tokenizer : BPE fixes (#7530)
* Random test: add_bos_token, add_eos_token * Random test: add BPE models for testing * Custom regex split fails with codepoint 0 * Fix falcon punctuation regex * Refactor llm_tokenizer_bpe: move code to constructor * Move 'add_special_bos/eos' logic to llm_tokenizer_bpe * Move tokenizer flags to vocab structure. * Default values for special_add_bos/eos * Build vocab.special_tokens_cache using vocab token types * Generalize 'jina-v2' per token attributes * Fix unicode whitespaces (deepseek-coder, deepseek-llm) * Skip missing byte tokens (falcon) * Better unicode data generation * Replace char32_t with uint32_t
This commit is contained in:
parent
91c188d6c2
commit
37bef89433
5 changed files with 1283 additions and 1053 deletions
|
@ -11,13 +11,15 @@ import logging
|
|||
import argparse
|
||||
import subprocess
|
||||
import random
|
||||
import unicodedata
|
||||
|
||||
from typing import Callable, Iterator
|
||||
|
||||
import cffi
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
logger = logging.getLogger("test-tokenizer-random-bpe")
|
||||
|
||||
logger = logging.getLogger("test-tokenizer-random")
|
||||
|
||||
|
||||
class LibLlama:
|
||||
|
@ -155,9 +157,14 @@ def generator_custom_text_edge_cases() -> Iterator[str]:
|
|||
'Cửa Việt', # llama-3, ignore_merges = true
|
||||
'<s>a', # Phi-3 fail
|
||||
'<unk><|endoftext|><s>', # Phi-3 fail
|
||||
'a\na', # TODO: Bert fail
|
||||
'a </s> b', # rstrip phi-3
|
||||
'a <mask> b', # lstrip jina-v2
|
||||
'a\na', # bert fail
|
||||
'"`', # falcon
|
||||
' \u2e4e', # falcon
|
||||
'a\xa0\xa0\x00b', # jina-v2-es
|
||||
'one <mask>', # jina-v2-es <mask> lstrip=true
|
||||
'a </s> b', # rstrip phi-3
|
||||
'a <mask> b', # lstrip jina-v2
|
||||
'\xa0aC', # deepseek
|
||||
]
|
||||
|
||||
|
||||
|
@ -189,17 +196,23 @@ def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
|
|||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
words = rand.choices(all_tokens, k=500)
|
||||
if words[0] == tokenizer.bos_token: # skip spam warning of double BOS
|
||||
if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS
|
||||
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
|
||||
words.pop(0)
|
||||
if tokenizer.add_bos_token: # drop all starting BOS
|
||||
words.pop(0)
|
||||
if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS
|
||||
while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS
|
||||
words.pop(-1)
|
||||
if tokenizer.add_bos_token: # drop all trailing EOS
|
||||
words.pop(-1)
|
||||
yield "".join(words)
|
||||
|
||||
|
||||
def generator_random_chars(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text with simple characters"""
|
||||
|
||||
NUM_WORDS = 400
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
CHARS = list(sorted(set("""
|
||||
ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
||||
|
@ -213,12 +226,50 @@ def generator_random_chars(iterations=100) -> Iterator[str]:
|
|||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
text = []
|
||||
num_words = rand.randint(300, 400)
|
||||
for i in range(num_words):
|
||||
for _ in range(NUM_WORDS):
|
||||
k = rand.randint(1, 7)
|
||||
word = rand.choices(CHARS, k=k)
|
||||
space = rand.choice(WHITESPACES)
|
||||
text.append("".join(word) + space)
|
||||
word.append(rand.choice(WHITESPACES))
|
||||
text.append("".join(word))
|
||||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_unicodes() -> Iterator[str]:
|
||||
"""Iterate unicode characters"""
|
||||
|
||||
MAX_CODEPOINTS = 0x30000 # 0x110000
|
||||
|
||||
def _valid(cpt):
|
||||
if cpt >= 0x30000: # unassigned and supplementary
|
||||
return False
|
||||
if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates
|
||||
return False
|
||||
if unicodedata.category(chr(cpt)) == "Cn":
|
||||
return False
|
||||
return True
|
||||
|
||||
characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)]
|
||||
|
||||
yield from characters
|
||||
|
||||
|
||||
def generator_random_unicodes(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text with unicode characters"""
|
||||
|
||||
NUM_WORDS = 200
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
|
||||
characters = list(generator_unicodes())
|
||||
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
text = []
|
||||
for _ in range(NUM_WORDS):
|
||||
k = rand.randint(1, 7)
|
||||
word = rand.choices(characters, k=k)
|
||||
word.append(rand.choice(WHITESPACES))
|
||||
text.append("".join(word))
|
||||
yield "".join(text)
|
||||
|
||||
|
||||
|
@ -256,25 +307,7 @@ def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[s
|
|||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_random_bytes(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random bytes"""
|
||||
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
text = []
|
||||
num_words = rand.randint(300, 400)
|
||||
for i in range(num_words):
|
||||
k = rand.randint(1, 8)
|
||||
word = [chr(r) for r in rand.randbytes(k) if r]
|
||||
word.append(rand.choice(WHITESPACES))
|
||||
text.append("".join(word))
|
||||
yield "".join(text)
|
||||
|
||||
|
||||
def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
|
||||
def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
|
||||
|
||||
def find_first_mismatch(ids1: list[int], ids2: list[int]):
|
||||
for i, (a, b) in enumerate(zip(ids1, ids2)):
|
||||
|
@ -284,20 +317,34 @@ def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, g
|
|||
return -1
|
||||
return min(len(ids1), len(ids2))
|
||||
|
||||
t0 = time.perf_counter()
|
||||
t_tokenizer1 = 0
|
||||
t_tokenizer2 = 0
|
||||
t_start = time.perf_counter()
|
||||
num_errors = 10
|
||||
|
||||
logger.info("%s: %s" % (generator.__name__, "ini"))
|
||||
for text in generator:
|
||||
# print(repr(text), hex(ord(text[0])), text.encode())
|
||||
t0 = time.perf_counter()
|
||||
ids1 = func_tokenize1(text)
|
||||
t1 = time.perf_counter()
|
||||
ids2 = func_tokenize2(text)
|
||||
t2 = time.perf_counter()
|
||||
t_tokenizer1 += t1 - t0
|
||||
t_tokenizer2 += t2 - t1
|
||||
if ids1 != ids2:
|
||||
i = find_first_mismatch(ids1, ids2)
|
||||
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
|
||||
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
|
||||
logger.info(" TokenIDs: " + str(ids1))
|
||||
logger.info(" Expected: " + str(ids2))
|
||||
raise Exception()
|
||||
t1 = time.perf_counter()
|
||||
logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
|
||||
logger.error(" TokenIDs: " + str(ids1))
|
||||
logger.error(" Expected: " + str(ids2))
|
||||
# raise Exception()
|
||||
num_errors += 1
|
||||
if num_errors > 10:
|
||||
break
|
||||
|
||||
t_total = time.perf_counter() - t_start
|
||||
logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total))
|
||||
|
||||
|
||||
def main(argv: list[str] = None):
|
||||
|
@ -307,7 +354,8 @@ def main(argv: list[str] = None):
|
|||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
|
||||
logger.info(f"VOCABFILE: '{args.vocab_file}'")
|
||||
|
||||
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
|
||||
|
@ -321,18 +369,22 @@ def main(argv: list[str] = None):
|
|||
ids = func_tokenize2("a")
|
||||
assert 1 <= len(ids) <= 3
|
||||
add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
|
||||
add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1]
|
||||
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
|
||||
tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token)
|
||||
|
||||
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
|
||||
# test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_bytes(10_000)) # FAIL
|
||||
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
|
||||
|
||||
model.free()
|
||||
|
||||
|
@ -340,20 +392,40 @@ def main(argv: list[str] = None):
|
|||
if __name__ == "__main__":
|
||||
# main()
|
||||
|
||||
logging.basicConfig(
|
||||
level = logging.DEBUG,
|
||||
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
|
||||
datefmt = "%Y-%m-%d %H:%M:%S",
|
||||
filename = logger.name + ".log",
|
||||
filemode = "a"
|
||||
)
|
||||
|
||||
path_tokenizers = "./models/tokenizers/"
|
||||
path_vocab_format = "./models/ggml-vocab-%s.gguf"
|
||||
|
||||
# import os
|
||||
# tokenizers = os.listdir(path_tokenizers)
|
||||
tokenizers = [
|
||||
"llama-spm", # SPM
|
||||
"phi-3", # SPM
|
||||
"jina-v2-en", # WPM
|
||||
"bert-bge", # WPM
|
||||
# "llama-spm", # SPM
|
||||
# "phi-3", # SPM
|
||||
# "bert-bge", # WPM
|
||||
# "jina-v2-en", # WPM
|
||||
"gpt-2", # BPE
|
||||
"llama-bpe", # BPE
|
||||
"falcon", # BPE
|
||||
"starcoder", # BPE
|
||||
"jina-v2-es", # BPE
|
||||
"jina-v2-de", # BPE
|
||||
"jina-v2-code", # BPE
|
||||
"smaug-bpe", # BPE
|
||||
"phi-2", # BPE
|
||||
"deepseek-coder", # BPE
|
||||
"deepseek-llm", # BPE
|
||||
]
|
||||
|
||||
for tokenizer in tokenizers:
|
||||
print("\n" + "=" * 50 + "\n" + tokenizer + "\n") # noqa
|
||||
logger.info("=" * 50)
|
||||
logger.info(f"TOKENIZER: '{tokenizer}'")
|
||||
vocab_file = path_vocab_format % tokenizer
|
||||
dir_tokenizer = path_tokenizers + "/" + tokenizer
|
||||
main([vocab_file, dir_tokenizer, "--verbose"])
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue