Merge branch 'master' of https://github.com/ggerganov/llama.cpp into ceb/nomic-vulkan

This commit is contained in:
Jared Van Bortel 2024-01-09 16:37:08 -05:00
commit 3773e1afe7
117 changed files with 12648 additions and 7516 deletions

81
llama.h
View file

@ -103,6 +103,7 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
};
@ -127,7 +128,7 @@ extern "C" {
bool sorted;
} llama_token_data_array;
typedef void (*llama_progress_callback)(float progress, void *ctx);
typedef bool (*llama_progress_callback)(float progress, void *ctx);
// Input data for llama_decode
// A llama_batch object can contain input about one or many sequences
@ -180,7 +181,9 @@ extern "C" {
int32_t main_gpu; // the GPU that is used for scratch and small tensors
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
// called with a progress value between 0 and 1, pass NULL to disable
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
// If the provided progress_callback returns true, model loading continues.
// If it returns false, model loading is immediately aborted.
llama_progress_callback progress_callback;
// context pointer passed to the progress callback
@ -224,7 +227,7 @@ extern "C" {
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
@ -308,21 +311,20 @@ extern "C" {
LLAMA_API int64_t llama_time_us(void);
LLAMA_API int llama_max_devices (void);
LLAMA_API int32_t llama_max_devices(void);
LLAMA_API bool llama_mmap_supported (void);
LLAMA_API bool llama_mlock_supported(void);
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
// TODO: become more consistent with returned int types across the API
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
LLAMA_API int llama_n_vocab (const struct llama_model * model);
LLAMA_API int llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int llama_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
@ -333,19 +335,19 @@ extern "C" {
// - GGUF array values are not supported by these functions
// Get metadata value as a string by key name
LLAMA_API int llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
// Get the number of metadata key/value pairs
LLAMA_API int llama_model_meta_count(const struct llama_model * model);
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
// Get metadata key name by index
LLAMA_API int llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
// Get metadata value as a string by index
LLAMA_API int llama_model_meta_val_str_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
// Get a string describing the model type
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
// Returns the total size of all the tensors in the model in bytes
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
@ -357,7 +359,7 @@ extern "C" {
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
// Returns 0 on success
LLAMA_API int llama_model_quantize(
LLAMA_API uint32_t llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params);
@ -368,20 +370,20 @@ extern "C" {
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file(
struct llama_context * ctx,
const char * path_lora,
float scale,
const char * path_base_model,
int n_threads),
int32_t n_threads),
"use llama_model_apply_lora_from_file instead");
LLAMA_API int llama_model_apply_lora_from_file(
LLAMA_API int32_t llama_model_apply_lora_from_file(
const struct llama_model * model,
const char * path_lora,
float scale,
const char * path_base_model,
int n_threads);
int32_t n_threads);
//
// KV cache
@ -437,10 +439,10 @@ extern "C" {
// Returns the number of tokens in the KV cache (slow, use only for debug)
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
LLAMA_API int llama_get_kv_cache_used_cells(const struct llama_context * ctx);
LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
// Clear the KV cache
LLAMA_API void llama_kv_cache_clear(
@ -483,6 +485,17 @@ extern "C" {
llama_pos p1,
llama_pos delta);
// Integer division of the positions by factor of `d > 1`
// If the KV cache is RoPEd, the KV data is updated accordingly
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_div(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d);
//
// State / sessions
//
@ -531,7 +544,7 @@ extern "C" {
struct llama_context * ctx,
llama_token * tokens,
int32_t n_tokens,
int n_past),
int32_t n_past),
"use llama_decode() instead");
// Same as llama_eval, but use float matrix input directly.
@ -540,7 +553,7 @@ extern "C" {
struct llama_context * ctx,
float * embd,
int32_t n_tokens,
int n_past),
int32_t n_past),
"use llama_decode() instead");
// Return batch for single sequence of tokens starting at pos_0
@ -572,7 +585,7 @@ extern "C" {
// 0 - success
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
// < 0 - error
LLAMA_API int llama_decode(
LLAMA_API int32_t llama_decode(
struct llama_context * ctx,
struct llama_batch batch);
@ -612,10 +625,10 @@ extern "C" {
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int llama_add_bos_token(const struct llama_model * model);
LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int llama_add_eos_token(const struct llama_model * model);
LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
// codellama infill tokens
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
@ -633,12 +646,12 @@ extern "C" {
/// @return Returns a negative number on failure - the number of tokens that would have been returned
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
/// Does not insert a leading space.
LLAMA_API int llama_tokenize(
LLAMA_API int32_t llama_tokenize(
const struct llama_model * model,
const char * text,
int text_len,
int32_t text_len,
llama_token * tokens,
int n_max_tokens,
int32_t n_max_tokens,
bool add_bos,
bool special);
@ -646,11 +659,11 @@ extern "C" {
// Uses the vocabulary in the provided context.
// Does not write null terminator to the buffer.
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
LLAMA_API int llama_token_to_piece(
LLAMA_API int32_t llama_token_to_piece(
const struct llama_model * model,
llama_token token,
char * buf,
int length);
int32_t length);
//
// Grammar
@ -702,7 +715,7 @@ extern "C" {
LLAMA_API void llama_sample_top_k(
struct llama_context * ctx,
llama_token_data_array * candidates,
int k,
int32_t k,
size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
@ -761,7 +774,7 @@ extern "C" {
llama_token_data_array * candidates,
float tau,
float eta,
int m,
int32_t m,
float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
@ -834,8 +847,8 @@ extern "C" {
llama_beam_search_callback_fn_t callback,
void * callback_data,
size_t n_beams,
int n_past,
int n_predict);
int32_t n_past,
int32_t n_predict);
// Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);