remove unused train params: mem_compute1_gb & mem_compute2_gb
mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)
This commit is contained in:
parent
6f161c784b
commit
3794dceb7f
1 changed files with 1 additions and 25 deletions
|
@ -2217,9 +2217,6 @@ struct train_params {
|
|||
int mem_model_gb;
|
||||
int mem_compute_gb;
|
||||
int mem_compute0_gb;
|
||||
int mem_compute1_gb;
|
||||
int mem_compute2_gb;
|
||||
int mem_compute3_gb;
|
||||
};
|
||||
|
||||
struct train_params get_default_train_params() {
|
||||
|
@ -2278,8 +2275,6 @@ struct train_params get_default_train_params() {
|
|||
params.mem_model_gb = 2;
|
||||
params.mem_compute_gb = 24;
|
||||
params.mem_compute0_gb = 8;
|
||||
params.mem_compute1_gb = 1;
|
||||
params.mem_compute2_gb = 2;
|
||||
return params;
|
||||
}
|
||||
|
||||
|
@ -2336,9 +2331,7 @@ void train_print_usage(int /*argc*/, char ** argv, const struct train_params * p
|
|||
fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter);
|
||||
fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb);
|
||||
fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb);
|
||||
fprintf(stderr, " --mem-compute0 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute0_gb);
|
||||
fprintf(stderr, " --mem-compute1 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute1_gb);
|
||||
fprintf(stderr, " --mem-compute2 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute2_gb);
|
||||
fprintf(stderr, " --mem-compute0 N Memory to allocate for automatic memory allocator in gigabytes. (default %d)\n", params->mem_compute0_gb);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
|
@ -2604,18 +2597,6 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) {
|
|||
break;
|
||||
}
|
||||
params->mem_compute0_gb = std::stoi(argv[i]);
|
||||
} else if (arg == "--mem-compute1") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->mem_compute1_gb = std::stoi(argv[i]);
|
||||
} else if (arg == "--mem-compute2") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->mem_compute2_gb = std::stoi(argv[i]);
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
train_print_usage(argc, argv, &default_params);
|
||||
exit(0);
|
||||
|
@ -2839,11 +2820,7 @@ int main(int argc, char ** argv) {
|
|||
uint8_t * compute_addr = new uint8_t[compute_size];
|
||||
|
||||
size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb);
|
||||
size_t size_buf_1 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute1_gb);
|
||||
size_t size_buf_2 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute2_gb);
|
||||
uint8_t * compute_buf_0 = new uint8_t[size_buf_0];
|
||||
uint8_t * compute_buf_1 = new uint8_t[size_buf_1];
|
||||
uint8_t * compute_buf_2 = new uint8_t[size_buf_2];
|
||||
|
||||
ggml_allocr * alloc = NULL;
|
||||
if (params.use_alloc) {
|
||||
|
@ -3090,7 +3067,6 @@ int main(int argc, char ** argv) {
|
|||
|
||||
delete[] compute_addr;
|
||||
delete[] compute_buf_0;
|
||||
delete[] compute_buf_1;
|
||||
ggml_free(model.ctx);
|
||||
llama_free(lctx);
|
||||
llama_free_model(lmodel);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue