Merge 20b22433f0
into b96f9afb0d
This commit is contained in:
commit
3819a8e7fe
4 changed files with 237 additions and 13 deletions
|
@ -31,17 +31,17 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
|
||||
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
|
||||
|
@ -49,8 +49,9 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, -0.0020 ppl @ Mistral-7B", },
|
||||
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
{ "CUSTOM", LLAMA_FTYPE_CUSTOM, "[:filename] Custom quant config (quant.cfg if not specified", },
|
||||
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
};
|
||||
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
|
||||
|
@ -58,12 +59,33 @@ static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix
|
|||
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
|
||||
|
||||
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
|
||||
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out, std::string & custom_cfg_filename_out) {
|
||||
std::string ftype_str;
|
||||
|
||||
for (auto ch : ftype_str_in) {
|
||||
ftype_str.push_back(std::toupper(ch));
|
||||
}
|
||||
|
||||
if (ftype_str.find("CUSTOM:") == 0) {
|
||||
// custom quant mix
|
||||
ftype = LLAMA_FTYPE_CUSTOM;
|
||||
ftype_str_out = "CUSTOM";
|
||||
if (ftype_str.length() > 7) {
|
||||
// extract config filename (take from ftype_str_in to get original casing)
|
||||
std::string custom_cfg = ftype_str_in.substr(7);
|
||||
custom_cfg_filename_out = custom_cfg;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
} else if (ftype_str.find("CUSTOM") == 0) {
|
||||
// custom quant mix with default config
|
||||
ftype = LLAMA_FTYPE_CUSTOM;
|
||||
ftype_str_out = "CUSTOM";
|
||||
custom_cfg_filename_out = "quant.cfg";
|
||||
return true;
|
||||
}
|
||||
|
||||
for (auto & it : QUANT_OPTIONS) {
|
||||
if (it.name == ftype_str) {
|
||||
ftype = it.ftype;
|
||||
|
@ -224,13 +246,119 @@ static ggml_type parse_ggml_type(const char * arg) {
|
|||
for (int j = 0; j < GGML_TYPE_COUNT; ++j) {
|
||||
auto type = ggml_type(j);
|
||||
const auto * name = ggml_type_name(type);
|
||||
if (name && strcmp(arg, name) == 0) {
|
||||
if (name && strcasecmp(arg, name) == 0) {
|
||||
result = type; break;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
|
||||
const char* sep = strchr(data, '=');
|
||||
if (sep == nullptr || sep - data >= 128) {
|
||||
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, data, sep - data);
|
||||
kvo.key[sep - data] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
overrides.emplace_back(std::move(kvo));
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool read_custom_quant_config(const std::string& filename, llama_model_quantize_ftype_override& override) {
|
||||
std::ifstream file(filename);
|
||||
std::string line;
|
||||
std::vector<std::string> names;
|
||||
std::vector<ggml_type> types;
|
||||
|
||||
printf("reading custom quantization mix from %s:\n", filename.c_str());
|
||||
|
||||
if (!file.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open file: '%s'\n", __func__, filename.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
while (getline(file, line)) {
|
||||
// skip empty lines and comments
|
||||
if (line.empty() || line[0] == '#') continue;
|
||||
|
||||
// default file type
|
||||
if (line.find("ftype=") == 0) {
|
||||
std::string ftype_str = line.substr(6);
|
||||
std::string ftype_name;
|
||||
std::string custom_quant_config_filename;
|
||||
llama_ftype ftype;
|
||||
if(!try_parse_ftype(ftype_str, ftype, ftype_name, custom_quant_config_filename)) {
|
||||
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, ftype_str.c_str());
|
||||
file.close();
|
||||
return false;
|
||||
}
|
||||
|
||||
override.default_ftype = static_cast<llama_ftype>(ftype);
|
||||
printf(" default ftype = %i (%s)\n", ftype, ftype_name.c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
// tensor overrides
|
||||
size_t pos = line.find('=');
|
||||
if (pos != std::string::npos) {
|
||||
std::string tensor_name = line.substr(0, pos);
|
||||
std::string type_name = line.substr(pos + 1);
|
||||
ggml_type type = parse_ggml_type(type_name.c_str());
|
||||
if(type < 0 || type >= GGML_TYPE_COUNT) {
|
||||
fprintf(stderr, "%s: invalid ggml_type '%s'\n", __func__, type_name.c_str());
|
||||
file.close();
|
||||
return false;
|
||||
}
|
||||
names.push_back(tensor_name);
|
||||
types.push_back(static_cast<ggml_type>(type));
|
||||
printf(" %s = %i (%s)\n", tensor_name.c_str(), type, type_name.c_str());
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
|
||||
// allocate memory for names and types
|
||||
override.names = new const char*[names.size()];
|
||||
override.types = new ggml_type[types.size()];
|
||||
override.count = names.size();
|
||||
|
||||
for (size_t i = 0; i < names.size(); ++i) {
|
||||
override.names[i] = strdup(names[i].c_str());
|
||||
override.types[i] = types[i];
|
||||
}
|
||||
|
||||
file.close();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
usage(argv[0]);
|
||||
|
@ -349,10 +477,11 @@ int main(int argc, char ** argv) {
|
|||
const std::string fname_inp = argv[arg_idx];
|
||||
arg_idx++;
|
||||
std::string fname_out;
|
||||
std::string custom_quant_config_filename;
|
||||
|
||||
std::string ftype_str;
|
||||
std::string suffix = ".gguf";
|
||||
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
||||
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str, custom_quant_config_filename)) {
|
||||
std::string fpath;
|
||||
const size_t pos = fname_inp.find_last_of("/\\");
|
||||
if (pos != std::string::npos) {
|
||||
|
@ -379,13 +508,23 @@ int main(int argc, char ** argv) {
|
|||
fprintf(stderr, "%s: missing ftype\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
||||
|
||||
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str, custom_quant_config_filename)) {
|
||||
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (ftype_str == "COPY") {
|
||||
params.only_copy = true;
|
||||
}
|
||||
|
||||
if (ftype_str == "CUSTOM") {
|
||||
params.override_ftype = new llama_model_quantize_ftype_override;
|
||||
if(!read_custom_quant_config(custom_quant_config_filename, *params.override_ftype)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
arg_idx++;
|
||||
}
|
||||
|
||||
|
|
48
llama.cpp
48
llama.cpp
|
@ -4096,6 +4096,9 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
|
|||
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
|
||||
|
||||
// Custom quantization scheme
|
||||
case LLAMA_FTYPE_CUSTOM: return "CUSTOM";
|
||||
|
||||
default: return "unknown, may not work";
|
||||
}
|
||||
}
|
||||
|
@ -15383,11 +15386,35 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
|
|||
return new_size;
|
||||
}
|
||||
|
||||
static bool match_string(const std::string& str, const std::string& pattern, uint32_t string_index = 0, uint32_t pattern_index = 0) {
|
||||
// if both index pointers reach the end of str and pattern respectively
|
||||
if (string_index == str.size() && pattern_index == pattern.size()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// if pattern character is '*', it can match with any sequence of characters.
|
||||
if (pattern_index < pattern.size() && pattern[pattern_index] == '*') {
|
||||
// move pattern index by 1 and match rest, or keep string index same and move pattern index
|
||||
return match_string(str, pattern, string_index, pattern_index + 1) || (string_index < str.size() && match_string(str, pattern, string_index + 1, pattern_index));
|
||||
}
|
||||
|
||||
// if current characters match or pattern character is '?'
|
||||
if (string_index < str.size() && pattern_index < pattern.size() && (str[string_index] == pattern[pattern_index] || pattern[pattern_index] == '?')) {
|
||||
return match_string(str, pattern, string_index + 1, pattern_index + 1);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
||||
ggml_type default_type;
|
||||
llama_ftype ftype = params->ftype;
|
||||
|
||||
switch (params->ftype) {
|
||||
llama_ftype ftype =
|
||||
params->override_ftype
|
||||
? params->override_ftype->default_ftype
|
||||
: params->ftype;
|
||||
|
||||
switch (ftype) {
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
|
||||
|
@ -15478,7 +15505,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
// copy the KV pairs from the input file
|
||||
gguf_set_kv (ctx_out, ml.meta);
|
||||
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
|
||||
gguf_set_val_u32(ctx_out, "general.file_type", ftype);
|
||||
gguf_set_val_u32(ctx_out, "general.file_type", params->ftype);
|
||||
// Remove split metadata
|
||||
gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
|
||||
gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
|
||||
|
@ -15666,6 +15693,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
new_type = params->output_tensor_type;
|
||||
}
|
||||
|
||||
// look up tensor name in type override map, if not found use default
|
||||
// type as determined by the ftype.
|
||||
if(params->override_ftype) {
|
||||
for (uint32_t i = 0; i < params->override_ftype->count; ++i) {
|
||||
if (match_string(tensor->name, params->override_ftype->names[i])) {
|
||||
// printf("\n -----> %s, %s\n", params->override_ftype->names[i], tensor->name);
|
||||
new_type = params->override_ftype->types[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we've decided to quantize to the same type the tensor is already
|
||||
// in then there's nothing to do.
|
||||
quantize = tensor->type != new_type;
|
||||
|
@ -16131,7 +16170,8 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
|
|||
/*.pure =*/ false,
|
||||
/*.keep_split =*/ false,
|
||||
/*.imatrix =*/ nullptr,
|
||||
/*.kv_overrides =*/ nullptr,
|
||||
/*.kv_overrides =*/ nullptr,
|
||||
/*.override_ftype =*/ nullptr
|
||||
};
|
||||
|
||||
return result;
|
||||
|
|
11
llama.h
11
llama.h
|
@ -157,6 +157,7 @@ extern "C" {
|
|||
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
|
||||
LLAMA_FTYPE_CUSTOM = 33, // except 1d tensors
|
||||
|
||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
};
|
||||
|
@ -324,6 +325,13 @@ extern "C" {
|
|||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
typedef struct llama_model_quantize_ftype_override {
|
||||
enum llama_ftype default_ftype; // default type if not overriden
|
||||
uint32_t count; // number of overrides
|
||||
const char ** names; // tensor names
|
||||
enum ggml_type * types; // tensor type override
|
||||
} llama_model_quantize_custom_ftype;
|
||||
|
||||
// model quantization parameters
|
||||
typedef struct llama_model_quantize_params {
|
||||
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||
|
@ -332,11 +340,12 @@ extern "C" {
|
|||
enum ggml_type token_embedding_type; // itoken embeddings tensor type
|
||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||
bool quantize_output_tensor; // quantize output.weight
|
||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||||
bool only_copy; // only copy tensors - ftype, override_ftype, allow_requantize and quantize_output_tensor are ignored
|
||||
bool pure; // quantize all tensors to the default type
|
||||
bool keep_split; // quantize to the same number of shards
|
||||
void * imatrix; // pointer to importance matrix data
|
||||
void * kv_overrides; // pointer to vector containing overrides
|
||||
struct llama_model_quantize_ftype_override * override_ftype; // custom quantization scheme
|
||||
} llama_model_quantize_params;
|
||||
|
||||
// grammar types
|
||||
|
|
36
quant.cfg
Normal file
36
quant.cfg
Normal file
|
@ -0,0 +1,36 @@
|
|||
# Defines the default ftype (the quantization mix code,
|
||||
# that you pass to quantize if you're not using custom mix).
|
||||
# tensors that are not overriden below will be quantized
|
||||
# according to this mix.
|
||||
#
|
||||
# Must be one of
|
||||
# Q4_0, Q4_1, Q5_0, Q5_1, IQ2_XXS, IQ2_XS, IQ2_S, IQ2_M,
|
||||
# IQ1_S, IQ1_M, Q2_K, Q2_K_S, IQ3_XXS, IQ3_S, IQ3_M, Q3_K,
|
||||
# IQ3_XS, Q3_K_S, Q3_K_M, Q3_K_L, IQ4_NL, IQ4_XS, Q4_K,
|
||||
# Q4_K_S, Q4_K_M, Q5_K, Q5_K_S, Q5_K_M, Q6_K, Q8_0, F16
|
||||
|
||||
ftype=Q6_K
|
||||
|
||||
# Defines overrides for tensors with names matching a given
|
||||
# string. Filters are processed in order given, the first
|
||||
# matching will be used.
|
||||
#
|
||||
# Wildcards are allowed:
|
||||
# ? single character
|
||||
# * multiple characters
|
||||
#
|
||||
# Type must be one of
|
||||
# F16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, Q2_K, Q3_K,
|
||||
# Q4_K, Q5_K, Q6_K, Q8_K, IQ2_XXS, IQ2_XS, IQ3_XXS,
|
||||
# IQ1_S, IQ4_NL, IQ3_S, IQ2_S, IQ4_XS, IQ1_M
|
||||
|
||||
blk.10.ffn_up.weight=Q5_K
|
||||
blk.1?.ffn_up.weight=Q4_K
|
||||
blk.23.*=Q2_K
|
||||
blk.24.*=Q2_K
|
||||
blk.25.*=Q2_K
|
||||
blk.2?.ffn_up.weight=Q4_K
|
||||
*_gate*=Q4_K
|
||||
*.attn*=IQ4_XS
|
||||
*_down*=IQ3_S
|
||||
output.weight=Q5_K
|
Loading…
Add table
Add a link
Reference in a new issue