ftype_cur = 1
elif ftype == 1:
if name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
process_and_save_tensor(q_tensor, name.replace("qkv", "q"), ftype, fout)
process_and_save_tensor(k_tensor, name.replace("qkv", "k"), ftype, fout)
process_and_save_tensor(v_tensor, name.replace("qkv", "v"), ftype, fout)
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
fout.add_tensor(name, data)
process_and_save_tensor(data, name, ftype, fout)
fout.write_header_to_file()
fout.write_kv_data_to_file()