From 8c0a10e64dbf60fd9946c0cd5e6f59690800b123 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Mon, 12 Jun 2023 14:31:36 +0300 Subject: [PATCH 001/135] metal : fix failure to load model (#1817) The number of buffers in the ggml context was left unitialized. This leads to sporadic failures to load the model on startup. It is actually strange that the failure occurred so infrequantly. Co-authored-by: Iwan Kawrakow --- ggml-metal.m | 1 + 1 file changed, 1 insertion(+) diff --git a/ggml-metal.m b/ggml-metal.m index 16a362fd7..b73f51f24 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -86,6 +86,7 @@ struct ggml_metal_context * ggml_metal_init(void) { ctx->device = MTLCreateSystemDefaultDevice(); ctx->queue = [ctx->device newCommandQueue]; + ctx->n_buffers = 0; // determine if we can use MPS if (MPSSupportsMTLDevice(ctx->device)) { From 58970a4c39124a647ac2a640d9e178ea6c961e65 Mon Sep 17 00:00:00 2001 From: Howard Su Date: Mon, 12 Jun 2023 20:44:16 +0800 Subject: [PATCH 002/135] Leverage mmap for offloading tensors to GPU (#1597) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Rebase to latest * Show progress * Add assert to make sure we only allocate temp buffer for non-CPU backend tensor Co-authored-by: Johannes Gäßler --------- Co-authored-by: Johannes Gäßler --- ggml-cuda.cu | 23 ++--------- ggml-cuda.h | 3 +- ggml-opencl.cpp | 35 ++-------------- ggml-opencl.h | 3 +- llama.cpp | 107 +++++++++++++++++++++--------------------------- 5 files changed, 56 insertions(+), 115 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 4f2195f77..3b9a5ddfb 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1713,8 +1713,7 @@ void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens (void) dst; } -void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { - FILE * fp = fopen(fname, "rb"); +void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { int nrows = ggml_nrows(tensor); const size_t nb1 = tensor->nb[1]; ggml_backend backend = tensor->backend; @@ -1748,35 +1747,19 @@ void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const int64_t nrows_split = row_high - row_low; - const size_t offset_split = offset + row_low*nb1; + const size_t offset_split = row_low*nb1; const size_t size = ggml_nbytes_split(tensor, nrows_split); void * buf; CUDA_CHECK(cudaMalloc(&buf, size)); - void * buf_host = malloc(size); - -#ifdef _WIN32 - int ret = _fseeki64(fp, (__int64) offset_split, SEEK_SET); -#else - int ret = fseek(fp, (long) offset_split, SEEK_SET); -#endif - GGML_ASSERT(ret == 0); // same - - size_t ret2 = fread(buf_host, size, 1, fp); - if (ret2 != 1) { - fprintf(stderr, "unexpectedly reached end of file"); - exit(1); - } + void * buf_host = (char*)data + offset_split; cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice); - cudaDeviceSynchronize(); - free(buf_host); extra->data_device[id] = buf; } tensor->extra = extra; - fclose(fp); } void ggml_cuda_free_data(struct ggml_tensor * tensor) { diff --git a/ggml-cuda.h b/ggml-cuda.h index 3b74e32e2..fde6d4085 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -24,7 +24,8 @@ void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens void * ggml_cuda_host_malloc(size_t size); void ggml_cuda_host_free(void * ptr); -void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset); +void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor); + void ggml_cuda_free_data(struct ggml_tensor * tensor); void ggml_cuda_assign_buffers(struct ggml_tensor * tensor); void ggml_cuda_set_main_device(int main_device); diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 7b6daf4a8..5df922abd 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -1167,7 +1167,7 @@ size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct g return 0; } -void ggml_cl_transform_tensor(ggml_tensor * tensor) { +void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) { const int64_t ne0 = tensor->ne[0]; const int64_t ne1 = tensor->ne[1]; const int64_t ne2 = tensor->ne[2]; @@ -1179,6 +1179,7 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) { size_t q_size; cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size); + tensor->data = data; // copy tensor to device for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = 0; i2 < ne2; i2++) { @@ -1190,35 +1191,5 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) { CL_CHECK(clFinish(queue)); tensor->data = dst; - tensor->backend = GGML_BACKEND_GPU; -} - -void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { - cl_int err; - FILE * fp = fopen(fname, "rb"); - - const size_t size = ggml_nbytes(tensor); - - cl_mem dst; - CL_CHECK((dst = clCreateBuffer(context, CL_MEM_READ_ONLY, size, nullptr, &err), err)); - void * buf_host = malloc(size); - -#ifdef _WIN32 - int ret = _fseeki64(fp, (__int64) offset, SEEK_SET); -#else - int ret = fseek(fp, (long) offset, SEEK_SET); -#endif - GGML_ASSERT(ret == 0); // same - - size_t ret2 = fread(buf_host, size, 1, fp); - if (ret2 != 1) { - fprintf(stderr, "unexpectedly reached end of file"); - exit(1); - } - - clEnqueueWriteBuffer(queue, dst, CL_TRUE, 0, size, buf_host, 0, nullptr, nullptr); - - tensor->data = dst; - free(buf_host); - fclose(fp); + GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); } diff --git a/ggml-opencl.h b/ggml-opencl.h index bf95e5cd0..a92b445c9 100644 --- a/ggml-opencl.h +++ b/ggml-opencl.h @@ -18,8 +18,7 @@ void ggml_cl_host_free(void * ptr); void ggml_cl_free_data(const struct ggml_tensor* tensor); -void ggml_cl_transform_tensor(struct ggml_tensor * tensor); -void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, size_t offset); +void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor); #ifdef __cplusplus } diff --git a/llama.cpp b/llama.cpp index e100e2bc9..a9a7794ae 100644 --- a/llama.cpp +++ b/llama.cpp @@ -707,6 +707,9 @@ struct llama_model_loader { struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) { struct ggml_tensor * tensor; + if (backend != GGML_BACKEND_CPU) { + ggml_set_no_alloc(ggml_ctx, true); + } if (lt.ne.size() == 2) { tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); } else { @@ -716,6 +719,9 @@ struct llama_model_loader { ggml_set_name(tensor, lt.name.c_str()); LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor + if (backend != GGML_BACKEND_CPU) { + ggml_set_no_alloc(ggml_ctx, use_mmap); + } tensor->backend = backend; lt.ggml_tensor = tensor; num_ggml_tensors_created++; @@ -731,6 +737,7 @@ struct llama_model_loader { void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) { size_t data_size = 0; size_t prefetch_size = 0; + size_t lock_size = 0; for (const llama_load_tensor & lt : tensors_map.tensors) { data_size += lt.size; if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { @@ -740,11 +747,6 @@ struct llama_model_loader { if (use_mmap) { mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size)); - if (!lmlock) { - // Don't call the callback since the actual loading will be lazy - // and we can't measure it. - progress_callback = NULL; - } if (lmlock) { lmlock->init(mapping->addr); } @@ -752,20 +754,49 @@ struct llama_model_loader { size_t done_size = 0; for (llama_load_tensor & lt : tensors_map.tensors) { - if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) { - continue; - } if (progress_callback) { progress_callback((float) done_size / data_size, progress_callback_user_data); } LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already lt.data = (uint8_t *) lt.ggml_tensor->data; - load_data_for(lt); - lt.ggml_tensor->data = lt.data; - done_size += lt.size; - if (use_mmap && lmlock) { - lmlock->grow_to(done_size); + + // allocate temp buffer if not using mmap + if (!use_mmap && lt.data == NULL) { + GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU); + lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor)); } + + load_data_for(lt); + + switch(lt.ggml_tensor->backend) { + case GGML_BACKEND_CPU: + lt.ggml_tensor->data = lt.data; + if (use_mmap && lmlock) { + lock_size += lt.size; + lmlock->grow_to(lock_size); + } + break; +#if defined(GGML_USE_CUBLAS) + case GGML_BACKEND_GPU: + case GGML_BACKEND_GPU_SPLIT: + ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor); + if (!use_mmap) { + free(lt.data); + } + break; +#elif defined(GGML_USE_CLBLAST) + case GGML_BACKEND_GPU: + ggml_cl_transform_tensor(lt.data, lt.ggml_tensor); + if (!use_mmap) { + free(lt.data); + } + break; +#endif + default: + continue; + } + + done_size += lt.size; } } @@ -1141,7 +1172,7 @@ static void llama_model_load_internal( if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + - ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) + + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); } } @@ -1196,58 +1227,14 @@ static void llama_model_load_internal( model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor); } - ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); - #if defined(GGML_USE_CUBLAS) { ggml_cuda_set_tensor_split(tensor_split); - - size_t done_size = 0; - size_t data_size = 0; - for (llama_load_tensor & lt : ml->tensors_map.tensors) { - data_size += lt.size; - if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { - done_size += lt.size; - } - } - for (llama_load_tensor & lt : ml->tensors_map.tensors) { - ggml_backend backend = lt.ggml_tensor->backend; - if (backend != GGML_BACKEND_GPU && backend != GGML_BACKEND_GPU_SPLIT) { - continue; - } - if (progress_callback) { - progress_callback((float) done_size / data_size, progress_callback_user_data); - } - ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off); - done_size += lt.size; - } } -#elif defined(GGML_USE_CLBLAST) - { - size_t done_size = 0; - size_t data_size = 0; - for (llama_load_tensor & lt : ml->tensors_map.tensors) { - data_size += lt.size; - if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { - done_size += lt.size; - } - } - for (llama_load_tensor & lt : ml->tensors_map.tensors) { - if (lt.ggml_tensor->backend != GGML_BACKEND_GPU) { - continue; - } - if (progress_callback) { - progress_callback((float) done_size / data_size, progress_callback_user_data); - } - ggml_cl_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off); - done_size += lt.size; - } - } -#else - (void) n_batch; - (void) tensor_split; #endif + ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); + if (progress_callback) { progress_callback(1.0f, progress_callback_user_data); } From e4caa8da59c1c97dc23fa336f4d726984a20560f Mon Sep 17 00:00:00 2001 From: slaren Date: Mon, 12 Jun 2023 19:12:47 +0200 Subject: [PATCH 003/135] ci : run when changing only the CUDA sources (#1800) --- .github/workflows/build.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index c98cbcbbe..b87ea76bc 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -10,10 +10,10 @@ on: push: branches: - master - paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp'] + paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu'] pull_request: types: [opened, synchronize, reopened] - paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp'] + paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu'] env: BRANCH_NAME: ${{ github.head_ref || github.ref_name }} From 74a6d922f12ccfe16b0c265f43be8978c6f25e98 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Mon, 12 Jun 2023 22:39:21 +0300 Subject: [PATCH 004/135] Metal implementation for all k_quants (#1807) * metal : improve q4_K 28.3 -> 26.0 ms/token by avoiding a branch in the calculation of the scales. * metal : small improvement for Q4_K * metal : still optimizing Q4_K This commit pushes it down to 25.3 ms / token. The crazy idea of using 6 bits for the scales is really costly on Metal: if I remove the bit fiddling necessary to make the block scales, time goes almost to the Q4_0 23 ms/token. Before pushing the k-quants upstream I had a Q4_K variant that had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight, was running slightly slower on the CPU (due to the larger model size and being memory bound there), and the difference was entirely negligible under CUDA. So, I decided to publish the version with 6-bit scales. Perhaps I should re-consider and change to 8-bit scales? * metal : some more optimizations Q2_K: 25.4 ms/token Q6_K: 27.3 ms/token Q4_0: 22.8 ms/token Q4_1: 23.1 ms/token * metal : Q3_K support Something is not quite right yet. * metal : Q5_K support Initial version achieves 31.2 ms/token, 210 GB/s * metal : still not able to figure out why q3_K does not work * Minor * metal : yet another failed attempt to make q3_K work * metal : optimize Q5_K 31.2 ms -> 27.8 ms. 250 GB/s. * metal : q3_K still not working Adding a heavily commented q3_K metal kernel to explain my obviously faulty logic. Perhaps someone could spot the issue? * metal : q3_K finally working Not optimized at all. What was the issue? The scales are not 4-bytes aligned, and I was accessing them with a uint32_t pointer. When I tried that on CUDA, I got an error (illegal memory access) and added a memcpy to a local array of 3 uint32_t's. But on Metal it told me there is no memcpy, so I tried accessing directly. There is no error, just garbage results. At some point I did try accessing the scales with an uint16_t pointer (the scales are for sure 2-byte aligned), but was still getting garbage. I guess, there must have been another bug. No access to scales is via a uint16_t pointer and, after starting from scratch from the C dequantize function, it finally works. * metal : Q3_K 1st optimization pass * metal : Q3_K second optimization pass - 29.6 ms/token * metal : Q3_K cleanup * metal : fixed accidentally broken Q2_K --------- Co-authored-by: Iwan Kawrakow --- ggml-metal.m | 41 +++- ggml-metal.metal | 547 ++++++++++++++++++++++++++++++++++++----------- llama.cpp | 10 +- 3 files changed, 463 insertions(+), 135 deletions(-) diff --git a/ggml-metal.m b/ggml-metal.m index b73f51f24..658c392e0 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -52,14 +52,18 @@ struct ggml_metal_context { GGML_METAL_DECL_KERNEL(get_rows_q4_0); GGML_METAL_DECL_KERNEL(get_rows_q4_1); GGML_METAL_DECL_KERNEL(get_rows_q2_k); + GGML_METAL_DECL_KERNEL(get_rows_q3_k); GGML_METAL_DECL_KERNEL(get_rows_q4_k); + GGML_METAL_DECL_KERNEL(get_rows_q5_k); GGML_METAL_DECL_KERNEL(get_rows_q6_k); GGML_METAL_DECL_KERNEL(rms_norm); GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32); GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32); + GGML_METAL_DECL_KERNEL(mul_mat_q3_k_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32); + GGML_METAL_DECL_KERNEL(mul_mat_q5_k_f32); GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32); GGML_METAL_DECL_KERNEL(rope); GGML_METAL_DECL_KERNEL(cpy_f32_f16); @@ -153,14 +157,18 @@ struct ggml_metal_context * ggml_metal_init(void) { GGML_METAL_ADD_KERNEL(get_rows_q4_0); GGML_METAL_ADD_KERNEL(get_rows_q4_1); GGML_METAL_ADD_KERNEL(get_rows_q2_k); + GGML_METAL_ADD_KERNEL(get_rows_q3_k); GGML_METAL_ADD_KERNEL(get_rows_q4_k); + GGML_METAL_ADD_KERNEL(get_rows_q5_k); GGML_METAL_ADD_KERNEL(get_rows_q6_k); GGML_METAL_ADD_KERNEL(rms_norm); GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32); GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32); + GGML_METAL_ADD_KERNEL(mul_mat_q3_k_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32); + GGML_METAL_ADD_KERNEL(mul_mat_q5_k_f32); GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32); GGML_METAL_ADD_KERNEL(rope); GGML_METAL_ADD_KERNEL(cpy_f32_f16); @@ -575,6 +583,15 @@ void ggml_metal_graph_compute( nth1 = 16; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32]; } break; + case GGML_TYPE_Q3_K: + { + GGML_ASSERT(ne02 == 1); + GGML_ASSERT(ne12 == 1); + + nth0 = 4; + nth1 = 16; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_k_f32]; + } break; case GGML_TYPE_Q4_K: { GGML_ASSERT(ne02 == 1); @@ -584,6 +601,15 @@ void ggml_metal_graph_compute( nth1 = 16; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32]; } break; + case GGML_TYPE_Q5_K: + { + GGML_ASSERT(ne02 == 1); + GGML_ASSERT(ne12 == 1); + + nth0 = 4; + nth1 = 16; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_k_f32]; + } break; case GGML_TYPE_Q6_K: { GGML_ASSERT(ne02 == 1); @@ -620,15 +646,14 @@ void ggml_metal_graph_compute( if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) { [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } else if (src0t == GGML_TYPE_Q2_K) { + } + else if (src0t == GGML_TYPE_Q2_K || + src0t == GGML_TYPE_Q3_K || + src0t == GGML_TYPE_Q4_K || + src0t == GGML_TYPE_Q5_K || + src0t == GGML_TYPE_Q6_K) { [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } else if (src0t == GGML_TYPE_Q4_K) { - [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } else if (src0t == GGML_TYPE_Q6_K) { - [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else { [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; @@ -646,7 +671,9 @@ void ggml_metal_graph_compute( case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break; + case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_k]; break; case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break; + case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_k]; break; case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break; default: GGML_ASSERT(false && "not implemented"); } diff --git a/ggml-metal.metal b/ggml-metal.metal index ccd36386b..09e12a879 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -304,34 +304,22 @@ kernel void kernel_mul_mat_q4_0_f32( device const float * src1, device float * dst, constant int64_t & ne00, - constant int64_t & ne01, - constant uint64_t & nb00, - constant uint64_t & nb01, - constant uint64_t & nb02, constant int64_t & ne10, - constant int64_t & ne11, - constant uint64_t & nb10, - constant uint64_t & nb11, - constant uint64_t & nb12, constant int64_t & ne0, - constant int64_t & ne1, threadgroup float * sum [[threadgroup(0)]], uint2 tgpig[[threadgroup_position_in_grid]], - uint2 tpig[[thread_position_in_grid]], uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { const int nb = ne00/QK4_0; - const int8_t m8 = 8; - const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; device const block_q4_0 * x = (device const block_q4_0 *) src0 + r0*nb; device const float * y = (device const float *) src1 + r1*ne10; - const uint nth = tptg.x*tptg.y; - const uint ith = tptg.y*tpitg.x + tpitg.y; + const int nth = tptg.x*tptg.y; + const int ith = tptg.y*tpitg.x + tpitg.y; const int ix = tpitg.y/4; // 0 or 1 const int iy = tpitg.y - 4*ix; // 0...3 @@ -351,47 +339,32 @@ kernel void kernel_mul_mat_q4_0_f32( for (int j = 0; j < 4; ++j) { - acc[0] += yl[j+ 0] * ((int8_t)(xl[j] & 0xF) - m8); - acc[1] += yl[j+16] * ((int8_t)(xl[j] >> 4) - m8); + acc[0] += yl[j] * (xl[j] & 0xF) + yl[j+16] * (xl[j] >> 4); + acc[1] += yl[j] + yl[j+16]; } - sumf += d * (acc[0] + acc[1]); + sumf += d * (acc[0] - 8.f*acc[1]); } sum[ith] = sumf; // // Accumulate the sum from all threads in the threadgroup - // This version is slightly faster than the commented out one below, - // which I copy-pasted from ggerganov's q4_0 dot product for metal. // threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%4 == 0) { - for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i]; + sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3]; } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%16 == 0) { - for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i]; + sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12]; } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith == 0) { - for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; + for (uint i = 16; i < nth; i += 16) sum[0] += sum[i]; dst[r1*ne0 + r0] = sum[0]; } - - //// accumulate the sum from all threads in the threadgroup - //threadgroup_barrier(mem_flags::mem_threadgroup); - //for (uint i = nth/2; i > 0; i /= 2) { - // if (ith < i) { - // sum[ith] += sum[ith + i]; - // } - // threadgroup_barrier(mem_flags::mem_threadgroup); - //} - - //if (ith == 0) { - // dst[r1*ne0 + r0] = sum[0]; - //} } kernel void kernel_mul_mat_q4_1_f32( @@ -399,20 +372,10 @@ kernel void kernel_mul_mat_q4_1_f32( device const float * src1, device float * dst, constant int64_t & ne00, - constant int64_t & ne01, - constant uint64_t & nb00, - constant uint64_t & nb01, - constant uint64_t & nb02, constant int64_t & ne10, - constant int64_t & ne11, - constant uint64_t & nb10, - constant uint64_t & nb11, - constant uint64_t & nb12, constant int64_t & ne0, - constant int64_t & ne1, threadgroup float * sum [[threadgroup(0)]], uint2 tgpig[[threadgroup_position_in_grid]], - uint2 tpig[[thread_position_in_grid]], uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { const int nb = ne00/QK4_1; @@ -460,11 +423,11 @@ kernel void kernel_mul_mat_q4_1_f32( // threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%4 == 0) { - for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i]; + sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3]; } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%16 == 0) { - for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i]; + sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12]; } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith == 0) { @@ -671,6 +634,15 @@ typedef struct { half d; // super-block scale for quantized scales half dmin; // super-block scale for quantized mins } block_q2_k; +// 84 bytes / block + +typedef struct { + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits + uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits + half d; // super-block scale +} block_q3_k; +// 110 bytes / block typedef struct { half d; // super-block scale for quantized scales @@ -678,6 +650,16 @@ typedef struct { uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits uint8_t qs[QK_K/2]; // 4--bit quants } block_q4_k; +// 144 bytes / block + +typedef struct { + half d; // super-block scale for quantized scales + half dmin; // super-block scale for quantized mins + uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_k; +// 176 bytes / block typedef struct { uint8_t ql[QK_K/2]; // quants, lower 4 bits @@ -685,16 +667,19 @@ typedef struct { int8_t scales[QK_K/16]; // scales, quantized with 8 bits half d; // super-block scale } block_q6_k; +// 210 bytes / block static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) { uchar4 r; if (j < 4) { - r[0] = q[j+0] & 63; r[1] = q[j+4] & 63; - r[2] = q[j+1] & 63; r[3] = q[j+5] & 63; + r[0] = q[j+0] & 63; + r[2] = q[j+1] & 63; + r[1] = q[j+4] & 63; + r[3] = q[j+5] & 63; } else { r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); - r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4); + r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4); } return r; @@ -735,10 +720,65 @@ static void dequantize_row_q2_k(device const block_q2_k * x, device float * y, i } } +static void dequantize_row_q3_k(device const block_q3_k * x, device float * y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + const uint16_t kmask1 = 0x0303; + const uint16_t kmask2 = 0x0f0f; + + uint16_t aux[8]; + thread const int8_t * scales = (thread const int8_t*)aux; + + for (int i = 0; i < nb; i++) { + + const float d_all = (float)(x[i].d); + + device const uint8_t * q = x[i].qs; + device const uint8_t * h = x[i].hmask; + uint8_t m = 1; + + device const uint16_t * a = (device const uint16_t *)x[i].scales; + aux[0] = (a[0] & kmask2) | (((a[4] >> 0) & kmask1) << 4); + aux[1] = (a[1] & kmask2) | (((a[5] >> 0) & kmask1) << 4); + aux[2] = (a[2] & kmask2) | (((a[4] >> 2) & kmask1) << 4); + aux[3] = (a[3] & kmask2) | (((a[5] >> 2) & kmask1) << 4); + aux[4] = ((a[0] >> 4) & kmask2) | (((a[4] >> 4) & kmask1) << 4); + aux[5] = ((a[1] >> 4) & kmask2) | (((a[5] >> 4) & kmask1) << 4); + aux[6] = ((a[2] >> 4) & kmask2) | (((a[4] >> 6) & kmask1) << 4); + aux[7] = ((a[3] >> 4) & kmask2) | (((a[5] >> 6) & kmask1) << 4); + + int is = 0; + float dl; + for (int n = 0; n < QK_K; n += 128) { + int shift = 0; + for (int j = 0; j < 4; ++j) { + + dl = d_all * (scales[is++] - 32); + for (int l = 0; l < 16; ++l) { + *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((h[l+ 0] & m) ? 0 : 4)); + } + + dl = d_all * (scales[is++] - 32); + for (int l = 0; l < 16; ++l) { + *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((h[l+16] & m) ? 0 : 4)); + } + + shift += 2; + m <<= 1; + } + q += 32; + } + + } + +} + static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; + for (int i = 0; i < nb; i++) { const float d = x[i].d; @@ -760,6 +800,33 @@ static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, i } } +static void dequantize_row_q5_k(device const block_q5_k * x, device float * y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = (float)(x[i].d); + const float min = (float)(x[i].dmin); + + device const uint8_t * ql = x[i].qs; + device const uint8_t * qh = x[i].qh; + + int is = 0; + uint8_t u1 = 1, u2 = 2; + for (int j = 0; j < QK_K; j += 64) { + const uchar4 sc = get_scale_min_k4(is, x[i].scales); + const float d1 = d * sc[0]; const float m1 = min * sc[1]; + const float d2 = d * sc[2]; const float m2 = min * sc[3]; + for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1; + for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2; + ql += 32; is += 2; + u1 <<= 2; u2 <<= 2; + } + } + +} + static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -808,6 +875,22 @@ kernel void kernel_get_rows_q2_k( (device float *) ((device char *) dst + i*nb1), ne00); } +kernel void kernel_get_rows_q3_k( + device const void * src0, + device const int * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb1, + uint tpig[[thread_position_in_grid]]) { + const int i = tpig; + const int r = ((device int32_t *) src1)[i]; + + dequantize_row_q3_k( + (device const block_q3_k *) ((device char *) src0 + r*nb01), + (device float *) ((device char *) dst + i*nb1), ne00); +} + kernel void kernel_get_rows_q4_k( device const void * src0, device const int * src1, @@ -824,6 +907,22 @@ kernel void kernel_get_rows_q4_k( (device float *) ((device char *) dst + i*nb1), ne00); } +kernel void kernel_get_rows_q5_k( + device const void * src0, + device const int * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb1, + uint tpig[[thread_position_in_grid]]) { + const int i = tpig; + const int r = ((device int32_t *) src1)[i]; + + dequantize_row_q5_k( + (device const block_q5_k *) ((device char *) src0 + r*nb01), + (device float *) ((device char *) dst + i*nb1), ne00); +} + kernel void kernel_get_rows_q6_k( device const void * src0, device const int * src1, @@ -847,20 +946,10 @@ kernel void kernel_mul_mat_q2_k_f32( device const float * src1, device float * dst, constant int64_t & ne00, - constant int64_t & ne01, - constant uint64_t & nb00, - constant uint64_t & nb01, - constant uint64_t & nb02, constant int64_t & ne10, - constant int64_t & ne11, - constant uint64_t & nb10, - constant uint64_t & nb11, - constant uint64_t & nb12, constant int64_t & ne0, - constant int64_t & ne1, threadgroup float * sum [[threadgroup(0)]], uint2 tgpig[[threadgroup_position_in_grid]], - uint2 tpig[[thread_position_in_grid]], // we don't use this for now uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { @@ -875,7 +964,6 @@ kernel void kernel_mul_mat_q2_k_f32( const int nth = tptg.x*tptg.y; const int ith = tptg.y*tpitg.x + tpitg.y; - const int tid = tpitg.y; // 0...16 const int il = tid/4; // 0...3 const int ir = tid%4; // 0...3 @@ -885,35 +973,54 @@ kernel void kernel_mul_mat_q2_k_f32( const int n = 8; const int is = 4*il + (n*ir)/16; + const int y_offset = 64*il + n*ir; + const int q_offset = 32*ip + n*ir; + sum[ith] = 0.0f; float sumf = 0; for (int i = tpitg.x; i < nb; i += tptg.x) { - device const uint8_t * q = x[i].qs + 32*ip + n*ir; + device const uint8_t * q = x[i].qs + q_offset; device const uint8_t * scales = x[i].scales + is; uint8_t d1 = scales[0] & 0xF; - uint8_t m1 = scales[0] >> 4; uint8_t d2 = scales[2] & 0xF; + uint8_t m1 = scales[0] >> 4; uint8_t m2 = scales[2] >> 4; - device const float * y = yy + i*QK_K + 64*il + n*ir; + device const float * y = yy + i*QK_K + y_offset; + + //float4 s = {0.f, 0.f, 0.f, 0.f}; + float2 s = {0.f, 0.f}; + float smin = 0; + for (int l = 0; l < n; ++l) { + s[0] += y[l+ 0] * ((q[l] >> shift1) & 3); + s[1] += y[l+32] * ((q[l] >> shift2) & 3); + smin += y[l+ 0] * m1 + y[l+32] * m2; + } const float dall = (float)x[i].d; const float dmin = (float)x[i].dmin; - float4 s = {0.f, 0.f, 0.f, 0.f}; - for (int l = 0; l < n; ++l) { - s[0] += y[l+ 0] * ((q[l] >> shift1) & 3); s[1] += y[l+ 0]; - s[2] += y[l+32] * ((q[l] >> shift2) & 3); s[3] += y[l+32]; - } - sumf += dall * (s[0] * d1 + s[2] * d2) - dmin * (s[1] * m1 + s[3] * m2); - + sumf += dall * (s[0] * d1 + s[1] * d2) - dmin * smin; } sum[ith] = sumf; + //int mask1 = (ith%4 == 0); + //int mask2 = (ith%16 == 0); + + //threadgroup_barrier(mem_flags::mem_threadgroup); + //for (int i = 1; i < 4; ++i) sum[ith] += mask1 * sum[ith + i]; + //threadgroup_barrier(mem_flags::mem_threadgroup); + //for (int i = 4; i < 16; i += 4) sum[ith] += mask2 * sum[ith + i]; + //threadgroup_barrier(mem_flags::mem_threadgroup); + //if (ith == 0) { + // for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; + // dst[r1*ne0 + r0] = sum[0]; + //} + // // Accumulate the sum from all threads in the threadgroup // This version is slightly faster than the commented out one below, @@ -932,19 +1039,109 @@ kernel void kernel_mul_mat_q2_k_f32( for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; dst[r1*ne0 + r0] = sum[0]; } +} - //// accumulate the sum from all threads in the threadgroup - //threadgroup_barrier(mem_flags::mem_threadgroup); - //for (uint i = nth/2; i > 0; i /= 2) { - // if (ith < i) { - // sum[ith] += sum[ith + i]; - // } - // threadgroup_barrier(mem_flags::mem_threadgroup); - //} +kernel void kernel_mul_mat_q3_k_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne10, + constant int64_t & ne0, + constant int64_t & ne1, + threadgroup float * sum [[threadgroup(0)]], + uint2 tgpig[[threadgroup_position_in_grid]], + uint2 tpitg[[thread_position_in_threadgroup]], + uint2 tptg[[threads_per_threadgroup]]) { + + const uint16_t kmask1 = 0x0303; + const uint16_t kmask2 = 0x0f0f; + + const uint8_t m3 = 3; + const int8_t m4 = 4; + + const int nb = ne00/QK_K; + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + + device const block_q3_k * x = (device const block_q3_k *) src0 + r0*nb; + device const float * yy = (device const float *) src1 + r1*ne10; + + const int nth = tptg.x*tptg.y; + const int ith = tptg.y*tpitg.x + tpitg.y; + + const int tid = tpitg.y; // expecting 16 + const int ip = tid/8; // 0 or 1 + const int il = tid/2 - 4*ip; // 0...3 + const int ir = tid%2; + const int n = 8; + const int l0 = n*ir; + + const uint8_t m = 1 << (4*ip + il); + + const int shift = 2*il; + + const uint16_t s_shift1 = 4*ip; + const uint16_t s_shift2 = s_shift1 + 2*(il/2); + const int ik = 4 + (il%2); + + const int q_offset = 32*ip + l0; + const int y_offset = 128*ip + 32*il + l0; + + //float sumf = 0; + float sumf1 = 0, sumf2 = 0; + for (int i = tpitg.x; i < nb; i += tptg.x) { + + const float d_all = (float)(x[i].d); + + device const uint8_t * q = x[i].qs + q_offset; + device const uint8_t * h = x[i].hmask + l0; + device const float * y = yy + i * QK_K + y_offset; + + device const uint16_t * a = (device const uint16_t *)x[i].scales; + const char2 scales = as_type((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4))); + + float s = 0; + for (int l = 0; l < n; ++l) { + s += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift) & m3) - ((h[l+ 0] & m) ? 0 : m4)); + } + float d = d_all * s; + sumf1 += d * scales[0]; + sumf2 += d; + //sumf += d_all * s * (scales[0] - 32); + + s = 0; + for (int l = 0; l < n; ++l) { + s += y[l+16] * ((int8_t)((q[l+16] >> shift) & m3) - ((h[l+16] & m) ? 0 : m4)); + } + d = d_all * s; + sumf1 += d * scales[1]; + sumf2 += d; + //sumf += d_all * s * (scales[1] - 32); + + } + + //sum[ith] = sumf; + sum[ith] = sumf1 - 32.f*sumf2; + + // + // Accumulate the sum from all threads in the threadgroup + // + threadgroup_barrier(mem_flags::mem_threadgroup); + if (ith%4 == 0) { + for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i]; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + if (ith%16 == 0) { + for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i]; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + if (ith == 0) { + for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; + dst[r1*ne0 + r0] = sum[0]; + } - //if (ith == 0) { - // dst[r1*ne0 + r0] = sum[0]; - //} } kernel void kernel_mul_mat_q4_k_f32( @@ -952,23 +1149,17 @@ kernel void kernel_mul_mat_q4_k_f32( device const float * src1, device float * dst, constant int64_t & ne00, - constant int64_t & ne01, - constant uint64_t & nb00, - constant uint64_t & nb01, - constant uint64_t & nb02, constant int64_t & ne10, - constant int64_t & ne11, - constant uint64_t & nb10, - constant uint64_t & nb11, - constant uint64_t & nb12, constant int64_t & ne0, - constant int64_t & ne1, threadgroup float * sum [[threadgroup(0)]], uint2 tgpig[[threadgroup_position_in_grid]], - uint2 tpig[[thread_position_in_grid]], // we don't use this for now uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + const int nb = ne00/QK_K; const int64_t r0 = tgpig.x; @@ -977,37 +1168,55 @@ kernel void kernel_mul_mat_q4_k_f32( device const block_q4_k * x = (device const block_q4_k *) src0 + r0*nb; device const float * yy = (device const float *) src1 + r1*ne10; - const uint nth = tptg.x*tptg.y; - const uint ith = tptg.y*tpitg.x + tpitg.y; + const int nth = tptg.x*tptg.y; + const int ith = tptg.y*tpitg.x + tpitg.y; const int tid = tpitg.y; // 0...16 const int il = tid/4; // 0...3 - const int ir = tid%4; // 0...3 - const int n = 8; - const int is = 2*il; + const int ir = tid - 4*il;// 0...3 + const int n = 4; + + const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 + const int in = il%2; + + const int l0 = n*(2*ir + in); + const int q_offset = 32*im + l0; + const int y_offset = 64*im + l0; sum[ith] = 0.0f; + uchar2 sc1, sc2, sc3, sc4; + float sumf = 0; for (int i = tpitg.x; i < nb; i += tptg.x) { - device const uint8_t * q = (x + i)->qs + 32*il + n*ir; - device const float * y = yy + i*QK_K + 64*il + n*ir; - device const uint8_t * scales = (x + i)->scales; + device const uint8_t * q1 = (x + i)->qs + q_offset; + device const uint8_t * q2 = q1 + 64; + device const float * y1 = yy + i*QK_K + y_offset; + device const float * y2 = y1 + 128; const float dall = (float)((x + i)->d); const float dmin = (float)((x + i)->dmin); - const uchar4 sc = get_scale_min_k4(is, scales); + device const uint16_t * a = (device const uint16_t *)(x + i)->scales; + sc1 = as_type((uint16_t)(a[im+0] & kmask1)); + sc2 = as_type((uint16_t)(a[im+2] & kmask1)); + sc3 = as_type((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2))); + sc4 = as_type((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2))); float4 s = {0.f, 0.f, 0.f, 0.f}; + float smin = 0; for (int l = 0; l < n; ++l) { - s[0] += y[l+ 0] * (q[l] & 0xF); s[1] += y[l+ 0]; - s[2] += y[l+32] * (q[l] >> 4); s[3] += y[l+32]; + + s[0] += y1[l] * (q1[l] & 0xF); s[1] += y1[l+32] * (q1[l] >> 4); + s[2] += y2[l] * (q2[l] & 0xF); s[3] += y2[l+32] * (q2[l] >> 4); + smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1]; + } - sumf += dall * (s[0] * sc[0] + s[2] * sc[2]) - dmin * (s[1] * sc[1] + s[3] * sc[3]); + sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin; } + sum[ith] = sumf; // @@ -1043,25 +1252,114 @@ kernel void kernel_mul_mat_q4_k_f32( //} } +kernel void kernel_mul_mat_q5_k_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne10, + constant int64_t & ne0, + threadgroup float * sum [[threadgroup(0)]], + uint2 tgpig[[threadgroup_position_in_grid]], + uint2 tpitg[[thread_position_in_threadgroup]], + uint2 tptg[[threads_per_threadgroup]]) { + + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + + const int nb = ne00/QK_K; + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + + device const block_q5_k * x = (device const block_q5_k *) src0 + r0*nb; + device const float * yy = (device const float *) src1 + r1*ne10; + + const int nth = tptg.x*tptg.y; + const int ith = tptg.y*tpitg.x + tpitg.y; + + const int tid = tpitg.y; // 0...16 + const int il = tid/4; // 0...3 + const int ir = tid - 4*il;// 0...3 + const int n = 4; + + const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 + const int in = il%2; + + const int l0 = n*(2*ir + in); + const int q_offset = 32*im + l0; + const int y_offset = 64*im + l0; + + const uint8_t hm1 = 1u << (2*im); + const uint8_t hm2 = hm1 << 1; + const uint8_t hm3 = hm1 << 4; + const uint8_t hm4 = hm2 << 4; + + uchar2 sc1, sc2, sc3, sc4; + + float sumf = 0; + for (int i = tpitg.x; i < nb; i += tptg.x) { + + device const uint8_t * q1 = (x + i)->qs + q_offset; + device const uint8_t * q2 = q1 + 64; + device const uint8_t * qh = (x + i)->qh + l0; + device const float * y1 = yy + i*QK_K + y_offset; + device const float * y2 = y1 + 128; + + const float dall = (float)((x + i)->d); + const float dmin = (float)((x + i)->dmin); + + device const uint16_t * a = (device const uint16_t *)(x + i)->scales; + sc1 = as_type((uint16_t)(a[im+0] & kmask1)); + sc2 = as_type((uint16_t)(a[im+2] & kmask1)); + sc3 = as_type((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2))); + sc4 = as_type((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2))); + + float4 s = {0.f, 0.f, 0.f, 0.f}; + float smin = 0; + for (int l = 0; l < n; ++l) { + + s[0] += y1[l+ 0] * ((q1[l] & 0xF) + (qh[l] & hm1 ? 16 : 0)); + s[1] += y1[l+32] * ((q1[l] >> 4) + (qh[l] & hm2 ? 16 : 0)); + s[2] += y2[l+ 0] * ((q2[l] & 0xF) + (qh[l] & hm3 ? 16 : 0)); + s[3] += y2[l+32] * ((q2[l] >> 4) + (qh[l] & hm4 ? 16 : 0)); + smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1]; + + } + sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin; + + } + sum[ith] = sumf; + + // + // Accumulate the sum from all threads in the threadgroup + // + threadgroup_barrier(mem_flags::mem_threadgroup); + if (ith%4 == 0) { + sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3]; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + if (ith%16 == 0) { + sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12]; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + if (ith == 0) { + for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; + dst[r1*ne0 + r0] = sum[0]; + } + +} + kernel void kernel_mul_mat_q6_k_f32( device const void * src0, device const float * src1, device float * dst, constant int64_t & ne00, - constant int64_t & ne01, - constant uint64_t & nb00, - constant uint64_t & nb01, - constant uint64_t & nb02, constant int64_t & ne10, - constant int64_t & ne11, - constant uint64_t & nb10, - constant uint64_t & nb11, - constant uint64_t & nb12, constant int64_t & ne0, - constant int64_t & ne1, threadgroup float * sum [[threadgroup(0)]], uint2 tgpig[[threadgroup_position_in_grid]], - uint2 tpig[[thread_position_in_grid]], // we don't use this for now uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { @@ -1078,24 +1376,29 @@ kernel void kernel_mul_mat_q6_k_f32( device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb; device const float * yy = (device const float *) src1 + r1*ne10; - const uint nth = tptg.x*tptg.y; - const uint ith = tptg.y*tpitg.x + tpitg.y; + const int nth = tptg.x*tptg.y; + const int ith = tptg.y*tpitg.x + tpitg.y; - const int step = QK_K / tptg.y; // we expect this to be 16 - const int iqs = step * tpitg.y; // 0...240 in steps of 16 + // Note: we absolutely assume that tptg.y = 16 and QK_K = 256! + const int iqs = 16 * tpitg.y; const int ip = iqs / 128; // 0 or 1 const int il = (iqs - 128*ip)/16; // 0...7 const int n = 4; - const int is = 8*ip + (n*il)/16; + const int l0 = n*il; + const int is = 8*ip + l0/16; + + const int y_offset = 128*ip + l0; + const int q_offset_l = 64*ip + l0; + const int q_offset_h = 32*ip + l0; float sumf = 0; for (int i = tpitg.x; i < nb; i += tptg.x) { - device const uint8_t * ql = x[i].ql + 64*ip + n*il; - device const uint8_t * qh = x[i].qh + 32*ip + n*il; + device const uint8_t * ql = x[i].ql + q_offset_l; + device const uint8_t * qh = x[i].qh + q_offset_h; device const int8_t * sc = x[i].scales + is; - device const float * y = yy + i * QK_K + 128*ip + n*il; + device const float * y = yy + i * QK_K + y_offset; const float dall = x[i].d; diff --git a/llama.cpp b/llama.cpp index a9a7794ae..f0f9124d8 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2377,12 +2377,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0); } else { new_type = quantized_type; - // TODO: temporary disabled until Metal / OpenCL support is available - // ref: https://github.com/ggerganov/llama.cpp/issues/1711 - //if (tensor.name == "output.weight") { - // new_type = GGML_TYPE_Q6_K; - //} - if (tensor.name.find("attention.wv.weight") != std::string::npos) { + if (tensor.name == "output.weight") { + new_type = GGML_TYPE_Q6_K; + } + else if (tensor.name.find("attention.wv.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && From 74d4cfa3438cb58bd177eed30014e6588694aaa8 Mon Sep 17 00:00:00 2001 From: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Tue, 13 Jun 2023 04:23:23 -0600 Subject: [PATCH 005/135] Allow "quantizing" to f16 and f32 (#1787) * Allow "quantizing" to f16 and f32 Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS Add brief help to the list of quantization types in the quantize tool Ignore case for quantization type arguments in the quantize tool --- Makefile | 1 + examples/quantize/quantize.cpp | 162 ++++++++++++++++++++++++++------- ggml.c | 12 +++ llama.cpp | 27 +++--- 4 files changed, 154 insertions(+), 48 deletions(-) diff --git a/Makefile b/Makefile index 39ebfd048..9a08d610b 100644 --- a/Makefile +++ b/Makefile @@ -127,6 +127,7 @@ endif ifndef LLAMA_NO_K_QUANTS CFLAGS += -DGGML_USE_K_QUANTS + CXXFLAGS += -DGGML_USE_K_QUANTS OBJS += k_quants.o endif diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index c6bf1b723..4e8e6f523 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -4,43 +4,135 @@ #include #include -#include +#include #include -static const std::map LLAMA_FTYPE_MAP = { - {"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0}, - {"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1}, - {"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0}, - {"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1}, - {"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0}, - {"q2_K", LLAMA_FTYPE_MOSTLY_Q2_K}, - {"q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M}, - {"q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S}, - {"q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M}, - {"q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L}, - {"q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M}, - {"q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S}, - {"q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M}, - {"q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M}, - {"q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S}, - {"q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M}, - {"q6_K", LLAMA_FTYPE_MOSTLY_Q6_K}, +struct quant_option { + std::string name; + llama_ftype ftype; + std::string desc; }; -bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::string & ftype_str_out) { - auto it = LLAMA_FTYPE_MAP.find(ftype_str); - if (it != LLAMA_FTYPE_MAP.end()) { - ftype = it->second; - ftype_str_out = it->first; - return true; +static const std::vector QUANT_OPTIONS = { + { + "Q4_0", + LLAMA_FTYPE_MOSTLY_Q4_0, + " 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M", + }, + { + "Q4_1", + LLAMA_FTYPE_MOSTLY_Q4_1, + " 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L", + }, + { + "Q5_0", + LLAMA_FTYPE_MOSTLY_Q5_0, + " 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M", + }, + { + "Q5_1", + LLAMA_FTYPE_MOSTLY_Q5_1, + " 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M", + }, +#ifdef GGML_USE_K_QUANTS + { + "Q2_K", + LLAMA_FTYPE_MOSTLY_Q2_K, + " 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended", + }, + { + "Q3_K", + LLAMA_FTYPE_MOSTLY_Q3_K_M, + "alias for Q3_K_M" + }, + { + "Q3_K_S", + LLAMA_FTYPE_MOSTLY_Q3_K_S, + " 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss", + }, + { + "Q3_K_M", + LLAMA_FTYPE_MOSTLY_Q3_K_M, + " 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss", + }, + { + "Q3_K_L", + LLAMA_FTYPE_MOSTLY_Q3_K_L, + " 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss", + }, + { + "Q4_K", + LLAMA_FTYPE_MOSTLY_Q4_K_M, + "alias for Q4_K_M", + }, + { + "Q4_K_S", + LLAMA_FTYPE_MOSTLY_Q4_K_S, + " 3.56G, +0.1149 ppl @ 7B - small, significant quality loss", + }, + { + "Q4_K_M", + LLAMA_FTYPE_MOSTLY_Q4_K_M, + " 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*", + }, + { + "Q5_K", + LLAMA_FTYPE_MOSTLY_Q5_K_M, + "alias for Q5_K_M", + }, + { + "Q5_K_S", + LLAMA_FTYPE_MOSTLY_Q5_K_S, + " 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*", + }, + { + "Q5_K_M", + LLAMA_FTYPE_MOSTLY_Q5_K_M, + " 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*", + }, + { + "Q6_K", + LLAMA_FTYPE_MOSTLY_Q6_K, + " 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss", + }, +#endif + { + "Q8_0", + LLAMA_FTYPE_MOSTLY_Q8_0, + " 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended", + }, + { + "F16", + LLAMA_FTYPE_MOSTLY_F16, + "13.00G @ 7B - extremely large, virtually no quality loss - not recommended", + }, + { + "F32", + LLAMA_FTYPE_ALL_F32, + "26.00G @ 7B - absolutely huge, lossless - not recommended", + }, +}; + + +bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) { + std::string ftype_str; + + for (auto ch : ftype_str_in) { + ftype_str.push_back(std::toupper(ch)); + } + for (auto & it : QUANT_OPTIONS) { + if (it.name == ftype_str) { + ftype = it.ftype; + ftype_str_out = it.name; + return true; + } } - // try to parse as an integer try { int ftype_int = std::stoi(ftype_str); - for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) { - if (it->second == ftype_int) { - ftype = it->second; - ftype_str_out = it->first; + for (auto & it : QUANT_OPTIONS) { + if (it.ftype == ftype_int) { + ftype = it.ftype; + ftype_str_out = it.name; return true; } } @@ -52,15 +144,15 @@ bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::st } // usage: -// ./quantize models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads] +// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads] // void usage(const char * executable) { - fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n", executable); + fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable); fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); - fprintf(stderr, "Allowed quantization types:\n"); - for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) { - fprintf(stderr, " type = \"%s\" or %d\n", it->first.c_str(), it->second); + fprintf(stderr, "\nAllowed quantization types:\n"); + for (auto & it : QUANT_OPTIONS) { + printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str()); } exit(1); } diff --git a/ggml.c b/ggml.c index a13de5115..252edd582 100644 --- a/ggml.c +++ b/ggml.c @@ -16301,6 +16301,18 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i result = ggml_quantize_q6_K(src + start, block, n, n, hist); } break; #endif + case GGML_TYPE_F16: + { + int elemsize = sizeof(ggml_fp16_t); + ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n); + result = n * elemsize; + } break; + case GGML_TYPE_F32: + { + int elemsize = sizeof(float); + result = n * elemsize; + memcpy((uint8_t *)dst + start * elemsize, src + start, result); + } break; default: assert(false); } diff --git a/llama.cpp b/llama.cpp index f0f9124d8..c7a333642 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2298,7 +2298,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break; case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break; case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break; + case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break; + case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break; +#ifdef GGML_USE_K_QUANTS // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; case LLAMA_FTYPE_MOSTLY_Q3_K_S: @@ -2309,6 +2312,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_Q5_K_S: case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break; case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; +#endif default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); } @@ -2320,6 +2324,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s /*vocab_only*/ false)); llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype); +#ifdef GGML_USE_K_QUANTS int n_attention_wv = 0; int n_feed_forward_w2 = 0; for (auto& tensor : model_loader->tensors_map.tensors) { @@ -2333,6 +2338,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s int i_attention_wv = 0; int i_feed_forward_w2 = 0; +#endif size_t total_size_org = 0; size_t total_size_new = 0; @@ -2358,12 +2364,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // quantize only 2D tensors quantize &= (tensor.ne.size() == 2); - - // uncomment this to keep the output layer in FP16 - if (!params->quantize_output_tensor && tensor.name == "output.weight") { - quantize = false; - } - quantize = quantize && quantized_type != tensor.type; + quantize &= params->quantize_output_tensor || tensor.name != "output.weight"; + quantize &= quantized_type != tensor.type; enum ggml_type new_type; void * new_data; @@ -2377,29 +2379,28 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0); } else { new_type = quantized_type; +#ifdef GGML_USE_K_QUANTS if (tensor.name == "output.weight") { - new_type = GGML_TYPE_Q6_K; - } - else if (tensor.name.find("attention.wv.weight") != std::string::npos) { + new_type = GGML_TYPE_Q6_K; + } else if (tensor.name.find("attention.wv.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 || (i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; ++i_attention_wv; - } - if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { + } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && (i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 || (i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; ++i_feed_forward_w2; - } - if (tensor.name.find("attention.wo.weight") != std::string::npos) { + } else if (tensor.name.find("attention.wo.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; } +#endif float * f32_data; size_t nelements = tensor.ne.at(0) * tensor.ne.at(1); From 2347e45e7bdb09c9a7d74b2c0bc86c2b65f0c343 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 13 Jun 2023 20:20:07 +0300 Subject: [PATCH 006/135] llama : do a warm-up eval at start for better timings (#1824) --- examples/main/main.cpp | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 66d563143..efa913e16 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -331,6 +331,13 @@ int main(int argc, char ** argv) { std::vector embd; + // do one empty run to warm up the model + { + const std::vector tmp = { llama_token_bos(), }; + llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads); + llama_reset_timings(ctx); + } + while ((n_remain != 0 && !is_antiprompt) || params.interactive) { // predict if (embd.size() > 0) { From e32089b2c20b1b87b22912f4a8b93fe01647d5b9 Mon Sep 17 00:00:00 2001 From: xaedes Date: Tue, 13 Jun 2023 21:04:40 +0200 Subject: [PATCH 007/135] train : improved training-from-scratch example (#1652) * add python wrapper https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce * fix decoding error. adds errors=ignore parameter * add python bindings for functions to get and set the whole llama state (rng, logits, embedding and kv_cache) * update python bindings * add text generating baby-llama from scratch example * fix race condition bug in ggml_compute_forward_diag_mask_f32 * implement ggml_soft_max_back for more performant backward pass of soft_max avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss * improve softmax backward pass go from quadratic runtime to linear runtime by simplifying the formulas * fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32 memcpy needs to be synchronized across threads to avoid race conditions. => do it in INIT phase * fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build * improve performance of mul_mat backward pass avoid transpose by using mul_mat with swapped arguments * avoid printing too much newlines in baby-llama-text * activate threading in baby-llama-text * add ggml_out_prod and use it for mul_mat backward pass for improved performance performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests * better weight initialization improves training convergence at start * better weight initialization improves training convergence at start * improve ggml_out_prod performance - change iteration order (>15s -> 10s runtime) - parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime) * add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data * fix get_samples call, add model tensor names, increase model size, start training samples after newline * save train trained model to checkpoint and load model to be trained from checkpoint * use inplace functions where possible * initialize rng with srand * use different arguments for input and output checkpoint * ggml fixes to support backward pass on inplace operations * remove duplicate include * fix cross entropy loss - add target probabilities for each sample which is then used in cross entropy loss * print used memory before and after optimization * sample with non-greedy sampling parameters at the end of training * add cmake target for baby-llama-text * add ggml_add1_inplace to header * enable gradient propagation for inplace add1 and scale operations those functions backward passes don't need the original src0, so they also work when forward is inplace * implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f) also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule. setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer. since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer. * use inplace operations in cross_entropy_loss * fix random weight initialization scale * add missing default parameters for adam optimizer * add ggml_opt_context, so that we can properly resume training otherwise the optimizer states, tracking statistics about the error function and its derivates, will reset to zero each time ggml_opt is called, hindering convergence on resumed training. now the optimizer context and all its memory is stored in a separate struct. * fix bug in llama_sample_token_mirostat_v2 when all candidates are filtered out through mu threshold, the following soft_max operation will fail. so keep at least one. * add forward function without using cache, for more performant training during training on whole samples no cache is required. removing the cache and simplifying the remaining code results in performance and memory usage improvement. * print suppressed newline tokens as string "\n" printing too much actual newlines is suppressed to avoid flooding the console. * store optimizer state in training checkpoint and add learning schedule persistent optimizer state allows to resume training without resetting the optimizer learning schedule consists of linear warmup ramp followed by cosine decay with restarts * remove unused functions * fix bug in get_samples which corrupted training targets * save checkpoint only when it was trained * simplify code * remove trailing whitespace * simplify backward pass for SQRT * replace inefficient repeat backward pass with dedicated repeat_back operation * add ggml_cross_entropy_loss with backward pass for faster training cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead. * add tests for cross_entropy_loss backward pass finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient. _probably_ the finite differences fails due to numerical issues * use ggml_cross_entropy_loss in text training example * remove trailing whitespace * slightly improve how cross entropy loss is compute btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log. probably the input to log gets closer to zero due to float numerics. maybe the multiplication by (1.0-eps)/sum is more accurate.. * add llama_get_vocab to get the vocabulary as output parameters * set default model.type for unknown models with few layers * add export of training checkpoint to llama compatible model file * get vocabulary for exporting training checkpoint to llama compatible model file * implement backward pass of flash attention * bugfixes for backward pass of flash attention * test flash attention backward pass need to set loose error bounds to pass. the finitie differences are close to numeric limits and often return quite different values than the backward pass. reducing eps further lets the gradients vanish completely. likewise setting eps to big results in wronger values. the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences. * add option to train with flash attention and move options to the top of the main function training from scratch also works with flash attention training convergence and generation results after fix number of iterations are worse than when not using flash attention. maybe there still lingers a bug in the flash attention backward pass? but training works, just with slower convergence. flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx * add train_params and command line option parser * remove unnecessary comments * add train params to specify memory size * remove python bindings * rename baby-llama-text to train-text-from-scratch * replace auto parameters in lambda function * add #include * add explicit cast to fix compile error "error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]" * remove trailing whitespace * add ggml_opt_resume_g which accepts forward and backward cgraphs * fix formulas in comments * bug fix for ggml_compute_forward_get_rows_back_f32 the result should be set to zero, not to whatever data is in opt0 * improve training memory usage with scratch buffers instead of relying on the automatic backward pass, we manually create the graph for the backward pass. it turns out that all backward pass operations need only temporary memory which can be reused after each layer. will compute backward pass for ALL model parameters * add option to use scratch buffers in training or not make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters. * ci : disable temporary * store view offset and permute axes in opt[0] instead of storing it in padding use memcpy to store offset, because offset is of type size_t. when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true. * minor : fix compile warnings + minor style changes * fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32 * store view offset like in master branch * bug fix in forward_batch_wo_cache_flash_attn_train * scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train data of permute and reshape is the same as their input. if we want to preserve the output of permute/reshape, we also need to preserve their inputs. replace reshape(src0, src1) with reshape_nd calls so that we don't need src1. replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02). in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls. for this we need backward pass of broadcasting ggml_mul. * remove unnecessary scratch buffer 0 buf 0 is persistent memory, so we can just disable scratch for this by using buf -1 * avoid creating unnecessary grad tensors previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads this wasted memory, because unnecessary grad for each op were automatically created: the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ). this discarded the automatically generated grad resulting in wasted memory. improved this by changing expand(..) to not use ggml_build_forward_expand. expand set cgraph->nodes but not the leafs. cgraph->leafs & cgraph->grads are set in another pass after the last expand call. * print used training seed * zero initialize gfbuf and gbbuf * ci : re-enable workflows + add README for training --------- Co-authored-by: Georgi Gerganov --- examples/CMakeLists.txt | 1 + examples/baby-llama/baby-llama.cpp | 13 +- .../train-text-from-scratch/CMakeLists.txt | 4 + examples/train-text-from-scratch/README.md | 22 + .../train-text-from-scratch.cpp | 3399 +++++++++++++++++ ggml.c | 2097 ++++++++-- ggml.h | 127 +- llama.cpp | 25 + llama.h | 8 + tests/test-grad0.c | 60 +- 10 files changed, 5492 insertions(+), 264 deletions(-) create mode 100644 examples/train-text-from-scratch/CMakeLists.txt create mode 100644 examples/train-text-from-scratch/README.md create mode 100644 examples/train-text-from-scratch/train-text-from-scratch.cpp diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 3deff4077..de005f3e3 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -37,6 +37,7 @@ else() add_subdirectory(save-load-state) add_subdirectory(benchmark) add_subdirectory(baby-llama) + add_subdirectory(train-text-from-scratch) if (LLAMA_METAL) add_subdirectory(metal) endif() diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index 5573c154b..e5639da37 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -79,34 +79,39 @@ struct ggml_tensor * randomize_tensor_normal( int ndims, const int64_t ne[], struct random_normal_distribution * rnd) { + float scale = 1.0; // xavier switch (ndims) { case 1: + scale /= sqrtf(ne[0]); for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i0] = frand_normal(rnd); + ((float *)tensor->data)[i0] = scale * frand_normal(rnd); } break; case 2: + scale /= sqrtf(ne[0]+ne[1]); for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i1*ne[0] + i0] = frand_normal(rnd); + ((float *)tensor->data)[i1*ne[0] + i0] = scale * frand_normal(rnd); } } break; case 3: + scale /= sqrtf(ne[0]+ne[1]); for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand_normal(rnd); + ((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd); } } } break; case 4: + scale /= sqrtf(ne[0]+ne[1]); for (int i3 = 0; i3 < ne[3]; i3++) { for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand_normal(rnd); + ((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd); } } } diff --git a/examples/train-text-from-scratch/CMakeLists.txt b/examples/train-text-from-scratch/CMakeLists.txt new file mode 100644 index 000000000..1a44c4961 --- /dev/null +++ b/examples/train-text-from-scratch/CMakeLists.txt @@ -0,0 +1,4 @@ +set(TARGET train-text-from-scratch) +add_executable(${TARGET} train-text-from-scratch.cpp) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/train-text-from-scratch/README.md b/examples/train-text-from-scratch/README.md new file mode 100644 index 000000000..5344d1f52 --- /dev/null +++ b/examples/train-text-from-scratch/README.md @@ -0,0 +1,22 @@ +# train-text-from-scratch + +Basic usage instructions: + +```bash +# get training data +wget https://github.com/brunoklein99/deep-learning-notes/blob/master/shakespeare.txt + +# train +./bin/train-text-from-scratch \ + --vocab-model ../models/ggml-vocab.bin \ + --ctx 64 --embd 256 --head 8 --layer 16 \ + --checkpoint-in chk-shakespeare-256x16.bin \ + --checkpoint-out chk-shakespeare-256x16.bin \ + --model-out ggml-shakespeare-256x16-f32.bin \ + --train-data "shakespeare.txt" \ + -t 6 -b 16 -n 32 --seed 1 --adam-iter 16 \ + --print-details-interval 0 --predict 16 --use-flash + +# predict +./bin/main -m ggml-shakespeare-256x16-f32.bin +``` diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp new file mode 100644 index 000000000..51271b497 --- /dev/null +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -0,0 +1,3399 @@ +#include "ggml.h" +#include "llama.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +struct random_normal_distribution { + std::mt19937 gen; + std::normal_distribution rd; + float min; + float max; +}; + + +struct random_uniform_distribution { + std::mt19937 gen; + std::uniform_real_distribution rd; +}; + +void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) { + rnd->gen = std::mt19937(seed); + rnd->rd = std::normal_distribution{mean, std}; + rnd->min = min; + rnd->max = max; +} + +void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) { + rnd->gen = std::mt19937(seed); + rnd->rd = std::uniform_real_distribution{min, max}; +} + +int clamp(const int v, const int min, const int max) { + return ((v < min) ? (min) : (v > max) ? (max) : v); +} + +float fclamp(const float v, const float min, const float max) { + return ((v < min) ? (min) : (v > max) ? (max) : v); +} + +float frand() { + return (float)rand()/(float)RAND_MAX; +} + +float frand_normal(struct random_normal_distribution * rnd) { + return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); +} + +float frand_uniform(struct random_uniform_distribution * rnd) { + return rnd->rd(rnd->gen); +} + +struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { + float scale = 1.0f; // xavier + switch (tensor->n_dims) { + case 1: + scale /= sqrtf(tensor->ne[0]); + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); + *dst = scale * frand_normal(rnd); + } + break; + case 2: + scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + *dst = scale * frand_normal(rnd); + } + } + break; + case 3: + scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); + *dst = scale * frand_normal(rnd); + } + } + } + break; + case 4: + scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); + for (int i3 = 0; i3 < tensor->ne[3]; i3++) { + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); + *dst = scale * frand_normal(rnd); + } + } + } + } + break; + default: + assert(false); + }; + return tensor; +} + +struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { + switch (tensor->n_dims) { + case 1: + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); + *dst = frand_uniform(rnd); + } + break; + case 2: + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + *dst = frand_uniform(rnd); + } + } + break; + case 3: + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); + *dst = frand_uniform(rnd); + } + } + } + break; + case 4: + for (int i3 = 0; i3 < tensor->ne[3]; i3++) { + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); + *dst = frand_uniform(rnd); + } + } + } + } + break; + default: + assert(false); + }; + return tensor; +} + +struct llama_vocab { + using id = int32_t; + using token = std::string; + + struct token_score { + token tok; + float score; + }; + + std::unordered_map token_to_id; + std::vector id_to_token; +}; + +struct my_llama_hparams { + uint32_t n_vocab = 32000; + uint32_t n_ctx = 512; // this is provided as user input? + uint32_t n_embd = 4096; + uint32_t n_mult = 4; + uint32_t n_head = 32; + uint32_t n_layer = 32; + uint32_t n_rot = 64; + + bool operator!=(const my_llama_hparams& other) const { + return memcmp(this, &other, sizeof(my_llama_hparams)); + } +}; + +struct my_llama_layer { + // normalization + struct ggml_tensor * attention_norm; + + // attention + struct ggml_tensor * wq; + struct ggml_tensor * wk; + struct ggml_tensor * wv; + struct ggml_tensor * wo; + + // normalization + struct ggml_tensor * ffn_norm; + + // ff + struct ggml_tensor * w1; + struct ggml_tensor * w2; + struct ggml_tensor * w3; +}; + +struct my_llama_kv_cache { + struct ggml_context * ctx = NULL; + + struct ggml_tensor * k; + struct ggml_tensor * v; + + // llama_ctx_buffer buf; + + int n; // number of tokens currently in the cache +}; + +struct my_llama_model { + struct ggml_context * ctx = NULL; + + my_llama_hparams hparams; + + struct ggml_tensor * tok_embeddings; + + struct ggml_tensor * norm; + struct ggml_tensor * output; + + std::vector layers; + + uint32_t train_its = 0; + uint32_t train_samples = 0; + uint32_t train_tokens = 0; +}; + +uint32_t get_n_ff(const struct my_llama_hparams* hparams) { + const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult; + return n_ff; +} + +void print_params(struct my_llama_hparams * params) { + printf("%s: n_vocab: %d\n", __func__, params->n_vocab); + printf("%s: n_ctx: %d\n", __func__, params->n_ctx); + printf("%s: n_embd: %d\n", __func__, params->n_embd); + printf("%s: n_mult: %d\n", __func__, params->n_mult); + printf("%s: n_head: %d\n", __func__, params->n_head); + printf("%s: n_ff: %d\n", __func__, get_n_ff(params)); + printf("%s: n_layer: %d\n", __func__, params->n_layer); + printf("%s: n_rot: %d\n", __func__, params->n_rot); +} + +void init_model(struct my_llama_model * model) { + const auto & hparams = model->hparams; + + const uint32_t n_embd = hparams.n_embd; + const uint32_t n_layer = hparams.n_layer; + const uint32_t n_vocab = hparams.n_vocab; + + const uint32_t n_ff = get_n_ff(&hparams); + + struct ggml_context * ctx = model->ctx; + + model->train_its = 0; + model->train_samples = 0; + model->train_tokens = 0; + + model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); + model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); + + ggml_set_name(model->tok_embeddings, "tok_embeddings.weight"); + ggml_set_name(model->norm, "norm.weight"); + ggml_set_name(model->output, "output.weight"); + + model->layers.resize(n_layer); + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = model->layers[i]; + + std::string layers_i = "layers." + std::to_string(i); + + layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); + layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); + layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); + layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); + + layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); + layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); + layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); + + ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str()); + + ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str()); + ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str()); + ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str()); + ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str()); + + ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str()); + + // 'layers.10.feed_forward.w1.weight' has length of 32. + // ggml_tensor->name only has 32 characters, but we need one more for the '\0' terminator. + // ggml_set_name will set the last character to '\0', so we can only store 'layers.10.feed_forward.w1.weigh'. + // when saving llama compatible model the tensors names will miss a character. + // ggml_set_name(layer.w1, (layers_i + ".feed_forward.w1.weight").c_str()); + // ggml_set_name(layer.w2, (layers_i + ".feed_forward.w2.weight").c_str()); + // ggml_set_name(layer.w3, (layers_i + ".feed_forward.w3.weight").c_str()); + + strncpy(layer.w1->name, (layers_i + ".feed_forward.w1.weight").c_str(), sizeof(layer.w1->name)); + strncpy(layer.w2->name, (layers_i + ".feed_forward.w2.weight").c_str(), sizeof(layer.w2->name)); + strncpy(layer.w3->name, (layers_i + ".feed_forward.w3.weight").c_str(), sizeof(layer.w3->name)); + layer.w1->padding[0] = 0; + layer.w2->padding[0] = 0; + layer.w3->padding[0] = 0; + } +} + +void set_param_model(struct my_llama_model * model) { + const auto& hparams = model->hparams; + + const uint32_t n_layer = hparams.n_layer; + + struct ggml_context* ctx = model->ctx; + + ggml_set_param(ctx, model->tok_embeddings); + ggml_set_param(ctx, model->norm); + ggml_set_param(ctx, model->output); + + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = model->layers[i]; + + ggml_set_param(ctx, layer.attention_norm); + ggml_set_param(ctx, layer.wq); + ggml_set_param(ctx, layer.wk); + ggml_set_param(ctx, layer.wv); + ggml_set_param(ctx, layer.wo); + ggml_set_param(ctx, layer.ffn_norm); + ggml_set_param(ctx, layer.w1); + ggml_set_param(ctx, layer.w2); + ggml_set_param(ctx, layer.w3); + } +} + +void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) { + const auto & hparams = model->hparams; + + const uint32_t n_layer = hparams.n_layer; + + struct random_normal_distribution rnd; + init_random_normal_distribution(&rnd, seed, mean, std, min, max); + + randomize_tensor_normal(model->tok_embeddings, &rnd); + randomize_tensor_normal(model->norm, &rnd); + randomize_tensor_normal(model->output, &rnd); + + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = model->layers[i]; + randomize_tensor_normal(layer.attention_norm, &rnd); + + randomize_tensor_normal(layer.wq, &rnd); + randomize_tensor_normal(layer.wk, &rnd); + randomize_tensor_normal(layer.wv, &rnd); + randomize_tensor_normal(layer.wo, &rnd); + + randomize_tensor_normal(layer.ffn_norm, &rnd); + + randomize_tensor_normal(layer.w1, &rnd); + randomize_tensor_normal(layer.w2, &rnd); + randomize_tensor_normal(layer.w3, &rnd); + } +} + +bool init_kv_cache(struct my_llama_kv_cache* cache, struct my_llama_model * model, int n_batch) { + const auto & hparams = model->hparams; + + const uint32_t n_ctx = hparams.n_ctx; + const uint32_t n_embd = hparams.n_embd; + const uint32_t n_layer = hparams.n_layer; + + const int64_t n_mem = n_layer*n_ctx*n_batch; + const int64_t n_elements = n_embd*n_mem; + + // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); + + // struct ggml_init_params params; + // params.mem_size = cache.buf.size; + // params.mem_buffer = cache.buf.addr; + // params.no_alloc = false; + if (!cache->ctx) { + struct ggml_init_params params; + params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024; + params.mem_buffer = NULL; + params.no_alloc = false; + + cache->ctx = ggml_init(params); + + if (!cache->ctx) { + fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); + return false; + } + } + + cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); + cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); + + return true; +} + +struct ggml_tensor * forward( + struct my_llama_model * model, + struct my_llama_kv_cache * cache, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_past) { + + const int N = n_tokens; + + struct my_llama_kv_cache& kv_self = *cache; + const auto & hparams = model->hparams; + const int n_ctx = hparams.n_ctx; + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_head = hparams.n_head; + const int n_rot = hparams.n_rot; + + struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens)); + + struct ggml_tensor * kc = kv_self.k; + struct ggml_tensor * vc = kv_self.v; + + // inpL shape [n_embd,N,1,1] + struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + struct ggml_tensor * cur; + + // lctx.use_buf(ctx0, 0); + + // norm + { + // cur shape [n_embd,N,1,1] + cur = ggml_rms_norm(ctx0, inpL); + + // cur = attention_norm*cur + cur = ggml_mul(ctx0, + ggml_repeat(ctx0, model->layers[il].attention_norm, cur), + cur); + } + + // self-attention + { + // compute Q and K and RoPE them + // wq shape [n_embd, n_embd, 1, 1] + // wk shape [n_embd, n_embd, 1, 1] + // Qcur shape [n_embd/n_head, n_head, N, 1] + // Kcur shape [n_embd/n_head, n_head, N, 1] + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); + + // store key and value to memory + { + // compute the transposed [N, n_embd] V matrix + // wv shape [n_embd, n_embd, 1, 1] + // Vcur shape [n_embd, N, 1, 1] + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N))); + + // kv_self.k shape [n_embd * n_ctx * n_layer, 1] + // kv_self.v shape [n_embd * n_ctx * n_layer, 1] + // k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0] + // v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0] + + /* { + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); + + // important: storing RoPE-ed version of K in the KV cache! + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } //*/ + + kc = ggml_set_1d_inplace(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); + vc = ggml_set_2d_inplace(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); + } + + // Qcur shape [n_embd/n_head, n_head, N, 1] + // Q shape [n_embd/n_head, N, n_head, 1] + struct ggml_tensor * Q = + ggml_permute(ctx0, + Qcur, + 0, 2, 1, 3); + + // kv_self.k shape [n_embd * n_ctx * n_layer, 1] + // K shape [n_embd/n_head, n_past + N, n_head, 1] + struct ggml_tensor * K = + ggml_permute(ctx0, + ggml_reshape_3d(ctx0, + ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd), + n_embd/n_head, n_head, n_past + N), + 0, 2, 1, 3); + + // K * Q + // KQ shape [n_past + N, N, n_head, 1] + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + + // KQ_scaled = KQ / sqrt(n_embd/n_head) + // KQ_scaled shape [n_past + N, N, n_head, 1] + struct ggml_tensor * KQ_scaled = + ggml_scale(ctx0, + KQ, + ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); + + // KQ_masked = mask_past(KQ_scaled) + // KQ_masked shape [n_past + N, N, n_head, 1] + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); + + // KQ = soft_max(KQ_masked) + // KQ_soft_max shape [n_past + N, N, n_head, 1] + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); + + // split cached V into n_head heads + //// V shape [n_past + N, n_embd/n_head, n_head, 1] + // V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1] + struct ggml_tensor * V = + ggml_view_3d(ctx0, vc, + n_past + N, n_embd/n_head, n_head, + n_ctx*ggml_element_size(vc), + n_ctx*ggml_element_size(vc)*n_embd/n_head, + il*n_ctx*ggml_element_size(vc)*n_embd); + + // KQV shape [n_embd/n_head, N, n_head, 1] + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + // KQV_merged shape [n_embd/n_head, n_head, N, 1] + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + // KQV_merged shape + + // cur = KQV_merged.contiguous().view(n_embd, N) + // cur shape [n_embd,N,1,1] + cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N); + // cur = ggml_cpy(ctx0, + // KQV_merged, + // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); + + // projection (no bias) + // cur shape [n_embd,N,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].wo, + cur); + } + + // lctx.use_buf(ctx0, 1); + + // inpFF shape [n_embd,N,1,1] + struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); + + // feed-forward network + { + // norm + { + // cur shape [n_embd,N,1,1] + cur = ggml_rms_norm(ctx0, inpFF); + + // cur = ffn_norm*cur + // cur shape [n_embd,N,1,1] + cur = ggml_mul(ctx0, + ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), + cur); + } + + // tmp shape [n_ff,N,1,1] + struct ggml_tensor * tmp = ggml_mul_mat(ctx0, + model->layers[il].w3, + cur); + + // cur shape [n_ff,N,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].w1, + cur); + + // SILU activation + // cur shape [n_ff,N,1,1] + cur = ggml_silu(ctx0, cur); + + // cur shape [n_ff,N,1,1] + cur = ggml_mul(ctx0, cur, tmp); + + // cur shape [n_embd,N,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].w2, + cur); + } + + // cur shape [n_embd,N,1,1] + cur = ggml_add(ctx0, cur, inpFF); + + // input for next layer + // inpL shape [n_embd,N,1,1] + inpL = cur; + } + + // norm + { + + // inpL shape [n_embd,N,1,1] + inpL = ggml_rms_norm(ctx0, inpL); + + // inpL = norm*inpL + // inpL shape [n_embd,N,1,1] + inpL = ggml_mul(ctx0, + ggml_repeat(ctx0, model->norm, inpL), + inpL); + + //embeddings = inpL; + } + + // lm_head + // inpL shape [n_vocab,N,1,1] + inpL = ggml_mul_mat(ctx0, model->output, inpL); + + // run the computation + ggml_build_forward_expand(gf, inpL); + + return inpL; +} + +void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { + GGML_ASSERT(tensor->n_dims == 1); + GGML_ASSERT(tensor->ne[0] == ne0); +} + +void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { + GGML_ASSERT(tensor->n_dims == 2); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); +} + +void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { + GGML_ASSERT(tensor->n_dims == 3); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); + GGML_ASSERT(tensor->ne[2] == ne2); +} + +void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { + GGML_ASSERT(tensor->n_dims == 4); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); + GGML_ASSERT(tensor->ne[2] == ne2); + GGML_ASSERT(tensor->ne[3] == ne3); +} + +struct ggml_tensor * forward_batch( + struct my_llama_model * model, + struct my_llama_kv_cache * cache, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_past, + const int n_batch) { + + const int N = n_tokens; + + struct my_llama_kv_cache& kv_self = *cache; + const auto & hparams = model->hparams; + const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_head = hparams.n_head; + const int n_rot = hparams.n_rot; + const int n_ff = get_n_ff(&hparams); + + struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); + memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); + + struct ggml_tensor * kc = kv_self.k; + struct ggml_tensor * vc = kv_self.v; + + // inpL shape [n_embd,N*n_batch,1] + struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); + assert_shape_2d(inpL, n_embd, N*n_batch); + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + struct ggml_tensor * cur; + + // lctx.use_buf(ctx0, 0); + + // norm + { + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_rms_norm(ctx0, inpL); + assert_shape_2d(cur, n_embd, N*n_batch); + + // cur = attention_norm*cur + cur = ggml_mul(ctx0, + ggml_repeat(ctx0, model->layers[il].attention_norm, cur), + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // self-attention + { + // compute Q and K and RoPE them + // wq shape [n_embd, n_embd, 1, 1] + // wk shape [n_embd, n_embd, 1, 1] + // Qcur shape [n_embd/n_head, n_head, N, n_batch] + // Kcur shape [n_embd/n_head, n_head, N, n_batch] + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); + assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); + + // store key and value to memory + { + // compute the transposed [N, n_embd] V matrix + // wv shape [n_embd, n_embd, 1, 1] + // Vcur shape [N, n_embd, n_batch, 1] + struct ggml_tensor * Vcur = ggml_cont(ctx0, + ggml_permute(ctx0, + ggml_reshape_3d(ctx0, + ggml_mul_mat(ctx0, + model->layers[il].wv, + cur), + n_embd, N, n_batch), + 1, 0, 2, 3)); + assert_shape_3d(Vcur, N, n_embd, n_batch); + + // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] + // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer] + // k shape [n_embd * N, n_batch] == kv_self.k[:,n_past:n_past+N,:,il] + // v shape [N, n_embd, n_batch, 1] == kv_self.v[:,n_past:n_past+N,:,il] + + /* { + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); + + // important: storing RoPE-ed version of K in the KV cache! + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } //*/ + + kc = ggml_set_2d_inplace(ctx0, kc, + ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch), + ggml_element_size(kc)*n_embd*n_ctx, + (ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past)); + vc = ggml_set_2d_inplace(ctx0, vc, + ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch), + ggml_element_size(vc)*n_ctx*n_embd, + ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx)); + + assert_shape_1d(kc, n_embd * n_ctx * n_batch * n_layer); + assert_shape_1d(vc, n_embd * n_ctx * n_batch * n_layer); + } + + // Qcur shape [n_embd/n_head, n_head, N, n_batch] + // Q shape [n_embd/n_head, N, n_head, n_batch] + struct ggml_tensor * Q = + ggml_permute(ctx0, + Qcur, + 0, 2, 1, 3); + assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); + + // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] + // K shape [n_embd/n_head, n_past + N, n_head, n_batch] + struct ggml_tensor * K = + ggml_permute(ctx0, + ggml_reshape_4d(ctx0, + ggml_view_3d(ctx0, + kc, + n_embd, + (n_past + N), + n_batch, + n_embd*ggml_element_size(kc), + n_ctx*n_embd*ggml_element_size(kc), + il*n_batch*n_ctx*n_embd*ggml_element_size(kc)), + n_embd/n_head, n_head, n_past + N, n_batch), + 0, 2, 1, 3); + assert_shape_4d(K, n_embd/n_head, n_past + N, n_head, n_batch); + + // K * Q + // KQ shape [n_past + N, N, n_head, n_batch] + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + assert_shape_4d(KQ, n_past + N, N, n_head, n_batch); + + // KQ_scaled = KQ / sqrt(n_embd/n_head) + // KQ_scaled shape [n_past + N, N, n_head, n_batch] + struct ggml_tensor * KQ_scaled = + ggml_scale_inplace(ctx0, + KQ, + ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); + assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch); + + // KQ_masked = mask_past(KQ_scaled) + // KQ_masked shape [n_past + N, N, n_head, n_batch] + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); + assert_shape_4d(KQ_masked, n_past + N, N, n_head, n_batch); + + // KQ = soft_max(KQ_masked) + // KQ_soft_max shape [n_past + N, N, n_head, n_batch] + struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + assert_shape_4d(KQ_soft_max, n_past + N, N, n_head, n_batch); + + // split cached V into n_head heads + // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer] + // V shape [n_past + N, n_embd/n_head, n_head, n_batch] == kv_self.v[:(n_past+N),:,:,il] + struct ggml_tensor * V = + ggml_view_4d(ctx0, vc, + n_past + N, n_embd/n_head, n_head, n_batch, + ggml_element_size(vc)*n_ctx, + ggml_element_size(vc)*n_ctx*n_embd/n_head, + ggml_element_size(vc)*n_ctx*n_embd, + il*n_batch*n_ctx*n_embd*ggml_element_size(vc)); + assert_shape_4d(V, n_past + N, n_embd/n_head, n_head, n_batch); + + // KQV shape [n_embd/n_head, N, n_head, n_batch] + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + // KQV_merged shape [n_embd/n_head, n_head, N, n_batch] + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); + // KQV_merged shape + + // cur = KQV_merged.contiguous().view(n_embd, N) + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); + assert_shape_2d(cur, n_embd, N*n_batch); + // cur = ggml_cpy(ctx0, + // KQV_merged, + // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); + + // projection (no bias) + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].wo, + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // lctx.use_buf(ctx0, 1); + + // inpFF shape [n_embd,N*n_batch,1,1] + struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA); + assert_shape_2d(inpFF, n_embd, N*n_batch); + + // feed-forward network + { + // norm + { + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_rms_norm(ctx0, inpFF); + assert_shape_2d(cur, n_embd, N*n_batch); + + // cur = ffn_norm*cur + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_mul(ctx0, + ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // tmp shape [n_ff,N*n_batch,1,1] + struct ggml_tensor * tmp = ggml_mul_mat(ctx0, + model->layers[il].w3, + cur); + assert_shape_2d(tmp, n_ff, N*n_batch); + + // cur shape [n_ff,N*n_batch,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].w1, + cur); + assert_shape_2d(cur, n_ff, N*n_batch); + + // SILU activation + // cur shape [n_ff,N*n_batch,1,1] + cur = ggml_silu(ctx0, cur); + assert_shape_2d(cur, n_ff, N*n_batch); + + // cur shape [n_ff,N*n_batch,1,1] + cur = ggml_mul(ctx0, cur, tmp); + assert_shape_2d(cur, n_ff, N*n_batch); + + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].w2, + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_add_inplace(ctx0, cur, inpFF); + assert_shape_2d(cur, n_embd, N*n_batch); + + // input for next layer + // inpL shape [n_embd,N*n_batch,1,1] + inpL = cur; + assert_shape_2d(inpL, n_embd, N*n_batch); + } + + // norm + { + + // inpL shape [n_embd,N*n_batch,1,1] + inpL = ggml_rms_norm(ctx0, inpL); + assert_shape_2d(inpL, n_embd, N*n_batch); + + // inpL = norm*inpL + // inpL shape [n_embd,N*n_batch,1,1] + inpL = ggml_mul(ctx0, + ggml_repeat(ctx0, model->norm, inpL), + inpL); + + assert_shape_2d(inpL, n_embd, N*n_batch); + + //embeddings = inpL; + } + + // lm_head + // inpL shape [n_vocab,N*n_batch,1,1] + inpL = ggml_mul_mat(ctx0, model->output, inpL); + assert_shape_2d(inpL, n_vocab, N*n_batch); + + { + // inpL shape [n_vocab,N,n_batch,1] + inpL = ggml_reshape_3d(ctx0, + inpL, + n_vocab, N, n_batch); + assert_shape_3d(inpL, n_vocab, N, n_batch); + } + + // run the computation + ggml_build_forward_expand(gf, inpL); + + return inpL; +} + +struct ggml_tensor * forward_batch_wo_cache( + struct my_llama_model * model, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_batch) { + + const int n_past = 0; + const int N = n_tokens; + + const auto & hparams = model->hparams; + //const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_head = hparams.n_head; + const int n_rot = hparams.n_rot; + const int n_ff = get_n_ff(&hparams); + + struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); + memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); + + // inpL shape [n_embd,N*n_batch,1] + struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); + assert_shape_2d(inpL, n_embd, N*n_batch); + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + struct ggml_tensor * cur; + + // lctx.use_buf(ctx0, 0); + + // norm + { + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_rms_norm(ctx0, inpL); + assert_shape_2d(cur, n_embd, N*n_batch); + + // cur = attention_norm*cur + cur = ggml_mul(ctx0, + ggml_repeat(ctx0, model->layers[il].attention_norm, cur), + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // self-attention + { + // compute Q and K and RoPE them + // wq shape [n_embd, n_embd, 1, 1] + // wk shape [n_embd, n_embd, 1, 1] + // Qcur shape [n_embd/n_head, n_head, N, n_batch] + // Kcur shape [n_embd/n_head, n_head, N, n_batch] + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); + assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); + + // Vcur shape [N, n_batch, n_embd/n_head, n_head] + struct ggml_tensor * Vcur = ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, cur, model->layers[il].wv), N, n_batch, n_embd/n_head, n_head); + assert_shape_4d(Vcur, N, n_batch, n_embd/n_head, n_head); + + // Qcur shape [n_embd/n_head, n_head, N, n_batch] + // Q shape [n_embd/n_head, N, n_head, n_batch] + struct ggml_tensor * Q = + ggml_permute(ctx0, + Qcur, + 0, 2, 1, 3); + assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); + + // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] + // K shape [n_embd/n_head, N, n_head, n_batch] + struct ggml_tensor * K = + ggml_permute(ctx0, + Kcur, + 0, 2, 1, 3); + assert_shape_4d(K, n_embd/n_head, N, n_head, n_batch); + + // K * Q + // KQ shape [N, N, n_head, n_batch] + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + assert_shape_4d(KQ, N, N, n_head, n_batch); + + // KQ_scaled = KQ / sqrt(n_embd/n_head) + // KQ_scaled shape [N, N, n_head, n_batch] + struct ggml_tensor * KQ_scaled = + ggml_scale_inplace(ctx0, + KQ, + ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); + assert_shape_4d(KQ_scaled, N, N, n_head, n_batch); + + // KQ_masked = mask_past(KQ_scaled) + // KQ_masked shape [N, N, n_head, n_batch] + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); + assert_shape_4d(KQ_masked, N, N, n_head, n_batch); + + // KQ = soft_max(KQ_masked) + // KQ_soft_max shape [N, N, n_head, n_batch] + struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + assert_shape_4d(KQ_soft_max, N, N, n_head, n_batch); + + // Vcur shape [N, n_batch, n_embd/n_head, n_head] + // V shape [N, n_embd/n_head, n_head, n_batch] + struct ggml_tensor * V = + ggml_permute(ctx0, + Vcur, + 0, 3, 1, 2); + assert_shape_4d(V, N, n_embd/n_head, n_head, n_batch); + + // KQV shape [n_embd/n_head, N, n_head, n_batch] + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + // KQV_merged shape [n_embd/n_head, n_head, N, n_batch] + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); + // KQV_merged shape + + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); + assert_shape_2d(cur, n_embd, N*n_batch); + + // projection (no bias) + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].wo, + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // lctx.use_buf(ctx0, 1); + + // inpFF shape [n_embd,N*n_batch,1,1] + struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA); + assert_shape_2d(inpFF, n_embd, N*n_batch); + + // feed-forward network + { + // norm + { + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_rms_norm(ctx0, inpFF); + assert_shape_2d(cur, n_embd, N*n_batch); + + // cur = ffn_norm*cur + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_mul(ctx0, + ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // tmp shape [n_ff,N*n_batch,1,1] + struct ggml_tensor * tmp = ggml_mul_mat(ctx0, + model->layers[il].w3, + cur); + assert_shape_2d(tmp, n_ff, N*n_batch); + + // cur shape [n_ff,N*n_batch,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].w1, + cur); + assert_shape_2d(cur, n_ff, N*n_batch); + + // SILU activation + // cur shape [n_ff,N*n_batch,1,1] + cur = ggml_silu(ctx0, cur); + assert_shape_2d(cur, n_ff, N*n_batch); + + // cur shape [n_ff,N*n_batch,1,1] + cur = ggml_mul(ctx0, cur, tmp); + assert_shape_2d(cur, n_ff, N*n_batch); + + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].w2, + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_add_inplace(ctx0, cur, inpFF); + assert_shape_2d(cur, n_embd, N*n_batch); + + // input for next layer + // inpL shape [n_embd,N*n_batch,1,1] + inpL = cur; + assert_shape_2d(inpL, n_embd, N*n_batch); + } + + // norm + { + + // inpL shape [n_embd,N*n_batch,1,1] + inpL = ggml_rms_norm(ctx0, inpL); + assert_shape_2d(inpL, n_embd, N*n_batch); + + // inpL = norm*inpL + // inpL shape [n_embd,N*n_batch,1,1] + inpL = ggml_mul(ctx0, + ggml_repeat(ctx0, model->norm, inpL), + inpL); + + assert_shape_2d(inpL, n_embd, N*n_batch); + + //embeddings = inpL; + } + + // lm_head + // inpL shape [n_vocab,N*n_batch,1,1] + inpL = ggml_mul_mat(ctx0, model->output, inpL); + assert_shape_2d(inpL, n_vocab, N*n_batch); + + { + // inpL shape [n_vocab,N,n_batch,1] + inpL = ggml_reshape_3d(ctx0, + inpL, + n_vocab, N, n_batch); + assert_shape_3d(inpL, n_vocab, N, n_batch); + } + + // run the computation + ggml_build_forward_expand(gf, inpL); + + return inpL; +} + +struct ggml_tensor * forward_batch_wo_cache_flash_attn( + struct my_llama_model * model, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_batch) { + + const int n_past = 0; + const int N = n_tokens; + + const auto & hparams = model->hparams; + //const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_head = hparams.n_head; + const int n_rot = hparams.n_rot; + const int n_ff = get_n_ff(&hparams); + + struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); + memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); + + struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); + assert_shape_2d(inpL, n_embd, N*n_batch); + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + struct ggml_tensor * cur; + + // norm + { + cur = ggml_rms_norm(ctx0, inpL); + assert_shape_2d(cur, n_embd, N*n_batch); + + // cur = attention_norm*cur + cur = ggml_mul(ctx0, + ggml_repeat(ctx0, model->layers[il].attention_norm, cur), + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // self-attention + { + // compute Q and K and RoPE them + // wq shape [n_embd, n_embd, 1, 1] + // wk shape [n_embd, n_embd, 1, 1] + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); + assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); + + struct ggml_tensor * Vcur = ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, cur, model->layers[il].wv), N, n_batch, n_embd/n_head, n_head); + assert_shape_4d(Vcur, N, n_batch, n_embd/n_head, n_head); + + struct ggml_tensor * Q = + ggml_permute(ctx0, + Qcur, + 0, 2, 1, 3); + assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); + + struct ggml_tensor * K = + ggml_permute(ctx0, + Kcur, + 0, 2, 1, 3); + assert_shape_4d(K, n_embd/n_head, N, n_head, n_batch); + + struct ggml_tensor * V = + ggml_permute(ctx0, + Vcur, + 0, 3, 1, 2); + assert_shape_4d(V, N, n_embd/n_head, n_head, n_batch); + + bool masked = true; + struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, masked); + assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); + + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); + cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); + assert_shape_2d(cur, n_embd, N*n_batch); + + // projection (no bias) + cur = ggml_mul_mat(ctx0, + model->layers[il].wo, + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA); + assert_shape_2d(inpFF, n_embd, N*n_batch); + + // feed-forward network + { + // norm + { + cur = ggml_rms_norm(ctx0, inpFF); + assert_shape_2d(cur, n_embd, N*n_batch); + + // cur = ffn_norm*cur + cur = ggml_mul(ctx0, + ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + struct ggml_tensor * tmp = ggml_mul_mat(ctx0, + model->layers[il].w3, + cur); + assert_shape_2d(tmp, n_ff, N*n_batch); + + cur = ggml_mul_mat(ctx0, + model->layers[il].w1, + cur); + assert_shape_2d(cur, n_ff, N*n_batch); + + // SILU activation + cur = ggml_silu(ctx0, cur); + assert_shape_2d(cur, n_ff, N*n_batch); + + cur = ggml_mul(ctx0, cur, tmp); + assert_shape_2d(cur, n_ff, N*n_batch); + + cur = ggml_mul_mat(ctx0, + model->layers[il].w2, + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + cur = ggml_add_inplace(ctx0, cur, inpFF); + assert_shape_2d(cur, n_embd, N*n_batch); + + // input for next layer + inpL = cur; + assert_shape_2d(inpL, n_embd, N*n_batch); + } + + // norm + { + + inpL = ggml_rms_norm(ctx0, inpL); + assert_shape_2d(inpL, n_embd, N*n_batch); + + // inpL = norm*inpL + inpL = ggml_mul(ctx0, + ggml_repeat(ctx0, model->norm, inpL), + inpL); + + assert_shape_2d(inpL, n_embd, N*n_batch); + } + + // lm_head + inpL = ggml_mul_mat(ctx0, model->output, inpL); + assert_shape_2d(inpL, n_vocab, N*n_batch); + + { + inpL = ggml_reshape_3d(ctx0, + inpL, + n_vocab, N, n_batch); + assert_shape_3d(inpL, n_vocab, N, n_batch); + } + + // run the computation + ggml_build_forward_expand(gf, inpL); + + return inpL; +} + +// expand the graph nodes without creating leafs. +struct ggml_tensor * expand(struct ggml_cgraph * g, struct ggml_tensor * t) { + // check if already visited + for (int i = 0; i < g->n_nodes; i++) { + if (g->nodes[i] == t) { + return t; + } + } + + for (int i = 0; i < g->n_leafs; i++) { + if (g->leafs[i] == t) { + return t; + } + } + + if (t->src0) { + expand(g, t->src0); + } + + if (t->src1) { + expand(g, t->src1); + } + + for (int i = 0; i < GGML_MAX_OPT; ++i) { + if (t->opt[i]) { + expand(g, t->opt[i]); + } + } + + GGML_ASSERT(g->n_nodes < GGML_MAX_NODES); + + if (strlen(t->name) == 0) { + snprintf(t->name, sizeof(t->name), "node_%d", g->n_nodes); + } + + g->nodes[g->n_nodes] = t; + g->grads[g->n_nodes] = t->grad; + g->n_nodes++; + return t; +} + +void graph_set_leafs_grads(struct ggml_cgraph * g) { + // moves leaf nodes to g->leafs. + // i.e. g->n_nodes might change. + int n_nodes = 0; + for (int i = 0; i < g->n_nodes; ++i) { + struct ggml_tensor * node = g->nodes[i]; + const bool is_leaf = node->op == GGML_OP_NONE && node->grad == NULL; + if (is_leaf) { + GGML_ASSERT(g->n_leafs < GGML_MAX_NODES); + + if (strlen(node->name) == 0) { + snprintf(node->name, sizeof(node->name), "leaf_%d", g->n_leafs); + } + + g->leafs[g->n_leafs] = node; + g->n_leafs++; + } else { + GGML_ASSERT(n_nodes < GGML_MAX_NODES); + + if (strlen(node->name) == 0) { + snprintf(node->name, sizeof(node->name), "node_%d", n_nodes); + } + + g->nodes[n_nodes] = node; + g->grads[n_nodes] = node->grad; + n_nodes++; + } + } + for (int i=n_nodes; i < g->n_nodes; ++i) { + g->nodes[n_nodes] = NULL; + g->grads[n_nodes] = NULL; + } + g->n_nodes = n_nodes; +} + +struct ggml_tensor * forward_batch_wo_cache_flash_attn_train( + struct my_llama_model * model, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + struct ggml_tensor * * logits, + struct ggml_tensor * tokens_input, + struct ggml_tensor * targets, + void * compute_buf_0, + void * compute_buf_1, + size_t size_buf_0, + size_t size_buf_1, + const int n_tokens, + const int n_batch) { + + ggml_set_scratch(ctx0, { 0, 0, nullptr, }); + + const int n_past = 0; + const int N = n_tokens; + + gf->n_nodes = 0; + gf->n_leafs = 0; + gf->work_size = 0; + gf->perf_runs = 0; + gf->perf_cycles = 0; + gf->perf_time_us = 0; + gf->work = NULL; + + const auto & hparams = model->hparams; + //const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_head = hparams.n_head; + const int n_rot = hparams.n_rot; + const int n_ff = get_n_ff(&hparams); + const int rope_mode = 0; + + int last_buf = -1; + size_t buf_offs[2] = { 0, 0 }; + size_t buf_size[2] = { size_buf_0, + size_buf_1 }; + void * buf_data[2] = { compute_buf_0, + compute_buf_1 }; + auto use_buf = [ctx0, &last_buf, &buf_offs, &buf_size, &buf_data] (int buf) { + size_t last_offs = 0; + last_offs = ggml_set_scratch(ctx0, { 0, 0, nullptr, }); + if (last_buf >= 0) { + buf_offs[last_buf] = last_offs; + } + if (buf >= 0) { + size_t offs = buf_offs[buf]; + size_t size = buf_size[buf]; + void * data = buf_data[buf]; + ggml_set_scratch(ctx0, { offs, size, data, }); + } + last_buf = buf; + }; + + bool track_max_mem = false; + size_t buf_maxs[2] = { 0, 0 }; + + auto clr_buf = [ctx0, &last_buf, &buf_offs, &buf_size, &buf_data, &buf_maxs, track_max_mem] (int buf) { + if (buf < 0) return; + if (track_max_mem) { + size_t last_offs = 0; + last_offs = ggml_set_scratch(ctx0, { 0, 0, nullptr, }); + if (last_buf >= 0) { + buf_offs[last_buf] = last_offs; + buf_maxs[last_buf] = std::max(buf_maxs[last_buf], buf_offs[last_buf]); + } + } + buf_offs[buf] = 0; + if (track_max_mem && last_buf >= 0) { + size_t offs = buf_offs[last_buf]; + size_t size = buf_size[last_buf]; + void * data = buf_data[last_buf]; + ggml_set_scratch(ctx0, { offs, size, data, }); + } + }; + + + auto view__q = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * { + int64_t ne0 = n_embd/n_head; + int64_t ne1 = N; + int64_t ne2 = n_head; + int64_t ne3 = n_batch; + size_t nb0 = ggml_element_size(t); + size_t nb1 = nb0*ne0; + size_t nb2 = nb1*ne1; + size_t nb3 = nb2*ne2; + size_t offset = 0; + return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset); + }; + + auto view__k = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * { + int64_t ne0 = n_embd/n_head; + int64_t ne1 = N; + int64_t ne2 = n_head; + int64_t ne3 = n_batch; + size_t nb0 = ggml_element_size(t); + size_t nb1 = nb0*ne0; + size_t nb2 = nb1*ne1; + size_t nb3 = nb2*ne2; + size_t offset = nb3*ne3; + return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset); + }; + + auto view__v = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * { + int64_t ne0 = N; + int64_t ne1 = n_embd/n_head; + int64_t ne2 = n_head; + int64_t ne3 = n_batch; + size_t nb0 = ggml_element_size(t); + size_t nb1 = nb0*ne0; + size_t nb2 = nb1*ne1; + size_t nb3 = nb2*ne2; + size_t offset = 2*nb3*ne3; + return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset); + }; + + auto add_or_set = [ctx0] (struct ggml_tensor * a, struct ggml_tensor * b) -> struct ggml_tensor * { + if (a == NULL) { + return b; + } else { + return ggml_add_inplace(ctx0, a, b); + } + }; + + use_buf(-1); + + model->tok_embeddings->grad = NULL; + model->norm->grad = NULL; + model->output->grad = NULL; + + for (int il = 0; il < n_layer; ++il) { + struct my_llama_layer & layer = model->layers[il]; + layer.attention_norm->grad = NULL; + layer.wq->grad = NULL; + layer.wk->grad = NULL; + layer.wv->grad = NULL; + layer.wo->grad = NULL; + layer.ffn_norm->grad = NULL; + layer.w1->grad = NULL; + layer.w2->grad = NULL; + layer.w3->grad = NULL; + } + + clr_buf(0); + clr_buf(1); + + use_buf(-1); + + struct ggml_tensor * t00 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); assert_shape_1d(t00, N*n_batch); + memcpy(t00->data, tokens_input->data, ggml_element_size(t00)*N*n_batch); + + use_buf(-1); + + struct ggml_tensor * t01 = expand(gf, ggml_get_rows(ctx0, model->tok_embeddings, t00)); assert_shape_2d(t01, n_embd, N*n_batch); + + // need to remember these for the backward pass + std::vector t02L; t02L.resize(n_layer, NULL); + std::vector t03L; t03L.resize(n_layer, NULL); + std::vector t04L; t04L.resize(n_layer, NULL); + std::vector t05L; t05L.resize(n_layer, NULL); + std::vector t06L; t06L.resize(n_layer, NULL); + std::vector t07L; t07L.resize(n_layer, NULL); + std::vector t08L; t08L.resize(n_layer, NULL); + std::vector t09L; t09L.resize(n_layer, NULL); + std::vector t10L; t10L.resize(n_layer, NULL); + std::vector t11L; t11L.resize(n_layer, NULL); + std::vector t12L; t12L.resize(n_layer, NULL); + std::vector t13L; t13L.resize(n_layer, NULL); + std::vector t14L; t14L.resize(n_layer, NULL); + std::vector t15L; t15L.resize(n_layer, NULL); + std::vector t16L; t16L.resize(n_layer, NULL); + std::vector t17L; t17L.resize(n_layer, NULL); + std::vector t18L; t18L.resize(n_layer, NULL); + std::vector t19L; t19L.resize(n_layer, NULL); + std::vector t20L; t20L.resize(n_layer, NULL); + std::vector t21L; t21L.resize(n_layer, NULL); + std::vector t22L; t22L.resize(n_layer, NULL); + std::vector t23L; t23L.resize(n_layer, NULL); + std::vector t24L; t24L.resize(n_layer, NULL); + std::vector t25L; t25L.resize(n_layer, NULL); + std::vector t26L; t26L.resize(n_layer, NULL); + std::vector t27L; t27L.resize(n_layer, NULL); + std::vector t28L; t28L.resize(n_layer, NULL); + std::vector t29L; t29L.resize(n_layer, NULL); + std::vector t30L; t30L.resize(n_layer, NULL); + + struct ggml_tensor * cur = t01; + + for (int il = 0; il < n_layer; ++il) { + clr_buf(0); + struct my_llama_layer & layer = model->layers[il]; + // tensors with values necessary for backward pass are in persistent buf(-1) + // other tensors with buf(0) and buf(1) are only temporary needed, and their memory reused after layer is completed. + use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t02, n_embd, N*n_batch); + use_buf( 0); struct ggml_tensor * t03 = expand(gf, ggml_repeat (ctx0, layer.attention_norm, t02)); assert_shape_2d(t03, n_embd, N*n_batch); + use_buf(-1); struct ggml_tensor * t04 = expand(gf, ggml_mul (ctx0, t02, t03)); assert_shape_2d(t04, n_embd, N*n_batch); + use_buf(-1); struct ggml_tensor * t05 = expand(gf, ggml_mul_mat (ctx0, layer.wq, t04)); assert_shape_2d(t05, n_embd, N*n_batch); + use_buf(-1); struct ggml_tensor * t06 = expand(gf, ggml_reshape_4d (ctx0, t05, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch); + use_buf(-1); struct ggml_tensor * t07 = expand(gf, ggml_rope_inplace (ctx0, t06, n_past, n_rot, rope_mode)); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch); + use_buf(-1); struct ggml_tensor * t08 = expand(gf, ggml_mul_mat (ctx0, layer.wk, t04)); assert_shape_2d(t08, n_embd, N*n_batch); + use_buf(-1); struct ggml_tensor * t09 = expand(gf, ggml_reshape_4d (ctx0, t08, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch); + use_buf(-1); struct ggml_tensor * t10 = expand(gf, ggml_rope_inplace (ctx0, t09, n_past, n_rot, rope_mode)); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch); + use_buf(-1); struct ggml_tensor * t11 = expand(gf, ggml_mul_mat (ctx0, t04, layer.wv)); assert_shape_2d(t11, N*n_batch, n_embd); + use_buf(-1); struct ggml_tensor * t12 = expand(gf, ggml_reshape_4d (ctx0, t11, N, n_batch, n_embd/n_head, n_head)); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head); + use_buf(-1); struct ggml_tensor * t13 = expand(gf, ggml_permute (ctx0, t07, 0, 2, 1, 3)); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch); + use_buf(-1); struct ggml_tensor * t14 = expand(gf, ggml_permute (ctx0, t10, 0, 2, 1, 3)); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch); + use_buf(-1); struct ggml_tensor * t15 = expand(gf, ggml_permute (ctx0, t12, 0, 3, 1, 2)); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch); + use_buf(-1); struct ggml_tensor * t16 = expand(gf, ggml_flash_attn (ctx0, t13, t14, t15, true)); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); + use_buf( 0); struct ggml_tensor * t17 = expand(gf, ggml_permute (ctx0, t16, 0, 2, 1, 3)); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch); + use_buf(-1); struct ggml_tensor * t18 = expand(gf, ggml_cont (ctx0, t17)); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch); + use_buf(-1); struct ggml_tensor * t19 = expand(gf, ggml_reshape_2d (ctx0, t18, n_embd, N*n_batch)); assert_shape_2d(t19, n_embd, N*n_batch); + use_buf( 0); struct ggml_tensor * t20 = expand(gf, ggml_mul_mat (ctx0, layer.wo, t19)); assert_shape_2d(t20, n_embd, N*n_batch); + use_buf(-1); struct ggml_tensor * t21 = expand(gf, ggml_add (ctx0, t20, cur)); assert_shape_2d(t21, n_embd, N*n_batch); + use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21)); assert_shape_2d(t22, n_embd, N*n_batch); + use_buf( 0); struct ggml_tensor * t23 = expand(gf, ggml_repeat (ctx0, layer.ffn_norm, t22)); assert_shape_2d(t23, n_embd, N*n_batch); + use_buf(-1); struct ggml_tensor * t24 = expand(gf, ggml_mul (ctx0, t23, t22)); assert_shape_2d(t24, n_embd, N*n_batch); + use_buf(-1); struct ggml_tensor * t25 = expand(gf, ggml_mul_mat (ctx0, layer.w3, t24)); assert_shape_2d(t25, n_ff, N*n_batch); + use_buf(-1); struct ggml_tensor * t26 = expand(gf, ggml_mul_mat (ctx0, layer.w1, t24)); assert_shape_2d(t26, n_ff, N*n_batch); + use_buf(-1); struct ggml_tensor * t27 = expand(gf, ggml_silu (ctx0, t26)); assert_shape_2d(t27, n_ff, N*n_batch); + use_buf(-1); struct ggml_tensor * t28 = expand(gf, ggml_mul (ctx0, t27, t25)); assert_shape_2d(t28, n_ff, N*n_batch); + use_buf( 0); struct ggml_tensor * t29 = expand(gf, ggml_mul_mat (ctx0, layer.w2, t28)); assert_shape_2d(t29, n_embd, N*n_batch); + use_buf(-1); struct ggml_tensor * t30 = expand(gf, ggml_add (ctx0, t21, t29)); assert_shape_2d(t30, n_embd, N*n_batch); + t02L[il] = t02; + t03L[il] = t03; + t04L[il] = t04; + t05L[il] = t05; + t06L[il] = t06; + t07L[il] = t07; + t08L[il] = t08; + t09L[il] = t09; + t10L[il] = t10; + t11L[il] = t11; + t12L[il] = t12; + t13L[il] = t13; + t14L[il] = t14; + t15L[il] = t15; + t16L[il] = t16; + t17L[il] = t17; + t18L[il] = t18; + t19L[il] = t19; + t20L[il] = t20; + t21L[il] = t21; + t22L[il] = t22; + t23L[il] = t23; + t24L[il] = t24; + t25L[il] = t25; + t26L[il] = t26; + t27L[il] = t27; + t28L[il] = t28; + t29L[il] = t29; + t30L[il] = t30; + + cur = t30; + } + clr_buf(0); + use_buf(0); + struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t31, n_embd, N*n_batch); + struct ggml_tensor * t32 = expand(gf, ggml_repeat (ctx0, model->norm, t31)); assert_shape_2d(t32, n_embd, N*n_batch); + struct ggml_tensor * t33 = expand(gf, ggml_mul (ctx0, t32, t31)); assert_shape_2d(t33, n_embd, N*n_batch); + use_buf(-1); + struct ggml_tensor * t34 = expand(gf, ggml_mul_mat (ctx0, model->output, t33)); assert_shape_2d(t34, n_vocab, N*n_batch); + struct ggml_tensor * t35 = expand(gf, ggml_reshape_3d(ctx0, t34, n_vocab, N, n_batch)); assert_shape_3d(t35, n_vocab, N, n_batch); + struct ggml_tensor * t36 = expand(gf, ggml_cross_entropy_loss(ctx0, t35, targets)); assert_shape_1d(t36, 1); + + { + /* + tok_embeddings | grad_tok_embeddings = ggml_get_rows_back(grad_t01, t00) + L0_att_norm | grad_L0_att_norm = ggml_repeat_back(grad_t03L0, L0_att_norm.shape) + L0_wq | grad_L0_wq = ggml_out_prod(t04L0, grad_t05L0) + L0_wk | grad_L0_wk = ggml_out_prod(t04L0, grad_t08L0) + L0_wv | grad_L0_wv = ggml_out_prod(t04L0, ggml_transpose(grad_t11L0)) + L0_wo | grad_L0_wo = ggml_out_prod(t19L0, grad_t20L0) + L0_ffn_norm | grad_L0_ffn_norm = ggml_repeat_back(grad_t23L0, L0_ffn_norm.shape) + L0_w1 | grad_L0_w1 = ggml_out_prod(t24L0, grad_t26L0) + L0_w2 | grad_L0_w2 = ggml_out_prod(t28L0, grad_t29L0) + L0_w3 | grad_L0_w3 = ggml_out_prod(t24L0, grad_t25L0) + L1_att_norm | grad_L1_att_norm = ggml_repeat_back(grad_t03L1, L1_att_norm.shape) + L1_wq | grad_L1_wq = ggml_out_prod(t04L1, grad_t05L1) + L1_wk | grad_L1_wk = ggml_out_prod(t04L1, grad_t08L1) + L1_wv | grad_L1_wv = ggml_out_prod(t04L1, ggml_transpose(grad_t11L1)) + L1_wo | grad_L1_wo = ggml_out_prod(t19L1, grad_t20L1) + L1_ffn_norm | grad_L1_ffn_norm = ggml_repeat_back(grad_t23L1, L1_ffn_norm.shape) + L1_w1 | grad_L1_w1 = ggml_out_prod(t24L1, grad_t26L1) + L1_w2 | grad_L1_w2 = ggml_out_prod(t28L1, grad_t29L1) + L1_w3 | grad_L1_w3 = ggml_out_prod(t24L1, grad_t25L1) + norm | grad_norm = ggml_repeat_back(grad_t32, norm.shape) + output | grad_output = ggml_out_prod(t33, grad_t34) + | + t01 = ggml_get_rows(tok_embeddings, t00) | grad_t01 = grad_t21L0 + ggml_rms_norm_back(t01, grad_t02L0) + for layer: | + t02L0*= ggml_rms_norm (t01) | grad_t02L0 = ggml_mul(grad_t04L0, t03L0) + t03L0 = ggml_repeat (L0_att_norm, t02L0_shape) | grad_t03L0 = ggml_mul(grad_t04L0, t02L0) + t04L0*= ggml_mul (t02L0, t03L0) | grad_t04L0 = ggml_out_prod(L0_wv, grad_t11L0) + ggml_out_prod(L0_wk, ggml_transpose(grad_t08L0)) + ggml_out_prod(L0_wq, ggml_transpose(grad_t05L0)) + t05L0 = ggml_mul_mat (L0_wq, t04L0) | grad_t05L0 = ggml_reshape(grad_t06L0, t05L0_shape) + t06L0 = ggml_reshape_4d (t05L0, n_embd/n_head, n_head, N, n_batch) | grad_t06L0 = ggml_rope_back(grad_t07L0) + t07L0 = ggml_rope_inplace (t06L0) | grad_t07L0 = ggml_permute_back(grad_t13L0, 0, 2, 1, 3) = ggml_permute(grad_t13L0, 0, 2, 1, 3) + t08L0 = ggml_mul_mat (L0_wk, t04L0) | grad_t08L0 = ggml_reshape(grad_t09L0, t08L0_shape) + t09L0 = ggml_reshape_4d (t08L0, n_embd/n_head, n_head, N, n_batch) | grad_t09L0 = ggml_rope_back(grad_t10L0) + t10L0 = ggml_rope_inplace (t09L0) | grad_t10L0 = ggml_permute_back(grad_t14L0, 0, 2, 1, 3) = ggml_permute(grad_t14L0, 0, 2, 1, 3) + t11L0 = ggml_mul_mat (t04L0, L0_wv) | grad_t11L0 = ggml_reshape(grad_t12L0, t11L0_shape) + t12L0 = ggml_reshape_4d (t11L0, N, n_batch, n_embd/n_head, n_head) | grad_t12L0 = ggml_permute_back(grad_t15L0, 0, 3, 1, 2) = ggml_permute(grad_t15L0, 0, 2, 3, 1) + t13L0*= ggml_permute (t07L0, 0, 2, 1, 3) | grad_t13L0 = view__q(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0)) + t14L0*= ggml_permute (t10L0, 0, 2, 1, 3) | grad_t14L0 = view__k(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0)) + t15L0*= ggml_permute (t12L0, 0, 3, 1, 2) | grad_t15L0 = view__v(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0)) + t16L0 = ggml_flash_attn (t13L0, t14L0, t15L0) | grad_t16L0 = ggml_permute_back(grad_t17L0, 0, 2, 1, 3) = ggml_permute(grad_t17L0, 0, 2, 1, 3) + t17L0 = ggml_permute (t16L0, 0, 2, 1, 3) | grad_t17L0 = grad_t18L0 + t18L0 = ggml_cont (t17L0) | grad_t18L0 = ggml_reshape(grad_t19L0, t18L0_shape) + t19L0*= ggml_reshape_2d (t18L0, n_embd, N*n_batch) | grad_t19L0 = ggml_out_prod(L0_wo, ggml_transpose(grad_t20L0)) + t20L0 = ggml_mul_mat (L0_wo, t19L0) | grad_t20L0 = grad_t21L0 + t21L0*= ggml_add (t20L0, t01) | grad_t21L0 = grad_t30L0 + ggml_rms_norm_back(t21L0, grad_t22L0) + t22L0*= ggml_rms_norm (t21L0) | grad_t22L0 = ggml_mul(grad_t24L0, t23L0) + t23L0 = ggml_repeat (L0_ffn_norm, t22L0_shape) | grad_t23L0 = ggml_mul(grad_t24L0, t22L0) + t24L0*= ggml_mul (t23L0, t22L0) | grad_t24L0 = ggml_out_prod(L0_w1, ggml_transpose(grad_t26L0)) + ggml_out_prod(L0_w3, ggml_transpose(grad_t25L0)) + t25L0*= ggml_mul_mat (L0_w3, t24L0) | grad_t25L0 = ggml_mul(grad_t28L0, t27L0) + t26L0*= ggml_mul_mat (L0_w1, t24L0) | grad_t26L0 = ggml_silu_back(t26L0, grad_t27L0) + t27L0*= ggml_silu (t26L0) | grad_t27L0 = ggml_mul(grad_t28L0, t25L0) + t28L0*= ggml_mul (t27L0, t25L0) | grad_t28L0 = ggml_out_prod(L0_w2, ggml_transpose(grad_t29L0)) + t29L0 = ggml_mul_mat (L0_w2, t28L0) | grad_t29L0 = grad_t30L0 + t30L0*= ggml_add (t21L0, t29L0) | grad_t30L0 = ggml_rms_norm_back(t30L0, grad_t02L1) + grad_t21L1 + ^ + t02L1*= ggml_rms_norm (t30L0) | grad_t02L1 = ggml_mul(grad_t04L1, t03L1) + t03L1 = ggml_repeat (L1_att_norm, t02L1_shape) | grad_t03L1 = ggml_mul(grad_t04L1, t02L1) + t04L1*= ggml_mul (t02L1, t03L1) | grad_t04L1 = ggml_out_prod(L1_wv, grad_t11L1) + ggml_out_prod(L1_wk, ggml_transpose(grad_t08L1)) + ggml_out_prod(L1_wq, ggml_transpose(grad_t05L1)) + t05L1 = ggml_mul_mat (L1_wq, t04L1) | grad_t05L1 = ggml_reshape(grad_t06L1, t05L1_shape) + t06L1 = ggml_reshape_4d (t05L1, n_embd/n_head, n_head, N, n_batch) | grad_t06L1 = ggml_rope_back(grad_t07L1) + t07L1 = ggml_rope_inplace (t06L1) | grad_t07L1 = ggml_permute_back(grad_t13L1, 0, 2, 1, 3) = ggml_permute(grad_t13L1, 0, 2, 1, 3) + t08L1 = ggml_mul_mat (L1_wk, t04L1) | grad_t08L1 = ggml_reshape(grad_t09L1, t08L1_shape) + t09L1 = ggml_reshape_4d (t08L1, n_embd/n_head, n_head, N, n_batch) | grad_t09L1 = ggml_rope_back(grad_t10L1) + t10L1 = ggml_rope_inplace (t09L1) | grad_t10L1 = ggml_permute_back(grad_t14L1, 0, 2, 1, 3) = ggml_permute(grad_t14L1, 0, 2, 1, 3) + t11L1 = ggml_mul_mat (t04L1, L1_wv) | grad_t11L1 = ggml_reshape(grad_t12L1, t11L1_shape) + t12L1 = ggml_reshape_4d (t11L1, N, n_batch, n_embd/n_head, n_head) | grad_t12L1 = ggml_permute_back(grad_t15L1, 0, 3, 1, 2) = ggml_permute(grad_t15L1, 0, 2, 3, 1) + t13L1*= ggml_permute (t07L1, 0, 2, 1, 3) | grad_t13L1 = view__q(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1)) + t14L1*= ggml_permute (t10L1, 0, 2, 1, 3) | grad_t14L1 = view__k(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1)) + t15L1*= ggml_permute (t12L1, 0, 3, 1, 2) | grad_t15L1 = view__v(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1)) + t16L1 = ggml_flash_attn (t13L1, t14L1, t15L1) | grad_t16L1 = ggml_permute_back(grad_t17L1, 0, 2, 1, 3) = ggml_permute(grad_t17L1, 0, 2, 1, 3) + t17L1 = ggml_permute (t16L1, 0, 2, 1, 3) | grad_t17L1 = grad_t18L1 + t18L1 = ggml_cont (t17L1) | grad_t18L1 = ggml_reshape(grad_t19L1, t18L1_shape) + t19L1*= ggml_reshape_2d (t18L1, n_embd, N*n_batch) | grad_t19L1 = ggml_out_prod(L1_wo, ggml_transpose(grad_t20L1)) + t20L1 = ggml_mul_mat (L1_wo, t19L1) | grad_t20L1 = grad_t21L1 + t21L1*= ggml_add (t20L1, t30L0) | grad_t21L1 = grad_t30L1 + ggml_rms_norm_back(t21L1, grad_t22L1) + t22L1*= ggml_rms_norm (t21L1) | grad_t22L1 = ggml_mul(grad_t24L1, t23L1) + t23L1 = ggml_repeat (L1_ffn_norm, t22L1_shape) | grad_t23L1 = ggml_mul(grad_t24L1, t22L1) + t24L1*= ggml_mul (t23L1, t22L1) | grad_t24L1 = ggml_out_prod(L1_w1, ggml_transpose(grad_t26L1)) + ggml_out_prod(L1_w3, ggml_transpose(grad_t25L1)) + t25L1*= ggml_mul_mat (L1_w3, t24L1) | grad_t25L1 = ggml_mul(grad_t28L1, t27L1) + t26L1*= ggml_mul_mat (L1_w1, t24L1) | grad_t26L1 = ggml_silu_back(t26L1, grad_t27L1) + t27L1*= ggml_silu (t26L1) | grad_t27L1 = ggml_mul(grad_t28L1, t25L1) + t28L1*= ggml_mul (t27L1, t25L1) | grad_t28L1 = ggml_out_prod(L1_w2, ggml_transpose(grad_t29L1)) + t29L1 = ggml_mul_mat (L1_w2, t28L1) | grad_t29L1 = grad_t30L1 + t30L1*= ggml_add (t21L1, t29L1) | grad_t30L1 = ggml_rms_norm_back(t30L1, grad_t31) + ^ + t31 = ggml_rms_norm (t30L1) | grad_t31 = ggml_mul(grad_t33, t32) + t32 = ggml_repeat (norm, t31.shape) | grad_t32 = ggml_mul(grad_t33, t31) + t33 = ggml_mul (t32, t31) | grad_t33 = ggml_out_prod(output, ggml_transpose(grad_t34)) + t34 = ggml_mul_mat (output, t33) | grad_t34 = ggml_reshape(grad_t35, t34.shape) + t35 = ggml_reshape_3d (t34, n_vocab, N, n_batch) | grad_t35 = ggml_cross_entropy_loss_back(t35, targets, grad_t36) + t36 = ggml_cross_entropy_loss(t35, targets) | grad_t36 = 1 (optimizer) + tensors marked with * need to be stored until grad computation + tensors during grad computation are all temporary + */ + } + + *gb = *gf; + + // t36->grad gets set to one by optimizer, so we need the tensor. + // initialize it with 1.0f to make sure. + use_buf(-1); + t36->grad = expand(gb, ggml_new_f32(ctx0, 1.0f)); + + use_buf(0); + t35->grad = expand(gb, ggml_cross_entropy_loss_back(ctx0, t35, targets, t36->grad)); assert_shape_3d(t35->grad, n_vocab, N, n_batch); + t34->grad = expand(gb, ggml_reshape_2d (ctx0, t35->grad, n_vocab, N*n_batch)); assert_shape_2d(t34->grad, n_vocab, N*n_batch); + t33->grad = expand(gb, ggml_out_prod (ctx0, model->output, ggml_transpose(ctx0, t34->grad))); assert_shape_2d(t33->grad, n_embd, N*n_batch); + t32->grad = expand(gb, ggml_mul (ctx0, t33->grad, t31)); assert_shape_2d(t32->grad, n_embd, N*n_batch); + + use_buf(-1); + + model->norm->grad = expand(gb, add_or_set(model->norm->grad, ggml_repeat_back(ctx0, t32->grad, model->norm))); assert_shape_1d(model->norm->grad, n_embd); + model->output->grad = expand(gb, add_or_set(model->output->grad, ggml_out_prod(ctx0, t33, t34->grad))); assert_shape_2d(model->output->grad, n_embd, n_vocab); + + clr_buf(1); + use_buf(1); + t31->grad = expand(gb, ggml_mul(ctx0, t33->grad, t32)); assert_shape_2d(t31->grad, n_embd, N*n_batch); + + struct ggml_tensor * back_layer_inp = t31; + struct ggml_tensor * grad_layer_inp = NULL; + + for (int k = 0; k < n_layer; ++k) { + int il = n_layer-1-k; + struct my_llama_layer & layer = model->layers[il]; + + struct ggml_tensor * t02 = t02L[il]; + struct ggml_tensor * t03 = t03L[il]; + struct ggml_tensor * t04 = t04L[il]; + struct ggml_tensor * t05 = t05L[il]; + struct ggml_tensor * t06 = t06L[il]; + struct ggml_tensor * t07 = t07L[il]; + struct ggml_tensor * t08 = t08L[il]; + struct ggml_tensor * t09 = t09L[il]; + struct ggml_tensor * t10 = t10L[il]; + struct ggml_tensor * t11 = t11L[il]; + struct ggml_tensor * t12 = t12L[il]; + struct ggml_tensor * t13 = t13L[il]; + struct ggml_tensor * t14 = t14L[il]; + struct ggml_tensor * t15 = t15L[il]; + struct ggml_tensor * t16 = t16L[il]; + struct ggml_tensor * t17 = t17L[il]; + struct ggml_tensor * t18 = t18L[il]; + struct ggml_tensor * t19 = t19L[il]; + struct ggml_tensor * t20 = t20L[il]; + struct ggml_tensor * t21 = t21L[il]; + struct ggml_tensor * t22 = t22L[il]; + struct ggml_tensor * t23 = t23L[il]; + struct ggml_tensor * t24 = t24L[il]; + struct ggml_tensor * t25 = t25L[il]; + struct ggml_tensor * t26 = t26L[il]; + struct ggml_tensor * t27 = t27L[il]; + struct ggml_tensor * t28 = t28L[il]; + struct ggml_tensor * t29 = t29L[il]; + struct ggml_tensor * t30 = t30L[il]; + + clr_buf(0); + use_buf(0); + t30->grad = expand(gb, ggml_rms_norm_back(ctx0, t30, back_layer_inp->grad)); assert_shape_2d(t30->grad, n_embd, N*n_batch); + if (grad_layer_inp) { + t30->grad = expand(gb, ggml_add(ctx0, t30->grad, grad_layer_inp->grad)); assert_shape_2d(t30->grad, n_embd, N*n_batch); + } + clr_buf(1); + t29->grad = t30->grad; assert_shape_2d(t29->grad, n_embd, N*n_batch); + t28->grad = expand(gb, ggml_out_prod(ctx0, layer.w2, ggml_transpose(ctx0, t29->grad))); assert_shape_2d(t28->grad, n_ff, N*n_batch); + t27->grad = expand(gb, ggml_mul(ctx0, t28->grad, t25)); assert_shape_2d(t27->grad, n_ff, N*n_batch); + t26->grad = expand(gb, ggml_silu_back(ctx0, t26, t27->grad)); assert_shape_2d(t26->grad, n_ff, N*n_batch); + t25->grad = expand(gb, ggml_mul(ctx0, t28->grad, t27)); assert_shape_2d(t25->grad, n_ff, N*n_batch); + t24->grad = expand(gb, ggml_add_inplace(ctx0, + ggml_out_prod(ctx0, layer.w1, ggml_transpose(ctx0, t26->grad)), + ggml_out_prod(ctx0, layer.w3, ggml_transpose(ctx0, t25->grad)))); assert_shape_2d(t24->grad, n_embd, N*n_batch); + t23->grad = expand(gb, ggml_mul(ctx0, t24->grad, t22)); assert_shape_2d(t23->grad, n_embd, N*n_batch); + t22->grad = expand(gb, ggml_mul(ctx0, t24->grad, ggml_repeat(ctx0, layer.ffn_norm, t24->grad))); assert_shape_2d(t22->grad, n_embd, N*n_batch); + use_buf(1); + t21->grad = expand(gb, ggml_add(ctx0, t30->grad, ggml_rms_norm_back(ctx0, t21, t22->grad))); assert_shape_2d(t21->grad, n_embd, N*n_batch); + grad_layer_inp = t21; + use_buf(0); + t20->grad = t21->grad; assert_shape_2d(t20->grad, n_embd, N*n_batch); + t19->grad = expand(gb, ggml_out_prod(ctx0, layer.wo, ggml_transpose(ctx0, t20->grad))); assert_shape_2d(t19->grad, n_embd, N*n_batch); + t18->grad = expand(gb, ggml_reshape_4d(ctx0, t19->grad, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t18->grad, n_embd/n_head, n_head, N, n_batch); + t17->grad = t18->grad; assert_shape_4d(t17->grad, n_embd/n_head, n_head, N, n_batch); + t16->grad = expand(gb, ggml_permute(ctx0, t17->grad, 0, 2, 1, 3)); assert_shape_4d(t16->grad, n_embd/n_head, N, n_head, n_batch); + struct ggml_tensor * flash_attn = expand(gb, ggml_flash_attn_back(ctx0, t13, t14, t15, t16->grad, true)); assert_shape_4d(flash_attn, n_embd/n_head, N*3, n_head, n_batch); + t15->grad = expand(gb, view__v(flash_attn)); assert_shape_4d(t15->grad, N, n_embd/n_head, n_head, n_batch); + t14->grad = expand(gb, view__k(flash_attn)); assert_shape_4d(t14->grad, n_embd/n_head, N, n_head, n_batch); + t13->grad = expand(gb, view__q(flash_attn)); assert_shape_4d(t13->grad, n_embd/n_head, N, n_head, n_batch); + t12->grad = expand(gb, ggml_permute(ctx0, t15->grad, 0, 2, 3, 1)); assert_shape_4d(t12->grad, N, n_batch, n_embd/n_head, n_head); + t11->grad = expand(gb, ggml_reshape_2d(ctx0, ggml_cont(ctx0, t12->grad), N*n_batch, n_embd)); assert_shape_2d(t11->grad, N*n_batch, n_embd); + t10->grad = expand(gb, ggml_permute(ctx0, t14->grad, 0, 2, 1, 3)); assert_shape_4d(t10->grad, n_embd/n_head, n_head, N, n_batch); + t09->grad = expand(gb, ggml_rope_back(ctx0, t10->grad, n_past, n_rot, rope_mode)); assert_shape_4d(t09->grad, n_embd/n_head, n_head, N, n_batch); + t08->grad = expand(gb, ggml_reshape_2d(ctx0, t09->grad, n_embd, N*n_batch)); assert_shape_2d(t08->grad, n_embd, N*n_batch); + t07->grad = expand(gb, ggml_permute(ctx0, t13->grad, 0, 2, 1, 3)); assert_shape_4d(t07->grad, n_embd/n_head, n_head, N, n_batch); + t06->grad = expand(gb, ggml_rope_back(ctx0, t07->grad, n_past, n_rot, rope_mode)); assert_shape_4d(t06->grad, n_embd/n_head, n_head, N, n_batch); + t05->grad = expand(gb, ggml_reshape_2d(ctx0, t06->grad, n_embd, N*n_batch)); assert_shape_2d(t05->grad, n_embd, N*n_batch); + t04->grad = expand(gb, ggml_add_inplace(ctx0, + ggml_add_inplace(ctx0, + ggml_out_prod(ctx0, layer.wv, t11->grad), + ggml_out_prod(ctx0, layer.wk, ggml_transpose(ctx0, t08->grad))), + ggml_out_prod(ctx0, layer.wq, ggml_transpose(ctx0, t05->grad)))); assert_shape_2d(t04->grad, n_embd, N*n_batch); + t03->grad = expand(gb, ggml_mul(ctx0, t04->grad, t02)); assert_shape_2d(t04->grad, n_embd, N*n_batch); + use_buf(1); + t02->grad = expand(gb, ggml_mul(ctx0, t04->grad, ggml_repeat(ctx0, layer.attention_norm, t02))); assert_shape_2d(t02->grad, n_embd, N*n_batch); + back_layer_inp = t02; + // use_buf(0); + + use_buf(-1); + layer.attention_norm->grad = expand(gb, add_or_set(layer.attention_norm->grad, ggml_repeat_back(ctx0, t03->grad, layer.attention_norm))); assert_shape_1d(layer.attention_norm->grad, n_embd); + layer.wq->grad = expand(gb, add_or_set(layer.wq->grad, ggml_out_prod(ctx0, t04, t05->grad))); assert_shape_2d(layer.wq->grad, n_embd, n_embd); + layer.wk->grad = expand(gb, add_or_set(layer.wk->grad, ggml_out_prod(ctx0, t04, t08->grad))); assert_shape_2d(layer.wk->grad, n_embd, n_embd); + layer.wv->grad = expand(gb, add_or_set(layer.wv->grad, ggml_out_prod(ctx0, t04, ggml_transpose(ctx0, t11->grad)))); assert_shape_2d(layer.wv->grad, n_embd, n_embd); + layer.wo->grad = expand(gb, add_or_set(layer.wo->grad, ggml_out_prod(ctx0, t19, t20->grad))); assert_shape_2d(layer.wo->grad, n_embd, n_embd); + layer.ffn_norm->grad = expand(gb, add_or_set(layer.ffn_norm->grad, ggml_repeat_back(ctx0, t23->grad, layer.ffn_norm))); assert_shape_1d(layer.ffn_norm->grad, n_embd); + layer.w1->grad = expand(gb, add_or_set(layer.w1->grad, ggml_out_prod(ctx0, t24, t26->grad))); assert_shape_2d(layer.w1->grad, n_embd, n_ff); + layer.w2->grad = expand(gb, add_or_set(layer.w2->grad, ggml_out_prod(ctx0, t28, t29->grad))); assert_shape_2d(layer.w2->grad, n_ff, n_embd); + layer.w3->grad = expand(gb, add_or_set(layer.w3->grad, ggml_out_prod(ctx0, t24, t25->grad))); assert_shape_2d(layer.w3->grad, n_embd, n_ff); + // use_buf(0); + } + clr_buf(0); + use_buf(0); + t01->grad = expand(gb, ggml_add_inplace(ctx0, grad_layer_inp->grad, ggml_rms_norm_back(ctx0, t01, back_layer_inp->grad))); assert_shape_2d(t01->grad, n_embd, N*n_batch); + use_buf(-1); + model->tok_embeddings->grad = expand(gb, ggml_get_rows_back(ctx0, t01->grad, t00, model->tok_embeddings)); assert_shape_2d(model->tok_embeddings->grad, n_embd, n_vocab); + // clr_buf(1); + // clr_buf(0); + + *logits = t35; + + if (track_max_mem) { + printf("%s: max size compute buf0: %zu\n", __func__, buf_maxs[0]); + printf("%s: max size compute buf1: %zu\n", __func__, buf_maxs[1]); + } + + // now that all grads are created, set the graph leafs and grads + graph_set_leafs_grads(gf); + graph_set_leafs_grads(gb); + + return t36; +} + +void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) { + float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); + *ptr = value; +} + +void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) { + float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + *ptr = value; +} + +void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) { + int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + *ptr = value; +} + +float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { + float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + return *ptr; +} + +int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { + int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + return *ptr; +} + +void print_row(struct ggml_tensor * probs, int i) { + for (int k = 0; k < probs->ne[0]; ++k) { + float p = get_f32_2d(probs, k, i); + printf(" %.2f", p); + } + printf("\n"); +} + +void print_matrix(struct ggml_tensor * probs) { + assert(probs->n_dims == 2); + for (int i = 0; i < probs->ne[1]; ++i) { + for (int k = 0; k < probs->ne[0]; ++k) { + float p = get_f32_2d(probs, k, i); + printf(" %.2f", p); + } + printf("\n"); + } +} + + +void print_token(struct llama_context * ctx, llama_token token) { + printf("%s", llama_token_to_str(ctx, token)); +} + +void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) { + for (int i=0; ine[0]; ++i) { + int token = ggml_get_i32_1d(tokens, i); + print_token(ctx, token); + } +} + +void print_tokens_batch(struct llama_context* ctx, struct ggml_tensor * tokens) { + for (int i1=0; i1ne[1]; ++i1) { + //int num_newline = 0; + for (int i0=0; i0ne[0]; ++i0) { + int token = get_i32_2d(tokens, i0, i1); + print_token(ctx, token); + // bool isnl = (token == llama_token_nl()); + // if (isnl) { + // ++num_newline; + // } + // if (isnl) { + // if (num_newline < 2) { + // print_token(ctx, token); + // } else { + // printf("\\n"); + // } + // } else { + // print_token(ctx, token); + // } + } + printf("\n--\n"); + } +} + +void get_example_targets(const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { + int n_tokens = tokens_input->ne[0]; + int n_vocab = target_logits->ne[0]; + + size_t sample = train_samples[example_id % n_train_samples]; + GGML_ASSERT(sample+n_tokens-1 < n_train_data); + + ggml_set_f32(target_logits, -1.0f/n_vocab); + ggml_set_f32(target_probs, 0.0f); + ggml_set_i32_1d(tokens_input, 0, llama_token_bos()); + for (int i=1; in_dims == 2); + GGML_ASSERT(target_logits->n_dims == 3); + GGML_ASSERT(target_probs->n_dims == 3); + int n_vocab = target_logits->ne[0]; + int n_tokens = tokens_input->ne[0]; + int n_batch = tokens_input->ne[1]; + GGML_ASSERT(n_tokens == target_logits->ne[1]); + GGML_ASSERT(n_batch == target_logits->ne[2]); + GGML_ASSERT(n_vocab == target_probs->ne[0]); + GGML_ASSERT(n_tokens == target_probs->ne[1]); + GGML_ASSERT(n_batch == target_probs->ne[2]); + + ggml_set_f32(target_logits, -1.0f/n_vocab); + ggml_set_f32(target_probs, 0.0f); + for (int k=0; kne[0]; + int n_vocab = target_logits->ne[0]; + for (int i=0; i= 0 && size < INT_MAX); + std::vector buf(size + 1); + int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); + GGML_ASSERT(size2 == size); + va_end(ap2); + va_end(ap); + return std::string(buf.data(), size); +} + +struct llama_file { + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + size_t size; + + llama_file(const char * fname, const char * mode) { + fp = std::fopen(fname, mode); + if (fp == NULL) { + size = 0; + } else { + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + } + + size_t tell() const { +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); +#else + long ret = std::ftell(fp); +#endif + GGML_ASSERT(ret != -1); // this really shouldn't fail + return (size_t) ret; + } + + void seek(size_t offset, int whence) { +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, whence); +#else + int ret = std::fseek(fp, (long) offset, whence); +#endif + GGML_ASSERT(ret == 0); // same + } + + void read_raw(void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + std::size_t ret = std::fread(ptr, size, 1, fp); + if (ferror(fp)) { + throw std::runtime_error(format("read error: %s", strerror(errno))); + } + if (ret != 1) { + throw std::runtime_error(std::string("unexpectedly reached end of file")); + } + } + + std::uint32_t read_u32() { + std::uint32_t ret; + read_raw(&ret, sizeof(ret)); + return ret; + } + + std::string read_string(std::uint32_t len) { + std::vector chars(len); + read_raw(chars.data(), len); + return std::string(chars.data(), len); + } + + void write_raw(const void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + size_t ret = std::fwrite(ptr, size, 1, fp); + if (ret != 1) { + throw std::runtime_error(format("write error: %s", strerror(errno))); + } + } + + void write_u32(std::uint32_t val) { + write_raw(&val, sizeof(val)); + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +}; + +int tokenize_file(struct llama_context * lctx, const char * filename, std::vector& out) { + struct llama_file f(filename, "rb"); + + std::vector buf; + buf.resize(f.size+1); + + f.read_raw(buf.data(), f.size); + buf[f.size] = '\0'; + + out.resize(buf.size()); + + int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), buf.size(), false); + if (n_tokens >= 0) { + out.resize(n_tokens); + } + + bool verify = false; + if (verify) { + const char * in = buf.data(); + const char * end = buf.data() + buf.size(); + for (int i = 0; i < (int) out.size(); ++i) { + const char * s = llama_token_to_str(lctx, out[i]); + int len = strlen(s); + if (in >= end) { + printf("%s: unexpected end of original text.\n", __func__); + break; + } + const bool matches = (strncmp(in, s, len) == 0); + if (matches) { + in += len; + } else { + printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s); + } + } + } + + return n_tokens; +} + +void shuffle_ints(int * begin, int * end) { + if (end <= begin) return; + int max=begin[0]; + for (int i=1; i max) { + max = begin[i]; + } + } + std::vector vals; + vals.resize(max+1); + for (int i=0; i candidates; + llama_token_data_array candidates_p; + +}; + +void init_sampler(struct my_llama_sampler * sampler, struct llama_context * ctx) { + sampler->ctx = ctx; + sampler->n_vocab = llama_n_vocab(sampler->ctx); + sampler->n_ctx = llama_n_ctx(sampler->ctx); + sampler->mirostat_mu = 2.0f * sampler->params.mirostat_tau; +} + +llama_token sample(struct my_llama_sampler * sampler, float * logits, const llama_token * last_tokens, int n_last_tokens) { + GGML_ASSERT(sampler->ctx != NULL); + + struct llama_context * ctx = sampler->ctx; + + sampler->candidates.resize(sampler->n_vocab); + for (llama_token token_id = 0; token_id < sampler->n_vocab; ++token_id) { + sampler->candidates[token_id].id = token_id; + sampler->candidates[token_id].logit = logits[token_id]; + sampler->candidates[token_id].p = 0.0; + } + + llama_token_data_array * candidates_p = & sampler->candidates_p; + + candidates_p->data = sampler->candidates.data(); + candidates_p->size = sampler->candidates.size(); + candidates_p->sorted = false; + + const auto params = sampler->params; + + // Apply penalties + const float nl_logit = logits[llama_token_nl()]; + + const int n_last = std::min(std::min(n_last_tokens, params.repeat_last_n), sampler->n_ctx); + + llama_sample_repetition_penalty( + ctx, + candidates_p, + last_tokens + n_last_tokens - n_last, + n_last, + params.repeat_penalty); + llama_sample_frequency_and_presence_penalties( + ctx, + candidates_p, + last_tokens + n_last_tokens - n_last, + n_last, + params.alpha_frequency, + params.alpha_presence); + + if (!params.penalize_nl) { + logits[llama_token_nl()] = nl_logit; + } + + llama_token token = 0; + if (params.temp <= 0) { + // Greedy sampling + token = llama_sample_token_greedy(ctx, candidates_p); + } else { + if (params.mirostat == 1) { + int mirostat_m = 100; + llama_sample_temperature(ctx, candidates_p, params.temp); + token = llama_sample_token_mirostat(ctx, candidates_p, params.mirostat_tau, params.mirostat_eta, mirostat_m, &sampler->mirostat_mu); + } else if (params.mirostat == 2) { + llama_sample_temperature(ctx, candidates_p, params.temp); + token = llama_sample_token_mirostat_v2(ctx, candidates_p, params.mirostat_tau, params.mirostat_eta, &sampler->mirostat_mu); + } else { + // Temperature sampling + llama_sample_top_k (ctx, candidates_p, params.top_k, 1); + llama_sample_tail_free (ctx, candidates_p, params.tfs_z, 1); + llama_sample_typical (ctx, candidates_p, params.typical_p, 1); + + llama_sample_top_p (ctx, candidates_p, params.top_p, 1); + llama_sample_temperature (ctx, candidates_p, params.temp); + token = llama_sample_token(ctx, candidates_p); + } + } + return token; +} + +void set_logits_masked(struct ggml_tensor * logits, std::vector& mask, float value) { + GGML_ASSERT(logits->ne[0] == (int64_t) mask.size()); + for (int i2 = 0; i2 < logits->ne[2]; ++i2) { + for (int i1 = 0; i1 < logits->ne[1]; ++i1) { + for (int i0 = 0; i0 < logits->ne[0]; ++i0) { + if (!mask[i0]) continue; + float * ptr = (float *) ((char *) logits->data + i2*logits->nb[2] + i1*logits->nb[1] + i0*logits->nb[0]); + *ptr = value; + } + } + } +} + +void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) { + if (tensor == NULL) { + file->write_u32(0); + file->write_u32(0); + file->write_u32(GGML_TYPE_F32); + file->seek(-file->tell() & 31, SEEK_CUR); + return; + } + const char * name = ggml_get_name(tensor); + uint32_t name_len = strlen(name); + uint32_t nd = tensor->n_dims; + uint32_t ne[4] = { (uint32_t)tensor->ne[0], + (uint32_t)tensor->ne[1], + (uint32_t)tensor->ne[2], + (uint32_t)tensor->ne[3] }; + file->write_u32(nd); + file->write_u32(name_len); + file->write_u32(tensor->type); + file->write_raw(ne, sizeof(ne[0]) * nd); + file->write_raw(name, name_len); + file->seek(-file->tell() & 31, SEEK_CUR); + file->write_raw(tensor->data, ggml_nbytes(tensor)); +} + +void read_tensor(struct llama_file * file, struct ggml_tensor * tensor) { + int32_t nd = file->read_u32(); + GGML_ASSERT(nd == tensor->n_dims); + + uint32_t name_len = file->read_u32(); + enum ggml_type type = (enum ggml_type) file->read_u32(); + GGML_ASSERT(type == tensor->type); + + uint32_t ne[4]; + file->read_raw(ne, sizeof(ne[0]) * nd); + for (int i=0; ine[i]); + } + + std::string name = file->read_string(name_len); + GGML_ASSERT(strncmp(ggml_get_name(tensor), name.c_str(), sizeof(tensor->name)-1) == 0); + + file->seek(-file->tell() & 31, SEEK_CUR); + file->read_raw(tensor->data, ggml_nbytes(tensor)); +} + +void write_opt_context(struct llama_file * file, struct ggml_opt_context * opt) { + const uint32_t version = 0; + GGML_ASSERT(opt->nx >= 0); + GGML_ASSERT(opt->iter >= 0); + file->write_u32(version); + file->write_raw(&opt->params, sizeof(opt->params)); + file->write_raw(&opt->nx, sizeof(opt->nx)); + file->write_raw(&opt->iter, sizeof(opt->iter)); + file->write_u32((uint32_t) opt->just_initialized); + switch (opt->params.type) { + case GGML_OPT_ADAM: + { + GGML_ASSERT(opt->adam.x != NULL); + write_tensor(file, opt->adam.x); + write_tensor(file, opt->adam.g1); + write_tensor(file, opt->adam.g2); + write_tensor(file, opt->adam.m); + write_tensor(file, opt->adam.v); + write_tensor(file, opt->adam.mh); + write_tensor(file, opt->adam.vh); + write_tensor(file, opt->adam.pf); + file->write_raw(&opt->adam.fx_best, sizeof(opt->adam.fx_best)); + file->write_raw(&opt->adam.fx_prev, sizeof(opt->adam.fx_prev)); + file->write_raw(&opt->adam.n_no_improvement, sizeof(opt->adam.n_no_improvement)); + } break; + case GGML_OPT_LBFGS: + { + GGML_ASSERT(opt->adam.x != NULL); + write_tensor(file, opt->lbfgs.x); + write_tensor(file, opt->lbfgs.xp); + write_tensor(file, opt->lbfgs.g); + write_tensor(file, opt->lbfgs.gp); + write_tensor(file, opt->lbfgs.d); + write_tensor(file, opt->lbfgs.pf); + write_tensor(file, opt->lbfgs.lmal); + write_tensor(file, opt->lbfgs.lmys); + write_tensor(file, opt->lbfgs.lms); + write_tensor(file, opt->lbfgs.lmy); + file->write_raw(&opt->lbfgs.fx_best, sizeof(opt->lbfgs.fx_best)); + file->write_raw(&opt->lbfgs.step, sizeof(opt->lbfgs.step)); + file->write_raw(&opt->lbfgs.j, sizeof(opt->lbfgs.j)); + file->write_raw(&opt->lbfgs.k, sizeof(opt->lbfgs.k)); + file->write_raw(&opt->lbfgs.end, sizeof(opt->lbfgs.end)); + file->write_raw(&opt->lbfgs.n_no_improvement, sizeof(opt->lbfgs.n_no_improvement)); + } break; + } +} + +void read_opt_context(struct llama_file * file, struct ggml_context * ctx, struct ggml_opt_context * opt) { + uint32_t version = file->read_u32(); + GGML_ASSERT(version == 0); + + file->read_raw(&opt->params, sizeof(opt->params)); + file->read_raw(&opt->nx, sizeof(opt->nx)); + ggml_opt_init(ctx, opt, opt->params, opt->nx); + + file->read_raw(&opt->iter, sizeof(opt->iter)); + opt->just_initialized = (bool) file->read_u32(); + + switch (opt->params.type) { + case GGML_OPT_ADAM: + { + read_tensor(file, opt->adam.x); + read_tensor(file, opt->adam.g1); + read_tensor(file, opt->adam.g2); + read_tensor(file, opt->adam.m); + read_tensor(file, opt->adam.v); + read_tensor(file, opt->adam.mh); + read_tensor(file, opt->adam.vh); + if (opt->adam.pf) { read_tensor(file, opt->adam.pf); } + file->read_raw(&opt->adam.fx_best, sizeof(opt->adam.fx_best)); + file->read_raw(&opt->adam.fx_prev, sizeof(opt->adam.fx_prev)); + file->read_raw(&opt->adam.n_no_improvement, sizeof(opt->adam.n_no_improvement)); + } break; + case GGML_OPT_LBFGS: + { + GGML_ASSERT(opt->adam.x != NULL); + read_tensor(file, opt->lbfgs.x); + read_tensor(file, opt->lbfgs.xp); + read_tensor(file, opt->lbfgs.g); + read_tensor(file, opt->lbfgs.gp); + read_tensor(file, opt->lbfgs.d); + if (opt->lbfgs.pf) { read_tensor(file, opt->lbfgs.pf); } + read_tensor(file, opt->lbfgs.lmal); + read_tensor(file, opt->lbfgs.lmys); + read_tensor(file, opt->lbfgs.lms); + read_tensor(file, opt->lbfgs.lmy); + file->read_raw(&opt->lbfgs.fx_best, sizeof(opt->lbfgs.fx_best)); + file->read_raw(&opt->lbfgs.step, sizeof(opt->lbfgs.step)); + file->read_raw(&opt->lbfgs.j, sizeof(opt->lbfgs.j)); + file->read_raw(&opt->lbfgs.k, sizeof(opt->lbfgs.k)); + file->read_raw(&opt->lbfgs.end, sizeof(opt->lbfgs.end)); + file->read_raw(&opt->lbfgs.n_no_improvement, sizeof(opt->lbfgs.n_no_improvement)); + } break; + } +} + +void save_checkpoint(struct my_llama_model * model, struct ggml_opt_context * opt, const char * filename) { + struct llama_file file(filename, "wb"); + if (file.fp == NULL) { + return; + } + + const uint32_t magic = 'ggcp'; + const uint32_t version = 0; + + file.write_u32(magic); + file.write_u32(version); + file.write_u32(model->train_its); + file.write_u32(model->train_samples); + file.write_u32(model->train_tokens); + file.write_u32(model->hparams.n_vocab); + file.write_u32(model->hparams.n_embd); + file.write_u32(model->hparams.n_mult); + file.write_u32(model->hparams.n_head); + file.write_u32(model->hparams.n_layer); + file.write_u32(model->hparams.n_rot); + + write_tensor(&file, model->tok_embeddings); + write_tensor(&file, model->norm); + write_tensor(&file, model->output); + + for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { + auto & layer = model->layers[i]; + + write_tensor(&file, layer.attention_norm); + write_tensor(&file, layer.wq); + write_tensor(&file, layer.wk); + write_tensor(&file, layer.wv); + write_tensor(&file, layer.wo); + write_tensor(&file, layer.ffn_norm); + write_tensor(&file, layer.w1); + write_tensor(&file, layer.w2); + write_tensor(&file, layer.w3); + } + + write_opt_context(&file, opt); +} + +bool load_checkpoint(struct my_llama_model * model, struct ggml_opt_context * opt, const char * filename, bool init) { + struct llama_file file(filename, "rb"); + + uint32_t magic; + uint32_t version; + + uint32_t train_its = 0; + uint32_t train_samples = 0; + uint32_t train_tokens = 0; + + if (file.fp) { + printf("%s: Loading model from '%s'.\n", __func__, filename); + magic = file.read_u32(); + GGML_ASSERT(magic == 'ggcp'); + version = file.read_u32(); + GGML_ASSERT(version == 0); + train_its = file.read_u32(); + train_samples = file.read_u32(); + train_tokens = file.read_u32(); + model->hparams.n_vocab = file.read_u32(); + model->hparams.n_embd = file.read_u32(); + model->hparams.n_mult = file.read_u32(); + model->hparams.n_head = file.read_u32(); + model->hparams.n_layer = file.read_u32(); + model->hparams.n_rot = file.read_u32(); + print_params(&model->hparams); + } + + if (init) { + init_model(model); + } + + if (file.fp) { + model->train_its = train_its; + model->train_samples = train_samples; + model->train_tokens = train_tokens; + } + + printf("%s: Training iterations: %u.\n", __func__, model->train_its); + printf("%s: Training samples: %u.\n", __func__, model->train_samples); + printf("%s: Training tokens: %u.\n", __func__, model->train_tokens); + + if (file.fp) { + read_tensor(&file, model->tok_embeddings); + read_tensor(&file, model->norm); + read_tensor(&file, model->output); + + for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { + auto & layer = model->layers[i]; + + read_tensor(&file, layer.attention_norm); + read_tensor(&file, layer.wq); + read_tensor(&file, layer.wk); + read_tensor(&file, layer.wv); + read_tensor(&file, layer.wo); + read_tensor(&file, layer.ffn_norm); + read_tensor(&file, layer.w1); + read_tensor(&file, layer.w2); + read_tensor(&file, layer.w3); + } + + read_opt_context(&file, model->ctx, opt); + } + + return (file.fp != NULL); +} + +void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, const char * filename) { + struct llama_file file(filename, "wb"); + if (file.fp == NULL) { + return; + } + + // write_magic + file.write_u32(LLAMA_FILE_MAGIC); // magic + file.write_u32(LLAMA_FILE_VERSION); // version + // write_hparams + file.write_u32(model->hparams.n_vocab); + file.write_u32(model->hparams.n_embd); + file.write_u32(model->hparams.n_mult); + file.write_u32(model->hparams.n_head); + file.write_u32(model->hparams.n_layer); + file.write_u32(model->hparams.n_rot); + file.write_u32(LLAMA_FTYPE_ALL_F32); + // write_vocab + uint32_t n_vocab = model->hparams.n_vocab; + for (uint32_t i = 0; i < n_vocab; i++) { + const auto & token_score = vocab->id_to_token.at(i); + file.write_u32((uint32_t) token_score.tok.size()); + file.write_raw(token_score.tok.data(), token_score.tok.size()); + file.write_raw(&token_score.score, sizeof(token_score.score)); + } + // write tensors + write_tensor(&file, model->tok_embeddings); + write_tensor(&file, model->norm); + write_tensor(&file, model->output); + for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { + auto & layer = model->layers[i]; + + write_tensor(&file, layer.attention_norm); + write_tensor(&file, layer.wq); + write_tensor(&file, layer.wk); + write_tensor(&file, layer.wv); + write_tensor(&file, layer.wo); + write_tensor(&file, layer.ffn_norm); + write_tensor(&file, layer.w1); + write_tensor(&file, layer.w2); + write_tensor(&file, layer.w3); + } +} + +float cosine_decay(const int decay_steps, const float alpha, int step) { + if (step > decay_steps) { + step = decay_steps; + } + const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); + const float decay = (1 - alpha)*cosine_decay + alpha; + return decay; +} + +float cosine_decay_restart(int decay_steps, const float alpha, int step, float restart_step_mult) { + while (step > decay_steps) { + step -= decay_steps; + decay_steps = (int) restart_step_mult * decay_steps; + } + return cosine_decay(decay_steps, alpha, step); +} + +struct train_params { + const char * fn_vocab_model; + const char * fn_train_data; + const char * fn_checkpoint_in; + const char * fn_checkpoint_out; + const char * fn_model_out; + + int seed; + int n_ctx; + int n_embd; + int n_mult; + int n_head; + int n_layer; + int n_rotmax; + + int n_threads; + int n_batch; + int n_examples; + int n_predict; + + int print_info_interval; + int print_details_interval; + + bool samples_start_after_nl; + bool use_adam; + bool use_flash; + bool use_scratch; + + // only adam + int warmup; + int cos_decay_steps; + float cos_decay_restart; + float cos_decay_alpha; + + int lbfgs_n_iter; + int adam_n_iter; + float adam_alpha; + float adam_decay; + + int mem_model_gb; + int mem_compute_gb; + int mem_compute0_gb; + int mem_compute1_gb; +}; + +struct train_params get_default_train_params() { + struct train_params params; + params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin"; + params.fn_train_data = "shakespeare.txt"; + params.fn_checkpoint_in = "checkpoint.bin"; + params.fn_checkpoint_out = "checkpoint.bin"; + params.fn_model_out = "ggml-checkpoint-f32.bin"; + + params.seed = -1; + + params.n_ctx = 128; + params.n_embd = 256; + params.n_mult = 256; + params.n_head = 8; + params.n_layer = 16; + params.n_rotmax = 64; + + params.n_threads = 6; + params.n_batch = 8; + params.n_examples = 8; + params.n_predict = 1024; + + params.print_info_interval = 1; + params.print_details_interval = 2; + + params.samples_start_after_nl = false; + params.use_adam = true; + params.use_flash = true; + params.use_scratch = true; + + // only adam + params.warmup = 100; + params.cos_decay_steps = 1000; + params.cos_decay_restart = 1.1f; + params.cos_decay_alpha = 0.0f; + + params.lbfgs_n_iter = 16; + params.adam_n_iter = 16; + params.adam_alpha = 1e-3; + params.adam_decay = 1e-3; + + params.mem_model_gb = 2; + params.mem_compute_gb = 24; + params.mem_compute0_gb = 8; + params.mem_compute1_gb = 2; + + return params; +} + +void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) { + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model); + fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); + fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); + fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); + fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out); + fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); + fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); + fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd); + fprintf(stderr, " --mult N Mult size used for new models, influences feedforward size. (default %d)\n", params->n_mult); + fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head); + fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer); + fprintf(stderr, " --rotmax N Maximal number Rope dimensions for new models (default %d)\n", params->n_rotmax); + fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); + fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); + fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples); + fprintf(stderr, " --predict N Number of tokens to generate after training (default %d)\n", params->n_predict); + fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval); + fprintf(stderr, " --print-details-interval N Print details during training each N examples (default %d)\n", params->print_details_interval); + fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off"); + fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n"); + fprintf(stderr, " --use-adam Use Adam optimizer (default)\n"); + fprintf(stderr, " --no-flash Don't use flash attention.\n"); + fprintf(stderr, " --use-flash Use flash attention (default)\n"); + fprintf(stderr, " --no-scratch Don't use scratch buffers\n"); + fprintf(stderr, " --use-scratch Use scratch buffers (default)\n"); + fprintf(stderr, " --warmup N Number of warmup steps (default %d)\n", params->warmup); + fprintf(stderr, " --cos-decay-steps N Number of cosine decay steps (default %d)\n", params->cos_decay_steps); + fprintf(stderr, " --cos-decay-restart N Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); + fprintf(stderr, " --cos-decay-alpha N Cosine decay alpha (default %f)\n", params->cos_decay_alpha); + fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter); + fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); + fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); + fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); + fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb); + fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb); + fprintf(stderr, " --mem-compute0 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute0_gb); + fprintf(stderr, " --mem-compute1 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute1_gb); + fprintf(stderr, "\n"); +} + +bool train_params_parse(int argc, char ** argv, struct train_params * params) { + bool invalid_param = false; + std::string arg; + struct train_params default_params = get_default_train_params(); + const std::string arg_prefix = "--"; + + for (int i = 1; i < argc; i++) { + arg = argv[i]; + if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { + std::replace(arg.begin(), arg.end(), '_', '-'); + } + + if (arg == "--vocab-model") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_vocab_model = argv[i]; + } else if (arg == "--train-data") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_train_data = argv[i]; + } else if (arg == "--checkpoint-in") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_checkpoint_in = argv[i]; + } else if (arg == "--checkpoint-out") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_checkpoint_out = argv[i]; + } else if (arg == "--model-out") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_model_out = argv[i]; + } else if (arg == "-s" || arg == "--seed") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->seed = std::stoi(argv[i]); + } else if (arg == "-c" || arg == "--ctx") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_ctx = std::stoi(argv[i]); + } else if (arg == "--embd") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_embd = std::stoi(argv[i]); + } else if (arg == "--mult") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_mult = std::stoi(argv[i]); + } else if (arg == "--head") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_head = std::stoi(argv[i]); + } else if (arg == "--layer") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_layer = std::stoi(argv[i]); + } else if (arg == "--rotmax") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rotmax = std::stoi(argv[i]); + } else if (arg == "-t" || arg == "--threads") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_threads = std::stoi(argv[i]); + } else if (arg == "-b" || arg == "--batch") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_batch = std::stoi(argv[i]); + } else if (arg == "-n" || arg == "--examples") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_examples = std::stoi(argv[i]); + } else if (arg == "--predict") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_predict = std::stoi(argv[i]); + } else if (arg == "--print-info-interval") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->print_info_interval = std::stoi(argv[i]); + } else if (arg == "--print-details-interval") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->print_details_interval = std::stoi(argv[i]); + } else if (arg == "--samples-after-nl") { + params->samples_start_after_nl = true; + } else if (arg == "--use-lbfgs") { + params->use_adam = false; + } else if (arg == "--use-adam") { + params->use_adam = true; + } else if (arg == "--no-flash") { + params->use_flash = false; + } else if (arg == "--use-flash") { + params->use_flash = true; + } else if (arg == "--no-scratch") { + params->use_scratch = false; + } else if (arg == "--use-scratch") { + params->use_scratch = true; + } else if (arg == "--warmup") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->warmup = std::stoi(argv[i]); + } else if (arg == "--cos-decay-steps") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->cos_decay_steps = std::stof(argv[i]); + } else if (arg == "--cos-decay-restart") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->cos_decay_restart = std::stof(argv[i]); + } else if (arg == "--cos-decay-alpha") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->cos_decay_alpha = std::stof(argv[i]); + } else if (arg == "--lbfgs-iter") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->lbfgs_n_iter = std::stoi(argv[i]); + } else if (arg == "--adam-iter") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->adam_n_iter = std::stoi(argv[i]); + } else if (arg == "--adam-alpha") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->adam_alpha = std::stof(argv[i]); + } else if (arg == "--adam-decay") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->adam_decay = std::stof(argv[i]); + } else if (arg == "--mem-model") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->mem_model_gb = std::stoi(argv[i]); + } else if (arg == "--mem-compute") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->mem_compute_gb = std::stoi(argv[i]); + } else if (arg == "--mem-compute0") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->mem_compute0_gb = std::stoi(argv[i]); + } else if (arg == "--mem-compute1") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->mem_compute1_gb = std::stoi(argv[i]); + } else if (arg == "-h" || arg == "--help") { + train_print_usage(argc, argv, &default_params); + exit(0); + } else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + train_print_usage(argc, argv, &default_params); + exit(1); + } + } + if (invalid_param) { + fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); + train_print_usage(argc, argv, &default_params); + exit(1); + } + + return true; +} + +int main(int argc, char ** argv) { + struct train_params params = get_default_train_params(); + + if (!train_params_parse(argc, argv, ¶ms)) { + return 1; + } + + if (params.seed < 0) { + params.seed = time(NULL); + } + printf("%s: seed: %d\n", __func__, params.seed); + srand(params.seed); + + struct llama_context_params llama_params = llama_context_default_params(); + llama_params.vocab_only = true; + + struct llama_context * lctx = llama_init_from_file(params.fn_vocab_model, llama_params); + + struct llama_vocab vocab; + { + std::vector strings; + std::vector scores; + int n_vocab = llama_n_vocab(lctx); + strings.resize(n_vocab, NULL); + scores.resize(n_vocab, 0); + n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab); + GGML_ASSERT(n_vocab == llama_n_vocab(lctx)); + vocab.id_to_token.resize(n_vocab); + for (int i=0; i train_tokens; + if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) { + fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data); + } + printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size()); + + struct my_llama_model model; + model.hparams.n_vocab = llama_n_vocab(lctx); + model.hparams.n_ctx = params.n_ctx; + model.hparams.n_embd = params.n_embd; + model.hparams.n_mult = params.n_mult; + model.hparams.n_head = params.n_head; + model.hparams.n_layer = params.n_layer; + model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); + + print_params(&model.hparams); + + std::vector token_noccurs; + std::vector token_notavail; + token_noccurs.resize(model.hparams.n_vocab, 0); + token_notavail.resize(model.hparams.n_vocab, true); + for (int i = 0; i < (int) train_tokens.size(); ++i) { + ++token_noccurs[train_tokens[i]]; + token_notavail[train_tokens[i]] = false; + } + + std::vector token_freq; + token_freq.resize(model.hparams.n_vocab, 0); + int n_unique_tokens = 0; + for (int i = 0; i < (int) token_noccurs.size(); ++i) { + token_freq[i] = (float) token_noccurs[i] / (float) train_tokens.size(); + n_unique_tokens += (token_noccurs[i] > 0) ? 1 : 0; + } + printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); + + struct my_llama_kv_cache kv_self; + + + struct ggml_init_params lcparams; + lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); + lcparams.mem_buffer = NULL; + lcparams.no_alloc = false; + + model.ctx = ggml_init(lcparams); + kv_self.ctx = model.ctx; + + my_llama_sampler sampler; + + + int n_tokens = model.hparams.n_ctx; + int n_vocab = model.hparams.n_vocab; + int n_batch = params.n_batch; + + struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context)); + memset(opt, 0, sizeof(struct ggml_opt_context)); + + struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM); + struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS); + opt_params_adam.print_forward_graph = false; + opt_params_adam.print_backward_graph = false; + opt_params_adam.n_threads = params.n_threads; + opt_params_adam.adam.n_iter = params.adam_n_iter; + opt_params_adam.adam.sched = 1.0f; + opt_params_adam.adam.alpha = params.adam_alpha; + opt_params_adam.adam.decay = params.adam_decay; + + opt_params_lbfgs.print_forward_graph = false; + opt_params_lbfgs.print_backward_graph = false; + opt_params_lbfgs.n_threads = params.n_threads; + opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter; + + opt->ctx = model.ctx; + opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; + + printf("%s: init model\n", __func__); + bool existed = load_checkpoint(&model, opt, params.fn_checkpoint_in, true); + set_param_model(&model); + + opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; + + opt->iter = model.train_its; + printf("%s: opt iter %d\n", __func__, opt->iter); + + bool from_scratch = !existed; + if (from_scratch) { + randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f); + } + + init_kv_cache(&kv_self, &model, 1); + // init_kv_cache(&kv_self, &model, n_batch); + init_sampler(&sampler, lctx); + + printf("used_mem model+cache: %zu bytes\n", ggml_used_mem(model.ctx)); + // ggml_print_tensor_objects(model.ctx); + + size_t compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb); + uint8_t * compute_addr = new uint8_t[compute_size]; + + size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb); + size_t size_buf_1 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute1_gb); + uint8_t * compute_buf_0 = new uint8_t[size_buf_0]; + uint8_t * compute_buf_1 = new uint8_t[size_buf_1]; + + GGML_ASSERT(n_tokens < (int) train_tokens.size()); + std::vector train_samples; + train_samples.push_back(0); + for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) { + if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl())) { + train_samples.push_back(i); + } + } + shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); + for (int i = 0; i < (int) train_samples.size(); ++i) { + GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); + } + + printf("%s: begin training\n", __func__); + + for (int ex = 0; ex < params.n_examples; ++ex) { + if (ex*n_batch >= (int) train_samples.size()) { + shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); + for (int i = 0; i < (int) train_samples.size(); ++i) { + GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); + } + } + + struct ggml_init_params cparams = { + /*.mem_size =*/ compute_size, + /*.mem_buffer =*/ compute_addr, + /*.no_alloc =*/ false, + }; + struct ggml_context * ctx0 = ggml_init(cparams); + + struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); + //struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); + struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); + struct ggml_tensor * target_logits = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); + struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); + + int n_past = 0; + + struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32) + (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0)); + struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32) + (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0)); + + memset(gfbuf->data, 0, ggml_nbytes(gfbuf)); + memset(gbbuf->data, 0, ggml_nbytes(gbbuf)); + + struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data; + struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data; + + // ggml_cgraph gf = {}; + gf->n_threads = params.n_threads; + gb->n_threads = params.n_threads; + + get_example_targets_batch(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), ex, tokens_input, target_logits, target_probs); + + GGML_ASSERT(n_past == 0); + + struct ggml_tensor * loss = NULL; + struct ggml_tensor * logits = NULL; + + if (params.use_scratch) { + loss = forward_batch_wo_cache_flash_attn_train( + &model, ctx0, + gf, gb, + &logits, tokens_input, target_probs, + compute_buf_0, compute_buf_1, + size_buf_0, size_buf_1, + n_tokens, n_batch); + } else if (params.use_flash) { + logits = forward_batch_wo_cache_flash_attn(&model, ctx0, gf, tokens_input, n_tokens, n_batch); + loss = cross_entropy_loss(ctx0, logits, target_probs); + ggml_build_forward_expand(gf, loss); + *gb = ggml_build_backward(ctx0, gf, true); + } else { + logits = forward_batch_wo_cache(&model, ctx0, gf, tokens_input, n_tokens, n_batch); + loss = cross_entropy_loss(ctx0, logits, target_probs); + ggml_build_forward_expand(gf, loss); + *gb = ggml_build_backward(ctx0, gf, true); + } + + ggml_graph_compute(ctx0, gf); + + size_t used_mem_before_opt = ggml_used_mem(ctx0); + + float error_before_opt = ggml_get_f32_1d(loss, 0); + + opt->params.adam.sched = (opt->iter < params.warmup) + ? (float) opt->iter / (float) params.warmup + : cosine_decay_restart( + params.cos_decay_steps, + params.cos_decay_alpha, + opt->iter - params.warmup, + params.cos_decay_restart); + + printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched); + + ggml_opt_resume_g(ctx0, opt, loss, gf, gb); + + size_t used_mem_after_opt = ggml_used_mem(ctx0); + + model.train_its = opt->iter; + model.train_samples += n_batch; + model.train_tokens += n_batch * n_tokens; + + ggml_graph_compute(ctx0, gf); + + float error_after_opt = ggml_get_f32_1d(loss, 0); + + if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) { + printf("Example %d, opt iter %d\n", ex, opt->iter); + printf("error_before_opt: %.6f\n", error_before_opt); + printf("error_after_opt: %.6f\n", error_after_opt); + printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt); + printf("used_mem_after_opt: %zu bytes\n", used_mem_after_opt); + } + + if (params.print_details_interval > 0 && ex % params.print_details_interval == 0) { + // set_logits_masked(logits, token_notavail, -1e9); + for (int i=0; idata + i*logits->nb[2] + k*logits->nb[1]), + (llama_token *) ((char *) tokens_input->data + i*tokens_input->nb[1]), + k); + * ((int32_t *) ((char *) after_opt_best_samples->data + i*after_opt_best_samples->nb[1] + k*after_opt_best_samples->nb[0])) = token; + } + } + + // printf("probabilities after optimization:\n"); + // print_matrix(after_opt_probs); + printf("Example:\n---\n"); + print_tokens_batch(lctx, tokens_input); + printf("\n---\n"); + + // printf("best samples after optimization:\n---\n"); + printf("samples after optimization:\n---\n"); + print_tokens_batch(lctx, after_opt_best_samples); + printf("\n---\n"); + } + + ggml_free(ctx0); + } + + if (params.n_examples > 0) { + save_checkpoint(&model, opt, params.fn_checkpoint_out); + } + + if (strlen(params.fn_model_out) > 0) { + save_as_llama_model(&vocab, &model, params.fn_model_out); + } + + { + int n_gen = params.n_predict; + int sample_ctx = n_tokens - n_tokens/8; + + sampler.params.temp = 0.2; + sampler.params.repeat_penalty = 1.1; + sampler.params.mirostat = 2; + init_sampler(&sampler, lctx); + + printf("Generating %d tokens.\n", n_gen); + + struct ggml_tensor * tokens_input = ggml_new_tensor_1d(model.ctx, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * target_logits = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens); + struct ggml_tensor * target_probs = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens); + + get_example_targets(train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), rand()%train_samples.size(), tokens_input, target_logits, target_probs); + for (int i=sample_ctx; idata + (sample_ctx-1)*logits->nb[1]), + (llama_token *) tokens_input->data, + sample_ctx-1); + //int token = ggml_get_i32_1d(best_samples, sample_ctx-1); + + // print_row(probs, sample_at); + print_token(lctx, token); + + lshift_examples(tokens_input, target_logits, target_probs, 1); + ggml_set_i32_1d(tokens_input, 0, 0); + ggml_set_i32_1d(tokens_input, sample_ctx-1, token); + + ggml_free(ctx0); + } + } + + delete[] compute_addr; + delete[] compute_buf_0; + delete[] compute_buf_1; + ggml_free(model.ctx); + + return 0; +} diff --git a/ggml.c b/ggml.c index 252edd582..32c191307 100644 --- a/ggml.c +++ b/ggml.c @@ -3603,6 +3603,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "SUM_ROWS", "MEAN", "REPEAT", + "REPEAT_BACK", "ABS", "SGN", "NEG", @@ -3616,6 +3617,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "RMS_NORM_BACK", "MUL_MAT", + "OUT_PROD", "SCALE", "SET", @@ -3631,6 +3633,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "DIAG_MASK_INF", "DIAG_MASK_ZERO", "SOFT_MAX", + "SOFT_MAX_BACK", "ROPE", "ROPE_BACK", "ALIBI", @@ -3640,13 +3643,16 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "FLASH_ATTN", "FLASH_FF", + "FLASH_ATTN_BACK", "MAP_UNARY", "MAP_BINARY", + + "CROSS_ENTROPY_LOSS", + "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51"); - +static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -3665,6 +3671,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "Σx_k", "Σx/n", "repeat(x)", + "repeat_back(x)", "abs(x)", "sgn(x)", "-x", @@ -3677,6 +3684,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "rms_norm(x)", "rms_norm_back(x)", + "X*Y", "X*Y", "x*v", @@ -3693,6 +3701,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "diag_mask_inf(x)", "diag_mask_zero(x)", "soft_max(x)", + "soft_max_back(x)", "rope(x)", "rope_back(x)", "alibi(x)", @@ -3702,12 +3711,16 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "flash_attn(x)", "flash_ff(x)", + "flash_attn_back(x)", "f(x)", "f(x,y)", + + "cross_entropy_loss(x,y)", + "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51"); +static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); @@ -3870,6 +3883,15 @@ static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct (t0->ne[3] == t1->ne[3]); } +static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + (t0->ne[1] == t1->ne[1]) && + (t0->ne[2] == t1->ne[2]) && + (t0->ne[3] == t1->ne[3]); +} + bool ggml_is_quantized(enum ggml_type type) { return GGML_IS_QUANTIZED[type]; } @@ -4693,7 +4715,7 @@ struct ggml_tensor * ggml_add_impl( bool is_node = false; - if (!inplace && (a->grad || b->grad)) { + if (a->grad || b->grad) { is_node = true; } @@ -4733,7 +4755,7 @@ struct ggml_tensor * ggml_add1_impl( bool is_node = false; - if (!inplace && (a->grad || b->grad)) { + if (a->grad || b->grad) { is_node = true; } @@ -5159,6 +5181,34 @@ struct ggml_tensor * ggml_repeat( return result; } +// ggml_repeat_back + +struct ggml_tensor * ggml_repeat_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_can_repeat(b, a)); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + if (ggml_are_same_shape(a, b) && !is_node) { + return a; + } + + struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne); + + result->op = GGML_OP_REPEAT_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + // ggml_abs struct ggml_tensor * ggml_abs_impl( @@ -5536,6 +5586,32 @@ struct ggml_tensor * ggml_mul_mat( return result; } +// ggml_out_prod + +struct ggml_tensor * ggml_out_prod( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_can_out_prod(a, b)); + GGML_ASSERT(!ggml_is_transposed(a)); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne); + + result->op = GGML_OP_OUT_PROD; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + // ggml_scale struct ggml_tensor * ggml_scale_impl( @@ -5548,7 +5624,7 @@ struct ggml_tensor * ggml_scale_impl( bool is_node = false; - if (!inplace && (a->grad || b->grad)) { + if (a->grad || b->grad) { is_node = true; } @@ -5591,7 +5667,7 @@ struct ggml_tensor * ggml_set_impl( bool is_node = false; - if (!inplace && (a->grad || b->grad)) { + if (a->grad || b->grad) { is_node = true; } @@ -5913,10 +5989,6 @@ struct ggml_tensor * ggml_view_1d( result->src1 = NULL; result->opt[0] = offs; - if (is_node) { - memcpy(result->padding, &offset, sizeof(offset)); - } - return result; } @@ -5957,10 +6029,6 @@ struct ggml_tensor * ggml_view_2d( result->src1 = NULL; result->opt[0] = offs; - if (is_node) { - memcpy(result->padding, &offset, sizeof(offset)); - } - return result; } @@ -6003,10 +6071,6 @@ struct ggml_tensor * ggml_view_3d( result->src1 = NULL; result->opt[0] = offs; - if (is_node) { - memcpy(result->padding, &offset, sizeof(offset)); - } - return result; } @@ -6051,10 +6115,6 @@ struct ggml_tensor * ggml_view_4d( result->src1 = NULL; result->opt[0] = offs; - if (is_node) { - memcpy(result->padding, &offset, sizeof(offset)); - } - return result; } @@ -6116,10 +6176,18 @@ struct ggml_tensor * ggml_permute( result->src1 = NULL; if (is_node) { - result->padding[0] = axis0; - result->padding[1] = axis1; - result->padding[2] = axis2; - result->padding[3] = axis3; + ggml_scratch_save(ctx); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4); + + ((int32_t *) b->data)[0] = axis0; + ((int32_t *) b->data)[1] = axis1; + ((int32_t *) b->data)[2] = axis2; + ((int32_t *) b->data)[3] = axis3; + + ggml_scratch_load(ctx); + + result->opt[0] = b; } return result; @@ -6359,6 +6427,44 @@ struct ggml_tensor * ggml_soft_max_inplace( return ggml_soft_max_impl(ctx, a, true); } + +// ggml_soft_max_back + +struct ggml_tensor * ggml_soft_max_back_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; // TODO : implement backward pass + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SOFT_MAX_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_soft_max_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_soft_max_back_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_soft_max_back_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_soft_max_back_impl(ctx, a, b, true); +} + // ggml_rope struct ggml_tensor * ggml_rope_impl( @@ -6371,7 +6477,7 @@ struct ggml_tensor * ggml_rope_impl( GGML_ASSERT(n_past >= 0); bool is_node = false; - if (!inplace && a->grad) { + if (a->grad) { is_node = true; } @@ -6425,8 +6531,7 @@ struct ggml_tensor * ggml_rope_back( bool is_node = false; if (a->grad) { - GGML_ASSERT(false); // TODO: implement backward - is_node = true; + is_node = false; // TODO: implement backward } struct ggml_tensor * result = ggml_dup_tensor(ctx, a); @@ -6591,7 +6696,6 @@ struct ggml_tensor * ggml_flash_attn( bool is_node = false; if (q->grad || k->grad || v->grad) { - GGML_ASSERT(false); // TODO: implement backward is_node = true; } @@ -6623,7 +6727,6 @@ struct ggml_tensor * ggml_flash_ff( bool is_node = false; if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) { - GGML_ASSERT(false); // TODO: implement backward is_node = true; } @@ -6641,6 +6744,71 @@ struct ggml_tensor * ggml_flash_ff( return result; } +// ggml_flash_attn_back + +struct ggml_tensor * ggml_flash_attn_back( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * d, + bool masked) { + GGML_ASSERT(ggml_can_mul_mat(k, q)); + // TODO: check if vT can be multiplied by (k*qT) + + // d shape [D,N,ne2,ne3] + // q shape [D,N,ne2,ne3] + // k shape [D,M,ne2,ne3] + // v shape [M,D,ne2,ne3] + + const int64_t D = q->ne[0]; + const int64_t N = q->ne[1]; + const int64_t M = k->ne[1]; + const int64_t ne2 = q->ne[2]; + const int64_t ne3 = q->ne[3]; + + GGML_ASSERT(k->ne[0] == D); + GGML_ASSERT(v->ne[0] == M); + GGML_ASSERT(v->ne[1] == D); + GGML_ASSERT(d->ne[0] == D); + GGML_ASSERT(d->ne[1] == N); + GGML_ASSERT(k->ne[2] == ne2); + GGML_ASSERT(k->ne[3] == ne3); + GGML_ASSERT(v->ne[2] == ne2); + GGML_ASSERT(v->ne[3] == ne3); + GGML_ASSERT(d->ne[2] == ne2); + GGML_ASSERT(d->ne[3] == ne3); + + bool is_node = false; + + if (q->grad || k->grad || v->grad) { + // when using this operation (in backwards pass) these grads are set. + // we don't want to create (big) grad of our result, so is_node is false. + is_node = false; + } + + // store gradients of q, k and v as continuous tensors concatenated in result. + // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3] + // gradq->data = result->data + // gradk->data = result->data + nb0*D*N*ne2*ne3 + // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3 + // note: v and gradv are actually transposed, i.e. v->ne[0] != D. + int64_t ne[4] = {D,M+N+M,ne2,ne3}; + + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + result->op = GGML_OP_FLASH_ATTN_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = q; + result->src1 = k; + result->opt[0] = v; + result->opt[1] = d; + result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0); + + return result; +} + + // ggml_map_unary struct ggml_tensor * ggml_map_unary_impl_f32( @@ -6725,6 +6893,50 @@ struct ggml_tensor * ggml_map_binary_inplace_f32( return ggml_map_binary_impl_f32(ctx, a, b, fun, true); } +// ggml_cross_entropy_loss + +struct ggml_tensor * ggml_cross_entropy_loss( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1); + + result->op = GGML_OP_CROSS_ENTROPY_LOSS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_cross_entropy_loss_back + +struct ggml_tensor * ggml_cross_entropy_loss_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + GGML_ASSERT(ggml_is_scalar(c)); + + struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK; + result->grad = NULL; + result->src0 = a; + result->src1 = b; + result->opt[0] = c; + + return result; +} + //////////////////////////////////////////////////////////////////////////////// void ggml_set_param( @@ -8875,6 +9087,99 @@ static void ggml_compute_forward_repeat( } } +// ggml_compute_forward_repeat_back + +static void ggml_compute_forward_repeat_back_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_can_repeat(dst, src0)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + // guaranteed to be an integer due to the check in ggml_can_repeat + const int nr0 = (int)(ne00/ne0); + const int nr1 = (int)(ne01/ne1); + const int nr2 = (int)(ne02/ne2); + const int nr3 = (int)(ne03/ne3); + + // TODO: support for transposed / permuted tensors + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + if (ggml_is_contiguous(dst)) { + ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); + } else { + for (int k3 = 0; k3 < ne3; k3++) { + for (int k2 = 0; k2 < ne2; k2++) { + for (int k1 = 0; k1 < ne1; k1++) { + ggml_vec_set_f32(ne0, + (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3), + 0); + } + } + } + } + + // TODO: maybe this is not optimal? + for (int i3 = 0; i3 < nr3; i3++) { + for (int k3 = 0; k3 < ne3; k3++) { + for (int i2 = 0; i2 < nr2; i2++) { + for (int k2 = 0; k2 < ne2; k2++) { + for (int i1 = 0; i1 < nr1; i1++) { + for (int k1 = 0; k1 < ne1; k1++) { + for (int i0 = 0; i0 < nr0; i0++) { + ggml_vec_acc_f32(ne0, + (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1), + (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00)); + } + } + } + } + } + } + } +} + +static void ggml_compute_forward_repeat_back( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_repeat_back_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_abs static void ggml_compute_forward_abs_f32( @@ -10249,6 +10554,176 @@ static void ggml_compute_forward_mul_mat( } } +// ggml_compute_forward_out_prod + + +static void ggml_compute_forward_out_prod_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + //const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + const int nb12 = src1->nb[2]; + const int nb13 = src1->nb[3]; + + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + GGML_ASSERT(ne02 == ne12); + GGML_ASSERT(ne03 == ne13); + GGML_ASSERT(ne2 == ne12); + GGML_ASSERT(ne3 == ne13); + + // we don't support permuted src0 or src1 + GGML_ASSERT(nb00 == sizeof(float)); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + // GGML_ASSERT(nb0 <= nb1); + // GGML_ASSERT(nb1 <= nb2); + // GGML_ASSERT(nb2 <= nb3); + + GGML_ASSERT(ne0 == ne00); + GGML_ASSERT(ne1 == ne10); + GGML_ASSERT(ne2 == ne02); + GGML_ASSERT(ne3 == ne03); + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + + // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod + // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) + + if (params->type == GGML_TASK_INIT) { + ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // parallelize by last three dimensions + + // total rows in dst + const int64_t nr = ne1*ne2*ne3; + + // rows per thread + const int64_t dr = (nr + nth - 1)/nth; + + // row range for this thread + const int64_t ir0 = dr*ith; + const int64_t ir1 = MIN(ir0 + dr, nr); + + // dst[:,:,:,:] = 0 + // for i2,i3: + // for i1: + // for i01: + // for i0: + // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] + + for (int64_t ir = ir0; ir < ir1; ++ir) { + // dst indices + const int64_t i3 = ir/(ne2*ne1); + const int64_t i2 = (ir - i3*ne2*ne1)/ne1; + const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1); + + const int64_t i02 = i2; + const int64_t i03 = i3; + + //const int64_t i10 = i1; + const int64_t i12 = i2; + const int64_t i13 = i3; + + for (int64_t i01 = 0; i01 < ne01; ++i01) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + ggml_vec_mad_f32(ne0, d, s0, *s1); + // for (int64_t i0 = 0; i0 < ne0; ++i0) { + // d[i0] += s0[i0] * s1[i1]; + // } + } + } + + //int64_t t1 = ggml_perf_time_us(); + //static int64_t acc = 0; + //acc += t1 - t0; + //if (t1 - t0 > 10) { + // printf("\n"); + // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); + // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); + // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); + + // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); + //} +} + +static void ggml_compute_forward_out_prod( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + { + GGML_ASSERT(false); // todo + // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F16: + { + GGML_ASSERT(false); // todo + // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_out_prod_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_scale static void ggml_compute_forward_scale_f32( @@ -10671,7 +11146,11 @@ static void ggml_compute_forward_get_rows_back_f32( GGML_ASSERT(ggml_is_contiguous(opt0)); GGML_ASSERT(ggml_is_contiguous(dst)); - ggml_compute_forward_dup_same_cont(params, opt0, dst); + // ggml_compute_forward_dup_same_cont(params, opt0, dst); + + if (params->type == GGML_TASK_INIT) { + memset(dst->data, 0, ggml_nbytes(dst)); + } if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; @@ -10815,8 +11294,8 @@ static void ggml_compute_forward_diag_mask_f32( const struct ggml_tensor * src1, struct ggml_tensor * dst, const float value) { - assert(src1->type == GGML_TYPE_I32); - assert(ggml_nelements(src1) == 2); + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_nelements(src1) == 2); const int ith = params->ith; const int nth = params->nth; @@ -10824,7 +11303,7 @@ static void ggml_compute_forward_diag_mask_f32( const int n_past = ((int32_t *) src1->data)[0]; const bool inplace = (bool)((int32_t *) src1->data)[1]; - assert(n_past >= 0); + GGML_ASSERT(n_past >= 0); if (!inplace && (params->type == GGML_TASK_INIT)) { // memcpy needs to be synchronized across threads to avoid race conditions. @@ -10848,8 +11327,8 @@ static void ggml_compute_forward_diag_mask_f32( const int nr = src0->ne[1]; const int nz = n/nr; - assert( dst->nb[0] == sizeof(float)); - assert(src0->nb[0] == sizeof(float)); + GGML_ASSERT( dst->nb[0] == sizeof(float)); + GGML_ASSERT(src0->nb[0] == sizeof(float)); for (int k = 0; k < nz; k++) { for (int j = ith; j < nr; j += nth) { @@ -10985,6 +11464,101 @@ static void ggml_compute_forward_soft_max( } } +// ggml_compute_forward_soft_max_back + +static void ggml_compute_forward_soft_max_back_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_are_same_shape(src1, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // TODO: handle transposed/permuted matrices + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float *dy = (float *)((char *) src0->data + i1*src0->nb[1]); + float *y = (float *)((char *) src1->data + i1*src1->nb[1]); + float *dx = (float *)((char *) dst->data + i1*dst->nb[1]); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + //printf("p[%d] = %f\n", i, p[i]); + assert(!isnan(dy[i])); + assert(!isnan(y[i])); + } +#endif + // Jii = yi - yi*yi + // Jij = -yi*yj + // J = diag(y)-y.T*y + // dx = J * dy + // dxk = sum_i(Jki * dyi) + // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk + // dxk = sum_i(-yk*yi * dyi) + yk*dyk + // dxk = -yk * sum_i(yi * dyi) + yk*dyk + // dxk = -yk * dot(y, dy) + yk*dyk + // dxk = yk * (- dot(y, dy) + dyk) + // dxk = yk * (dyk - dot(y, dy)) + // + // post-order: + // dot_y_dy := dot(y, dy) + // dx := dy + // dx := dx - dot_y_dy + // dx := dx * y + + // linear runtime, no additional memory + float dot_y_dy = 0; + ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy); + ggml_vec_cpy_f32 (nc, dx, dy); + ggml_vec_acc1_f32(nc, dx, -dot_y_dy); + ggml_vec_mul_f32 (nc, dx, dx, y); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + assert(!isnan(dx[i])); + assert(!isinf(dx[i])); + } +#endif + } +} + +static void ggml_compute_forward_soft_max_back( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_alibi static void ggml_compute_forward_alibi_f32( @@ -12938,6 +13512,414 @@ static void ggml_compute_forward_flash_ff( } } +// ggml_compute_forward_flash_attn_back + +static void ggml_compute_forward_flash_attn_back_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * q, + const struct ggml_tensor * k, + const struct ggml_tensor * v, + const struct ggml_tensor * d, + const bool masked, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t neq0 = q->ne[0]; + const int64_t neq1 = q->ne[1]; + const int64_t neq2 = q->ne[2]; + const int64_t neq3 = q->ne[3]; + + const int64_t nek0 = k->ne[0]; + const int64_t nek1 = k->ne[1]; + //const int64_t nek2 = k->ne[2]; + //const int64_t nek3 = k->ne[3]; + + const int64_t nev0 = v->ne[0]; + const int64_t nev1 = v->ne[1]; + //const int64_t nev2 = v->ne[2]; + //const int64_t nev3 = v->ne[3]; + + const int64_t ned0 = d->ne[0]; + const int64_t ned1 = d->ne[1]; + //const int64_t ned2 = d->ne[2]; + //const int64_t ned3 = d->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const int nbk0 = k->nb[0]; + const int nbk1 = k->nb[1]; + const int nbk2 = k->nb[2]; + const int nbk3 = k->nb[3]; + + const int nbq0 = q->nb[0]; + const int nbq1 = q->nb[1]; + const int nbq2 = q->nb[2]; + const int nbq3 = q->nb[3]; + + const int nbv0 = v->nb[0]; + const int nbv1 = v->nb[1]; + const int nbv2 = v->nb[2]; + const int nbv3 = v->nb[3]; + + const int nbd0 = d->nb[0]; + const int nbd1 = d->nb[1]; + const int nbd2 = d->nb[2]; + const int nbd3 = d->nb[3]; + + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t D = neq0; + const int64_t N = neq1; + const int64_t P = nek1 - N; + const int64_t M = P + N; + + const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); + const int mxDM = MAX(D, Mup); + + // GGML_ASSERT(ne0 == D); + // GGML_ASSERT(ne1 == N); + GGML_ASSERT(P >= 0); + + GGML_ASSERT(nbq0 == sizeof(float)); + GGML_ASSERT(nbk0 == sizeof(float)); + GGML_ASSERT(nbv0 == sizeof(float)); + + GGML_ASSERT(neq0 == D); + GGML_ASSERT(nek0 == D); + GGML_ASSERT(nev1 == D); + GGML_ASSERT(ned0 == D); + + GGML_ASSERT(neq1 == N); + GGML_ASSERT(nek1 == N + P); + GGML_ASSERT(nev1 == D); + GGML_ASSERT(ned1 == N); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + if (params->type == GGML_TASK_INIT) { + if (ith == 0) { + memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3); + } + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // parallelize by q rows using ggml_vec_dot_f32 + + // total rows in q + const int nr = neq2*neq3; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + const float scale = 1.0f/sqrtf(D); + + //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); + + for (int ir = ir0; ir < ir1; ++ir) { + // q indices + const int iq3 = ir/(neq2); + const int iq2 = ir - iq3*neq2; + for ( int iq1 = 0; iq1 < neq1; ++iq1) { + + + // not sure about CACHE_LINE_SIZE_F32.. + // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset? + float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32); + float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32); + + for (int i = M; i < Mup; ++i) { + S[i] = -INFINITY; + } + + for (int64_t ic = 0; ic < nek1; ++ic) { + // k indices + const int ik3 = iq3; + const int ik2 = iq2; + const int ik1 = ic; + + // S indices + const int i1 = ik1; + + ggml_vec_dot_f32(neq0, + S + i1, + (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), + (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); + } + + // scale + ggml_vec_scale_f32(nek1, S, scale); + + if (masked) { + for (int64_t i = P; i < M; i++) { + if (i > P + iq1) { + S[i] = -INFINITY; + } + } + } + + // softmax + { + float max = -INFINITY; + ggml_vec_max_f32(M, &max, S); + + ggml_float sum = 0.0; + { +#ifdef GGML_SOFT_MAX_ACCELERATE + max = -max; + vDSP_vsadd(SM, 1, &max, SM, 1, Mup); + vvexpf(SM, SM, &Mup); + ggml_vec_sum_f32(Mup, &sum, SM); +#else + uint16_t scvt[GGML_SOFT_MAX_UNROLL]; + ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; + + for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { + float * SR = S + i; + float * SW = SM + i; + + for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { + if (SR[j] == -INFINITY) { + SW[j] = 0.0f; + } else { + ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max); + memcpy(&scvt[j], &s, sizeof(uint16_t)); + const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); + sump[j] += (ggml_float)val; + SW[j] = val; + } + } + } + + for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { + sum += sump[i]; + } +#endif + } + + assert(sum > 0.0); + + sum = 1.0/sum; + ggml_vec_scale_f32(M, SM, sum); + + } + + // step-by-step explanation + { + // forward-process shape grads from backward process + // parallel_for iq2,iq3: + // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur] + // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur] + // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur] + // for iq1: + // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur + // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur + // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4 + // S0 = -Inf [D,1,1,1] + // ~S1[i] = dot(kcur[:D,i], qcur) + // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale + // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P) + // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur + // ~S5[i] = dot(vcur[:,i], S4) + // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3] + // ~dst[i,iq1,iq2,iq3] = S5[i] ^ + // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3] + // dst backward-/ grad[dst] = d + // + // output gradients with their dependencies: + // + // grad[kcur] = grad[S1].T @ qcur + // grad[S1] = diag_mask_zero(grad[S3], P) * scale + // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // grad[S4] = grad[S5] @ vcur + // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur + // grad[qcur] = grad[S1] @ kcur + // grad[vcur] = grad[S5].T @ S4 + // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4 + // + // in post-order: + // + // S1 = qcur @ kcur.T + // S2 = S1 * scale + // S3 = diag_mask_inf(S2, P) + // S4 = softmax(S3) + // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur + // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // grad[S1] = diag_mask_zero(grad[S3], P) * scale + // grad[qcur] = grad[S1] @ kcur + // grad[kcur] = grad[S1].T @ qcur + // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4 + // + // using less variables (SM=S4): + // + // S = diag_mask_inf(qcur @ kcur.T * scale, P) + // SM = softmax(S) + // S = d[:D,iq1,iq2,iq3] @ vcur + // dot_SM_gradSM = dot(SM, S) + // S = SM * (S - dot(SM, S)) + // S = diag_mask_zero(S, P) * scale + // + // grad[q][:D,iq1,iq2,iq3] += S @ kcur + // grad[k][:D,:M,iq2,iq3] += S.T @ qcur + // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM + } + + // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur + // S = d[:D,iq1,iq2,iq3] @ vcur + // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3] + ggml_vec_set_f32(M, S, 0); + for (int64_t ic = 0; ic < D; ++ic) { + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + ggml_vec_mad_f32(M, + S, + (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), + *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3))); + } + + // S = SM * (S - dot(SM, S)) + float dot_SM_gradSM = 0; + ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S); + ggml_vec_acc1_f32(M, S, -dot_SM_gradSM); + ggml_vec_mul_f32 (M, S, S, SM); + + // S = diag_mask_zero(S, P) * scale + if (masked) { + // for (int64_t i = P + iq1 + 1; i < M; i++) { + // S[i] = 0; + // } + for (int64_t i = P; i < M; i++) { + if (i > P + iq1) { + S[i] = 0; + } + } + } + ggml_vec_scale_f32(M, S, scale); + + void * grad_q = (char *) dst->data; + void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3; + void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3; + + const size_t nbgq1 = nb0*neq0; + const size_t nbgq2 = nb0*neq0*neq1; + const size_t nbgq3 = nb0*neq0*neq1*neq2; + + const size_t nbgk1 = nb0*nek0; + const size_t nbgk2 = nb0*nek0*nek1; + const size_t nbgk3 = nb0*nek0*nek1*neq2; + + const size_t nbgv1 = nb0*nev0; + const size_t nbgv2 = nb0*nev0*nev1; + const size_t nbgv3 = nb0*nev0*nev1*neq2; + + // S shape [M,1] + // SM shape [M,1] + // kcur shape [D,M] + // qcur shape [D,1] + // vcur shape [M,D] + // + // grad[q][:D,iq1,iq2,iq3] += S @ kcur + // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M] + // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic] + // + //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T) + //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T) + for (int64_t ic = 0; ic < M; ++ic) { + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + ggml_vec_mad_f32(D, + (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)), + (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)), + S[ic]); + } + + // grad[k][:D,:M,iq2,iq3] += S.T @ qcur + // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0] + // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0] + for (int64_t ic = 0; ic < M; ++ic) { + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + // ggml_vec_set_f32(D, + // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)), + // 0); + ggml_vec_mad_f32(D, + (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)), + (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)), + S[ic]); + } + + // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM + // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M] + // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M] + for (int64_t ic = 0; ic < D; ++ic) { + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + // ggml_vec_set_f32(M, + // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)), + // 0); + ggml_vec_mad_f32(M, + (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)), + SM, + *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3))); + } + } + } +} + +static void ggml_compute_forward_flash_attn_back( + const struct ggml_compute_params * params, + const struct ggml_tensor * q, + const struct ggml_tensor * k, + const struct ggml_tensor * v, + const struct ggml_tensor * d, + const bool masked, + struct ggml_tensor * dst) { + switch (q->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_map_unary static void ggml_compute_forward_map_unary_f32( @@ -13031,6 +14013,286 @@ static void ggml_compute_forward_map_binary( } } +// ggml_compute_forward_cross_entropy_loss + +static void ggml_compute_forward_cross_entropy_loss_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(ggml_is_scalar(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, src1)); + + const int ith = params->ith; + const int nth = params->nth; + + float * sums = (float *) params->wdata; + + // TODO: handle transposed/permuted matrices + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + if (params->type == GGML_TASK_INIT) { + if (ith == 0) { + memset(sums, 0, sizeof(float) * (nth + nth * nc)); + } + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + if (ith == 0) { + float * dp = (float *) dst->data; + ggml_vec_sum_f32(nth, dp, sums); + dp[0] *= -1.0f; + } + return; + } + + const double eps = 1e-9; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]); + float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]); + float * st = (float *) params->wdata + nth + ith*nc; + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + //printf("p[%d] = %f\n", i, p[i]); + assert(!isnan(s0[i])); + assert(!isnan(s1[i])); + } +#endif + // soft_max + ggml_float sum = 0.0; + { + float max = -INFINITY; + ggml_vec_max_f32(nc, &max, s0); + + uint16_t scvt; + for (int i = 0; i < nc; i++) { + if (s0[i] == -INFINITY) { + st[i] = 0.0f; + } else { + // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max); + ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max); + memcpy(&scvt, &s, sizeof(scvt)); + const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]); + sum += (ggml_float)val; + st[i] = val; + } + } + + assert(sum > 0.0); + // sum = 1.0/sum; + } + // avoid log(0) by rescaling from [0..1] to [eps..1] + sum = (1.0 - eps) / sum; + ggml_vec_scale_f32(nc, st, sum); + ggml_vec_add1_f32(nc, st, st, eps); + ggml_vec_log_f32(nc, st, st); + ggml_vec_mul_f32(nc, st, st, s1); + + ggml_vec_sum_f32(nc, sums + ith, st); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + assert(!isnan(st[i])); + assert(!isinf(st[i])); + } +#endif + } + +} + +static void ggml_compute_forward_cross_entropy_loss( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_cross_entropy_loss_back + +static void ggml_compute_forward_cross_entropy_loss_back_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(ggml_is_contiguous(opt0)); + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + const int64_t ith = params->ith; + const int64_t nth = params->nth; + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const float eps = 1e-9f; + + // TODO: handle transposed/permuted matrices + const int64_t nc = src0->ne[0]; + const int64_t nr = ggml_nrows(src0); + + // rows per thread + const int64_t dr = (nr + nth - 1)/nth; + + // row range for this thread + const int64_t ir0 = dr*ith; + const int64_t ir1 = MIN(ir0 + dr, nr); + + float * d = (float *) opt0->data; + + for (int64_t i1 = ir0; i1 < ir1; i1++) { + float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]); + float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]); + float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]); + float * sm = (float *) params->wdata + ith*nc; + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + //printf("p[%d] = %f\n", i, p[i]); + assert(!isnan(s0[i])); + assert(!isnan(s1[i])); + } +#endif + // step by step explanation: + { + //float * sums = (float *) params->wdata; + + // forward pass with annotated gradients from backward pass + // (built by going in reverse operation order, adding to gradients of current operation args) + // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum + // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1])) + // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps) + // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3] + // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3 + // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1 + // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]] + // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel] + + // substitute into grad[st1], because we can reuse softmax_back from this point on + // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps)) + // postorder: + // grad[st1] := softmax(s0) + // grad[st1] := grad[st1]*(1.0 - eps) + // grad[st1] := grad[st1] + eps + // grad[st1] := s1 / grad[st1] + // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel] + + // src0 gradients by going through softmax_back + // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1])) + // from softmax_back: + // dxk = yk * (dyk - dot(y, dy)) + // dot_y_dy := dot(y, dy) + // dx := dy + // dx := dx - dot_y_dy + // dx := dx * y + // postorder: + // dot_st1_dst1 := dot(st1, grad[st1]) + // grad[s0] := grad[st1] + // grad[s0] := grad[s0] - dot_st1_dst1 + // grad[s0] := grad[s0] * st1 + + // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1] + // sm := softmax(s0) + // grad[s0] := sm*(1.0 - eps) + // grad[s0] := grad[s0] + eps + // grad[s0] := s1 / grad[s0] + // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel] + // dot_st1_dst1 := dot(sm, grad[s0]) + // grad[s0] := grad[s0] - dot_st1_dst1 + // grad[s0] := grad[s0] * sm + } + + // soft_max + ggml_float sum = 0.0; + { + float max = -INFINITY; + ggml_vec_max_f32(nc, &max, s0); + + uint16_t scvt; + for (int i = 0; i < nc; i++) { + if (s0[i] == -INFINITY) { + sm[i] = 0.0f; + } else { + // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max); + ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max); + memcpy(&scvt, &s, sizeof(scvt)); + const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]); + sum += (ggml_float)val; + sm[i] = val; + } + } + + assert(sum > 0.0); + sum = 1.0/sum; + } + + float dot_st1_dst1 = 0; + ggml_vec_scale_f32(nc, sm, sum); + ggml_vec_cpy_f32 (nc, ds0, sm); + ggml_vec_scale_f32(nc, ds0, (1.0f - eps)); + ggml_vec_add1_f32 (nc, ds0, ds0, eps); + ggml_vec_div_f32 (nc, ds0, s1, ds0); + ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]); + ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0); + ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1); + ggml_vec_mul_f32 (nc, ds0, ds0, sm); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + assert(!isnan(sm[i])); + assert(!isinf(sm[i])); + assert(!isnan(ds0[i])); + assert(!isinf(ds0[i])); + } +#endif + } +} + +static void ggml_compute_forward_cross_entropy_loss_back( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + ///////////////////////////////// static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { @@ -13102,6 +14364,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_repeat(params, tensor->src0, tensor); } break; + case GGML_OP_REPEAT_BACK: + { + ggml_compute_forward_repeat_back(params, tensor->src0, tensor); + } break; case GGML_OP_ABS: { ggml_compute_forward_abs(params, tensor->src0, tensor); @@ -13150,6 +14416,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor); } break; + case GGML_OP_OUT_PROD: + { + ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor); + } break; case GGML_OP_SCALE: { ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor); @@ -13206,6 +14476,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_soft_max(params, tensor->src0, tensor); } break; + case GGML_OP_SOFT_MAX_BACK: + { + ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor); + } break; case GGML_OP_ROPE: { ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor); @@ -13241,6 +14515,13 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor); } break; + case GGML_OP_FLASH_ATTN_BACK: + { + int32_t t = ggml_get_i32_1d(tensor->opt[2], 0); + GGML_ASSERT(t == 0 || t == 1); + bool masked = t != 0; + ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor); + } break; case GGML_OP_MAP_UNARY: { const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data); @@ -13253,6 +14534,16 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun); } break; + case GGML_OP_CROSS_ENTROPY_LOSS: + { + ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor); + } + break; + case GGML_OP_CROSS_ENTROPY_LOSS_BACK: + { + ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor); + } + break; case GGML_OP_NONE: { // nop @@ -13391,11 +14682,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor src0->grad = ggml_add_impl(ctx, src0->grad, - ggml_mul(ctx, - tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1 + ggml_scale(ctx, ggml_div(ctx, - ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor), - tensor)), + tensor->grad, + tensor), + ggml_new_f32(ctx, 0.5f)), inplace); } } break; @@ -13441,43 +14732,20 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { // necessary for llama if (src0->grad) { - GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2); - const int nc = tensor->ne[0]; - const int nr = tensor->ne[1]; - const int nc0 = src0->ne[0]; - const int nr0 = src0->ne[1]; - const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat - const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat - // tensor->grad [nc,nr,1,1] - // reshape [nc0,nc/nc0,nr0,nr/nr0] - // permute [nc0,nr0,nc/nc0,nr/nr0] - // substitute [nc0,nr0,ncr,nrr] - // reshape [nc0*nr0,ncr*nrr,1,1] - // transpose [ncr*nrr,nc0*nr0,1,1] - // sum rows [1,nc0*nr0,1,1] - // transpose [nc0*nr0,1,1] - // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d - // add to src0->grad - - int64_t ne[4] = {nc0,ncr,nr0,nrr}; - - struct ggml_tensor* F00 = tensor->grad; - struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne)); - struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3); - struct ggml_tensor* F03 = ggml_cont (ctx, F02); - struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr); - struct ggml_tensor* F05 = ggml_transpose (ctx, F04); - struct ggml_tensor* F06 = ggml_cont (ctx, F05); - struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06); - struct ggml_tensor* F08 = ggml_transpose (ctx, F07); - struct ggml_tensor* F09 = ggml_cont (ctx, F08); - struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad); - - src0->grad = - ggml_add_impl(ctx, - src0->grad, - F10, - inplace); + src0->grad = ggml_add_impl(ctx, + src0->grad, + ggml_repeat_back(ctx, tensor->grad, src0->grad), + inplace); + } + } break; + case GGML_OP_REPEAT_BACK: + { + if (src0->grad) { + // TODO: test this + src0->grad = ggml_add_impl(ctx, + src0->grad, + ggml_repeat(ctx, tensor->grad, src0->grad), + inplace); } } break; case GGML_OP_ABS: @@ -13584,38 +14852,37 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { - // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad); src0->grad = ggml_add_impl(ctx, src0->grad, - // ds0 = dt.dot(s1.T) - // ggml_out_prod(ctx, // [n,m] - // src1, // [n,p] - // tensor->grad), // [m,p] - // for now just using A*B==(B.T*A.T).T - ggml_cont(ctx, // [n,m] - ggml_transpose(ctx, // [n,m] - ggml_mul_mat(ctx, // [m,n] - ggml_cont(ctx, // [p,m] - ggml_transpose(ctx, // [p,m] - tensor->grad)), // [m,p] - ggml_cont(ctx, // [p,n] - ggml_transpose(ctx, // [p,n] - src1))))), // [n,p] + ggml_out_prod(ctx, // [n,m] + src1, // [n,p] + tensor->grad), // [m,p] inplace); } if (src1->grad) { src1->grad = ggml_add_impl(ctx, src1->grad, - // ds1 = s0.T.dot(dt): - ggml_mul_mat(ctx, // [n,p] - ggml_cont(ctx, // [m,n] - ggml_transpose(ctx, src0)), // [m,n] - tensor->grad), // [m,p] + // ggml_mul_mat(ctx, // [n,p] + // ggml_cont(ctx, // [m,n] + // ggml_transpose(ctx, src0)), // [m,n] + // tensor->grad), // [m,p] + + // // when src0 is bigger than tensor->grad (this is mostly the case in llama), + // // avoid transpose of src0, rather transpose smaller tensor->grad + // // and then use ggml_out_prod + ggml_out_prod(ctx, // [n,p] + src0, // [n,m] + ggml_transpose(ctx, // [p,m] + tensor->grad)), // [m,p] inplace); } } break; + case GGML_OP_OUT_PROD: + { + GGML_ASSERT(false); // TODO: not implemented + } break; case GGML_OP_SCALE: { // necessary for llama @@ -13717,7 +14984,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { size_t offset; - memcpy(&offset, tensor->padding, sizeof(offset)); + + GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0])); + memcpy(&offset, tensor->opt[0]->data, sizeof(offset)); size_t nb1 = tensor->nb[1]; size_t nb2 = tensor->nb[2]; @@ -13744,10 +15013,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { // necessary for llama if (src0->grad) { - int axis0 = tensor->padding[0] & 0x3; - int axis1 = tensor->padding[1] & 0x3; - int axis2 = tensor->padding[2] & 0x3; - int axis3 = tensor->padding[3] & 0x3; + int32_t * axes = (int32_t *) tensor->opt[0]->data; + int axis0 = axes[0] & 0x3; + int axis1 = axes[1] & 0x3; + int axis2 = axes[2] & 0x3; + int axis3 = axes[3] & 0x3; int axes_backward[4] = {0,0,0,0}; axes_backward[axis0] = 0; axes_backward[axis1] = 1; @@ -13831,50 +15101,16 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { // necessary for llama if (src0->grad) { - // y = softmax(x) - // - // Jii = yi - yi*yi - // Jij = -yi*yj - // J = diag(y)-y.*y - // dx = J * dy - // dxk = sum(Jkj * dyk) - - int64_t ne2[4] = { - tensor->ne[0], - 1, - tensor->ne[1]*tensor->ne[2], - tensor->ne[3] - }; - struct ggml_tensor * tensor2 = ggml_cont(ctx, - ggml_reshape_4d(ctx, - ggml_cont(ctx, tensor), - ne2[0], ne2[1], ne2[2], ne2[3])); - - struct ggml_tensor * grad2 = ggml_cont(ctx, - ggml_reshape_4d(ctx, - ggml_cont(ctx, tensor->grad), - ne2[0], ne2[1], ne2[2], ne2[3])); - - struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3] - ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3] - tensor2, // [ne0,1,ne1*ne2,ne3] - 1, 0, 2, 3)); - src0->grad = - ggml_add_impl(ctx, - src0->grad, // [ne0,ne1,ne2,ne3] - ggml_reshape(ctx, // [ne0,ne1,ne2,ne3] - ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3] - ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3] - ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3] - tensor2), // [ne0,1,ne1*ne2,ne3] - ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3] - tensor2_t, // [1,ne0,ne1*ne2,ne3] - tensor2_t)), // [1,ne0,ne1*ne2,ne3] - grad2), // [ne0,1,ne1*ne2,ne3] - src0->grad), - inplace); + ggml_add_impl(ctx, src0->grad, + ggml_soft_max_back(ctx, tensor->grad, tensor), + inplace); } + + } break; + case GGML_OP_SOFT_MAX_BACK: + { + GGML_ASSERT(false); // TODO: not implemented } break; case GGML_OP_ROPE: { @@ -13929,17 +15165,190 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor } break; case GGML_OP_FLASH_ATTN: { - GGML_ASSERT(false); // not supported + struct ggml_tensor * flash_grad = NULL; + if (src0->grad || src1->grad || tensor->opt[0]->grad) { + int32_t t = ggml_get_i32_1d(tensor->opt[1], 0); + GGML_ASSERT(t == 0 || t == 1); + bool masked = t != 0; + flash_grad = + ggml_flash_attn_back(ctx, + src0, + src1, + tensor->opt[0], + tensor->grad, + masked); + } + + if (src0->grad) { + struct ggml_tensor * grad_q = NULL; + const size_t nb0 = flash_grad->nb[0]; + const size_t offset = 0; + switch(src0->n_dims) { + case 2: + { + grad_q = ggml_view_2d(ctx, + flash_grad, + src0->ne[0], + src0->ne[1], + nb0*src0->ne[0], + offset); + } break; + case 3: + { + grad_q = ggml_view_3d(ctx, + flash_grad, + src0->ne[0], + src0->ne[1], + src0->ne[2], + nb0*src0->ne[0], + nb0*src0->ne[0]*src0->ne[1], + offset); + } break; + case 4: + { + grad_q = ggml_view_4d(ctx, + flash_grad, + src0->ne[0], + src0->ne[1], + src0->ne[2], + src0->ne[3], + nb0*src0->ne[0], + nb0*src0->ne[0]*src0->ne[1], + nb0*src0->ne[0]*src0->ne[1]*src0->ne[2], + offset); + } break; + } + + src0->grad = ggml_add_impl(ctx, + src0->grad, + grad_q, + inplace); + } + + if (src1->grad) { + struct ggml_tensor * grad_k = NULL; + const size_t nb0 = flash_grad->nb[0]; + const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]; + switch(src1->n_dims) { + case 2: + { + grad_k = ggml_view_2d(ctx, + flash_grad, + src1->ne[0], + src1->ne[1], + nb0*src1->ne[0], + offset); + } break; + case 3: + { + grad_k = ggml_view_3d(ctx, + flash_grad, + src1->ne[0], + src1->ne[1], + src1->ne[2], + nb0*src1->ne[0], + nb0*src1->ne[0]*src1->ne[1], + offset); + } break; + case 4: + { + grad_k = ggml_view_4d(ctx, + flash_grad, + src1->ne[0], + src1->ne[1], + src1->ne[2], + src1->ne[3], + nb0*src1->ne[0], + nb0*src1->ne[0]*src1->ne[1], + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2], + offset); + } break; + } + + src1->grad = ggml_add_impl(ctx, + src1->grad, + grad_k, + inplace); + } + + struct ggml_tensor * opt0 = tensor->opt[0]; + + if (opt0->grad) { + struct ggml_tensor * grad_v = NULL; + const size_t nb0 = flash_grad->nb[0]; + const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3] + + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3]; + switch(opt0->n_dims) { + case 2: + { + grad_v = ggml_view_2d(ctx, + flash_grad, + opt0->ne[0], + opt0->ne[1], + nb0*opt0->ne[0], + offset); + } break; + case 3: + { + grad_v = ggml_view_3d(ctx, + flash_grad, + opt0->ne[0], + opt0->ne[1], + opt0->ne[2], + nb0*opt0->ne[0], + nb0*opt0->ne[0]*opt0->ne[1], + offset); + } break; + case 4: + { + grad_v = ggml_view_4d(ctx, + flash_grad, + opt0->ne[0], + opt0->ne[1], + opt0->ne[2], + opt0->ne[3], + nb0*opt0->ne[0], + nb0*opt0->ne[0]*opt0->ne[1], + nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2], + offset); + } break; + } + + opt0->grad = ggml_add_impl(ctx, + opt0->grad, + grad_v, + inplace); + } } break; case GGML_OP_FLASH_FF: { GGML_ASSERT(false); // not supported } break; + case GGML_OP_FLASH_ATTN_BACK: + { + GGML_ASSERT(false); // not supported + } break; case GGML_OP_MAP_UNARY: case GGML_OP_MAP_BINARY: { GGML_ASSERT(false); // not supported } break; + case GGML_OP_CROSS_ENTROPY_LOSS: + { + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, + src0->grad, + ggml_cross_entropy_loss_back(ctx, + src0, + src1, + tensor->grad), + inplace); + } + } break; + case GGML_OP_CROSS_ENTROPY_LOSS_BACK: + { + GGML_ASSERT(false); // not supported + } break; case GGML_OP_NONE: { // nop @@ -14316,6 +15725,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) case GGML_OP_SUM_ROWS: case GGML_OP_MEAN: case GGML_OP_REPEAT: + case GGML_OP_REPEAT_BACK: case GGML_OP_ABS: case GGML_OP_SGN: case GGML_OP_NEG: @@ -14335,6 +15745,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) node->n_tasks = n_threads; } break; case GGML_OP_MUL_MAT: + case GGML_OP_OUT_PROD: { node->n_tasks = n_threads; @@ -14417,6 +15828,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) } break; case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: + case GGML_OP_SOFT_MAX_BACK: case GGML_OP_ROPE: case GGML_OP_ROPE_BACK: { @@ -14496,6 +15908,27 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2 } + work_size = MAX(work_size, cur); + } break; + case GGML_OP_FLASH_ATTN_BACK: + { + node->n_tasks = n_threads; + + size_t cur = 0; + + const int64_t D = node->src0->ne[0]; + const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL); + const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back + if (node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2 + } + + if (node->src1->type == GGML_TYPE_F16) { + cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2 + } + work_size = MAX(work_size, cur); } break; case GGML_OP_MAP_UNARY: @@ -14503,6 +15936,22 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { node->n_tasks = 1; } break; + case GGML_OP_CROSS_ENTROPY_LOSS: + { + node->n_tasks = n_threads; + + size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks); + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_CROSS_ENTROPY_LOSS_BACK: + { + node->n_tasks = n_threads; + + size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks; + + work_size = MAX(work_size, cur); + } break; case GGML_OP_NONE: { node->n_tasks = 1; @@ -15478,6 +16927,7 @@ static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g static enum ggml_opt_result ggml_opt_adam( struct ggml_context * ctx, + struct ggml_opt_context * opt, struct ggml_opt_params params, struct ggml_tensor * f, struct ggml_cgraph * gf, @@ -15503,25 +16953,29 @@ static enum ggml_opt_result ggml_opt_adam( } } + if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) { + int iter = opt->iter; + ggml_opt_init(opt->ctx, opt, params, nx); + opt->iter = iter; + } + // constants - const float alpha = params.adam.alpha; + const float sched = params.adam.sched; + const float decay = params.adam.decay * sched; + const float alpha = params.adam.alpha * sched; const float beta1 = params.adam.beta1; const float beta2 = params.adam.beta2; const float eps = params.adam.eps; - float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters - float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient - float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared - float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment - float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment - float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat - float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat + float * x = opt->adam.x->data; // view of the parameters + float * g1 = opt->adam.g1->data; // gradient + float * g2 = opt->adam.g2->data; // gradient squared + float * m = opt->adam.m->data; // first moment + float * v = opt->adam.v->data; // second moment + float * mh = opt->adam.mh->data; // first moment hat + float * vh = opt->adam.vh->data; // second moment hat - float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values - - // initialize - ggml_vec_set_f32(nx, m, 0.0f); - ggml_vec_set_f32(nx, v, 0.0f); + float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values // update view ggml_opt_get_params(np, ps, x); @@ -15531,16 +16985,27 @@ static enum ggml_opt_result ggml_opt_adam( ggml_set_f32 (f->grad, 1.0f); ggml_graph_compute(ctx, gb); - float fx_prev = ggml_get_f32_1d(f, 0); + opt->adam.fx_prev = ggml_get_f32_1d(f, 0); + opt->adam.fx_best = opt->adam.fx_prev; if (pf) { - pf[0] = fx_prev; + pf[opt->iter % params.past] = opt->adam.fx_prev; } - int n_no_improvement = 0; - float fx_best = fx_prev; + // initialize + if (opt->just_initialized) { + opt->adam.n_no_improvement = 0; + opt->just_initialized = false; + } + + float * fx_best = &opt->adam.fx_best; + float * fx_prev = &opt->adam.fx_prev; + int * n_no_improvement = &opt->adam.n_no_improvement; + + int iter0 = opt->iter; // run the optimizer for (int t = 0; t < params.adam.n_iter; ++t) { + opt->iter = iter0 + t + 1; GGML_PRINT_DEBUG ("=== iter %d ===\n", t); GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0)); @@ -15574,17 +17039,22 @@ static enum ggml_opt_result ggml_opt_adam( // m^hat = m_t / (1 - beta1^t) // v^hat = v_t / (1 - beta2^t) - // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps) + // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1) + // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1 + // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps) + // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps) + // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay) ggml_vec_cpy_f32 (nx, mh, m); ggml_vec_cpy_f32 (nx, vh, v); - ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1))); - ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1))); + ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter))); + ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter))); ggml_vec_sqrt_f32 (nx, vh, vh); ggml_vec_acc1_f32 (nx, vh, eps); ggml_vec_div_f32 (nx, mh, mh, vh); + ggml_vec_scale_f32(nx, x, 1.0f - decay); ggml_vec_sub_f32 (nx, x, x, mh); // update the parameters @@ -15598,7 +17068,7 @@ static enum ggml_opt_result ggml_opt_adam( const float fx = ggml_get_f32_1d(f, 0); // check convergence - if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) { + if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) { GGML_PRINT_DEBUG("converged\n"); return GGML_OPT_OK; @@ -15607,32 +17077,32 @@ static enum ggml_opt_result ggml_opt_adam( // delta-based convergence test if (pf != NULL) { // need at least params.past iterations to start checking for convergence - if (params.past <= t) { - const float rate = (pf[t%params.past] - fx)/fx; + if (params.past <= iter0 + t) { + const float rate = (pf[(iter0 + t)%params.past] - fx)/fx; if (fabsf(rate) < params.delta) { return GGML_OPT_OK; } } - pf[t%params.past] = fx; + pf[(iter0 + t)%params.past] = fx; } // check for improvement if (params.max_no_improvement > 0) { - if (fx_best > fx) { - fx_best = fx; - n_no_improvement = 0; + if (fx_best[0] > fx) { + fx_best[0] = fx; + n_no_improvement[0] = 0; } else { - ++n_no_improvement; + ++n_no_improvement[0]; - if (n_no_improvement >= params.max_no_improvement) { + if (n_no_improvement[0] >= params.max_no_improvement) { return GGML_OPT_OK; } } } - fx_prev = fx; + fx_prev[0] = fx; { const int64_t t_end_cpu = ggml_cycles(); @@ -15771,6 +17241,7 @@ static enum ggml_opt_result linesearch_backtracking( static enum ggml_opt_result ggml_opt_lbfgs( struct ggml_context * ctx, + struct ggml_opt_context * opt, struct ggml_opt_params params, struct ggml_tensor * f, struct ggml_cgraph * gf, @@ -15803,31 +17274,32 @@ static enum ggml_opt_result ggml_opt_lbfgs( } } - float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters - float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters - float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient - float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient - float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction + if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) { + int iter = opt->iter; + ggml_opt_init(ctx, opt, params, nx); + opt->iter = iter; + } - float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values + float * x = opt->lbfgs.x->data; // current parameters + float * xp = opt->lbfgs.xp->data; // previous parameters + float * g = opt->lbfgs.g->data; // current gradient + float * gp = opt->lbfgs.gp->data; // previous gradient + float * d = opt->lbfgs.d->data; // search direction + + float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values float fx = 0.0f; // cost function value float xnorm = 0.0f; // ||x|| float gnorm = 0.0f; // ||g|| - float step = 0.0f; // initialize x from the graph nodes ggml_opt_get_params(np, ps, x); // the L-BFGS memory - struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m); - - for (int i = 0; i < m; ++i) { - lm[i].alpha = 0.0f; - lm[i].ys = 0.0f; - lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; - lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; - } + float * lm_alpha = opt->lbfgs.lmal->data; + float * lm_ys = opt->lbfgs.lmys->data; + float * lm_s = opt->lbfgs.lms->data; + float * lm_y = opt->lbfgs.lmy->data; // evaluate the function value and its gradient { @@ -15842,12 +17314,6 @@ static enum ggml_opt_result ggml_opt_lbfgs( fx = ggml_get_f32_1d(f, 0); } - if (pf) { - pf[0] = fx; - } - - float fx_best = fx; - // search direction = -gradient ggml_vec_neg_f32(nx, d, g); @@ -15864,26 +17330,43 @@ static enum ggml_opt_result ggml_opt_lbfgs( return GGML_OPT_OK; } - // initial step - ggml_vec_norm_inv_f32(nx, &step, d); + if (opt->just_initialized) { + if (pf) { + pf[0] = fx; + } + opt->lbfgs.fx_best = fx; - int j = 0; - int k = 1; - int ls = 0; - int end = 0; - int bound = 0; - int n_no_improvement = 0; + // initial step + ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d); + opt->lbfgs.j = 0; + opt->lbfgs.k = 1; + opt->lbfgs.end = 0; + opt->lbfgs.n_no_improvement = 0; + opt->just_initialized = false; + } + + float * fx_best = &opt->lbfgs.fx_best; + float * step = &opt->lbfgs.step; + int * j = &opt->lbfgs.j; + int * k = &opt->lbfgs.k; + int * end = &opt->lbfgs.end; + int * n_no_improvement = &opt->lbfgs.n_no_improvement; + + int ls = 0; + int bound = 0; float ys = 0.0f; float yy = 0.0f; float beta = 0.0f; + int it = 0; + while (true) { // store the current position and gradient vectors ggml_vec_cpy_f32(nx, xp, x); ggml_vec_cpy_f32(nx, gp, g); - ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps); + ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps); if (ls < 0) { // linesearch failed - go back to the previous point and return @@ -15909,32 +17392,32 @@ static enum ggml_opt_result ggml_opt_lbfgs( // delta-based convergence test if (pf != NULL) { // need at least params.past iterations to start checking for convergence - if (params.past <= k) { - const float rate = (pf[k%params.past] - fx)/fx; + if (params.past <= k[0]) { + const float rate = (pf[k[0]%params.past] - fx)/fx; if (fabsf(rate) < params.delta) { return GGML_OPT_OK; } } - pf[k%params.past] = fx; + pf[k[0]%params.past] = fx; } // check for improvement if (params.max_no_improvement > 0) { - if (fx < fx_best) { - fx_best = fx; - n_no_improvement = 0; + if (fx < fx_best[0]) { + fx_best[0] = fx; + n_no_improvement[0] = 0; } else { - n_no_improvement++; + n_no_improvement[0]++; - if (n_no_improvement >= params.max_no_improvement) { + if (n_no_improvement[0] >= params.max_no_improvement) { return GGML_OPT_OK; } } } - if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) { + if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) { // reached the maximum number of iterations return GGML_OPT_DID_NOT_CONVERGE; } @@ -15943,50 +17426,51 @@ static enum ggml_opt_result ggml_opt_lbfgs( // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}. // y_{k+1} = g_{k+1} - g_{k}. // - ggml_vec_sub_f32(nx, lm[end].s, x, xp); - ggml_vec_sub_f32(nx, lm[end].y, g, gp); + ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp); + ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp); // compute scalars ys and yy: // ys = y^t \cdot s -> 1 / \rho. // yy = y^t \cdot y. // - ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s); - ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y); + ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]); + ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]); - lm[end].ys = ys; + lm_ys[end[0]] = ys; // find new search direction // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS - bound = (m <= k) ? m : k; - k++; - end = (end + 1)%m; + bound = (m <= k[0]) ? m : k[0]; + k[0]++; + it++; + end[0] = (end[0] + 1)%m; // initialize search direction with -g ggml_vec_neg_f32(nx, d, g); - j = end; + j[0] = end[0]; for (int i = 0; i < bound; ++i) { - j = (j + m - 1) % m; + j[0] = (j[0] + m - 1) % m; // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1} - ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d); - lm[j].alpha /= lm[j].ys; + ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d); + lm_alpha[j[0]] /= lm_ys[j[0]]; // q_{i} = q_{i+1} - \alpha_{i} y_{i} - ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha); + ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]); } ggml_vec_scale_f32(nx, d, ys/yy); for (int i = 0; i < bound; ++i) { // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i} - ggml_vec_dot_f32(nx, &beta, lm[j].y, d); - beta /= lm[j].ys; + ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d); + beta /= lm_ys[j[0]]; // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j} - ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta); - j = (j + 1)%m; + ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta); + j[0] = (j[0] + 1)%m; } - step = 1.0; + step[0] = 1.0; } return GGML_OPT_DID_NOT_CONVERGE; @@ -16011,6 +17495,8 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { .adam = { .n_iter = 10000, + .sched = 1.000f, + .decay = 0.001f, .alpha = 0.001f, .beta1 = 0.9f, .beta2 = 0.999f, @@ -16053,6 +17539,71 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { return result; } +GGML_API void ggml_opt_init( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_opt_params params, + int64_t nx) { + opt->ctx = ctx; + opt->params = params; + opt->iter = 0; + opt->nx = nx; + opt->just_initialized = true; + switch (opt->params.type) { + case GGML_OPT_ADAM: + { + opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->adam.pf = params.past > 0 + ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past) + : NULL; + ggml_set_zero(opt->adam.x); + ggml_set_zero(opt->adam.g1); + ggml_set_zero(opt->adam.g2); + ggml_set_zero(opt->adam.m); + ggml_set_zero(opt->adam.v); + ggml_set_zero(opt->adam.mh); + ggml_set_zero(opt->adam.vh); + if (opt->adam.pf) { + ggml_set_zero(opt->adam.pf); + } + } break; + case GGML_OPT_LBFGS: + { + opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->lbfgs.pf = params.past > 0 + ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past) + : NULL; + opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m); + opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m); + opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m); + opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m); + ggml_set_zero(opt->lbfgs.x); + ggml_set_zero(opt->lbfgs.xp); + ggml_set_zero(opt->lbfgs.g); + ggml_set_zero(opt->lbfgs.gp); + ggml_set_zero(opt->lbfgs.d); + ggml_set_zero(opt->lbfgs.pf); + if (opt->lbfgs.pf) { + ggml_set_zero(opt->lbfgs.pf); + } + ggml_set_zero(opt->lbfgs.lmal); + ggml_set_zero(opt->lbfgs.lmys); + ggml_set_zero(opt->lbfgs.lms); + ggml_set_zero(opt->lbfgs.lmy); + } break; + } +} + enum ggml_opt_result ggml_opt( struct ggml_context * ctx, struct ggml_opt_params params, @@ -16075,30 +17626,10 @@ enum ggml_opt_result ggml_opt( enum ggml_opt_result result = GGML_OPT_OK; - // build forward + backward compute graphs - struct ggml_cgraph gf = ggml_build_forward (f); - struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true); + struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context)); - switch (params.type) { - case GGML_OPT_ADAM: - { - result = ggml_opt_adam(ctx, params, f, &gf, &gb); - } break; - case GGML_OPT_LBFGS: - { - result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb); - } break; - } - - if (params.print_forward_graph) { - ggml_graph_print (&gf); - ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot"); - } - - if (params.print_backward_graph) { - ggml_graph_print (&gb); - ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot"); - } + ggml_opt_init(ctx, opt, params, 0); + result = ggml_opt_resume(ctx, opt, f); if (free_ctx) { ggml_free(ctx); @@ -16107,6 +17638,58 @@ enum ggml_opt_result ggml_opt( return result; } +enum ggml_opt_result ggml_opt_resume( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_tensor * f) { + + // build forward + backward compute graphs + struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0)); + struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0)); + + struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data; + struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data; + + *gf = ggml_build_forward (f); + *gb = ggml_build_backward(ctx, gf, true); + + return ggml_opt_resume_g(ctx, opt, f, gf, gb); +} + +enum ggml_opt_result ggml_opt_resume_g( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb) { + + // build forward + backward compute graphs + enum ggml_opt_result result = GGML_OPT_OK; + + switch (opt->params.type) { + case GGML_OPT_ADAM: + { + result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb); + } break; + case GGML_OPT_LBFGS: + { + result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb); + } break; + } + + if (opt->params.print_forward_graph) { + ggml_graph_print (gf); + ggml_graph_dump_dot(gf, NULL, "opt-forward.dot"); + } + + if (opt->params.print_backward_graph) { + ggml_graph_print (gb); + ggml_graph_dump_dot(gb, gf, "opt-backward.dot"); + } + + return result; +} + //////////////////////////////////////////////////////////////////////////////// size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) { diff --git a/ggml.h b/ggml.h index 1b26da3ad..f2a91761b 100644 --- a/ggml.h +++ b/ggml.h @@ -296,6 +296,7 @@ extern "C" { GGML_OP_SUM_ROWS, GGML_OP_MEAN, GGML_OP_REPEAT, + GGML_OP_REPEAT_BACK, GGML_OP_ABS, GGML_OP_SGN, GGML_OP_NEG, @@ -309,6 +310,7 @@ extern "C" { GGML_OP_RMS_NORM_BACK, GGML_OP_MUL_MAT, + GGML_OP_OUT_PROD, GGML_OP_SCALE, GGML_OP_SET, @@ -324,6 +326,7 @@ extern "C" { GGML_OP_DIAG_MASK_INF, GGML_OP_DIAG_MASK_ZERO, GGML_OP_SOFT_MAX, + GGML_OP_SOFT_MAX_BACK, GGML_OP_ROPE, GGML_OP_ROPE_BACK, GGML_OP_ALIBI, @@ -333,10 +336,14 @@ extern "C" { GGML_OP_FLASH_ATTN, GGML_OP_FLASH_FF, + GGML_OP_FLASH_ATTN_BACK, GGML_OP_MAP_UNARY, GGML_OP_MAP_BINARY, + GGML_OP_CROSS_ENTROPY_LOSS, + GGML_OP_CROSS_ENTROPY_LOSS_BACK, + GGML_OP_COUNT, }; @@ -574,6 +581,11 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_add1_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_acc( struct ggml_context * ctx, struct ggml_tensor * a, @@ -645,6 +657,11 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_repeat_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_abs( struct ggml_context * ctx, struct ggml_tensor * a); @@ -698,14 +715,22 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); - // A: m rows, n columns - // B: p rows, n columns (i.e. we transpose it internally) + // A: n columns, m rows + // B: n columns, p rows (i.e. we transpose it internally) // result is m columns, p rows GGML_API struct ggml_tensor * ggml_mul_mat( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); + // A: m columns, n rows, + // B: p columns, n rows, + // result is m columns, p rows + GGML_API struct ggml_tensor * ggml_out_prod( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + // // operations on tensors without backpropagation // @@ -916,6 +941,17 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_soft_max_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_soft_max_back_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + // rotary position embedding // if mode & 1 == 1, skip n_past elements // if mode & 2 == 1, GPT-NeoX style @@ -982,6 +1018,14 @@ extern "C" { struct ggml_tensor * v, bool masked); + GGML_API struct ggml_tensor * ggml_flash_attn_back( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * d, + bool masked); + GGML_API struct ggml_tensor * ggml_flash_ff( struct ggml_context * ctx, struct ggml_tensor * a, @@ -1005,6 +1049,19 @@ extern "C" { struct ggml_tensor * b, ggml_binary_op_f32_t fun); + // loss function + + GGML_API struct ggml_tensor * ggml_cross_entropy_loss( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c); + // // automatic differentiation // @@ -1099,6 +1156,8 @@ extern "C" { struct { int n_iter; + float sched; // schedule multiplier (fixed, decay or warmup) + float decay; // weight decay for AdamW, use 0.0f to disable float alpha; // learning rate float beta1; float beta2; @@ -1123,6 +1182,49 @@ extern "C" { } lbfgs; }; + struct ggml_opt_context { + struct ggml_context * ctx; + struct ggml_opt_params params; + + int iter; + int64_t nx; // number of parameter elements + + bool just_initialized; + + struct { + struct ggml_tensor * x; // view of the parameters + struct ggml_tensor * g1; // gradient + struct ggml_tensor * g2; // gradient squared + struct ggml_tensor * m; // first moment + struct ggml_tensor * v; // second moment + struct ggml_tensor * mh; // first moment hat + struct ggml_tensor * vh; // second moment hat + struct ggml_tensor * pf; // past function values + float fx_best; + float fx_prev; + int n_no_improvement; + } adam; + + struct { + struct ggml_tensor * x; // current parameters + struct ggml_tensor * xp; // previous parameters + struct ggml_tensor * g; // current gradient + struct ggml_tensor * gp; // previous gradient + struct ggml_tensor * d; // search direction + struct ggml_tensor * pf; // past function values + struct ggml_tensor * lmal; // the L-BFGS memory alpha + struct ggml_tensor * lmys; // the L-BFGS memory ys + struct ggml_tensor * lms; // the L-BFGS memory s + struct ggml_tensor * lmy; // the L-BFGS memory y + float fx_best; + float step; + int j; + int k; + int end; + int n_no_improvement; + } lbfgs; + }; + GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type); // optimize the function defined by the tensor f @@ -1131,6 +1233,27 @@ extern "C" { struct ggml_opt_params params, struct ggml_tensor * f); + // initialize optimizer context + GGML_API void ggml_opt_init( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_opt_params params, + int64_t nx); + + // continue optimizing the function defined by the tensor f + GGML_API enum ggml_opt_result ggml_opt_resume( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_tensor * f); + + // continue optimizing the function defined by the tensor f + GGML_API enum ggml_opt_result ggml_opt_resume_g( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb); + // // quantization // diff --git a/llama.cpp b/llama.cpp index c7a333642..d2a52bb0c 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1036,6 +1036,12 @@ static void llama_model_load_internal( case 40: model.type = e_model::MODEL_13B; break; case 60: model.type = e_model::MODEL_30B; break; case 80: model.type = e_model::MODEL_65B; break; + default: + { + if (hparams.n_layer < 32) { + model.type = e_model::MODEL_7B; + } + } break; } hparams.n_ctx = n_ctx; @@ -1200,6 +1206,7 @@ static void llama_model_load_internal( mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); (void) vram_scratch; + (void) n_batch; #ifdef GGML_USE_CUBLAS vram_scratch = n_batch * MB; ggml_cuda_set_scratch_size(vram_scratch); @@ -1227,6 +1234,7 @@ static void llama_model_load_internal( model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor); } + (void) tensor_split; #if defined(GGML_USE_CUBLAS) { ggml_cuda_set_tensor_split(tensor_split); @@ -2161,6 +2169,10 @@ llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_tok return -log2f(candidate.p) > *mu; })); + if (candidates->size == 0) { + candidates->size = 1; + } + // Normalize the probabilities of the remaining words llama_sample_softmax(ctx, candidates); @@ -3287,6 +3299,19 @@ int llama_n_embd(const struct llama_context * ctx) { return ctx->model.hparams.n_embd; } +int llama_get_vocab( + const struct llama_context * ctx, + const char * * strings, + float * scores, + int capacity) { + int n = std::min(capacity, (int) ctx->vocab.id_to_token.size()); + for (int i = 0; ivocab.id_to_token[i].tok.c_str(); + scores[i] = ctx->vocab.id_to_token[i].score; + } + return n; +} + float * llama_get_logits(struct llama_context * ctx) { return ctx->logits.data(); } diff --git a/llama.h b/llama.h index 7c7fd481c..61f6c867d 100644 --- a/llama.h +++ b/llama.h @@ -220,6 +220,14 @@ extern "C" { LLAMA_API int llama_n_ctx (const struct llama_context * ctx); LLAMA_API int llama_n_embd (const struct llama_context * ctx); + // Get the vocabulary as output parameters. + // Returns number of results. + LLAMA_API int llama_get_vocab( + const struct llama_context * ctx, + const char * * strings, + float * scores, + int capacity); + // Token logits obtained from the last call to llama_eval() // The logits for the last token are stored in the last row // Can be mutated in order to change the probabilities of the next token diff --git a/tests/test-grad0.c b/tests/test-grad0.c index ec5059220..c8c2c0f71 100644 --- a/tests/test-grad0.c +++ b/tests/test-grad0.c @@ -5,7 +5,7 @@ #include #include -#define MAX_NARGS 2 +#define MAX_NARGS 3 #undef MIN #undef MAX @@ -1090,6 +1090,25 @@ int main(int argc, const char ** argv) { } } + // cross_entropy_loss + { + const int nargs = 1; + + int64_t ne2[4]; + get_random_dims(ne2, 4); + + for (int ndims = 1; ndims <= 3; ++ndims) { + x[0] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f); + x[1] = get_random_tensor(ctx0, ndims, ne2, 0.0f, 1.0f); + ggml_set_param(ctx0, x[0]); + + struct ggml_tensor * f = ggml_sum(ctx0, ggml_cross_entropy_loss(ctx0, x[0], x[1])); + + check_gradient("cross_entropy_loss", ctx0, x, f, ndims, nargs, 1e-1f, 1e-2f, INFINITY); + // finite differences regularly fails! + } + } + // rope { const int nargs = 1; @@ -1124,6 +1143,45 @@ int main(int argc, const char ** argv) { } } + // flash_attn + { + const int nargs = 3; + + int64_t ne2[4]; + + get_random_dims(ne2, 4); + int64_t D = ne2[0]; + int64_t N = ne2[1]; + int64_t M = ne2[2] + N; + int64_t B = ne2[3]; + + for (int masked = 0; masked <= 1; ++masked) { + for (int ndims = 2; ndims <= 4; ++ndims) { + int64_t neq[4] = { D, N, B, ne[3] }; + int64_t nek[4] = { D, M, B, ne[3] }; + int64_t nev[4] = { M, D, B, ne[3] }; + if (ndims == 2) { + neq[2] = 1; neq[3] = 1; + nek[2] = 1; nek[3] = 1; + nev[2] = 1; nev[3] = 1; + } else if (ndims == 3) { + neq[3] = 1; + nek[3] = 1; + nev[3] = 1; + } + x[0] = get_random_tensor(ctx0, ndims, neq, -0.1250f, 0.1250f); + x[1] = get_random_tensor(ctx0, ndims, nek, -0.1250f, 0.1250f); + x[2] = get_random_tensor(ctx0, ndims, nev, -0.1250f, 0.1250f); + ggml_set_param(ctx0, x[0]); + ggml_set_param(ctx0, x[1]); + ggml_set_param(ctx0, x[2]); + + struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); + + check_gradient("flash_attn", ctx0, x, f, ndims, nargs, 1.5e-4f, INFINITY, 3.5f); + } + } + } ggml_free(ctx0); } From 92549202659fc23ba9fec5e688227d0da9b06b40 Mon Sep 17 00:00:00 2001 From: 0xspringtime <110655352+0xspringtime@users.noreply.github.com> Date: Tue, 13 Jun 2023 15:37:54 -0400 Subject: [PATCH 008/135] baby-llama : fix operator!= (#1821) * Update baby-llama.cpp Seems to be an error in the implementation of the operator!= function. It attempts to compare the this pointer (a llama_hparams_lora object) with the other pointer (a llama_hparams object) using memcmp. This can lead to incorrect results because the sizes of the objects being compared (sizeof(llama_hparams) and sizeof(llama_hparams_lora)) are different, should now be able to compare two llama_hparams_lora objects for inequality. * Update baby-llama.cpp * Update baby-llama.cpp --- examples/baby-llama/baby-llama.cpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index e5639da37..0add6adc0 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -153,8 +153,8 @@ struct llama_hparams_lora { uint32_t n_rot = 64; uint32_t n_lora = 64; - bool operator!=(const llama_hparams & other) const { - return memcmp(this, &other, sizeof(llama_hparams)); + bool operator!=(const llama_hparams_lora & other) const { + return memcmp(this, &other, sizeof(llama_hparams_lora)) != 0; } }; From 254a7a7a5ff4c874ff8488f1f5cbdd7e9c89d682 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Wed, 14 Jun 2023 19:47:19 +0200 Subject: [PATCH 009/135] CUDA full GPU acceleration, KV cache in VRAM (#1827) * Fixed CUDA RoPE * ggml_cuda_mul_mat_vec_p021 * ggml_cuda_scale * ggml_cuda_diag_mask_inf * ggml_is_permuted * ggml_cuda_cpy * flatten rows for ggml_cuda_op * Added a --low-vram option * Fixed Windows performance * Fixed LLAMA_CUDA_DMMV_Y > 1 for WizardLM --- examples/common.cpp | 8 + examples/common.h | 17 +- examples/main/README.md | 1 + examples/server/README.md | 1 + examples/server/server.cpp | 9 + ggml-cuda.cu | 797 ++++++++++++++++++++++++++++++++----- ggml-cuda.h | 2 + ggml.c | 6 + ggml.h | 1 + llama.cpp | 159 ++++++-- llama.h | 1 + 11 files changed, 853 insertions(+), 149 deletions(-) diff --git a/examples/common.cpp b/examples/common.cpp index df69f2736..dc69e5373 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -331,6 +331,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } #else fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n"); +#endif // GGML_USE_CUBLAS + } else if (arg == "--low-vram" || arg == "-lv") { +#ifdef GGML_USE_CUBLAS + params.low_vram = true; +#else + fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); #endif // GGML_USE_CUBLAS } else if (arg == "--no-mmap") { params.use_mmap = false; @@ -479,6 +485,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n"); fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" ); + fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n" ); #endif fprintf(stderr, " --mtest compute maximum memory usage\n"); fprintf(stderr, " --export export the computation graph to 'llama.ggml'\n"); @@ -528,6 +535,7 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params) { lparams.n_gpu_layers = params.n_gpu_layers; lparams.main_gpu = params.main_gpu; memcpy(lparams.tensor_split, params.tensor_split, LLAMA_MAX_DEVICES*sizeof(float)); + lparams.low_vram = params.low_vram; lparams.seed = params.seed; lparams.f16_kv = params.memory_f16; lparams.use_mmap = params.use_mmap; diff --git a/examples/common.h b/examples/common.h index 6fedb414a..6c2953cb2 100644 --- a/examples/common.h +++ b/examples/common.h @@ -21,15 +21,16 @@ int32_t get_num_physical_cores(); struct gpt_params { - int32_t seed = -1; // RNG seed - int32_t n_threads = get_num_physical_cores(); - int32_t n_predict = -1; // new tokens to predict - int32_t n_ctx = 512; // context size - int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) - int32_t n_keep = 0; // number of tokens to keep from initial prompt - int32_t n_gpu_layers = 0; // number of layers to store in VRAM - int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors + int32_t seed = -1; // RNG seed + int32_t n_threads = get_num_physical_cores(); + int32_t n_predict = -1; // new tokens to predict + int32_t n_ctx = 512; // context size + int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) + int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t n_gpu_layers = 0; // number of layers to store in VRAM + int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs + bool low_vram = 0; // if true, reduce VRAM usage at the cost of performance // sampling parameters std::unordered_map logit_bias; // logit bias for specific tokens diff --git a/examples/main/README.md b/examples/main/README.md index 149d507a8..b6d3212fe 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -288,5 +288,6 @@ These options provide extra functionality and customization when running the LLa - `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. +- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS. - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. diff --git a/examples/server/README.md b/examples/server/README.md index b011302fc..7dabac9cf 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -289,6 +289,7 @@ Test(); - `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. +- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS. - `--embedding`: Enable the embedding mode. **Completion function doesn't work in this mode**. - `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`; - `--port`: Set the port to listen. Default: `8080`. diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 31d8087ef..872750053 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -405,6 +405,7 @@ void server_print_usage(int /*argc*/, char **argv, const gpt_params ¶ms) fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" ); + fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n" ); #endif fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); @@ -537,6 +538,14 @@ bool server_params_parse(int argc, char **argv, server_params &sparams, gpt_para } #else fprintf(stderr, "WARNING: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n"); +#endif // GGML_USE_CUBLAS + } + else if (arg == "--low-vram" || arg == "-lv") + { +#ifdef GGML_USE_CUBLAS + params.low_vram = true; +#else + fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); #endif // GGML_USE_CUBLAS } else if (arg == "--main-gpu" || arg == "-mg") diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 3b9a5ddfb..0565571f4 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1,5 +1,6 @@ #include #include +#include #include #include #include @@ -48,6 +49,7 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1); typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v); +typedef void (*cpy_kernel_t)(const char * cx, char * cdst); typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); typedef void (*ggml_cuda_op_t)( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, @@ -151,7 +153,10 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ #define CUDA_ADD_BLOCK_SIZE 256 #define CUDA_MUL_BLOCK_SIZE 256 #define CUDA_SILU_BLOCK_SIZE 256 +#define CUDA_CPY_BLOCK_SIZE 32 +#define CUDA_SCALE_BLOCK_SIZE 256 #define CUDA_ROPE_BLOCK_SIZE 256 +#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32 #define CUDA_DEQUANTIZE_BLOCK_SIZE 256 // dmmv = dequantize_mul_mat_vec @@ -655,10 +660,15 @@ static __global__ void dequantize_block(const void * vx, float * y, const int k) } template -static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) { +static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols, const int nrows) { // qk = quantized weights per x block // qr = number of quantized weights per data value in x block - const int row = blockIdx.x*blockDim.y + threadIdx.y; + const int row = blockIdx.y*blockDim.y + threadIdx.y; + + if (row >= nrows) { + return; + } + const int tid = threadIdx.x; const int iter_stride = 2*GGML_CUDA_DMMV_X; @@ -703,8 +713,13 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, } template -static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y, float * dst, const int ncols) { - const int row = blockIdx.x*blockDim.y + threadIdx.y; +static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y, float * dst, const int ncols, const int nrows) { + const int row = blockIdx.y*blockDim.y + threadIdx.y; + + if (row >= nrows) { + return; + } + const int tid = threadIdx.x; const int iter_stride = QK_K; @@ -737,6 +752,139 @@ static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y } } +static __global__ void mul_mat_p021_f16_f32(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x) { + const half * x = (half *) vx; + + const int row_x = blockDim.y*blockIdx.y + threadIdx.y; + const int channel = blockDim.z*blockIdx.z + threadIdx.z; + + const int nrows_y = ncols_x; + const int nrows_dst = nrows_x; + const int row_dst = row_x; + + float tmp = 0.0f; + + for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) { + const int col_x = col_x0 + threadIdx.x; + + if (col_x >= ncols_x) { + break; + } + + // x is transposed and permuted + const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x; + const float xi = __half2float(x[ix]); + + const int row_y = col_x; + + + // y is not transposed but permuted + const int iy = channel*nrows_y + row_y; + + tmp += xi * y[iy]; + } + + // dst is not transposed and not permuted + const int idst = channel*nrows_dst + row_dst; + + // sum up partial sums and write back result + __syncthreads(); +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + if (threadIdx.x == 0) { + dst[idst] = tmp; + } +} + +static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous + const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, + const int row_stride_x, const int nchannels_x, const int channel_stride_x) { + + const half * x = (half *) vx; + + const int row_x = blockDim.y*blockIdx.y + threadIdx.y; + const int channel = blockDim.z*blockIdx.z + threadIdx.z; + + const int nrows_y = ncols_x; + const int nrows_dst = nrows_x; + const int row_dst = row_x; + + const int idst = channel*nrows_dst + row_dst; + + float tmp = 0.0f; + + for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) { + const int col_x = col_x0 + threadIdx.x; + + if (col_x >= ncols_x) { + break; + } + + const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x; + const float xi = __half2float(x[ix]); + + const int row_y = col_x; + + const int iy = channel*nrows_y + row_y; + + tmp += xi * y[iy]; + } + + // sum up partial sums and write back result + __syncthreads(); +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + if (threadIdx.x == 0) { + dst[idst] = tmp; + } +} + +static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) { + const float * xi = (float *) cxi; + float * dsti = (float *) cdsti; + + *dsti = *xi; +} + +static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) { + const float * xi = (float *) cxi; + half * dsti = (half *) cdsti; + + *dsti = __float2half(*xi); +} + +template +static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne, + const int ne00, const int ne01, const int nb00, const int nb01, const int nb02, + const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= ne) { + return; + } + + // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor + // then combine those indices with the corresponding byte offsets to get the total offsets + const int i02 = i / (ne00*ne01); + const int i01 = (i - i02*ne01*ne00) / ne00; + const int i00 = i - i02*ne01*ne00 - i01*ne00; + const int x_offset = i00*nb00 + i01*nb01 + i02*nb02; + + const int i12 = i / (ne10*ne11); + const int i11 = (i - i12*ne10*ne11) / ne10; + const int i10 = i - i12*ne10*ne11 - i11*ne10; + const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12; + + cpy_1(cx + x_offset, cdst + dst_offset); +} + +// rope == RoPE == rotary positional embedding static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) { const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x); @@ -758,6 +906,72 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c dst[i + 1] = x0*sin_theta + x1*cos_theta; } +static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) { + const int col = blockDim.x*blockIdx.x + threadIdx.x; + const int row = blockDim.y*blockIdx.y + threadIdx.y; + + if (col >= ncols) { + return; + } + + const int i = row*ncols + col; + // dst[i] = col > n_past + row ? -INFINITY : x[i]; + dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU +} + +// the CUDA soft max implementation differs from the CPU implementation +// instead of doubles floats are used +// values are also not normalized to the maximum value by subtracting it in the exponential function +// theoretically these changes could cause problems with rounding error and arithmetic overflow but for LLaMa it seems to be fine +static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) { + const int row = blockDim.y*blockIdx.y + threadIdx.y; + const int block_size = blockDim.x; + const int tid = threadIdx.x; + + float tmp = 0.0; + + for (int block_start = 0; block_start < ncols; block_start += block_size) { + const int col = block_start + tid; + + if (col >= ncols) { + break; + } + + const int i = row*ncols + col; + const float val = expf(x[i]); + tmp += val; + dst[i] = val; + } + + // sum up partial sums + __syncthreads(); +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + for (int block_start = 0; block_start < ncols; block_start += block_size) { + const int col = block_start + tid; + + if (col >= ncols) { + break; + } + + const int i = row*ncols + col; + dst[i] /= tmp; + } +} + +static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + + dst[i] = scale * x[i]; +} + static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE; add_f32<<>>(x, y, dst, k); @@ -831,73 +1045,92 @@ static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cu static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); + const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec - <<>>(vx, y, dst, ncols); + <<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); + const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec - <<>>(vx, y, dst, ncols); + <<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); + const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec - <<>>(vx, y, dst, ncols); + <<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); + const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec - <<>>(vx, y, dst, ncols); + <<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); + const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec - <<>>(vx, y, dst, ncols); + <<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const int ny = 2; + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(32, ny, 1); - dequantize_mul_mat_vec_k<32, vec_dot_q2_K><<<(nrows + ny - 1)/ny, block_dims, 0, stream>>>(vx, y, dst, ncols); + dequantize_mul_mat_vec_k<32, vec_dot_q2_K><<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const dim3 block_dims(32, 2, 1); - dequantize_mul_mat_vec_k<32, vec_dot_q3_K><<>>(vx, y, dst, ncols); + const int ny = 2; + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_k<32, vec_dot_q3_K><<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const dim3 block_dims(32, 2, 1); - dequantize_mul_mat_vec_k<32, vec_dot_q4_K><<>>(vx, y, dst, ncols); + const int ny = 2; + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_k<32, vec_dot_q4_K><<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const dim3 block_dims(32, 2, 1); - dequantize_mul_mat_vec_k<32, vec_dot_q5_K><<>>(vx, y, dst, ncols); + const int ny = 2; + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_k<32, vec_dot_q5_K><<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const dim3 block_dims(32, 2, 1); - dequantize_mul_mat_vec_k<32, vec_dot_q6_K><<>>(vx, y, dst, ncols); + const int ny = 2; + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_k<32, vec_dot_q6_K><<>>(vx, y, dst, ncols, nrows); } static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { @@ -907,10 +1140,11 @@ static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, c static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); + const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec<1, 1, convert_f16> - <<>>(vx, y, dst, ncols); + <<>>(vx, y, dst, ncols, nrows); } static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { @@ -942,6 +1176,47 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { } } +static void ggml_mul_mat_p021_f16_f32_cuda(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x, cudaStream_t stream) { + const dim3 block_nums(1, nrows_x, nchannels_x); + const dim3 block_dims(WARP_SIZE, 1, 1); + mul_mat_p021_f16_f32<<>>(vx, y, dst, ncols_x, nrows_x, nchannels_x); +} + +static void ggml_mul_mat_vec_nc_f16_f32_cuda( + const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x, + const int nchannels_x, const int channel_stride_x, cudaStream_t stream) { + + const dim3 block_nums(1, nrows_x, nchannels_x); + const dim3 block_dims(WARP_SIZE, 1, 1); + mul_mat_vec_nc_f16_f32<<>> + (vx, y, dst, ncols_x, nrows_x, row_stride_x, nchannels_x, channel_stride_x); +} + +static void ggml_cpy_f32_f32_cuda( + const char * cx, char * cdst, const int ne, + const int ne00, const int ne01, const int nb00, const int nb01, const int nb02, + const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) { + + const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; + cpy_f32_f16<<>> + (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12); +} + +static void ggml_cpy_f32_f16_cuda( + const char * cx, char * cdst, const int ne, + const int ne00, const int ne01, const int nb00, const int nb01, const int nb02, + const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) { + + const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; + cpy_f32_f16<<>> + (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12); +} + +static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE; + scale_f32<<>>(x, dst, scale, k); +} + static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) { GGML_ASSERT(nrows % 2 == 0); const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1); @@ -950,6 +1225,19 @@ static void rope_f32_cuda(const float * x, float * dst, const int ncols, const i rope_f32<<>>(x, dst, ncols, p, theta_scale); } +static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) { + const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1); + const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE; + const dim3 block_nums(block_num_x, nrows_x, 1); + diag_mask_inf_f32<<>>(x, dst, ncols_x, rows_per_channel, n_past); +} + +static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) { + const dim3 block_dims(WARP_SIZE, 1, 1); + const dim3 block_nums(1, nrows_x, 1); + soft_max_f32<<>>(x, dst, ncols_x); +} + // buffer pool for cuda #define MAX_CUDA_BUFFERS 256 @@ -1120,10 +1408,25 @@ void ggml_cuda_host_free(void * ptr) { CUDA_CHECK(cudaFreeHost(ptr)); } -static cudaError_t ggml_cuda_h2d_tensor_2d( +static cudaError_t ggml_cuda_cpy_tensor_2d( void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) { - char * dst_char = (char *) dst; + cudaMemcpyKind kind; + char * src_ptr; + if (src->backend == GGML_BACKEND_CPU) { + kind = cudaMemcpyHostToDevice; + src_ptr = (char *) src->data; + } else if (src->backend == GGML_BACKEND_GPU) { + kind = cudaMemcpyDeviceToDevice; + struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra; + int id; + CUDA_CHECK(cudaGetDevice(&id)); + src_ptr = (char *) extra->data_device[id]; + } else { + GGML_ASSERT(false); + } + char * dst_ptr = (char *) dst; + const int64_t ne0 = src->ne[0]; const int64_t nb0 = src->nb[0]; const int64_t nb1 = src->nb[1]; @@ -1134,17 +1437,17 @@ static cudaError_t ggml_cuda_h2d_tensor_2d( const int64_t bs = ggml_blck_size(type); int64_t i1_diff = i1_high - i1_low; - const void * x = (const void *) ((const char *) src->data + i1_low*nb1 + i2*nb2 + i3*nb3); + const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3; if (nb0 == ts && nb1 == ts*ne0/bs) { - return cudaMemcpyAsync(dst_char, x, i1_diff*nb1, cudaMemcpyHostToDevice, stream); + return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream); } else if (nb0 == ts) { - return cudaMemcpy2DAsync(dst_char, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyHostToDevice, stream); + return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream); } else { for (int64_t i1 = 0; i1 < i1_diff; i1++) { const void * rx = (const void *) ((const char *) x + i1*nb1); - void * rd = (void *) (dst_char + i1*ts*ne0/bs); + void * rd = (void *) (dst_ptr + i1*ts*ne0/bs); // pretend the row is a matrix with cols=1 - cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream); + cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream); if (r != cudaSuccess) return r; } return cudaSuccess; @@ -1380,8 +1683,81 @@ inline void ggml_cuda_op_rope( (void) i1; } +inline void ggml_cuda_op_diag_mask_inf( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, + float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main){ + + GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(dst_ddf_i != nullptr); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t i01_diff = i01_high - i01_low; + + const int n_past = ((int32_t *) src1->data)[0]; + + // compute + diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main); + CUDA_CHECK(cudaGetLastError()); + + (void) dst; + (void) src0_ddq_i; + (void) src1_ddf_i; + (void) i02; + (void) i1; +} + +inline void ggml_cuda_op_soft_max( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, + float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main){ + + GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(dst_ddf_i != nullptr); + + const int64_t ne00 = src0->ne[0]; + const int64_t i01_diff = i01_high - i01_low; + + // compute + soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main); + CUDA_CHECK(cudaGetLastError()); + + (void) src1; + (void) dst; + (void) src0_ddq_i; + (void) src1_ddf_i; + (void) i02; + (void) i1; +} + +inline void ggml_cuda_op_scale( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, + float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main){ + + GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(dst_ddf_i != nullptr); + + const float scale = ((float *) src1->data)[0]; + + const int64_t ne00 = src0->ne[0]; + const int64_t i01_diff = i01_high - i01_low; + + // compute + scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main); + CUDA_CHECK(cudaGetLastError()); + + (void) src1; + (void) dst; + (void) src0_ddq_i; + (void) src1_ddf_i; + (void) i02; + (void) i1; +} + static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - ggml_cuda_op_t op, bool src0_needs_f32) { + ggml_cuda_op_t op, bool src0_needs_f32, bool flatten_rows) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; @@ -1404,21 +1780,27 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); // strides for iteration over dims 3 and 2 - const int64_t src0_stride = ne00 * ne01; - const int64_t src1_stride = ne10 * ne11; - const int64_t dst_stride = ne0 * ne1; - const int64_t num_iters = ne02 * ne03; + const int64_t num_iters = flatten_rows ? 1 : ne02 * ne03; + const int64_t stride_mod = flatten_rows ? ne02 * ne03 : 1; + const int64_t src0_stride = ne00 * ne01 * stride_mod; + const int64_t src1_stride = ne10 * ne11 * stride_mod; + const int64_t dst_stride = ne0 * ne1 * stride_mod; const size_t src0_ts = ggml_type_size(src0->type); const size_t src0_bs = ggml_blck_size(src0->type); - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; - struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool src0_is_contiguous = ggml_is_contiguous(src0); const bool src0_is_f32 = src0->type == GGML_TYPE_F32; + const bool src1_is_contiguous = use_src1 && ggml_is_contiguous(src1); + const bool src1_stays_on_host = use_src1 && ( + dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE); + const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); @@ -1427,13 +1809,13 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm char * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; - float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; + float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // asq = actual size quantized, asf = actual size float size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0}; size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0}; size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0}; - size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0}; + size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0}; for (int id = 0; id < g_device_count; ++id) { if (!split && id != g_main_device) { @@ -1446,9 +1828,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm int64_t row_low, row_high; if (split) { row_low = id == 0 ? 0 : nrows0*g_tensor_split[id]; - row_low -= row_low % GGML_CUDA_DMMV_Y; row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1]; - row_high -= row_high % GGML_CUDA_DMMV_Y; } else { row_low = 0; row_high = nrows0; @@ -1461,7 +1841,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm cudaSetDevice(id); - if (src0_on_device) { + if (src0_on_device && src0_is_contiguous) { if (src0_is_f32) { src0_ddf[id] = (float *) src0_extra->data_device[id]; } else { @@ -1479,8 +1859,8 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]); } - if (use_src1) { - if (src1_on_device) { + if (use_src1 && !src1_stays_on_host) { + if (src1_on_device && src1_is_contiguous) { src1_ddf[id] = (float *) src1_extra->data_device[id]; } else { src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]); @@ -1493,26 +1873,32 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]); } - for (int64_t i03 = 0; i03 < ne03; i03++) { + const int64_t i03_max = flatten_rows ? 1 : ne03; + const int64_t i02_max = flatten_rows ? 1 : ne02; + const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01; + + for (int64_t i03 = 0; i03 < i03_max; i03++) { const int64_t i13 = i03 % ne13; - for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i02 = 0; i02 < i02_max; i02++) { const int64_t i12 = i02 % ne12; const int64_t i0 = i03*ne02 + i02; - const int64_t i0_offset_low = row_low/ne01; - const int64_t i0_offset_high = row_high/ne01; + + // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs + const int64_t i0_offset_low = row_low/rows_per_iter; + const int64_t i0_offset_high = row_high/rows_per_iter; int64_t i01_low = 0; - int64_t i01_high = ne01; + int64_t i01_high = rows_per_iter; if (split) { if (i0 < i0_offset_low || i0 > i0_offset_high) { continue; } if (i0 == i0_offset_low) { - i01_low = row_low % ne01; + i01_low = row_low % rows_per_iter; } if (i0 == i0_offset_high) { - i01_high = row_high % ne01; + i01_high = row_high % rows_per_iter; } } @@ -1521,7 +1907,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm // Removing both asserts results in i01_high becoming 0 which in turn results in garbage output. // The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU). GGML_ASSERT(i01_low == 0 || g_device_count > 1); - GGML_ASSERT(i01_high == ne01 || g_device_count > 1); + GGML_ASSERT(i01_high == rows_per_iter || g_device_count > 1); const int64_t i01_diff = i01_high - i01_low; if (i01_diff == 0) { @@ -1529,24 +1915,23 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm } const int64_t i11 = i13*ne12 + i12; - cudaStream_t cudaStream_main = g_cudaStreams_main[id][i0 % GGML_CUDA_MAX_STREAMS]; + cudaStream_t cudaStream_main = g_cudaStreams_main[id][i0 % GGML_CUDA_MAX_STREAMS]; cudaStream_t cudaStream_memcpy_src1 = g_cudaStreams_memcpy_src1[id][i0 % GGML_CUDA_MAX_STREAMS]; - cudaEvent_t cudaEvent_memcpy_src1 = g_cudaEvents_memcpy_src1[id][i0 % GGML_CUDA_MAX_EVENTS]; + cudaEvent_t cudaEvent_memcpy_src1 = g_cudaEvents_memcpy_src1[id][i0 % GGML_CUDA_MAX_EVENTS]; // for split tensors the data begins at i0 == i0_offset_low char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs; float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride; float * src1_ddf_i = src1_ddf[id] + i11*src1_stride; - float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride; + float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride; // for split tensors the data pointer needs to be rounded down // to the bin edge for i03, i02 bins beyond the first if (i0 - i0_offset_low > 0) { + GGML_ASSERT(!flatten_rows); src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs; src0_ddf_i -= (row_low % ne01)*ne00; - } - if (i0 - i0_offset_low > 0) { - dst_ddf_i -= (row_low % ne0)*ne1; + dst_ddf_i -= (row_low % ne0)*ne1; } // the main device memory buffer can be on VRAM scratch, with space for all partial results @@ -1556,30 +1941,37 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm } // copy src0, src1 to device if necessary - if (use_src1) { + if (use_src1 && !src1_stays_on_host) { if (src1->backend == GGML_BACKEND_CPU) { - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_memcpy_src1)); - } else if (src1->backend == GGML_BACKEND_GPU) { + GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1)); + int64_t nrows1 = flatten_rows ? nrows0 : ne11; + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_memcpy_src1)); + } else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) { if (id != g_main_device) { + GGML_ASSERT(!flatten_rows); float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device]; src1_ddf_i_source += i11*src1_stride; CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float), cudaMemcpyDeviceToDevice, cudaStream_memcpy_src1)); } + } else if (src1_on_device && !src1_is_contiguous) { + GGML_ASSERT(!split); + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_main)); } else { GGML_ASSERT(false); } } CUDA_CHECK(cudaEventRecord(cudaEvent_memcpy_src1, cudaStream_memcpy_src1)); - if (!src0_on_device) { + + if (!src0_on_device || !src0_is_contiguous) { if (src0_is_f32) { - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main)); + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main)); } else { - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main)); + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main)); } } - // convert src0 to f32 if it's necessary for the ggml_cuda_op + // convert src0 to f32 if it is necessary for the ggml_cuda_op if (src0_needs_f32 && !src0_is_f32) { to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main); CUDA_CHECK(cudaGetLastError()); @@ -1644,39 +2036,30 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, true); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, true, true); } void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten } void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true); } void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true); } bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - GGML_ASSERT(src0->backend != GGML_BACKEND_GPU); const int64_t ne10 = src1->ne[0]; const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; - // if (strcmp(dst->name, "KQ") == 0 || strcmp(dst->name, "KQV") == 0) { - // fprintf(stderr, "(%ld, %ld, %ld, %ld) + (%ld, %ld, %ld, %ld) -> (%ld, %ld, %ld, %ld)\n", - // src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], - // src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], - // dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3]); - // return false; - // } - // TODO: find the optimal values for these if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32 && @@ -1688,23 +2071,158 @@ bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_te return false; } +void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ + GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); + GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation + GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + + CUDA_CHECK(cudaSetDevice(g_main_device)); + cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0]; + + struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + void * src0_ddq = src0_extra->data_device[g_main_device]; + + struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; + + struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; + + ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main); + + CUDA_CHECK(cudaDeviceSynchronize()); +} + +void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ + GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1)); + GGML_ASSERT(!ggml_is_permuted(src0)); + GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + + const int64_t nb01 = src0->nb[1]; + const int64_t nb02 = src0->nb[2]; + + CUDA_CHECK(cudaSetDevice(g_main_device)); + cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0]; + + struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + void * src0_ddq = src0_extra->data_device[g_main_device]; + + struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; + + struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; + + const int row_stride_x = nb01 / sizeof(half); + const int channel_stride_x = nb02 / sizeof(half); + + ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main); + + CUDA_CHECK(cudaDeviceSynchronize()); +} + void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - if (src0->type == GGML_TYPE_F32) { - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true); + bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) && + src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU; + + if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { + ggml_cuda_mul_mat_vec_p021(src0, src1, dst); + } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) { + ggml_cuda_mul_mat_vec_nc(src0, src1, dst); + }else if (src0->type == GGML_TYPE_F32) { + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false); } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { - if (src1->ne[1] == 1) { - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false); + if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src0->ne[1] % GGML_CUDA_DMMV_Y == 0) { + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false, false); } else { - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false); } } else { GGML_ASSERT(false); } } +void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true, true); +} + +void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const int64_t ne = ggml_nelements(src0); + GGML_ASSERT(ne == ggml_nelements(src1)); + + GGML_ASSERT(src0->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); + + GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX); + GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + GGML_ASSERT(src0->ne[3] == 1); + + const int64_t nb00 = src0->nb[0]; + const int64_t nb01 = src0->nb[1]; + const int64_t nb02 = src0->nb[2]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + GGML_ASSERT(src1->ne[3] == 1); + + const int64_t nb10 = src1->nb[0]; + const int64_t nb11 = src1->nb[1]; + const int64_t nb12 = src1->nb[2]; + + CUDA_CHECK(cudaSetDevice(g_main_device)); + cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0]; + + const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + + char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; + char * src1_ddc = (char *) src1_extra->data_device[g_main_device]; + + if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { + ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, + ne10, ne11, nb10, nb11, nb12, cudaStream_main); + } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { + ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, + ne10, ne11, nb10, nb11, nb12, cudaStream_main); + } else { + GGML_ASSERT(false); + } + + CUDA_CHECK(cudaDeviceSynchronize()); + + (void) dst; +} + +void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true); +} + +void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_soft_max, true, true); +} + void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, false); // FIXME flatten changes results } void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -1718,10 +2236,9 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { const size_t nb1 = tensor->nb[1]; ggml_backend backend = tensor->backend; struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; + memset(extra, 0, sizeof(*extra)); for (int id = 0; id < g_device_count; ++id) { - extra->data_device[id] = nullptr; - if (backend == GGML_BACKEND_GPU && id != g_main_device) { continue; } @@ -1734,10 +2251,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { row_high = nrows; } else if (backend == GGML_BACKEND_GPU_SPLIT) { row_low = id == 0 ? 0 : nrows*g_tensor_split[id]; - row_low -= row_low % GGML_CUDA_DMMV_Y; row_high = id == g_device_count - 1 ? nrows : nrows*g_tensor_split[id + 1]; - row_high -= row_high % GGML_CUDA_DMMV_Y; - GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); } else { GGML_ASSERT(false); } @@ -1781,45 +2295,76 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) { delete extra; } -void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) { - if (tensor->src0 != nullptr && tensor->src0->op == GGML_OP_RESHAPE) { - ggml_cuda_assign_buffers(tensor); +void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) { + if (scratch && g_scratch_size == 0) { + return; } - const size_t size = ggml_nbytes(tensor); - GGML_ASSERT(size <= g_scratch_size); - if (g_scratch_offset + size > g_scratch_size) { - g_scratch_offset = 0; + // recursively assign CUDA buffers until a compute tensor is found + if (tensor->src0 != nullptr && tensor->src0->backend == GGML_BACKEND_CPU) { + const ggml_op src0_op = tensor->src0->op; + if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW) { + ggml_cuda_assign_buffers_impl(tensor->src0, scratch); + } + } + if (tensor->op == GGML_OP_CPY && tensor->src1->backend == GGML_BACKEND_CPU) { + ggml_cuda_assign_buffers_impl(tensor->src1, scratch); } tensor->backend = GGML_BACKEND_GPU; struct ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu; - bool inplace = tensor->src0 != nullptr && tensor->src0->data == tensor->data; + const bool inplace = (tensor->src0 != nullptr && tensor->src0->data == tensor->data) || + tensor->op == GGML_OP_VIEW; + const size_t size = ggml_nbytes(tensor); CUDA_CHECK(cudaSetDevice(g_main_device)); if (inplace && tensor->src0->backend == GGML_BACKEND_GPU) { struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src0->extra; - extra->data_device[g_main_device] = src0_extra->data_device; - GGML_ASSERT(false); - } else { + char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; + size_t offset = 0; + if (tensor->op == GGML_OP_VIEW) { + memcpy(&offset, tensor->opt[0]->data, sizeof(size_t)); + } + extra->data_device[g_main_device] = src0_ddc + offset; + } else if (tensor->op == GGML_OP_CPY) { + struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src1->extra; + void * src1_ddv = src1_extra->data_device[g_main_device]; + extra->data_device[g_main_device] = src1_ddv; + } else if (scratch) { + GGML_ASSERT(size <= g_scratch_size); + if (g_scratch_offset + size > g_scratch_size) { + g_scratch_offset = 0; + } + char * data = (char *) g_scratch_buffer; if (data == nullptr) { CUDA_CHECK(cudaMalloc(&data, g_scratch_size)); g_scratch_buffer = data; } extra->data_device[g_main_device] = data + g_scratch_offset; + + g_scratch_offset += size; + + GGML_ASSERT(g_scratch_offset <= g_scratch_size); + } else { // allocate new buffers outside of scratch + void * data; + CUDA_CHECK(cudaMalloc(&data, size)); + CUDA_CHECK(cudaMemset(data, 0, size)); + extra->data_device[g_main_device] = data; } - // fprintf(stderr, "data=%p offset=%ld data_device=%p\n", data, g_scratch_offset, extra->data_device[0]); - g_scratch_offset += size; - // fprintf(stderr, "%s: scratch %d, %p - %p\n", - // tensor->name, g_scratch_index, data + g_scratch_offset, data + g_scratch_offset + size); - - GGML_ASSERT(g_scratch_offset <= g_scratch_size); tensor->extra = extra; } +void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) { + ggml_cuda_assign_buffers_impl(tensor, true); +} + +void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) { + ggml_cuda_assign_buffers_impl(tensor, false); +} + void ggml_cuda_set_main_device(int main_device) { if (main_device > g_device_count) { fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n", @@ -1838,6 +2383,15 @@ void ggml_cuda_set_scratch_size(size_t scratch_size) { g_scratch_size = scratch_size; } +void ggml_cuda_free_scratch() { + if (g_scratch_buffer == nullptr) { + return; + } + + CUDA_CHECK(cudaFree(g_scratch_buffer)); + g_scratch_buffer = nullptr; +} + bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){ ggml_cuda_func_t func; const bool any_on_device = tensor->backend == GGML_BACKEND_GPU @@ -1875,12 +2429,39 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ } func = ggml_cuda_mul_mat; break; + case GGML_OP_SCALE: + if (!any_on_device) { + return false; + } + func = ggml_cuda_scale; + break; + case GGML_OP_CPY: + if (!any_on_device) { + return false; + } + func = ggml_cuda_cpy; + break; case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: if (!any_on_device) { return false; } func = ggml_cuda_nop; break; + case GGML_OP_DIAG_MASK_INF: + if (!any_on_device) { + return false; + } + func = ggml_cuda_diag_mask_inf; + break; + case GGML_OP_SOFT_MAX: + if (!any_on_device) { + return false; + } + func = ggml_cuda_soft_max; + break; case GGML_OP_ROPE: if (!any_on_device) { return false; diff --git a/ggml-cuda.h b/ggml-cuda.h index fde6d4085..d32b44842 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -28,8 +28,10 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor); void ggml_cuda_free_data(struct ggml_tensor * tensor); void ggml_cuda_assign_buffers(struct ggml_tensor * tensor); +void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor); void ggml_cuda_set_main_device(int main_device); void ggml_cuda_set_scratch_size(size_t scratch_size); +void ggml_cuda_free_scratch(void); bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); #ifdef __cplusplus diff --git a/ggml.c b/ggml.c index 32c191307..c0efa1977 100644 --- a/ggml.c +++ b/ggml.c @@ -3939,6 +3939,12 @@ bool ggml_is_contiguous(const struct ggml_tensor * tensor) { tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } +bool ggml_is_permuted(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3]; +} + static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); diff --git a/ggml.h b/ggml.h index f2a91761b..9b0c846f8 100644 --- a/ggml.h +++ b/ggml.h @@ -485,6 +485,7 @@ extern "C" { GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor); GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor); + GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor); // use this to compute the memory overhead of a tensor GGML_API size_t ggml_tensor_overhead(void); diff --git a/llama.cpp b/llama.cpp index d2a52bb0c..b8bc0d821 100644 --- a/llama.cpp +++ b/llama.cpp @@ -165,6 +165,11 @@ struct llama_kv_cache { if (ctx) { ggml_free(ctx); } + +#ifdef GGML_USE_CUBLAS + ggml_cuda_free_data(k); + ggml_cuda_free_data(v); +#endif // GGML_USE_CUBLAS } }; @@ -210,6 +215,7 @@ struct llama_model { for (size_t i = 0; i < tensors_by_name.size(); ++i) { ggml_cuda_free_data(tensors_by_name[i].second); } + ggml_cuda_free_scratch(); #elif defined(GGML_USE_CLBLAST) for (size_t i = 0; i < tensors_by_name.size(); ++i) { ggml_cl_free_data(tensors_by_name[i].second); @@ -867,7 +873,8 @@ static bool kv_cache_init( const struct llama_hparams & hparams, struct llama_kv_cache & cache, ggml_type wtype, - int n_ctx) { + int n_ctx, + int n_gpu_layers) { const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; @@ -893,6 +900,15 @@ static bool kv_cache_init( ggml_set_name(cache.k, "cache_k"); ggml_set_name(cache.v, "cache_v"); +#ifdef GGML_USE_CUBLAS + if (n_gpu_layers > n_layer + 1) { + ggml_cuda_assign_buffers_no_scratch(cache.v); + } + if (n_gpu_layers > n_layer + 2) { + ggml_cuda_assign_buffers_no_scratch(cache.k); + } +#endif // GGML_USE_CUBLAS + return true; } @@ -903,6 +919,7 @@ struct llama_context_params llama_context_default_params() { /*.gpu_layers =*/ 0, /*.main_gpu =*/ 0, /*.tensor_split =*/ {0}, + /*.low_vram =*/ false, /*.seed =*/ -1, /*.f16_kv =*/ true, /*.logits_all =*/ false, @@ -1011,6 +1028,7 @@ static void llama_model_load_internal( int n_gpu_layers, int main_gpu, const float * tensor_split, + bool low_vram, ggml_type memory_type, bool use_mmap, bool use_mlock, @@ -1137,18 +1155,34 @@ static void llama_model_load_internal( ml->ggml_ctx = ctx; model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU); - model.norm = ml->get_tensor("norm.weight", {n_embd}, GGML_BACKEND_CPU); // "output" tensor { + ggml_backend backend_norm; ggml_backend backend_output; if (n_gpu_layers > int(n_layer)) { // NOLINT + // norm is not performance relevant on its own but keeping it in VRAM reduces data copying + // on Windows however this is detrimental unless everything is on the GPU +#ifndef _WIN32 + backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#else + backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#endif // _WIN32 + backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { + backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; } + model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm); model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output); + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.norm); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + } } const int i_gpu_start = n_layer - n_gpu_layers; @@ -1208,22 +1242,47 @@ static void llama_model_load_internal( (void) vram_scratch; (void) n_batch; #ifdef GGML_USE_CUBLAS - vram_scratch = n_batch * MB; - ggml_cuda_set_scratch_size(vram_scratch); - if (n_gpu_layers > 0) { - fprintf(stderr, "%s: allocating batch_size x 1 MB = %ld MB VRAM for the scratch buffer\n", - __func__, vram_scratch / MB); + if (low_vram) { + fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__); + ggml_cuda_set_scratch_size(0); // disable scratch + } else { + vram_scratch = n_batch * MB; + ggml_cuda_set_scratch_size(vram_scratch); + if (n_gpu_layers > 0) { + fprintf(stderr, "%s: allocating batch_size x 1 MB = %ld MB VRAM for the scratch buffer\n", + __func__, vram_scratch / MB); + } } #endif // GGML_USE_CUBLAS #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); - fprintf(stderr, "%s: offloading %d layers to GPU\n", __func__, n_gpu); + fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); if (n_gpu_layers > (int) hparams.n_layer) { - fprintf(stderr, "%s: offloading output layer to GPU\n", __func__); + fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__); } + size_t vram_kv_cache = 0; + if (n_gpu_layers > (int) hparams.n_layer + 1) { + if (low_vram) { + fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__); + } else { + fprintf(stderr, "%s: offloading v cache to GPU\n", __func__); + vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2; + } + } + if (n_gpu_layers > (int) hparams.n_layer + 2) { + if (low_vram) { + fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__); + } else { + fprintf(stderr, "%s: offloading k cache to GPU\n", __func__); + vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2; + } + } + const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3; + fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n", + __func__, std::min(n_gpu_layers, max_offloadable_layers), hparams.n_layer + 3); fprintf(stderr, "%s: total VRAM used: %zu MB\n", - __func__, (vram_weights + vram_scratch + MB - 1) / MB); // round up + __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up #else (void) n_gpu_layers; #endif @@ -1262,6 +1321,7 @@ static bool llama_model_load( int n_gpu_layers, int main_gpu, float * tensor_split, + bool low_vram, ggml_type memory_type, bool use_mmap, bool use_mlock, @@ -1269,7 +1329,7 @@ static bool llama_model_load( llama_progress_callback progress_callback, void *progress_callback_user_data) { try { - llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, memory_type, + llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type, use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); return true; } catch (const std::exception & err) { @@ -1345,12 +1405,33 @@ static bool llama_eval_internal( const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start; + // offload functions set the tensor output backend to GPU + // tensors are GPU-accelerated if any input or the output has been offloaded + // + // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal + // in that case ggml_cuda_assign_buffers has no effect + offload_func_t offload_func_nr = llama_nop; // nr = non-repeating + offload_func_t offload_func_kq = llama_nop; + offload_func_t offload_func_v = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (n_gpu_layers > n_layer) { + offload_func_nr = ggml_cuda_assign_buffers; + } + if (n_gpu_layers > n_layer + 1) { + offload_func_v = ggml_cuda_assign_buffers; + } + if (n_gpu_layers > n_layer + 2) { + offload_func_kq = ggml_cuda_assign_buffers; + } +#endif // GGML_USE_CUBLAS + for (int il = 0; il < n_layer; ++il) { offload_func_t offload_func = llama_nop; #ifdef GGML_USE_CUBLAS if (il >= i_gpu_start) { - offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU + offload_func = ggml_cuda_assign_buffers; } #endif // GGML_USE_CUBLAS @@ -1373,31 +1454,42 @@ static bool llama_eval_internal( // self-attention { // compute Q and K and RoPE them - struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - // offload_func(tmpq); - ggml_set_name(tmpq, "tmpq"); - struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - // offload_func(tmpk); + offload_func_kq(tmpk); ggml_set_name(tmpk, "tmpk"); + struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + offload_func_kq(tmpq); + ggml_set_name(tmpq, "tmpq"); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0); + offload_func_kq(Kcur); ggml_set_name(Kcur, "Kcur"); struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0); + offload_func_kq(Qcur); ggml_set_name(Qcur, "Qcur"); // store key and value to memory { // compute the transposed [N, n_embd] V matrix - struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N)); + + struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + offload_func_v(tmpv); + ggml_set_name(tmpv, "tmpv"); + + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N)); + offload_func_v(Vcur); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); + offload_func_kq(k); ggml_set_name(k, "k"); + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); + offload_func_v(v); ggml_set_name(v, "v"); // important: storing RoPE-ed version of K in the KV cache! @@ -1409,6 +1501,7 @@ static bool llama_eval_internal( ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + offload_func_kq(Q); ggml_set_name(Q, "Q"); struct ggml_tensor * K = @@ -1417,10 +1510,12 @@ static bool llama_eval_internal( ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); + offload_func_kq(K); ggml_set_name(K, "K"); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + offload_func_kq(KQ); ggml_set_name(KQ, "KQ"); // KQ_scaled = KQ / sqrt(n_embd/n_head) @@ -1429,14 +1524,17 @@ static bool llama_eval_internal( // KQ_scaled shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); + offload_func_kq(KQ_scaled); ggml_set_name(KQ_scaled, "KQ_scaled"); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); + offload_func_kq(KQ_masked); ggml_set_name(KQ_masked, "KQ_masked"); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + offload_func_v(KQ_soft_max); ggml_set_name(KQ_soft_max, "KQ_soft_max"); // split cached V into n_head heads @@ -1446,10 +1544,12 @@ static bool llama_eval_internal( n_ctx*ggml_element_size(kv_self.v), n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head, il*n_ctx*ggml_element_size(kv_self.v)*n_embd); + offload_func_v(V); ggml_set_name(V, "V"); #if 1 struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + offload_func_v(KQV); ggml_set_name(KQV, "KQV"); #else // make V contiguous in memory to speed up the matmul, however we waste time on the copy @@ -1461,12 +1561,14 @@ static bool llama_eval_internal( // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + offload_func_v(KQV_merged); ggml_set_name(KQV_merged, "KQV_merged"); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); + offload_func_v(cur); ggml_set_name(cur, "KQV_merged_contiguous"); // projection (no bias) @@ -1478,7 +1580,6 @@ static bool llama_eval_internal( } lctx.use_buf(ctx0, 1); - //ggml_cuda_set_scratch(1); struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); offload_func(inpFF); @@ -1536,32 +1637,24 @@ static bool llama_eval_internal( } lctx.use_buf(ctx0, 0); - //ggml_cuda_set_scratch(0); // used at the end to optionally extract the embeddings struct ggml_tensor * embeddings = NULL; - offload_func_t offload_func = llama_nop; - -#ifdef GGML_USE_CUBLAS - if (n_gpu_layers > n_layer) { - offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU - } -#endif // GGML_USE_CUBLAS // norm { cur = ggml_rms_norm(ctx0, inpL); - offload_func(cur); + offload_func_nr(cur); ggml_set_name(cur, "rms_norm_inpL"); cur = ggml_rms_norm(ctx0, cur); - offload_func(cur); + offload_func_nr(cur); ggml_set_name(cur, "rms_norm_after"); // cur = cur*norm(broadcasted) cur = ggml_mul(ctx0, cur, model.norm); - offload_func(cur); + offload_func_nr(cur); ggml_set_name(cur, "result_norm"); embeddings = cur; @@ -2552,8 +2645,8 @@ struct llama_context * llama_init_from_file( ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; - if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, - params.main_gpu, params.tensor_split, memory_type, params.use_mmap, params.use_mlock, + if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, params.main_gpu, + params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { fprintf(stderr, "%s: failed to load model\n", __func__); llama_free(ctx); @@ -2562,7 +2655,7 @@ struct llama_context * llama_init_from_file( // reserve memory for context buffers if (!params.vocab_only) { - if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) { + if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; diff --git a/llama.h b/llama.h index 61f6c867d..64292265c 100644 --- a/llama.h +++ b/llama.h @@ -77,6 +77,7 @@ extern "C" { int n_gpu_layers; // number of layers to store in VRAM int main_gpu; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs + bool low_vram; // if true, reduce VRAM usage at the cost of performance int seed; // RNG seed, -1 for random bool f16_kv; // use fp16 for KV cache From 6b8312e7979b852f6b6ac9d29cd51fda16c17948 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Thu, 15 Jun 2023 19:06:46 +0200 Subject: [PATCH 010/135] Better error when using both LoRA + GPU layers (#1861) --- examples/common.cpp | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/examples/common.cpp b/examples/common.cpp index dc69e5373..b47f06273 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -412,6 +412,14 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { gpt_print_usage(argc, argv, default_params); exit(1); } + +#ifdef GGML_USE_CUBLAS + if (!params.lora_adapter.empty() && params.n_gpu_layers > 0) { + fprintf(stderr, "%s: error: the simultaneous use of LoRAs and GPU acceleration is not supported", __func__); + exit(1); + } +#endif // GGML_USE_CUBLAS + if (escape_prompt) { process_escapes(params.prompt); } From 4bfcc855abdb2c9fcc3c5a84747974521909fa41 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 15 Jun 2023 20:29:48 +0300 Subject: [PATCH 011/135] metal : parallel command buffer encoding (#1860) * metal : parallel command buffer encoding * metal : determine number of command buffers based on gf->n_threads --- ggml-metal.h | 1 + ggml-metal.m | 917 ++++++++++++++++++++++++++------------------------- 2 files changed, 471 insertions(+), 447 deletions(-) diff --git a/ggml-metal.h b/ggml-metal.h index a9441a9d4..033c4d86a 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -55,6 +55,7 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t); // same as ggml_graph_compute but uses Metal +// creates gf->n_threads command buffers in parallel void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf); #ifdef __cplusplus diff --git a/ggml-metal.m b/ggml-metal.m index 658c392e0..0e9b56aa3 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -284,528 +284,551 @@ void ggml_metal_get_tensor( void ggml_metal_graph_compute( struct ggml_metal_context * ctx, - struct ggml_cgraph * gf) { + struct ggml_cgraph * gf) { metal_printf("%s: evaluating graph\n", __func__); - size_t offs_src0 = 0; - size_t offs_src1 = 0; - size_t offs_dst = 0; + // create multiple command buffers and enqueue them + // then, we encode the graph into the command buffers in parallel - id command_buffer = [ctx->queue commandBuffer]; - id encoder = nil; + const int n_cb = gf->n_threads; - for (int i = 0; i < gf->n_nodes; ++i) { - //metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); + NSMutableArray * command_buffers = [NSMutableArray arrayWithCapacity:n_cb]; - struct ggml_tensor * src0 = gf->nodes[i]->src0; - struct ggml_tensor * src1 = gf->nodes[i]->src1; - struct ggml_tensor * dst = gf->nodes[i]; + for (int i = 0; i < n_cb; ++i) { + command_buffers[i] = [ctx->queue commandBuffer]; - const int64_t ne00 = src0 ? src0->ne[0] : 0; - const int64_t ne01 = src0 ? src0->ne[1] : 0; - const int64_t ne02 = src0 ? src0->ne[2] : 0; - const int64_t ne03 = src0 ? src0->ne[3] : 0; + // enqueue the command buffers in order to specify their execution order + [command_buffers[i] enqueue]; + } - const uint64_t nb00 = src0 ? src0->nb[0] : 0; - const uint64_t nb01 = src0 ? src0->nb[1] : 0; - const uint64_t nb02 = src0 ? src0->nb[2] : 0; - const uint64_t nb03 = src0 ? src0->nb[3] : 0; + // TODO: is this the best way to start threads? + dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT); - const int64_t ne10 = src1 ? src1->ne[0] : 0; - const int64_t ne11 = src1 ? src1->ne[1] : 0; - const int64_t ne12 = src1 ? src1->ne[2] : 0; - const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); + for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) { + const int n_nodes_per_cb = (gf->n_nodes + n_cb - 1) / n_cb; - const uint64_t nb10 = src1 ? src1->nb[0] : 0; - const uint64_t nb11 = src1 ? src1->nb[1] : 0; - const uint64_t nb12 = src1 ? src1->nb[2] : 0; - const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); + dispatch_async(queue, ^{ + size_t offs_src0 = 0; + size_t offs_src1 = 0; + size_t offs_dst = 0; - const int64_t ne0 = dst ? dst->ne[0] : 0; - const int64_t ne1 = dst ? dst->ne[1] : 0; - const int64_t ne2 = dst ? dst->ne[2] : 0; - const int64_t ne3 = dst ? dst->ne[3] : 0; + id command_buffer = command_buffers[cb_idx]; - const uint64_t nb0 = dst ? dst->nb[0] : 0; - const uint64_t nb1 = dst ? dst->nb[1] : 0; - const uint64_t nb2 = dst ? dst->nb[2] : 0; - const uint64_t nb3 = dst ? dst->nb[3] : 0; + id encoder = nil; - const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; - const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; - const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; + const int node_start = (cb_idx + 0) * n_nodes_per_cb; + const int node_end = (cb_idx == n_cb - 1) ? gf->n_nodes : (cb_idx + 1) * n_nodes_per_cb; - id id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil; - id id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil; - id id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil; + for (int i = node_start; i < node_end; ++i) { + metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); - //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op)); - //if (src0) { - // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, - // ggml_is_contiguous(src0), src0->name); - //} - //if (src1) { - // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, - // ggml_is_contiguous(src1), src1->name); - //} - //if (dst) { - // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, - // dst->name); - //} + struct ggml_tensor * src0 = gf->nodes[i]->src0; + struct ggml_tensor * src1 = gf->nodes[i]->src1; + struct ggml_tensor * dst = gf->nodes[i]; - switch (dst->op) { - case GGML_OP_RESHAPE: - case GGML_OP_VIEW: - case GGML_OP_TRANSPOSE: - case GGML_OP_PERMUTE: - { - // noop - } break; - case GGML_OP_ADD: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + const int64_t ne00 = src0 ? src0->ne[0] : 0; + const int64_t ne01 = src0 ? src0->ne[1] : 0; + const int64_t ne02 = src0 ? src0->ne[2] : 0; + const int64_t ne03 = src0 ? src0->ne[3] : 0; - [encoder setComputePipelineState:ctx->pipeline_add]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + const uint64_t nb00 = src0 ? src0->nb[0] : 0; + const uint64_t nb01 = src0 ? src0->nb[1] : 0; + const uint64_t nb02 = src0 ? src0->nb[2] : 0; + const uint64_t nb03 = src0 ? src0->nb[3] : 0; - const int64_t n = ggml_nelements(dst); + const int64_t ne10 = src1 ? src1->ne[0] : 0; + const int64_t ne11 = src1 ? src1->ne[1] : 0; + const int64_t ne12 = src1 ? src1->ne[2] : 0; + const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_MUL: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + const uint64_t nb10 = src1 ? src1->nb[0] : 0; + const uint64_t nb11 = src1 ? src1->nb[1] : 0; + const uint64_t nb12 = src1 ? src1->nb[2] : 0; + const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); - if (ggml_nelements(src1) == ne10) { - // src1 is a row - [encoder setComputePipelineState:ctx->pipeline_mul_row]; - } else { - [encoder setComputePipelineState:ctx->pipeline_mul]; - } - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + const int64_t ne0 = dst ? dst->ne[0] : 0; + const int64_t ne1 = dst ? dst->ne[1] : 0; + const int64_t ne2 = dst ? dst->ne[2] : 0; + const int64_t ne3 = dst ? dst->ne[3] : 0; - const int64_t n = ggml_nelements(dst); + const uint64_t nb0 = dst ? dst->nb[0] : 0; + const uint64_t nb1 = dst ? dst->nb[1] : 0; + const uint64_t nb2 = dst ? dst->nb[2] : 0; + const uint64_t nb3 = dst ? dst->nb[3] : 0; - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_SCALE: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; + const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; + const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; - const float scale = *(const float *) src1->data; + id id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil; + id id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil; + id id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil; - [encoder setComputePipelineState:ctx->pipeline_scale]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; + //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op)); + //if (src0) { + // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, + // ggml_is_contiguous(src0), src0->name); + //} + //if (src1) { + // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, + // ggml_is_contiguous(src1), src1->name); + //} + //if (dst) { + // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, + // dst->name); + //} - const int64_t n = ggml_nelements(dst); + switch (dst->op) { + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + { + // noop + } break; + case GGML_OP_ADD: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_SILU: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + [encoder setComputePipelineState:ctx->pipeline_add]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setComputePipelineState:ctx->pipeline_silu]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + const int64_t n = ggml_nelements(dst); - const int64_t n = ggml_nelements(dst); + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_MUL: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_RELU: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + if (ggml_nelements(src1) == ne10) { + // src1 is a row + [encoder setComputePipelineState:ctx->pipeline_mul_row]; + } else { + [encoder setComputePipelineState:ctx->pipeline_mul]; + } + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; - [encoder setComputePipelineState:ctx->pipeline_relu]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + const int64_t n = ggml_nelements(dst); - const int64_t n = ggml_nelements(dst); + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_SCALE: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_GELU: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + const float scale = *(const float *) src1->data; - [encoder setComputePipelineState:ctx->pipeline_gelu]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setComputePipelineState:ctx->pipeline_scale]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; - const int64_t n = ggml_nelements(dst); + const int64_t n = ggml_nelements(dst); - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_SOFT_MAX: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_SILU: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } - const int nth = 32; + [encoder setComputePipelineState:ctx->pipeline_silu]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setComputePipelineState:ctx->pipeline_soft_max]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; - [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; + const int64_t n = ggml_nelements(dst); - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_DIAG_MASK_INF: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_RELU: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } - const int n_past = ((int32_t *)(src1->data))[0]; + [encoder setComputePipelineState:ctx->pipeline_relu]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; - [encoder setBytes:&n_past length:sizeof(int) atIndex:4]; + const int64_t n = ggml_nelements(dst); - [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_MUL_MAT: - { - // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224 + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_GELU: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } - GGML_ASSERT(ne00 == ne10); - GGML_ASSERT(ne02 == ne12); + [encoder setComputePipelineState:ctx->pipeline_gelu]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - if (ggml_is_contiguous(src0) && - ggml_is_contiguous(src1) && - (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) { + const int64_t n = ggml_nelements(dst); - if (encoder != nil) { - [encoder endEncoding]; - encoder = nil; - } + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_SOFT_MAX: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } - MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16; - MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16; + const int nth = 32; - // for F32 x F32 we use MPS - MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor - matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt]; + [encoder setComputePipelineState:ctx->pipeline_soft_max]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; + [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; - MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor - matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt]; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_DIAG_MASK_INF: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } - MPSMatrixDescriptor * desc = [MPSMatrixDescriptor - matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32]; + const int n_past = ((int32_t *)(src1->data))[0]; - MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc] - initWithDevice:ctx->device transposeLeft:false transposeRight:true - resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0]; + [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; + [encoder setBytes:&n_past length:sizeof(int) atIndex:4]; - // we need to do ne02 multiplications - // TODO: is there a way to do this in parallel - currently very slow .. - // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS - for (int64_t i02 = 0; i02 < ne02; ++i02) { - size_t offs_src0_cur = offs_src0 + i02*nb02; - size_t offs_src1_cur = offs_src1 + i02*nb12; - size_t offs_dst_cur = offs_dst + i02*nb2; + [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_MUL_MAT: + { + // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224 - MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0]; - MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1]; - MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ]; + GGML_ASSERT(ne00 == ne10); + GGML_ASSERT(ne02 == ne12); - [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst]; - } - } else { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + if (ggml_is_contiguous(src0) && + ggml_is_contiguous(src1) && + (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) { - int nth0 = 32; - int nth1 = 1; - - // use custom matrix x vector kernel - switch (src0t) { - case GGML_TYPE_F16: - { - GGML_ASSERT(ne02 == ne12); - - nth0 = 64; - nth1 = 1; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32]; - } break; - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(ne02 == 1); - GGML_ASSERT(ne12 == 1); - - nth0 = 8; - nth1 = 8; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32]; - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(ne02 == 1); - GGML_ASSERT(ne12 == 1); - - nth0 = 8; - nth1 = 8; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32]; - } break; - case GGML_TYPE_Q2_K: - { - GGML_ASSERT(ne02 == 1); - GGML_ASSERT(ne12 == 1); - - nth0 = 4; - nth1 = 16; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32]; - } break; - case GGML_TYPE_Q3_K: - { - GGML_ASSERT(ne02 == 1); - GGML_ASSERT(ne12 == 1); - - nth0 = 4; - nth1 = 16; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_k_f32]; - } break; - case GGML_TYPE_Q4_K: - { - GGML_ASSERT(ne02 == 1); - GGML_ASSERT(ne12 == 1); - - nth0 = 4; - nth1 = 16; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32]; - } break; - case GGML_TYPE_Q5_K: - { - GGML_ASSERT(ne02 == 1); - GGML_ASSERT(ne12 == 1); - - nth0 = 4; - nth1 = 16; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_k_f32]; - } break; - case GGML_TYPE_Q6_K: - { - GGML_ASSERT(ne02 == 1); - GGML_ASSERT(ne12 == 1); - - nth0 = 4; - nth1 = 16; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32]; - } break; - default: - { - fprintf(stderr, "Asserting on type %d\n",(int)src0t); - GGML_ASSERT(false && "not implemented"); + if (encoder != nil) { + [encoder endEncoding]; + encoder = nil; } - }; + MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16; + MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; - [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6]; - [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7]; - [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8]; - [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; + // for F32 x F32 we use MPS + MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor + matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt]; - if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) { - [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - else if (src0t == GGML_TYPE_Q2_K || - src0t == GGML_TYPE_Q3_K || - src0t == GGML_TYPE_Q4_K || - src0t == GGML_TYPE_Q5_K || - src0t == GGML_TYPE_Q6_K) { - [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } else { - [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - } - } break; - case GGML_OP_GET_ROWS: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor + matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt]; - switch (src0->type) { - case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; - case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; - case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; - case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break; - case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_k]; break; - case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break; - case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_k]; break; - case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break; - default: GGML_ASSERT(false && "not implemented"); - } + MPSMatrixDescriptor * desc = [MPSMatrixDescriptor + matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4]; - [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5]; + MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc] + initWithDevice:ctx->device transposeLeft:false transposeRight:true + resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0]; - const int64_t n = ggml_nelements(src1); + // we need to do ne02 multiplications + // TODO: is there a way to do this in parallel - currently very slow .. + // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS + for (int64_t i02 = 0; i02 < ne02; ++i02) { + size_t offs_src0_cur = offs_src0 + i02*nb02; + size_t offs_src1_cur = offs_src1 + i02*nb12; + size_t offs_dst_cur = offs_dst + i02*nb2; - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_RMS_NORM: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0]; + MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1]; + MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ]; - const float eps = 1e-6f; + [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst]; + } + } else { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } - const int nth = 256; + int nth0 = 32; + int nth1 = 1; - [encoder setComputePipelineState:ctx->pipeline_rms_norm]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; - [encoder setBytes:&eps length:sizeof( float) atIndex:4]; - [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; + // use custom matrix x vector kernel + switch (src0t) { + case GGML_TYPE_F16: + { + GGML_ASSERT(ne02 == ne12); - const int64_t nrows = ggml_nrows(src0); + nth0 = 64; + nth1 = 1; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32]; + } break; + case GGML_TYPE_Q4_0: + { + GGML_ASSERT(ne02 == 1); + GGML_ASSERT(ne12 == 1); - [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_ROPE: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + nth0 = 8; + nth1 = 8; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32]; + } break; + case GGML_TYPE_Q4_1: + { + GGML_ASSERT(ne02 == 1); + GGML_ASSERT(ne12 == 1); - const int n_dims = ((int32_t *) src1->data)[1]; - const int mode = ((int32_t *) src1->data)[2]; + nth0 = 8; + nth1 = 8; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32]; + } break; + case GGML_TYPE_Q2_K: + { + GGML_ASSERT(ne02 == 1); + GGML_ASSERT(ne12 == 1); - const int n_past = ((int32_t *)(src1->data))[0]; + nth0 = 4; + nth1 = 16; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32]; + } break; + case GGML_TYPE_Q3_K: + { + GGML_ASSERT(ne02 == 1); + GGML_ASSERT(ne12 == 1); - [encoder setComputePipelineState:ctx->pipeline_rope]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; - [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; - [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&n_past length:sizeof( int) atIndex:18]; - [encoder setBytes:&n_dims length:sizeof( int) atIndex:19]; - [encoder setBytes:&mode length:sizeof( int) atIndex:20]; + nth0 = 4; + nth1 = 16; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_k_f32]; + } break; + case GGML_TYPE_Q4_K: + { + GGML_ASSERT(ne02 == 1); + GGML_ASSERT(ne12 == 1); - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_CPY: - { - if (encoder == nil) { - encoder = [command_buffer computeCommandEncoder]; - } + nth0 = 4; + nth1 = 16; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32]; + } break; + case GGML_TYPE_Q5_K: + { + GGML_ASSERT(ne02 == 1); + GGML_ASSERT(ne12 == 1); - const int nth = 32; + nth0 = 4; + nth1 = 16; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_k_f32]; + } break; + case GGML_TYPE_Q6_K: + { + GGML_ASSERT(ne02 == 1); + GGML_ASSERT(ne12 == 1); - switch (src0t) { - case GGML_TYPE_F32: - { - switch (dstt) { - case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break; - case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break; - default: GGML_ASSERT(false && "not implemented"); + nth0 = 4; + nth1 = 16; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32]; + } break; + default: + { + fprintf(stderr, "Asserting on type %d\n",(int)src0t); + GGML_ASSERT(false && "not implemented"); + } }; - } break; - default: GGML_ASSERT(false && "not implemented"); - } - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; - [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; - [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - default: - fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); - GGML_ASSERT(false); - } + if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) { + [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_Q2_K || + src0t == GGML_TYPE_Q3_K || + src0t == GGML_TYPE_Q4_K || + src0t == GGML_TYPE_Q5_K || + src0t == GGML_TYPE_Q6_K) { + [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } else { + [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + } + } break; + case GGML_OP_GET_ROWS: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } + + switch (src0->type) { + case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; + case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; + case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; + case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break; + case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_k]; break; + case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break; + case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_k]; break; + case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break; + default: GGML_ASSERT(false && "not implemented"); + } + + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4]; + [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5]; + + const int64_t n = ggml_nelements(src1); + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_RMS_NORM: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } + + const float eps = 1e-6f; + + const int nth = 256; + + [encoder setComputePipelineState:ctx->pipeline_rms_norm]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; + [encoder setBytes:&eps length:sizeof( float) atIndex:4]; + [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; + + const int64_t nrows = ggml_nrows(src0); + + [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ROPE: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } + + const int n_dims = ((int32_t *) src1->data)[1]; + const int mode = ((int32_t *) src1->data)[2]; + + const int n_past = ((int32_t *)(src1->data))[0]; + + [encoder setComputePipelineState:ctx->pipeline_rope]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&n_past length:sizeof( int) atIndex:18]; + [encoder setBytes:&n_dims length:sizeof( int) atIndex:19]; + [encoder setBytes:&mode length:sizeof( int) atIndex:20]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_CPY: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } + + const int nth = 32; + + switch (src0t) { + case GGML_TYPE_F32: + { + switch (dstt) { + case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break; + case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break; + default: GGML_ASSERT(false && "not implemented"); + }; + } break; + default: GGML_ASSERT(false && "not implemented"); + } + + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + default: + fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + GGML_ASSERT(false); + } + } + + if (encoder != nil) { + [encoder endEncoding]; + encoder = nil; + } + + [command_buffer commit]; + }); } - if (encoder != nil) { - [encoder endEncoding]; - encoder = nil; - } + // wait for all threads to finish + dispatch_barrier_sync(queue, ^{}); - [command_buffer commit]; - [command_buffer waitUntilCompleted]; - - { - const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime]; - UNUSED(time_elapsed); - - metal_printf("%s: time elapsed = %f ms\n", __func__, time_elapsed * 1000.0); - } + [command_buffers[n_cb - 1] waitUntilCompleted]; } From 64cc19b4fe3df03bc20e520aa111c30cff3a655e Mon Sep 17 00:00:00 2001 From: Howard Su Date: Fri, 16 Jun 2023 01:29:59 +0800 Subject: [PATCH 012/135] Fix the validation of main device (#1872) --- ggml-cuda.cu | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 0565571f4..0873e3e51 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -2366,7 +2366,7 @@ void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) { } void ggml_cuda_set_main_device(int main_device) { - if (main_device > g_device_count) { + if (main_device >= g_device_count) { fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n", main_device, g_device_count, g_main_device); return; From 37e257c48e350cf03c353c10d31e777f8d00123d Mon Sep 17 00:00:00 2001 From: sandyiscool Date: Thu, 15 Jun 2023 23:06:06 +0530 Subject: [PATCH 013/135] make : clean *.so files (#1857) --- Makefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Makefile b/Makefile index 9a08d610b..66509cc33 100644 --- a/Makefile +++ b/Makefile @@ -259,7 +259,7 @@ libllama.so: llama.o ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) clean: - rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot build-info.h + rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot build-info.h # # Examples From 9dda13e5e1f70bdfc25fbc0f0378f27c8b67e983 Mon Sep 17 00:00:00 2001 From: Srinivas Billa Date: Thu, 15 Jun 2023 18:36:38 +0100 Subject: [PATCH 014/135] readme : server compile flag (#1874) Explicitly include the server make instructions for C++ noobsl like me ;) --- examples/server/README.md | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/examples/server/README.md b/examples/server/README.md index 7dabac9cf..3b111655a 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -16,6 +16,10 @@ This example allow you to have a llama.cpp http server to interact from a web pa To get started right away, run the following command, making sure to use the correct path for the model you have: #### Unix-based systems (Linux, macOS, etc.): +Make sure to build with the server option on +```bash +LLAMA_BUILD_SERVER=1 make +``` ```bash ./server -m models/7B/ggml-model.bin --ctx_size 2048 From cf267d1c71a781700698f8518e903239c3bcc929 Mon Sep 17 00:00:00 2001 From: daboe01 Date: Thu, 15 Jun 2023 19:42:48 +0200 Subject: [PATCH 015/135] make : add train-text-from-scratch (#1850) * make finetuning example accessible * fixed: targed was in wrong line * fixed: name of executable was wrong * fixed: naming of binary * fixed: model path was wrong * fixed clean target * Update examples/train-text-from-scratch/README.md --------- Co-authored-by: Georgi Gerganov --- .gitignore | 1 + Makefile | 7 +++++-- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/.gitignore b/.gitignore index 9b6905ed4..4b0422cd9 100644 --- a/.gitignore +++ b/.gitignore @@ -32,6 +32,7 @@ models/* /result /perplexity /embedding +/train-text-from-scratch /benchmark-matmult /vdot /Pipfile diff --git a/Makefile b/Makefile index 66509cc33..09c8834f5 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot +BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch ifdef LLAMA_BUILD_SERVER BUILD_TARGETS += server @@ -259,7 +259,7 @@ libllama.so: llama.o ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) clean: - rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot build-info.h + rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot train-text-from-scratch build-info.h # # Examples @@ -289,6 +289,9 @@ save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml. server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) +train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + build-info.h: $(wildcard .git/index) scripts/build-info.sh @sh scripts/build-info.sh > $@.tmp @if ! cmp -s $@.tmp $@; then \ From 69b34a0e80300bfb3e996983ac3ea075f5526675 Mon Sep 17 00:00:00 2001 From: Frederik Vogel Date: Fri, 16 Jun 2023 02:47:04 +0900 Subject: [PATCH 016/135] swift : Package compile breaks due to ggml-metal.metal (#1831) * Ignore metal file in spm * Add ggml.h to spm public Headers --------- Co-authored-by: Vogel Frederik --- Package.swift | 1 + spm-headers/ggml.h | 1 + 2 files changed, 2 insertions(+) create mode 120000 spm-headers/ggml.h diff --git a/Package.swift b/Package.swift index 2c2c147ba..73d027c70 100644 --- a/Package.swift +++ b/Package.swift @@ -11,6 +11,7 @@ let package = Package( .target( name: "llama", path: ".", + exclude: ["ggml-metal.metal"], sources: ["ggml.c", "llama.cpp"], publicHeadersPath: "spm-headers", cSettings: [.unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_ACCELERATE")], diff --git a/spm-headers/ggml.h b/spm-headers/ggml.h new file mode 120000 index 000000000..39215298f --- /dev/null +++ b/spm-headers/ggml.h @@ -0,0 +1 @@ +../ggml.h \ No newline at end of file From 3559433fecedf365e7aba2fe3d5f89d9abb817c1 Mon Sep 17 00:00:00 2001 From: Igor Okulist Date: Thu, 15 Jun 2023 12:51:26 -0500 Subject: [PATCH 017/135] cmake : set include path for OpenBlas (#1830) --- CMakeLists.txt | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 19cd42dd2..de01e55ec 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -163,12 +163,24 @@ if (LLAMA_BLAS) if (BLAS_FOUND) message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}") + # BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake. + # see https://gitlab.kitware.com/cmake/cmake/-/issues/20268 + find_path(BLAS_INCLUDE_DIRS + NAMES cblas.h + HINTS + /usr/include + /usr/local/include + /usr/include/openblas + ) + + + message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}") + add_compile_options(${BLAS_LINKER_FLAGS}) add_compile_definitions(GGML_USE_OPENBLAS) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES}) + set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS}) - message("${BLAS_LIBRARIES} ${BLAS_INCLUDE_DIRS}") - include_directories(${BLAS_INCLUDE_DIRS}) else() message(WARNING "BLAS not found, please refer to " "https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors" @@ -408,7 +420,7 @@ add_library(ggml OBJECT ${GGML_SOURCES_EXTRA} ) -target_include_directories(ggml PUBLIC .) +target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES}) target_compile_features(ggml PUBLIC c_std_11) # don't bump target_link_libraries(ggml PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS}) From c36e81da62ebfe09a768201cc44fa8d712dd00ed Mon Sep 17 00:00:00 2001 From: yangli2 Date: Thu, 15 Jun 2023 11:05:53 -0700 Subject: [PATCH 018/135] examples : add chat-vicuna.sh (#1854) Co-authored-by: Yang Li --- examples/chat-vicuna.sh | 41 +++++++++++++++++++++++++++++++++++++++++ llama.h | 6 +++--- 2 files changed, 44 insertions(+), 3 deletions(-) create mode 100755 examples/chat-vicuna.sh diff --git a/examples/chat-vicuna.sh b/examples/chat-vicuna.sh new file mode 100755 index 000000000..8c7b7bef4 --- /dev/null +++ b/examples/chat-vicuna.sh @@ -0,0 +1,41 @@ +#!/bin/bash + +set -e + +cd "$(dirname "$0")/.." || exit + +MODEL="${MODEL:-./models/ggml-vic13b-uncensored-q5_0.bin}" +PROMPT_TEMPLATE=${PROMPT_TEMPLATE:-./prompts/chat.txt} +USER_NAME="### Human" +AI_NAME="### Assistant" + +# Adjust to the number of CPU cores you want to use. +N_THREAD="${N_THREAD:-8}" +# Number of tokens to predict (made it larger than default because we want a long interaction) +N_PREDICTS="${N_PREDICTS:-2048}" + +# Note: you can also override the generation options by specifying them on the command line: +# For example, override the context size by doing: ./chatLLaMa --ctx_size 1024 +GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647}" + +DATE_TIME=$(date +%H:%M) +DATE_YEAR=$(date +%Y) + +PROMPT_FILE=$(mktemp -t llamacpp_prompt.XXXXXXX.txt) + +sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \ + -e "s/\[\[AI_NAME\]\]/$AI_NAME/g" \ + -e "s/\[\[DATE_TIME\]\]/$DATE_TIME/g" \ + -e "s/\[\[DATE_YEAR\]\]/$DATE_YEAR/g" \ + $PROMPT_TEMPLATE > $PROMPT_FILE + +# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS +./bin/main $GEN_OPTIONS \ + --model "$MODEL" \ + --threads "$N_THREAD" \ + --n_predict "$N_PREDICTS" \ + --color --interactive \ + --file ${PROMPT_FILE} \ + --reverse-prompt "### Human:" \ + --in-prefix ' ' \ + "$@" diff --git a/llama.h b/llama.h index 64292265c..1241ba6c0 100644 --- a/llama.h +++ b/llama.h @@ -244,9 +244,9 @@ extern "C" { LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token); // Special tokens - LLAMA_API llama_token llama_token_bos(); - LLAMA_API llama_token llama_token_eos(); - LLAMA_API llama_token llama_token_nl(); + LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence + LLAMA_API llama_token llama_token_eos(); // end-of-sentence + LLAMA_API llama_token llama_token_nl(); // next-line // Sampling functions From bed92756172d4514b23aaf9744cf8e2dc892fc7b Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 15 Jun 2023 21:56:50 +0300 Subject: [PATCH 019/135] cmake : remove whitespaces --- CMakeLists.txt | 1 - 1 file changed, 1 deletion(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index de01e55ec..ea9f80b80 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -173,7 +173,6 @@ if (LLAMA_BLAS) /usr/include/openblas ) - message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}") add_compile_options(${BLAS_LINKER_FLAGS}) From a09f9195be39afb4b023b646c0a6ec8a86915174 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Thu, 15 Jun 2023 21:49:08 +0200 Subject: [PATCH 020/135] Fixed CUDA runtime version check (#1879) --- ggml-cuda.cu | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 0873e3e51..bd89d0a1f 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -25,7 +25,7 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); } \ } while (0) -#if CUDART_VERSION >= 12 +#if CUDART_VERSION >= 12000 #define CUBLAS_CHECK(err) \ do { \ cublasStatus_t err_ = (err); \ From 602c748863e15270d80d74aa2c3bf86ab8139e07 Mon Sep 17 00:00:00 2001 From: Borislav Stanimirov Date: Fri, 16 Jun 2023 09:58:11 +0300 Subject: [PATCH 021/135] gitignore : add several entries specific to Visual Studio (#1888) --- .gitignore | 2 ++ 1 file changed, 2 insertions(+) diff --git a/.gitignore b/.gitignore index 4b0422cd9..b3ff6526c 100644 --- a/.gitignore +++ b/.gitignore @@ -22,6 +22,7 @@ build-metal/ build-no-accel/ build-sanitize-addr/ build-sanitize-thread/ +out/ models/* *.bin @@ -41,6 +42,7 @@ models/* build-info.h arm_neon.h compile_commands.json +CMakeSettings.json __pycache__ From 3d0112261042b356621e93db3fa4c6798a5d098f Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Fri, 16 Jun 2023 20:08:44 +0300 Subject: [PATCH 022/135] CUDA : faster k-quant dot kernels (#1862) * cuda : faster k-quant dot kernels * Imrove Q2_K dot kernel on older GPUs We now have a K_QUANTS_PER_ITERATION macro, which should be set to 1 on older and to 2 on newer GPUs. With this, we preserve the performance of the original PR on RTX-4080, and are faster compared to master on GTX-1660. * Imrove Q6_K dot kernel on older GPUs Using the same K_QUANTS_PER_ITERATION macro as last commit, we preserve performance on RTX-4080 and speed up Q6_K on a GTX-1660. * Add LLAMA_CUDA_KQUANTS_ITER to CMakeLists.txt and Makefile Allowed values are 1 or 2. 2 gives the best performance on modern GPUs and is set as default. On older GPUs 1 may work better. * PR comments --------- Co-authored-by: Iwan Kawrakow --- CMakeLists.txt | 2 + Makefile | 5 + ggml-cuda.cu | 599 +++++++++++++++++++++++++++++++------------------ 3 files changed, 385 insertions(+), 221 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index ea9f80b80..dbbc0b5d3 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -70,6 +70,7 @@ set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor") option(LLAMA_CUBLAS "llama: use cuBLAS" OFF) set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels") set(LLAMA_CUDA_DMMV_Y "1" CACHE STRING "llama: y block size for dmmv CUDA kernels") +set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K") option(LLAMA_CLBLAST "llama: use CLBlast" OFF) option(LLAMA_METAL "llama: use Metal" OFF) option(LLAMA_K_QUANTS "llama: use k-quants" ON) @@ -201,6 +202,7 @@ if (LLAMA_CUBLAS) add_compile_definitions(GGML_USE_CUBLAS) add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X}) add_compile_definitions(GGML_CUDA_DMMV_Y=${LLAMA_CUDA_DMMV_Y}) + add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER}) if (LLAMA_STATIC) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static) diff --git a/Makefile b/Makefile index 09c8834f5..b24caf8dd 100644 --- a/Makefile +++ b/Makefile @@ -171,6 +171,11 @@ ifdef LLAMA_CUDA_DMMV_Y else NVCCFLAGS += -DGGML_CUDA_DMMV_Y=1 endif # LLAMA_CUDA_DMMV_Y +ifdef LLAMA_CUDA_KQUANTS_ITER + NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER) +else + NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2 +endif ggml-cuda.o: ggml-cuda.cu ggml-cuda.h $(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@ endif # LLAMA_CUBLAS diff --git a/ggml-cuda.cu b/ggml-cuda.cu index bd89d0a1f..7edd1a9f8 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -167,6 +167,12 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ #define GGML_CUDA_DMMV_Y 1 #endif +#ifndef K_QUANTS_PER_ITERATION +#define K_QUANTS_PER_ITERATION 2 +#else +static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); +#endif + static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; @@ -326,37 +332,6 @@ static __global__ void dequantize_block_q2_K(const void * vx, float * yy) { } -static __device__ void vec_dot_q2_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { - - const block_q2_K * x = (const block_q2_K *) vx; - - // if n is 0, we want to do the lower 128, else the upper 128, - // covering y[l+0], y[l+32], y[l+64], y[l+96] and - // y[l+16], y[l+48], y[l+80], y[l+112] - int n = iqs/128; // 0 or 1 - int r = iqs - 128*n; // 0...120 in steps of 8 - int l = r/8; // 0...15 in steps of 1 - - const float * y = yy + 128*n + l; - const uint8_t * q = x[ib].qs + 32*n + l; - const uint8_t * s = x[ib].scales + 8*n; - - const float dall = x[ib].d; - const float dmin = x[ib].dmin; - - float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4)) - + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4)) - + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4)) - + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4)) - + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4)) - + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4)) - + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4)) - + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4)); - - result = sum; - -} - static __global__ void dequantize_block_q3_K(const void * vx, float * yy) { int r = threadIdx.x/4; @@ -388,51 +363,6 @@ static __global__ void dequantize_block_q3_K(const void * vx, float * yy) { } -static __device__ void vec_dot_q3_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { - - const block_q3_K * x = (const block_q3_K *) vx; - - const uint32_t kmask1 = 0x03030303; - const uint32_t kmask2 = 0x0f0f0f0f; - - uint32_t aux[3]; - uint32_t utmp[4]; - - // if n is 0, we want to do the lower 128, else the upper 128, - // covering y[l+0], y[l+32], y[l+64], y[l+96] and - // y[l+16], y[l+48], y[l+80], y[l+112] - int n = iqs/128; // 0 or 1 - int r = iqs - 128*n; // 0...120 in steps of 8 - int l = r/8; // 0...15 in steps of 1 - - const float * y = yy + 128*n + l; - const uint8_t * q = x[ib].qs + 32*n + l; - const uint8_t * hm = x[ib].hmask + l; - const int8_t * s = (const int8_t *)utmp + 8*n; - - memcpy(aux, x[ib].scales, 12); - utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); - utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); - utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); - utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); - - const float dall = x[ib].d; - - const uint8_t m = 1 << (4*n); - - float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4)) - + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4)) - + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4)) - + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4)) - + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4)) - + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4)) - + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4)) - + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4)); - - result = sum * dall; - -} - static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) { if (j < 4) { d = q[j] & 63; m = q[j + 4] & 63; @@ -479,38 +409,6 @@ static __global__ void dequantize_block_q4_K(const void * vx, float * yy) { } } -static __device__ void vec_dot_q4_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { - - const block_q4_K * x = (const block_q4_K *) vx; - - // iqs is in 0...248 in steps of 8 => - const int j = iqs / 64; // j is in 0...3 - const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4 - const int is = 2*j; // is is in 0...6 in steps of 2 - - const float * y = yy + 64*j + ir; - const uint8_t * q = x[ib].qs + 32*j + ir; - - const float dall = x[ib].d; - const float dmin = x[ib].dmin; - - uint8_t sc, m; - get_scale_min_k4(is + 0, x[ib].scales, sc, m); - const float d1 = dall * sc; - const float m1 = dmin * m; - get_scale_min_k4(is + 1, x[ib].scales, sc, m); - const float d2 = dall * sc; - const float m2 = dmin * m; - - float sum = 0; - for (int k = 0; k < 4; ++k) { - sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1); - sum += y[k + 32] * (d2 * (q[k] >> 4) - m2); - } - result = sum; - -} - static __global__ void dequantize_block_q5_K(const void * vx, float * yy) { const block_q5_K * x = (const block_q5_K *) vx; @@ -544,43 +442,6 @@ static __global__ void dequantize_block_q5_K(const void * vx, float * yy) { y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2; } -static __device__ void vec_dot_q5_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { - - const block_q5_K * x = (const block_q5_K *) vx; - - // iqs is in 0...248 in steps of 8 => - const int j = iqs / 64; // j is in 0...3 - const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4 - const int is = 2*j; // is is in 0...6 in steps of 2 - - const float * y = yy + 64*j + ir; - const uint8_t * ql = x[ib].qs + 32*j + ir; - const uint8_t * qh = x[ib].qh + ir; - - const float dall = x[ib].d; - const float dmin = x[ib].dmin; - - uint8_t sc, m; - get_scale_min_k4(is + 0, x[ib].scales, sc, m); - const float d1 = dall * sc; - const float m1 = dmin * m; - get_scale_min_k4(is + 1, x[ib].scales, sc, m); - const float d2 = dall * sc; - const float m2 = dmin * m; - - uint8_t hm = 1 << is; - float sum = 0; - for (int k = 0; k < 4; ++k) { - sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1); - } - hm <<= 1; - for (int k = 0; k < 4; ++k) { - sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2); - } - result = sum; - -} - static __global__ void dequantize_block_q6_K(const void * vx, float * yy) { const block_q6_K * x = (const block_q6_K *) vx; @@ -606,31 +467,376 @@ static __global__ void dequantize_block_q6_K(const void * vx, float * yy) { y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); } -static __device__ void vec_dot_q6_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { +static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) { - const block_q6_K * x = (const block_q6_K *) vx; + static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); - const int ip = iqs / 128; // 0 or 1 - const int il = (iqs - 128*ip)/8; // 0...15 - const int is = 8*ip; + const int row = blockIdx.y*blockDim.y + threadIdx.y; + if (row > nrows) return; - const float * y = yy + 128*ip + il; + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; - const float d = x[ib].d; + const block_q2_K * x = (const block_q2_K *)vx + ib0; - const uint8_t * ql = x[ib].ql + 64*ip + il; - const uint8_t * qh = x[ib].qh + 32*ip + il; - const int8_t * sc = x[ib].scales + is; + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 + const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 - result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32) - + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32) - + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32) - + y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32) - + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32) - + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32) - + y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32) - + y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32); + const int step = 16/K_QUANTS_PER_ITERATION; + const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - step*im; // 0...7 + + const int l0 = K_QUANTS_PER_ITERATION*in; // 0...14 in steps of 4 + const int q_offset = 32*im + l0; + const int s_offset = 8*im; + const int y_offset = 128*im + l0; + + float tmp = 0; // partial sum for thread in warp + + uint32_t aux[4]; + const uint8_t * d = (const uint8_t *)aux; + const uint8_t * m = (const uint8_t *)(aux + 2); + + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + y_offset; + const uint8_t * q = x[i].qs + q_offset; + + const float dall = x[i].d; + const float dmin = x[i].dmin; + + const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset); + aux[0] = a[0] & 0x0f0f0f0f; + aux[1] = a[1] & 0x0f0f0f0f; + aux[2] = (a[0] >> 4) & 0x0f0f0f0f; + aux[3] = (a[1] >> 4) & 0x0f0f0f0f; + + float sum1 = 0, sum2 = 0; + for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { + sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3) + + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3) + + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3) + + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3) + + y[l+16] * d[1] * ((q[l+16] >> 0) & 3) + + y[l+48] * d[3] * ((q[l+16] >> 2) & 3) + + y[l+80] * d[5] * ((q[l+16] >> 4) & 3) + +y[l+112] * d[7] * ((q[l+16] >> 6) & 3); + sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6] + + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7]; + + } + tmp += dall * sum1 - dmin * sum2; + + } + + // sum up partial sums and write back result + __syncthreads(); +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + if (tid == 0) { + dst[row] = tmp; + } +} + +static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float * yy, float * dst, const int ncols) { + + const uint16_t kmask1 = 0x0303; + const uint16_t kmask2 = 0x0f0f; + + const int row = blockIdx.x; + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + const block_q3_K * x = (const block_q3_K *)vx + ib0; + + const int tid = threadIdx.x/2; // 0...15 + const int ix = threadIdx.x%2; // 0, 1 + + const int n = 2; // iterations in the inner loop + const int im = tid/8; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - 8*im; // 0...7 + + const uint8_t m = 1 << (4*im); + + const int l0 = n*in; // 0...28 in steps of 4 + const int q_offset = 32*im + l0; + const int y_offset = 128*im + l0; + + uint16_t utmp[4]; + const int8_t * s = (const int8_t *)utmp; + + const uint16_t s_shift = 4*im; + + float tmp = 0; // partial sum for thread in warp + + for (int i = ix; i < num_blocks_per_row; i += 2) { + + const float * y = yy + i * QK_K + y_offset; + const uint8_t * q = x[i].qs + q_offset; + const uint8_t * h = x[i].hmask + l0; + + const uint16_t * a = (const uint16_t *)x[i].scales; + utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4); + utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4); + utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4); + utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4); + + const float d = x[i].d; + + float sum = 0; + for (int l = 0; l < n; ++l) { + sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4)) + + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4)) + + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4)) + + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4)); + sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4)) + + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4)) + + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4)) + + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4)); + } + tmp += d * sum; + + } + + // sum up partial sums and write back result + __syncthreads(); +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + if (tid == 0) { + dst[row] = tmp; + } +} + +static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float * yy, float * dst, const int ncols) { + + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + + const int row = blockIdx.x; + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + const int tid = threadIdx.x/2; // 0...15 + const int ix = threadIdx.x%2; + + const int il = tid/4; // 0...3 + const int ir = tid - 4*il;// 0...3 + const int n = 4; + + const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 + const int in = il%2; + + const int l0 = n*(2*ir + in); + const int q_offset = 32*im + l0; + const int y_offset = 64*im + l0; + + uint16_t aux[4]; + const uint8_t * sc = (const uint8_t *)aux; + + const block_q4_K * x = (const block_q4_K *)vx + ib0; + + float tmp = 0; // partial sum for thread in warp + + for (int i = ix; i < num_blocks_per_row; i += 2) { + + const uint8_t * q1 = x[i].qs + q_offset; + const uint8_t * q2 = q1 + 64; + const float * y1 = yy + i*QK_K + y_offset; + const float * y2 = y1 + 128; + + const float dall = x[i].d; + const float dmin = x[i].dmin; + + const uint16_t * a = (const uint16_t *)x[i].scales; + aux[0] = a[im+0] & kmask1; + aux[1] = a[im+2] & kmask1; + aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); + aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); + + float4 s = {0.f, 0.f, 0.f, 0.f}; + float smin = 0; + for (int l = 0; l < n; ++l) { + s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4); + s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4); + smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; + } + tmp += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin; + + } + + // sum up partial sums and write back result + __syncthreads(); +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + if (tid == 0) { + dst[row] = tmp; + } +} + +static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float * yy, float * dst, const int ncols) { + + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + + //const int row = blockIdx.x*blockDim.y + threadIdx.y; + const int row = blockIdx.x; + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + const int tid = threadIdx.x/2; // 0...15 + const int ix = threadIdx.x%2; + + const int il = tid/4; // 0...3 + const int ir = tid - 4*il;// 0...3 + const int n = 4; + + const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 + const int in = il%2; + + const int l0 = n*(2*ir + in); + const int q_offset = 32*im + l0; + const int y_offset = 64*im + l0; + + const uint8_t hm1 = 1 << (2*im); + const uint8_t hm2 = hm1 << 4; + + uint16_t aux[4]; + const uint8_t * sc = (const uint8_t *)aux; + + const block_q5_K * x = (const block_q5_K *)vx + ib0; + + float tmp = 0; // partial sum for thread in warp + + for (int i = ix; i < num_blocks_per_row; i += 2) { + + const uint8_t * ql1 = x[i].qs + q_offset; + const uint8_t * ql2 = ql1 + 64; + const uint8_t * qh = x[i].qh + l0; + const float * y1 = yy + i*QK_K + y_offset; + const float * y2 = y1 + 128; + + const float dall = x[i].d; + const float dmin = x[i].dmin; + + const uint16_t * a = (const uint16_t *)x[i].scales; + aux[0] = a[im+0] & kmask1; + aux[1] = a[im+2] & kmask1; + aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); + aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); + + float4 sum = {0.f, 0.f, 0.f, 0.f}; + float smin = 0; + for (int l = 0; l < n; ++l) { + sum.x += y1[l+ 0] * ((ql1[l] & 0xF) + (qh[l] & (hm1 << 0) ? 16 : 0)); + sum.y += y1[l+32] * ((ql1[l] >> 4) + (qh[l] & (hm1 << 1) ? 16 : 0)); + sum.z += y2[l+ 0] * ((ql2[l] & 0xF) + (qh[l] & (hm2 << 0) ? 16 : 0)); + sum.w += y2[l+32] * ((ql2[l] >> 4) + (qh[l] & (hm2 << 1) ? 16 : 0)); + smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; + } + tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin; + + } + + // sum up partial sums and write back result + __syncthreads(); +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + if (tid == 0) { + dst[row] = tmp; + } +} + +static __global__ void dequantize_mul_mat_vec_q6_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) { + + static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); + + const int row = blockIdx.y*blockDim.y + threadIdx.y; + if (row > nrows) return; + + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + const block_q6_K * x = (const block_q6_K *)vx + ib0; + + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 + const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1 + + const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 + + const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - step*im; // 0...15 or 0...7 + +#if K_QUANTS_PER_ITERATION == 1 + const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 + const int is = 0; +#else + const int l0 = 4 * in; // 0, 4, 8, ..., 28 + const int is = in / 4; +#endif + const int ql_offset = 64*im + l0; + const int qh_offset = 32*im + l0; + const int s_offset = 8*im + is; + const int y_offset = 128*im + l0; + + float tmp = 0; // partial sum for thread in warp + + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + y_offset; + const uint8_t * ql = x[i].ql + ql_offset; + const uint8_t * qh = x[i].qh + qh_offset; + const int8_t * s = x[i].scales + s_offset; + + const float d = x[i].d; + +#if K_QUANTS_PER_ITERATION == 1 + float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32) + + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32) + + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32) + + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32) + + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32) + + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32) + + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32) + +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32); + tmp += sum; +#else + float sum = 0; + for (int l = 0; l < 4; ++l) { + sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32) + + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32) + + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32) + + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32); + } + tmp += sum; +#endif + + } + + // sum up partial sums and write back result + __syncthreads(); +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + if (tid == 0) { + dst[row] = tmp; + } } static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){ @@ -712,46 +918,6 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, } } -template -static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y, float * dst, const int ncols, const int nrows) { - const int row = blockIdx.y*blockDim.y + threadIdx.y; - - if (row >= nrows) { - return; - } - - const int tid = threadIdx.x; - - const int iter_stride = QK_K; - const int vals_per_iter = iter_stride / n_thread; - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row; - - float tmp = 0; // partial sum for thread in warp - - for (int i = 0; i < ncols; i += iter_stride) { - const int col = i + vals_per_iter*tid; - const int ib = ib0 + col/QK_K; // x block index - const int iqs = col%QK_K; // x quant index - const int iybs = col - col%QK_K; // y block start index - - float v; - dot_kernel(vx, ib, iqs, y + iybs, v); - tmp += v; - } - - // sum up partial sums and write back result - __syncthreads(); -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); - } - - if (tid == 0) { - dst[row] = tmp; - } -} - static __global__ void mul_mat_p021_f16_f32(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x) { const half * x = (half *) vx; @@ -1094,43 +1260,34 @@ static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, f const int block_num_y = (nrows + ny - 1) / ny; const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(32, ny, 1); - dequantize_mul_mat_vec_k<32, vec_dot_q2_K><<>>(vx, y, dst, ncols, nrows); + dequantize_mul_mat_vec_q2_k<<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const int ny = 2; - const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(1, block_num_y, 1); - const dim3 block_dims(32, ny, 1); - dequantize_mul_mat_vec_k<32, vec_dot_q3_K><<>>(vx, y, dst, ncols, nrows); + const dim3 block_dims(32, 1, 1); + dequantize_mul_mat_vec_q3_k<<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const int ny = 2; - const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(1, block_num_y, 1); - const dim3 block_dims(32, ny, 1); - dequantize_mul_mat_vec_k<32, vec_dot_q4_K><<>>(vx, y, dst, ncols, nrows); + const dim3 block_dims(32, 1, 1); + dequantize_mul_mat_vec_q4_k<<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const int ny = 2; - const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(1, block_num_y, 1); - const dim3 block_dims(32, ny, 1); - dequantize_mul_mat_vec_k<32, vec_dot_q5_K><<>>(vx, y, dst, ncols, nrows); + const dim3 block_dims(32, 1, 1); + dequantize_mul_mat_vec_q5_k<<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const int ny = 2; + const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(32, ny, 1); - dequantize_mul_mat_vec_k<32, vec_dot_q6_K><<>>(vx, y, dst, ncols, nrows); + dequantize_mul_mat_vec_q6_k<<>>(vx, y, dst, ncols, nrows); } static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { From 9cbf50c041a525d781c7764f493a5443924e4e38 Mon Sep 17 00:00:00 2001 From: Borislav Stanimirov Date: Fri, 16 Jun 2023 21:23:53 +0300 Subject: [PATCH 023/135] build : fix and ignore MSVC warnings (#1889) --- examples/baby-llama/baby-llama.cpp | 6 +++- examples/benchmark/benchmark-matmult.cpp | 10 ++++-- examples/common.cpp | 6 +++- examples/embedding/embedding.cpp | 4 +++ examples/main/main.cpp | 6 +++- examples/perplexity/perplexity.cpp | 4 +++ examples/quantize-stats/quantize-stats.cpp | 4 +++ examples/save-load-state/save-load-state.cpp | 2 +- .../train-text-from-scratch.cpp | 18 ++++++----- ggml.c | 6 ++++ llama.cpp | 4 +++ pocs/vdot/vdot.cpp | 4 +++ tests/test-quantize-fns.cpp | 13 +++++--- tests/test-quantize-perf.cpp | 4 +++ tests/test-sampling.cpp | 32 +++++++++---------- tests/test-tokenizer-0.cpp | 2 +- 16 files changed, 88 insertions(+), 37 deletions(-) diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index 0add6adc0..50e14c4ac 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -4,6 +4,10 @@ #include #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + float frand() { return (float)rand()/(float)RAND_MAX; } @@ -1470,7 +1474,7 @@ struct ggml_tensor * square_error_loss(struct ggml_context * ctx, struct ggml_te } struct ggml_tensor * cross_entropy_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { - const float eps = 1e-3; + const float eps = 1e-3f; return ggml_sum(ctx, ggml_neg(ctx, diff --git a/examples/benchmark/benchmark-matmult.cpp b/examples/benchmark/benchmark-matmult.cpp index 9f9ed9db0..39d15caeb 100644 --- a/examples/benchmark/benchmark-matmult.cpp +++ b/examples/benchmark/benchmark-matmult.cpp @@ -16,6 +16,10 @@ #include #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + float tensor_sum_elements(const ggml_tensor * tensor) { float sum = 0; if (tensor->type==GGML_TYPE_F32) { @@ -29,9 +33,9 @@ float tensor_sum_elements(const ggml_tensor * tensor) { } void tensor_dump(const ggml_tensor * tensor, const char * name) { - printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", name, + printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name, tensor->type, ggml_type_name(tensor->type), - (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]); + tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]); float sum = tensor_sum_elements(tensor); printf("Sum of tensor %s is %6.2f\n", name, sum); } @@ -120,7 +124,7 @@ int main(int argc, char ** argv) { ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS ctx_size += 1024*1024*16; - printf("Allocating Memory of size %li bytes, %li MB\n",ctx_size, (ctx_size/1024/1024)); + printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024)); struct ggml_init_params params = { /*.mem_size =*/ ctx_size, diff --git a/examples/common.cpp b/examples/common.cpp index b47f06273..055383bef 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -28,6 +28,10 @@ #include #endif +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + int32_t get_num_physical_cores() { #ifdef __linux__ // enumerate the set of thread siblings, num entries is num cores @@ -373,7 +377,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } else { throw std::exception(); } - } catch (const std::exception &e) { + } catch (const std::exception&) { invalid_param = true; break; } diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 03603b10f..860f99f67 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -4,6 +4,10 @@ #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + int main(int argc, char ** argv) { gpt_params params; diff --git a/examples/main/main.cpp b/examples/main/main.cpp index efa913e16..ef9e75fab 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -28,6 +28,10 @@ #include #endif +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + static console_state con_st; static llama_context ** g_ctx; @@ -348,7 +352,7 @@ int main(int argc, char ** argv) { if ((int)embd.size() > max_embd_size) { auto skipped_tokens = embd.size() - max_embd_size; console_set_color(con_st, CONSOLE_COLOR_ERROR); - printf("<>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); + printf("<>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); console_set_color(con_st, CONSOLE_COLOR_DEFAULT); fflush(stdout); embd.resize(max_embd_size); diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index e19c6825f..ae8cfe0af 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -5,6 +5,10 @@ #include #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); float max_logit = logits[0]; diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 6e4f7e1e0..6b8018ee2 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -19,6 +19,10 @@ #include #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + struct quantize_stats_params { std::string model = "models/7B/ggml-model-f16.bin"; bool verbose = false; diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index 91f04b6c7..da4d37ad0 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -37,7 +37,7 @@ int main(int argc, char ** argv) { // init auto ctx = llama_init_from_file(params.model.c_str(), lparams); auto tokens = std::vector(params.n_ctx); - auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), tokens.size(), true); + auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), int(tokens.size()), true); if (n_prompt_tokens < 1) { fprintf(stderr, "%s : failed to tokenize prompt\n", __func__); diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index 51271b497..7ec85951a 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -12,6 +12,9 @@ #include #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif struct random_normal_distribution { std::mt19937 gen; @@ -20,7 +23,6 @@ struct random_normal_distribution { float max; }; - struct random_uniform_distribution { std::mt19937 gen; std::uniform_real_distribution rd; @@ -2366,7 +2368,7 @@ void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) { file->write_u32(0); file->write_u32(0); file->write_u32(GGML_TYPE_F32); - file->seek(-file->tell() & 31, SEEK_CUR); + file->seek(0-file->tell() & 31, SEEK_CUR); return; } const char * name = ggml_get_name(tensor); @@ -2381,7 +2383,7 @@ void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) { file->write_u32(tensor->type); file->write_raw(ne, sizeof(ne[0]) * nd); file->write_raw(name, name_len); - file->seek(-file->tell() & 31, SEEK_CUR); + file->seek(0-file->tell() & 31, SEEK_CUR); file->write_raw(tensor->data, ggml_nbytes(tensor)); } @@ -2402,7 +2404,7 @@ void read_tensor(struct llama_file * file, struct ggml_tensor * tensor) { std::string name = file->read_string(name_len); GGML_ASSERT(strncmp(ggml_get_name(tensor), name.c_str(), sizeof(tensor->name)-1) == 0); - file->seek(-file->tell() & 31, SEEK_CUR); + file->seek(0-file->tell() & 31, SEEK_CUR); file->read_raw(tensor->data, ggml_nbytes(tensor)); } @@ -2756,8 +2758,8 @@ struct train_params get_default_train_params() { params.lbfgs_n_iter = 16; params.adam_n_iter = 16; - params.adam_alpha = 1e-3; - params.adam_decay = 1e-3; + params.adam_alpha = 1e-3f; + params.adam_decay = 1e-3f; params.mem_model_gb = 2; params.mem_compute_gb = 24; @@ -3331,8 +3333,8 @@ int main(int argc, char ** argv) { int n_gen = params.n_predict; int sample_ctx = n_tokens - n_tokens/8; - sampler.params.temp = 0.2; - sampler.params.repeat_penalty = 1.1; + sampler.params.temp = 0.2f; + sampler.params.repeat_penalty = 1.1f; sampler.params.mirostat = 2; init_sampler(&sampler, lctx); diff --git a/ggml.c b/ggml.c index c0efa1977..0eda7f338 100644 --- a/ggml.c +++ b/ggml.c @@ -35,6 +35,12 @@ #define static_assert(cond, msg) struct global_scope_noop_trick #endif +#if defined(_MSC_VER) +// disable "possible loss of data" to avoid hundreds of casts +// we should just be careful :) +#pragma warning(disable: 4244 4267) +#endif + #if defined(_WIN32) #include diff --git a/llama.cpp b/llama.cpp index b8bc0d821..a90438844 100644 --- a/llama.cpp +++ b/llama.cpp @@ -40,6 +40,10 @@ #include #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + #define LLAMA_USE_SCRATCH #define LLAMA_MAX_SCRATCH_BUFFERS 16 diff --git a/pocs/vdot/vdot.cpp b/pocs/vdot/vdot.cpp index 26bf50c9a..7b18090d6 100644 --- a/pocs/vdot/vdot.cpp +++ b/pocs/vdot/vdot.cpp @@ -10,6 +10,10 @@ #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + constexpr int kVecSize = 1 << 18; float drawFromGaussianPdf(std::mt19937& rndm) { diff --git a/tests/test-quantize-fns.cpp b/tests/test-quantize-fns.cpp index 728460b5e..c40f1b29c 100644 --- a/tests/test-quantize-fns.cpp +++ b/tests/test-quantize-fns.cpp @@ -9,12 +9,15 @@ #include #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif -const float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001; -const float MAX_QUANTIZATION_TOTAL_ERROR = 0.002; -const float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075; -const float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040; -const float MAX_DOT_PRODUCT_ERROR = 0.02; +const float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f; +const float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f; +const float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f; +const float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f; +const float MAX_DOT_PRODUCT_ERROR = 0.02f; const char* RESULT_STR[] = {"ok", "FAILED"}; diff --git a/tests/test-quantize-perf.cpp b/tests/test-quantize-perf.cpp index d5514455d..600375771 100644 --- a/tests/test-quantize-perf.cpp +++ b/tests/test-quantize-perf.cpp @@ -13,6 +13,10 @@ #include #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + #define MAX_ALIGNMENT 64 #define QK 32 #define WARMUP 5 diff --git a/tests/test-sampling.cpp b/tests/test-sampling.cpp index 0e675127f..5d693f7b5 100644 --- a/tests/test-sampling.cpp +++ b/tests/test-sampling.cpp @@ -176,27 +176,27 @@ void test_frequency_presence_penalty( int main(void) { ggml_time_init(); - test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4}, 1); - test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2}, 3); + test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1); + test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3); - test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4}, 0); - test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3}, 0.7); - test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2, 0.1}, 1); + test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0); + test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f); + test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1); - test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3}, 0.25); - test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3, 0.25}, 0.75); - test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3, 0.25}, 0.99); + test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f); + test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f); + test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f); - test_typical({0.97, 0.01, 0.01, 0.01}, {0.97}, 0.5); - test_typical({0.4, 0.2, 0.2, 0.2}, {0.2, 0.2, 0.2}, 0.5); + test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f); + test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f); - test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0}, {0.25, 0.25, 0.25, 0.25, 0}, 50.0); - test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.5, 0.5, 0, 0, 0}, 50.0); - test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.5, 0.5, 0, 0, 0}, 50.0); + test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f); + test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f); + test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f); - test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0}, {0.249997, 0.249997, 0.249997, 0.249997, 0.000011}, 5.0, 5.0); - test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.499966, 0.499966, 0.000023, 0.000023, 0.000023}, 5.0, 5.0); - test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.499977, 0.499977, 0.000023, 0.000023, 0.000000}, 5.0, 5.0); + test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 5.0f, 5.0f); + test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 5.0f, 5.0f); + test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 5.0f, 5.0f); printf("OK\n"); } diff --git a/tests/test-tokenizer-0.cpp b/tests/test-tokenizer-0.cpp index b08984571..ab1538a0c 100644 --- a/tests/test-tokenizer-0.cpp +++ b/tests/test-tokenizer-0.cpp @@ -53,7 +53,7 @@ int main(int argc, char **argv) { for (const auto & test_kv : k_tests()) { std::vector res(test_kv.first.size()); - const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), res.size(), true); + const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), int(res.size()), true); res.resize(n); bool correct = res.size() == test_kv.second.size(); From 5b9ccaf104cc1054d4f8f17bc8a4b8dc949e5527 Mon Sep 17 00:00:00 2001 From: FrankHB Date: Sat, 17 Jun 2023 02:25:01 +0800 Subject: [PATCH 024/135] Fixed possible macro redefinition (#1892) MinGW libstdc++ may define `NOMINMAX` unconditionally. This fixes the case when it is already defined. --- examples/main/main.cpp | 2 ++ 1 file changed, 2 insertions(+) diff --git a/examples/main/main.cpp b/examples/main/main.cpp index ef9e75fab..a051fcbc5 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -23,7 +23,9 @@ #include #elif defined (_WIN32) #define WIN32_LEAN_AND_MEAN +#ifndef NOMINMAX #define NOMINMAX +#endif #include #include #endif From ac3b8869538c7fbdb48ff141d78c4dea091789f0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Fri, 16 Jun 2023 20:25:51 +0200 Subject: [PATCH 025/135] llama : fix embd when offloading non-repeating layers (#1891) --- llama.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/llama.cpp b/llama.cpp index a90438844..81f047ed2 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1658,7 +1658,7 @@ static bool llama_eval_internal( // cur = cur*norm(broadcasted) cur = ggml_mul(ctx0, cur, model.norm); - offload_func_nr(cur); + // offload_func_nr(cur); // TODO CPU + GPU mirrored backend ggml_set_name(cur, "result_norm"); embeddings = cur; From 13fe9d2d84f30cab613c960bf66ac83916006694 Mon Sep 17 00:00:00 2001 From: Zenix Date: Sat, 17 Jun 2023 03:53:04 +0900 Subject: [PATCH 026/135] cmake : add auto detection of BLAS_INCLUDE_DIRS (#1886) --- CMakeLists.txt | 56 +++++++++++++++++++++++++++++++++++++++++--------- 1 file changed, 46 insertions(+), 10 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index dbbc0b5d3..935fba838 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -159,23 +159,59 @@ if (LLAMA_BLAS) if ($(CMAKE_VERSION) VERSION_GREATER_EQUAL 3.22) set(BLA_SIZEOF_INTEGER 8) endif() + set(BLA_VENDOR ${LLAMA_BLAS_VENDOR}) find_package(BLAS) + if (BLAS_FOUND) message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}") - # BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake. - # see https://gitlab.kitware.com/cmake/cmake/-/issues/20268 - find_path(BLAS_INCLUDE_DIRS - NAMES cblas.h - HINTS - /usr/include - /usr/local/include - /usr/include/openblas - ) + if ("${BLAS_INCLUDE_DIRS}" STREQUAL "") + # BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake. + # see https://gitlab.kitware.com/cmake/cmake/-/issues/20268 + find_package(PkgConfig REQUIRED) + if (${LLAMA_BLAS_VENDOR} MATCHES "Generic") + pkg_check_modules(DepBLAS REQUIRED blas) + elseif (${LLAMA_BLAS_VENDOR} MATCHES "OpenBLAS") + pkg_check_modules(DepBLAS REQUIRED openblas) + elseif (${LLAMA_BLAS_VENDOR} MATCHES "FLAME") + pkg_check_modules(DepBLAS REQUIRED blis) + elseif (${LLAMA_BLAS_VENDOR} MATCHES "ATLAS") + pkg_check_modules(DepBLAS REQUIRED blas-atlas) + elseif (${LLAMA_BLAS_VENDOR} MATCHES "FlexiBLAS") + pkg_check_modules(DepBLAS REQUIRED flexiblas_api) + elseif (${LLAMA_BLAS_VENDOR} MATCHES "Intel") + # all Intel* libraries share the same include path + pkg_check_modules(DepBLAS REQUIRED mkl-sdl) + elseif (${LLAMA_BLAS_VENDOR} MATCHES "NVHPC") + # this doesn't provide pkg-config + # suggest to assign BLAS_INCLUDE_DIRS on your own + if ("${NVHPC_VERSION}" STREQUAL "") + message(WARNING "Better to set NVHPC_VERSION") + else() + set(DepBLAS_FOUND ON) + set(DepBLAS_INCLUDE_DIRS "/opt/nvidia/hpc_sdk/${CMAKE_SYSTEM_NAME}_${CMAKE_SYSTEM_PROCESSOR}/${NVHPC_VERSION}/math_libs/include") + endif() + endif() + if (DepBLAS_FOUND) + set(BLAS_INCLUDE_DIRS ${DepBLAS_INCLUDE_DIRS}) + else() + message(WARNING "BLAS_INCLUDE_DIRS neither been provided nor been automatically" + " detected by pkgconfig, trying to find cblas.h from possible paths...") + find_path(BLAS_INCLUDE_DIRS + NAMES cblas.h + HINTS + /usr/include + /usr/local/include + /usr/include/openblas + /opt/homebrew/opt/openblas/include + /usr/local/opt/openblas/include + /usr/include/x86_64-linux-gnu/openblas/include + ) + endif() + endif() message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}") - add_compile_options(${BLAS_LINKER_FLAGS}) add_compile_definitions(GGML_USE_OPENBLAS) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES}) From b41b4cad6f956b5f501db0711dd7007c32b5eee5 Mon Sep 17 00:00:00 2001 From: SuperUserNameMan Date: Fri, 16 Jun 2023 20:58:09 +0200 Subject: [PATCH 027/135] examples : add "simple" (#1840) * Create `simple.cpp` * minimalist example `CMakeLists.txt` * Update Makefile for minimalist example * remove 273: Trailing whitespace * removed trailing white spaces simple.cpp * typo and comments simple.cpp --------- Co-authored-by: Georgi Gerganov --- Makefile | 8 +- examples/simple/CMakeLists.txt | 7 ++ examples/simple/simple.cpp | 177 +++++++++++++++++++++++++++++++++ 3 files changed, 191 insertions(+), 1 deletion(-) create mode 100644 examples/simple/CMakeLists.txt create mode 100644 examples/simple/simple.cpp diff --git a/Makefile b/Makefile index b24caf8dd..5306a114f 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch +BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple ifdef LLAMA_BUILD_SERVER BUILD_TARGETS += server @@ -276,6 +276,12 @@ main: examples/main/main.cpp build-info.h ggml. @echo '==== Run ./main -h for help. ====' @echo +simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + @echo + @echo '==== Run ./simple -h for help. ====' + @echo + quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) diff --git a/examples/simple/CMakeLists.txt b/examples/simple/CMakeLists.txt new file mode 100644 index 000000000..1568f7364 --- /dev/null +++ b/examples/simple/CMakeLists.txt @@ -0,0 +1,7 @@ +set(TARGET simple) +add_executable(${TARGET} simple.cpp) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp new file mode 100644 index 000000000..76f991cdc --- /dev/null +++ b/examples/simple/simple.cpp @@ -0,0 +1,177 @@ +#ifndef _GNU_SOURCE +#define _GNU_SOURCE +#endif + +#include "common.h" +#include "llama.h" +#include "build-info.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) +#include +#include +#elif defined (_WIN32) +#define WIN32_LEAN_AND_MEAN +#define NOMINMAX +#include +#include +#endif + + + +int main(int argc, char ** argv) +{ + gpt_params params; + + //--------------------------------- + // Print help : + //--------------------------------- + + if ( argc == 1 || argv[1][0] == '-' ) + { + printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] ); + return 1 ; + } + + //--------------------------------- + // Load parameters : + //--------------------------------- + + if ( argc >= 2 ) + { + params.model = argv[1]; + } + + if ( argc >= 3 ) + { + params.prompt = argv[2]; + } + + if ( params.prompt.empty() ) + { + params.prompt = "Hello my name is"; + } + + //--------------------------------- + // Init LLM : + //--------------------------------- + + llama_init_backend(); + + llama_context * ctx ; + + ctx = llama_init_from_gpt_params( params ); + + if ( ctx == NULL ) + { + fprintf( stderr , "%s: error: unable to load model\n" , __func__ ); + return 1; + } + + //--------------------------------- + // Tokenize the prompt : + //--------------------------------- + + std::vector tokens_list; + tokens_list = ::llama_tokenize( ctx , params.prompt , true ); + + const int max_context_size = llama_n_ctx( ctx ); + const int max_tokens_list_size = max_context_size - 4 ; + + if ( (int)tokens_list.size() > max_tokens_list_size ) + { + fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" , + __func__ , (int)tokens_list.size() , max_tokens_list_size ); + return 1; + } + + fprintf( stderr, "\n\n" ); + + // Print the tokens from the prompt : + + for( auto id : tokens_list ) + { + printf( "%s" , llama_token_to_str( ctx , id ) ); + } + + fflush(stdout); + + + //--------------------------------- + // Main prediction loop : + //--------------------------------- + + // The LLM keeps a contextual cache memory of previous token evaluation. + // Usually, once this cache is full, it is required to recompute a compressed context based on previous + // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist + // example, we will just stop the loop once this cache is full or once an end of stream is detected. + + while ( llama_get_kv_cache_token_count( ctx ) < max_context_size ) + { + //--------------------------------- + // Evaluate the tokens : + //--------------------------------- + + if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) ) + { + fprintf( stderr, "%s : failed to eval\n" , __func__ ); + return 1; + } + + tokens_list.clear(); + + //--------------------------------- + // Select the best prediction : + //--------------------------------- + + llama_token new_token_id = 0; + + auto logits = llama_get_logits( ctx ); + auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens) + + std::vector candidates; + candidates.reserve( n_vocab ); + + for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ ) + { + candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } ); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + + // Select it using the "Greedy sampling" method : + new_token_id = llama_sample_token_greedy( ctx , &candidates_p ); + + + // is it an end of stream ? + if ( new_token_id == llama_token_eos() ) + { + fprintf(stderr, " [end of text]\n"); + break; + } + + // Print the new token : + printf( "%s" , llama_token_to_str( ctx , new_token_id ) ); + fflush( stdout ); + + // Push this new token for next evaluation : + tokens_list.push_back( new_token_id ); + + } // wend of main loop + + llama_free( ctx ); + + return 0; +} + +// EOF From d411968e990c37f51328849c96a743dd78f3c3dd Mon Sep 17 00:00:00 2001 From: 0cc4m Date: Fri, 16 Jun 2023 20:59:49 +0200 Subject: [PATCH 028/135] opencl : support k-quants (#1836) * Porting q2_k kernel to OpenCL * Set global and local sizes for kernel calls for dequantizing k-quants * Added q6_k kernel * Fix q4_k opencl struct order * Replace uchar with uint8_t * Finish dequant kernels * Added OpenCL DMMV kernels * Fix q2_k, improve code * Fix q3_k * Shorten switch statements * Improve code formatting --------- Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> --- ggml-opencl.cpp | 493 +++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 489 insertions(+), 4 deletions(-) diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 5df922abd..1d4db96ee 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -15,7 +15,7 @@ #include "ggml.h" -#define CL_DMMV_BLOCK_SIZE 32; +#define CL_DMMV_BLOCK_SIZE 32 #define MULTILINE_QUOTE(...) #__VA_ARGS__ static std::string program_source = MULTILINE_QUOTE( @@ -59,6 +59,46 @@ struct __attribute__ ((packed)) block_q8_0 int8_t qs[QK8_0]; }; +struct __attribute__((packed)) block_q2_K +{ + uint8_t scales[16]; + uint8_t qs[64]; + half d; + half dmin; +}; + +struct __attribute__((packed)) block_q3_K +{ + uint8_t hmask[32]; + uint8_t qs[64]; + uint8_t scales[12]; + half d; +}; + +struct __attribute__((packed)) block_q4_K +{ + half d; + half dmin; + uint8_t scales[12]; + uint8_t qs[128]; +}; + +struct __attribute__((packed)) block_q5_K +{ + half d; + half dmin; + uint8_t scales[12]; + uint8_t qh[32]; + uint8_t qs[128]; +}; + +struct __attribute__((packed)) block_q6_K +{ + uint8_t ql[128]; + uint8_t qh[64]; + int8_t scales[16]; + half d; +}; __kernel void convert_fp16_to_fp32(__global half* x, __global float* y) { const uint i = get_global_id(0); @@ -131,8 +171,314 @@ void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float *v0 = vload_half(0, &x[ib + 0]); *v1 = vload_half(0, &x[ib + 1]); } + +inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m) +{ + if (j < 4) + { + *d = q[j] & 63; + *m = q[j + 4] & 63; + } + else + { + *d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4); + *m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4); + } +} + +__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy) +{ + const int i = get_group_id(0); + const int tid = get_local_id(0); + const int n = tid / 32; + const int l = tid - 32 * n; + const int is = 8 * n + l / 16; + + const uint8_t q = x[i].qs[32 * n + l]; + __global float *y = yy + i * 256 + 128 * n; + + const float dall = vload_half(0, &x[i].d); + const float dmin = vload_half(0, &x[i].dmin); + + y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4); + y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4); + y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4); + y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4); +} + +__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy) +{ + int r = get_local_id(0) / 4; + int i = get_group_id(0); + int tid = r / 2; + int is0 = r % 2; + int l0 = 16 * is0 + 4 * (get_local_id(0) % 4); + int n = tid / 4; + int j = tid - 4 * n; + + uint8_t m = 1 << (4 * n + j); + int is = 8 * n + 2 * j + is0; + int shift = 2 * j; + + int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4) + : is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4) + : is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4) + : (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4); + float d_all = vload_half(0, &x[i].d); + float dl = d_all * (us - 32); + + __global float *y = yy + i * 256 + 128 * n + 32 * j; + const __global uint8_t *q = x[i].qs + 32 * n; + const __global uint8_t *hm = x[i].hmask; + + for (int l = l0; l < l0 + 4; ++l) + y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); +} + +__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy) +{ + const int i = get_group_id(0); + const int tid = get_local_id(0); + const int il = tid / 8; + const int ir = tid % 8; + const int is = 2 * il; + const int n = 4; + + __global float *y = yy + i * 256 + 64 * il + n * ir; + + const float dall = vload_half(0, &x[i].d); + const float dmin = vload_half(0, &x[i].dmin); + + __global const uint8_t *q = x[i].qs + 32 * il + n * ir; + + uint8_t sc, m; + get_scale_min_k4(is + 0, x[i].scales, &sc, &m); + float d1 = dall * sc; + float m1 = dmin * m; + get_scale_min_k4(is + 1, x[i].scales, &sc, &m); + float d2 = dall * sc; + float m2 = dmin * m; + for (int l = 0; l < n; ++l) + { + y[l + 0] = d1 * (q[l] & 0xF) - m1; + y[l + 32] = d2 * (q[l] >> 4) - m2; + } +} + +__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy) +{ + const int i = get_group_id(0); + const int tid = get_local_id(0); + const int il = tid / 16; + const int ir = tid % 16; + const int is = 2 * il; + + __global float *y = yy + i * 256 + 64 * il + 2 * ir; + + const float dall = vload_half(0, &x[i].d); + const float dmin = vload_half(0, &x[i].dmin); + + __global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir; + __global const uint8_t *qh = x[i].qh + 2 * ir; + + uint8_t sc, m; + get_scale_min_k4(is + 0, x[i].scales, &sc, &m); + const float d1 = dall * sc; + const float m1 = dmin * m; + get_scale_min_k4(is + 1, x[i].scales, &sc, &m); + const float d2 = dall * sc; + const float m2 = dmin * m; + + uint8_t hm = 1 << (2 * il); + y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1; + y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1; + hm <<= 1; + y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2; + y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2; +} + +__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy) +{ + const int i = get_group_id(0); + const int tid = get_local_id(0); + const int ip = tid / 32; + const int il = tid - 32 * ip; + const int is = 8 * ip + il / 16; + + __global float *y = yy + i * 256 + 128 * ip + il; + + const float d = vload_half(0, &x[i].d); + + __global const uint8_t *ql = x[i].ql + 64 * ip + il; + const uint8_t qh = x[i].qh[32 * ip + il]; + __global const int8_t *sc = x[i].scales + is; + + y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32); + y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); + y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); + y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); +} + + +void vec_dot_q2_K(__global const struct block_q2_K* x, const int ib, const int iqs, const __global float *yy, float *result) { + + int n = iqs / 128; + int r = iqs - 128 * n; + int l = r / 8; + + __global const float *y = yy + 128 * n + l; + __global const uint8_t *q = x[ib].qs + 32 * n + l; + __global const uint8_t *s = x[ib].scales + 8 * n; + + const float dall = vload_half(0, &x[ib].d); + const float dmin = vload_half(0, &x[ib].dmin); + + float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4)) + + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4)) + + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4)) + + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4)) + + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4)) + + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4)) + + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4)) + + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4)); + + *result = sum; +} + +void vec_dot_q3_K(__global const struct block_q3_K* x, const int ib, const int iqs, const __global float *yy, float *result) { + + const uint32_t kmask1 = 0x03030303; + const uint32_t kmask2 = 0x0f0f0f0f; + + uint32_t aux[3]; + uint32_t utmp[4]; + + int n = iqs/128; + int r = iqs - 128*n; + int l = r/8; + + __global const float * y = yy + 128*n + l; + __global const uint8_t * q = x[ib].qs + 32*n + l; + __global const uint8_t * hm = x[ib].hmask + l; + const int8_t * s = (const int8_t *)utmp + 8*n; + + aux[0] = x[ib].scales[0] | x[ib].scales[1] << 8 | x[ib].scales[2] << 16 | x[ib].scales[3] << 24; + aux[1] = x[ib].scales[4] | x[ib].scales[5] << 8 | x[ib].scales[6] << 16 | x[ib].scales[7] << 24; + aux[2] = x[ib].scales[8] | x[ib].scales[9] << 8 | x[ib].scales[10] << 16 | x[ib].scales[11] << 24; + + utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); + utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); + utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); + utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); + + const float dall = vload_half(0, &x[ib].d); + const uint8_t m = 1 << (4*n); + + float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4)) + + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4)) + + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4)) + + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4)) + + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4)) + + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4)) + + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4)) + + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4)); + + *result = sum * dall; + +} + +void vec_dot_q4_K(__global const struct block_q4_K* x, const int ib, const int iqs, const __global float *yy, float *result) { + + const int j = iqs / 64; // j is in 0...3 + const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4 + const int is = 2*j; // is is in 0...6 in steps of 2 + + __global const float * y = yy + 64*j + ir; + __global const uint8_t * q = x[ib].qs + 32*j + ir; + + const float dall = vload_half(0, &x[ib].d); + const float dmin = vload_half(0, &x[ib].dmin); + + uint8_t sc, m; + get_scale_min_k4(is + 0, x[ib].scales, &sc, &m); + const float d1 = dall * sc; + const float m1 = dmin * m; + get_scale_min_k4(is + 1, x[ib].scales, &sc, &m); + const float d2 = dall * sc; + const float m2 = dmin * m; + + float sum = 0; + for (int k = 0; k < 4; ++k) { + sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1); + sum += y[k + 32] * (d2 * (q[k] >> 4) - m2); + } + + *result = sum; +} + +void vec_dot_q5_K(__global const struct block_q5_K* x, const int ib, const int iqs, const __global float *yy, float *result) { + + const int j = iqs / 64; + const int ir = (iqs - 64*j)/2; + const int is = 2*j; + + __global const float * y = yy + 64*j + ir; + __global const uint8_t * ql = x[ib].qs + 32*j + ir; + __global const uint8_t * qh = x[ib].qh + ir; + + const float dall = vload_half(0, &x[ib].d); + const float dmin = vload_half(0, &x[ib].dmin); + + uint8_t sc, m; + get_scale_min_k4(is + 0, x[ib].scales, &sc, &m); + const float d1 = dall * sc; + const float m1 = dmin * m; + get_scale_min_k4(is + 1, x[ib].scales, &sc, &m); + const float d2 = dall * sc; + const float m2 = dmin * m; + + uint8_t hm = 1 << is; + float sum = 0; + for (int k = 0; k < 4; ++k) { + sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1); + } + hm <<= 1; + for (int k = 0; k < 4; ++k) { + sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2); + } + *result = sum; + +} + +void vec_dot_q6_K(__global const struct block_q6_K* x, const int ib, const int iqs, const __global float *yy, float *result) { + + + const int ip = iqs / 128; // 0 or 1 + const int il = (iqs - 128*ip)/8; // 0...15 + const int is = 8*ip; + + __global const float * y = yy + 128*ip + il; + + const float d = vload_half(0, &x[ib].d); + + __global const uint8_t * ql = x[ib].ql + 64*ip + il; + __global const uint8_t * qh = x[ib].qh + 32*ip + il; + __global const int8_t * sc = x[ib].scales + is; + + *result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32) + + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32) + + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32) + + y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32) + + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32) + + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32) + + y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32) + + y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32); + +} + ); + std::string dequant_template = MULTILINE_QUOTE( __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) { const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2; @@ -160,7 +506,7 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) { std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE( __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { const int block_size = get_local_size(0); - const int row = get_global_id(0) / block_size; + const int row = get_group_id(0); const int tid = get_local_id(0); const uint qk = QUANT_K; @@ -199,6 +545,45 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float } ); +std::string dequant_mul_mat_vec_k_template = MULTILINE_QUOTE( +__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { + const int block_size = get_local_size(0); + const int row = get_group_id(0); + const int tid = get_local_id(0); + + const int iter_stride = 256; + const int vals_per_iter = iter_stride / block_size; + const int num_blocks_per_row = ncols / 256; + const int ib0 = row*num_blocks_per_row; + + tmp[tid] = 0; + + for (int i = 0; i < ncols; i += iter_stride) { + const int col = i + vals_per_iter*tid; + const int ib = ib0 + col/256; // x block index + const int iqs = col%256; // x quant index + const int iybs = col - col%256; // y block start index + + // dequantize + float v; + DOT_KERNEL(x, ib, iqs, y + iybs, &v); + tmp[tid] += v; + } + + // sum up partial sums and write back result + barrier(CLK_LOCAL_MEM_FENCE); + for (int s=block_size/2; s>0; s>>=1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(CLK_LOCAL_MEM_FENCE); + } + if (tid == 0) { + dst[row] = tmp[0]; + } +} +); + std::string mul_template = MULTILINE_QUOTE( __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) { const int i = get_group_id(0)*get_local_size(0) + get_local_id(0); @@ -260,6 +645,18 @@ std::array mul_str_values = { "mul_f32", "float" }; +std::array dmmv_k_str_keys = { + "KERNEL_NAME", "X_TYPE", "DOT_KERNEL" +}; + +std::array dmmv_k_str_values = { + "dequantize_mul_mat_vec_q2_K", "struct block_q2_K", "vec_dot_q2_K", + "dequantize_mul_mat_vec_q3_K", "struct block_q3_K", "vec_dot_q3_K", + "dequantize_mul_mat_vec_q4_K", "struct block_q4_K", "vec_dot_q4_K", + "dequantize_mul_mat_vec_q5_K", "struct block_q5_K", "vec_dot_q5_K", + "dequantize_mul_mat_vec_q6_K", "struct block_q6_K", "vec_dot_q6_K", +}; + std::string& replace(std::string& s, const std::string& from, const std::string& to) { size_t pos = 0; while ((pos = s.find(from, pos)) != std::string::npos) { @@ -289,6 +686,14 @@ std::string generate_kernels() { } src << mul_kernel << '\n'; } + for (size_t i = 0; i < dmmv_k_str_values.size(); i += dmmv_k_str_keys.size()) { + std::string dmmv_k_kernel = dequant_mul_mat_vec_k_template; + for (size_t j = 0; j < dmmv_k_str_keys.size(); j++) { + replace(dmmv_k_kernel, dmmv_k_str_keys[j], dmmv_k_str_values[i + j]); + } + src << dmmv_k_kernel << '\n'; + } + return src.str(); } @@ -300,6 +705,8 @@ static cl_program program; static cl_kernel convert_row_f16_cl; static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; +static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl; +static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl; static cl_kernel mul_f32_cl; static bool fp16_support; @@ -529,6 +936,12 @@ void ggml_cl_init(void) { CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err)); CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err)); CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); + CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); + CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err)); + CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err)); + CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err)); + CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err)); + CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err)); // dequant mul mat kernel CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err)); @@ -537,6 +950,11 @@ void ggml_cl_init(void) { CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err)); CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err)); + CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err)); + CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err)); + CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err)); + CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err)); + CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err)); // mul kernel CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err)); @@ -554,6 +972,16 @@ static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) { return &dequantize_row_q5_1_cl; case GGML_TYPE_Q8_0: return &dequantize_row_q8_0_cl; + case GGML_TYPE_Q2_K: + return &dequantize_block_q2_k_cl; + case GGML_TYPE_Q3_K: + return &dequantize_block_q3_k_cl; + case GGML_TYPE_Q4_K: + return &dequantize_block_q4_k_cl; + case GGML_TYPE_Q5_K: + return &dequantize_block_q5_k_cl; + case GGML_TYPE_Q6_K: + return &dequantize_block_q6_k_cl; case GGML_TYPE_F16: return &convert_row_f16_cl; default: @@ -561,6 +989,50 @@ static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) { } } +static size_t ggml_cl_global_denom(ggml_type type) { + switch (type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + return 1; + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + return 4; + case GGML_TYPE_Q4_K: + return 8; + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + return 4; + case GGML_TYPE_F16: + default: + return 1; + } +} + +static size_t ggml_cl_local_size(ggml_type type) { + switch (type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + return 0; + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + return 64; + case GGML_TYPE_Q4_K: + return 32; + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + return 64; + case GGML_TYPE_F16: + default: + return 0; + } +} + static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: @@ -575,6 +1047,16 @@ static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) { return &dequantize_mul_mat_vec_q8_0_cl; case GGML_TYPE_F16: return &convert_mul_mat_vec_f16_cl; + case GGML_TYPE_Q2_K: + return &dequantize_mul_mat_vec_q2_K_cl; + case GGML_TYPE_Q3_K: + return &dequantize_mul_mat_vec_q3_K_cl; + case GGML_TYPE_Q4_K: + return &dequantize_mul_mat_vec_q4_K_cl; + case GGML_TYPE_Q5_K: + return &dequantize_mul_mat_vec_q5_K_cl; + case GGML_TYPE_Q6_K: + return &dequantize_mul_mat_vec_q6_K_cl; default: return nullptr; } @@ -1017,6 +1499,9 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type); GGML_ASSERT(to_fp32_cl != nullptr); + const size_t global_denom = ggml_cl_global_denom(type); + const size_t local = ggml_cl_local_size(type); + size_t ev_idx = 0; std::vector events; @@ -1049,10 +1534,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++)); } else { // general dequantization kernel + CLBlast matrix matrix multiplication // convert src0 to fp32 on device - const size_t global = x_ne; + const size_t global = x_ne / global_denom; CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); - CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); + CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); // copy src1 to device CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); From 92f20d9942c86daeb78637bdad7296a572f4da28 Mon Sep 17 00:00:00 2001 From: David Yang Date: Sat, 17 Jun 2023 14:51:54 +0800 Subject: [PATCH 029/135] train : get raw text instead of page with html (#1905) We probably want to train using just the text of Shakespeare instead of the html of the page displaying his work. --- examples/train-text-from-scratch/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/train-text-from-scratch/README.md b/examples/train-text-from-scratch/README.md index 5344d1f52..726ec47c0 100644 --- a/examples/train-text-from-scratch/README.md +++ b/examples/train-text-from-scratch/README.md @@ -4,7 +4,7 @@ Basic usage instructions: ```bash # get training data -wget https://github.com/brunoklein99/deep-learning-notes/blob/master/shakespeare.txt +wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt # train ./bin/train-text-from-scratch \ From b4c6f46f17b6e02f1cd55a81339e7e64f3aaa688 Mon Sep 17 00:00:00 2001 From: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Sat, 17 Jun 2023 01:49:42 -0600 Subject: [PATCH 030/135] Allow cmake to build ggml as a library (#1896) * Allow cmake to build ggml as a library * A ggml_static library will be created * When BUILD_SHARED_LIBS is enabled, ggml_shared will also be built --- CMakeLists.txt | 2 ++ 1 file changed, 2 insertions(+) diff --git a/CMakeLists.txt b/CMakeLists.txt index 935fba838..f5a968533 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -461,8 +461,10 @@ target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES}) target_compile_features(ggml PUBLIC c_std_11) # don't bump target_link_libraries(ggml PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS}) +add_library(ggml_static STATIC $) if (BUILD_SHARED_LIBS) set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON) + add_library(ggml_shared SHARED $) endif() add_library(llama From bac19927c302737465a1deb14ac0943a221863e8 Mon Sep 17 00:00:00 2001 From: Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com> Date: Sat, 17 Jun 2023 06:01:06 -0300 Subject: [PATCH 031/135] readme : alternative way to build for Android with CLBlast. (#1828) --- README.md | 41 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 41 insertions(+) diff --git a/README.md b/README.md index cc3bd5394..b9759b00b 100644 --- a/README.md +++ b/README.md @@ -616,6 +616,7 @@ And after 4.45 hours, you will have the final perplexity. ### Android +#### Building the Project using Android NDK You can easily run `llama.cpp` on Android device with [termux](https://termux.dev/). First, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake: ``` @@ -630,6 +631,46 @@ Finally, copy the `llama` binary and the model files to your device storage. Her https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4 +#### Building the Project using Termux (F-Droid) +Termux from F-Droid offers an alternative route to execute the project on an Android device. This method empowers you to construct the project right from within the terminal, negating the requirement for a rooted device or SD Card. + +Outlined below are the directives for installing the project using OpenBLAS and CLBlast. This combination is specifically designed to deliver peak performance on recent devices that feature a GPU. + +If you opt to utilize OpenBLAS, you'll need to install the corresponding package. +``` +apt install libopenblas +``` + +Subsequently, if you decide to incorporate CLBlast, you'll first need to install the requisite OpenCL packages: +``` +apt install ocl-icd opencl-headers opencl-clhpp clinfo +``` + +In order to compile CLBlast, you'll need to first clone the respective Git repository, which can be found at this URL: https://github.com/CNugteren/CLBlast. Alongside this, clone this repository into your home directory. Once this is done, navigate to the CLBlast folder and execute the commands detailed below: +``` +cmake . +make +cp libclblast.so* $PREFIX/lib +cp ./include/clblast.h ../llama.cpp +``` + +Following the previous steps, navigate to the LlamaCpp directory. To compile it with OpenBLAS and CLBlast, execute the command provided below: +``` +cp /data/data/com.termux/files/usr/include/openblas/cblas.h . +cp /data/data/com.termux/files/usr/include/openblas/openblas_config.h . +make LLAMA_CLBLAST=1 //(sometimes you need to run this command twice) +``` + +Upon completion of the aforementioned steps, you will have successfully compiled the project. To run it using CLBlast, a slight adjustment is required: a command must be issued to direct the operations towards your device's physical GPU, rather than the virtual one. The necessary command is detailed below: +``` +GGML_OPENCL_PLATFORM=0 +GGML_OPENCL_DEVICE=0 +export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH +./main (...) +``` + +For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle. + ### Docker #### Prerequisites From 5ddf7ea1fb42bac21026de2f77e0f9c069b92234 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ji=C5=99=C3=AD=20Podiv=C3=ADn?= <66251151+jpodivin@users.noreply.github.com> Date: Sat, 17 Jun 2023 12:32:48 +0200 Subject: [PATCH 032/135] hooks : setting up flake8 and pre-commit hooks (#1681) Small, non-functional changes were made to non-compliant files. These include breaking up long lines, whitespace sanitation and unused import removal. Maximum line length in python files was set to a generous 125 chars, in order to minimize number of changes needed in scripts and general annoyance. The "txt" prompts directory is excluded from the checks as it may contain oddly formatted files and strings for a good reason. Signed-off-by: Jiri Podivin --- .flake8 | 2 ++ .pre-commit-config.yaml | 15 +++++++++++++++ convert.py | 26 ++++++++++++++++++-------- examples/jeopardy/graph.py | 7 ++++--- scripts/verify-checksum-models.py | 4 +++- 5 files changed, 42 insertions(+), 12 deletions(-) create mode 100644 .flake8 create mode 100644 .pre-commit-config.yaml diff --git a/.flake8 b/.flake8 new file mode 100644 index 000000000..113ca5fd3 --- /dev/null +++ b/.flake8 @@ -0,0 +1,2 @@ +[flake8] +max-line-length = 125 diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 000000000..65796fe2e --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,15 @@ +# See https://pre-commit.com for more information +# See https://pre-commit.com/hooks.html for more hooks +exclude: prompts/.*.txt +repos: +- repo: https://github.com/pre-commit/pre-commit-hooks + rev: v3.2.0 + hooks: + - id: trailing-whitespace + - id: end-of-file-fixer + - id: check-yaml + - id: check-added-large-files +- repo: https://github.com/PyCQA/flake8 + rev: 6.0.0 + hooks: + - id: flake8 diff --git a/convert.py b/convert.py index ece5a0266..265c41fa0 100644 --- a/convert.py +++ b/convert.py @@ -512,7 +512,11 @@ class LazyTensor: if not isinstance(self.data_type, QuantizedDataType): raise Exception(f"Can't turn an unquantized tensor into a quantized type ({data_type})") if self.data_type.have_g_idx: - sys.stderr.write("Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), which is not yet natively supported by GGML. For now you can still convert this model by passing `--outtype f16` to dequantize, but that will result in a much larger output file for no quality benefit.\n") + sys.stderr.write( + "Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), " + "which is not yet natively supported by GGML. " + "For now you can still convert this model by passing `--outtype f16` to dequantize, " + "but that will result in a much larger output file for no quality benefit.\n") sys.exit(1) assert not data_type.have_g_idx and self.data_type.have_addends and data_type.have_addends @@ -694,8 +698,9 @@ class LazyUnpickler(pickle.Unpickler): description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' return LazyStorage(load=load, kind=pid[1], description=description) - # @staticmethod - def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName] + # @staticmethod + def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, + # pyright: ignore[reportSelfClsParameterName] requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: assert isinstance(storage, LazyStorage) @@ -812,7 +817,7 @@ def lazy_load_ggml_file(fp: io.BufferedReader, path: Path) -> ModelPlus: # Use mmap for the actual data to avoid race conditions with the file offset. off = fp.raw.tell() mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) - fp.raw.seek(off) # needed on Windows + fp.raw.seek(off) # needed on Windows def read_tensor() -> None: # this is a function so that variables captured in `load` don't change shape_len, name_len, ftype = struct.unpack("iii", must_read(fp, 12)) @@ -1054,7 +1059,7 @@ def load_some_model(path: Path) -> ModelPlus: files = list(path.glob("model-00001-of-*.safetensors")) if not files: # Try the PyTorch patterns too, with lower priority - globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin" ] + globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"] files = [file for glob in globs for file in path.glob(glob)] if not files: # Try GGML too, but with lower priority, since if both a non-GGML @@ -1094,7 +1099,9 @@ def load_vocab(path: Path) -> SentencePieceVocab: elif path3.exists(): path = path3 else: - raise FileNotFoundError(f"Could not find tokenizer.model in {path} or its parent; if it's in another directory, pass the directory as --vocab-dir") + raise FileNotFoundError( + f"Could not find tokenizer.model in {path} or its parent; " + "if it's in another directory, pass the directory as --vocab-dir") added_tokens_path = path.parent / "added_tokens.json" print(f"Loading vocab file {path}") return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None) @@ -1110,7 +1117,9 @@ def default_outfile(model_paths: List[Path], params: Params) -> Path: }[params.file_type] ret = model_paths[0].parent / f"ggml-model-{namestr}.bin" if ret in model_paths: - sys.stderr.write(f"Error: Default output path ({ret}) would overwrite the input. Please explicitly specify a path using --outfile.\n") + sys.stderr.write( + f"Error: Default output path ({ret}) would overwrite the input. " + "Please explicitly specify a path using --outfile.\n") sys.exit(1) return ret @@ -1131,7 +1140,8 @@ def main(args_in: Optional[List[str]] = None) -> None: parser.add_argument("--outtype", choices=["f32", "f16", "q4_1", "q4_0"], help="output format (default: based on input)") parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") - parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") + parser.add_argument("model", type=Path, + help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") args = parser.parse_args(args_in) vocab: Vocab diff --git a/examples/jeopardy/graph.py b/examples/jeopardy/graph.py index d00b28652..1b6c54bff 100644 --- a/examples/jeopardy/graph.py +++ b/examples/jeopardy/graph.py @@ -1,5 +1,5 @@ import matplotlib.pyplot as plt -import sys, os +import os import csv labels = [] @@ -8,6 +8,7 @@ numEntries = 1 rows = [] + def bar_chart(numbers, labels, pos): plt.bar(pos, numbers, color='blue') plt.xticks(ticks=pos, labels=labels) @@ -16,6 +17,7 @@ def bar_chart(numbers, labels, pos): plt.ylabel("Questions Correct") plt.show() + def calculatecorrect(): directory = os.fsencode("./examples/jeopardy/results/") csv_reader = csv.reader(open("./examples/jeopardy/qasheet.csv", 'rt'), delimiter=',') @@ -38,14 +40,13 @@ def calculatecorrect(): print(line) else: print("Correct answer: " + rows[i][2] + "\n") - i+=1 + i += 1 print("Did the AI get the question right? (y/n)") if input() == "y": totalcorrect += 1 numbers.append(totalcorrect) - if __name__ == '__main__': calculatecorrect() pos = list(range(numEntries)) diff --git a/scripts/verify-checksum-models.py b/scripts/verify-checksum-models.py index 2ce572826..d12748281 100644 --- a/scripts/verify-checksum-models.py +++ b/scripts/verify-checksum-models.py @@ -1,9 +1,10 @@ import os import hashlib + def sha256sum(file): block_size = 16 * 1024 * 1024 # 16 MB block size - b = bytearray(block_size) + b = bytearray(block_size) file_hash = hashlib.sha256() mv = memoryview(b) with open(file, 'rb', buffering=0) as f: @@ -15,6 +16,7 @@ def sha256sum(file): return file_hash.hexdigest() + # Define the path to the llama directory (parent folder of script directory) llama_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) From 794db3e7b982fee37e3995db9c3a216a57ff65e3 Mon Sep 17 00:00:00 2001 From: Randall Fitzgerald Date: Sat, 17 Jun 2023 07:53:04 -0400 Subject: [PATCH 033/135] Server Example Refactor and Improvements (#1570) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit A major rewrite for the server example. Note that if you have built something on the previous server API, it will probably be incompatible. Check out the examples for how a typical chat app could work. This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing. Summary of the changes: - adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos - applies missing top k sampler - removes interactive mode/terminal-like behavior, removes exclude parameter - moves threads and batch size to server command-line parameters - adds LoRA loading and matches command line parameters with main example - fixes stopping on EOS token and with the specified token amount with n_predict - adds server timeouts, host, and port settings - adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text - sets defaults for unspecified parameters between requests - removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming - adds CORS headers to responses - adds request logging, exception printing and optional verbose logging - adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string - adds printing an error when it can't bind to the host/port specified - fixes multi-byte character handling and replaces invalid UTF-8 characters on responses - prints timing and build info on startup - adds logit bias to request parameters - removes embedding mode - updates documentation; adds streaming Node.js and Bash examples - fixes code formatting - sets server threads to 1 since the current global state doesn't work well with simultaneous requests - adds truncation of the input prompt and better context reset - removes token limit from the input prompt - significantly simplified the logic and removed a lot of variables --------- Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com> Co-authored-by: Henri Vasserman Co-authored-by: Felix Hellmann Co-authored-by: Johannes Gäßler Co-authored-by: Lesaun Harvey --- .gitignore | 1 + Makefile | 2 + examples/server/CMakeLists.txt | 4 + examples/server/README.md | 318 ++---- examples/server/chat.mjs | 89 ++ examples/server/chat.sh | 77 ++ examples/server/server.cpp | 1681 +++++++++++++++++--------------- 7 files changed, 1169 insertions(+), 1003 deletions(-) create mode 100644 examples/server/chat.mjs create mode 100644 examples/server/chat.sh diff --git a/.gitignore b/.gitignore index b3ff6526c..e68fd724a 100644 --- a/.gitignore +++ b/.gitignore @@ -36,6 +36,7 @@ models/* /train-text-from-scratch /benchmark-matmult /vdot +/server /Pipfile /libllama.so diff --git a/Makefile b/Makefile index 5306a114f..eee9eeb53 100644 --- a/Makefile +++ b/Makefile @@ -3,6 +3,8 @@ BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-tex ifdef LLAMA_BUILD_SERVER BUILD_TARGETS += server + LLAMA_SERVER_VERBOSE ?= 1 +server: private CXXFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE) endif default: $(BUILD_TARGETS) diff --git a/examples/server/CMakeLists.txt b/examples/server/CMakeLists.txt index bd65c84b1..07ba76ad3 100644 --- a/examples/server/CMakeLists.txt +++ b/examples/server/CMakeLists.txt @@ -1,6 +1,10 @@ set(TARGET server) +option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON) include_directories(${CMAKE_CURRENT_SOURCE_DIR}) add_executable(${TARGET} server.cpp json.hpp httplib.h) +target_compile_definitions(${TARGET} PRIVATE + SERVER_VERBOSE=$ +) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) if(TARGET BUILD_INFO) diff --git a/examples/server/README.md b/examples/server/README.md index 3b111655a..474a28b20 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -1,37 +1,74 @@ # llama.cpp/example/server -This example allow you to have a llama.cpp http server to interact from a web page or consume the API. +This example demonstrates a simple HTTP API server to interact with llama.cpp. -## Table of Contents +Command line options: -1. [Quick Start](#quick-start) -2. [Node JS Test](#node-js-test) -3. [API Endpoints](#api-endpoints) -4. [More examples](#more-examples) -5. [Common Options](#common-options) -6. [Performance Tuning and Memory Options](#performance-tuning-and-memory-options) +- `--threads N`, `-t N`: Set the number of threads to use during computation. +- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`). +- `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses. +- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. +- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. +- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. +- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. +- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS. +- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`. +- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended. +- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped. +- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed. +- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. +- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. +- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`. +- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`. +- `--port`: Set the port to listen. Default: `8080`. + +## Build + +Build llama.cpp with server from repository root with either make or CMake. + +- Using `make`: + + ```bash + LLAMA_BUILD_SERVER=1 make + ``` + +- Using `CMake`: + + ```bash + mkdir build-server + cd build-server + cmake -DLLAMA_BUILD_SERVER=ON .. + cmake --build . --config Release + ``` ## Quick Start To get started right away, run the following command, making sure to use the correct path for the model you have: -#### Unix-based systems (Linux, macOS, etc.): -Make sure to build with the server option on -```bash -LLAMA_BUILD_SERVER=1 make -``` +### Unix-based systems (Linux, macOS, etc.): ```bash -./server -m models/7B/ggml-model.bin --ctx_size 2048 +./server -m models/7B/ggml-model.bin -c 2048 ``` -#### Windows: +### Windows: ```powershell -server.exe -m models\7B\ggml-model.bin --ctx_size 2048 +server.exe -m models\7B\ggml-model.bin -c 2048 ``` -That will start a server that by default listens on `127.0.0.1:8080`. You can consume the endpoints with Postman or NodeJS with axios library. +The above command will start a server that by default listens on `127.0.0.1:8080`. +You can consume the endpoints with Postman or NodeJS with axios library. + +## Testing with CURL + +Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the base OS. + +```sh +curl --request POST \ + --url http://localhost:8080/completion \ + --data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}' +``` ## Node JS Test @@ -54,7 +91,6 @@ const prompt = `Building a website can be done in 10 simple steps:`; async function Test() { let result = await axios.post("http://127.0.0.1:8080/completion", { prompt, - batch_size: 128, n_predict: 512, }); @@ -73,247 +109,75 @@ node . ## API Endpoints -You can interact with this API Endpoints. This implementations just support chat style interaction. +- **POST** `/completion`: Given a prompt, it returns the predicted completion. -- **POST** `hostname:port/completion`: Setting up the Llama Context to begin the completions tasks. + *Options:* -*Options:* + `temperature`: Adjust the randomness of the generated text (default: 0.8). -`batch_size`: Set the batch size for prompt processing (default: 512). + `top_k`: Limit the next token selection to the K most probable tokens (default: 40). -`temperature`: Adjust the randomness of the generated text (default: 0.8). + `top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9). -`top_k`: Limit the next token selection to the K most probable tokens (default: 40). + `n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. (default: 128, -1 = infinity). -`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9). + `n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context. + By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt. -`n_predict`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity). + `stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`. -`threads`: Set the number of threads to use during computation. + `prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. -`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context. By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt. + `stop`: Specify a JSON array of stopping strings. + These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []). -`as_loop`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`. + `tfs_z`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled). -`interactive`: It allows interacting with the completion, and the completion stops as soon as it encounters a `stop word`. To enable this, set to `true`. + `typical_p`: Enable locally typical sampling with parameter p (default: 1.0, 1.0 = disabled). -`prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. + `repeat_penalty`: Control the repetition of token sequences in the generated text (default: 1.1). -`stop`: Specify the words or characters that indicate a stop. These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. + `repeat_last_n`: Last n tokens to consider for penalizing repetition (default: 64, 0 = disabled, -1 = ctx-size). -`exclude`: Specify the words or characters you do not want to appear in the completion. These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. + `penalize_nl`: Penalize newline tokens when applying the repeat penalty (default: true). -- **POST** `hostname:port/embedding`: Generate embedding of a given text + `presence_penalty`: Repeat alpha presence penalty (default: 0.0, 0.0 = disabled). -*Options:* + `frequency_penalty`: Repeat alpha frequency penalty (default: 0.0, 0.0 = disabled); -`content`: Set the text to get generate the embedding. + `mirostat`: Enable Mirostat sampling, controlling perplexity during text generation (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0). -`threads`: Set the number of threads to use during computation. + `mirostat_tau`: Set the Mirostat target entropy, parameter tau (default: 5.0). -To use this endpoint, you need to start the server with the `--embedding` option added. + `mirostat_eta`: Set the Mirostat learning rate, parameter eta (default: 0.1). -- **POST** `hostname:port/tokenize`: Tokenize a given text + `seed`: Set the random number generator (RNG) seed (default: -1, < 0 = random seed). -*Options:* + `ignore_eos`: Ignore end of stream token and continue generating (default: false). -`content`: Set the text to tokenize. + `logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced (default: []). -- **GET** `hostname:port/next-token`: Receive the next token predicted, execute this request in a loop. Make sure set `as_loop` as `true` in the completion request. +- **POST** `/tokenize`: Tokenize a given text. -*Options:* + *Options:* -`stop`: Set `hostname:port/next-token?stop=true` to stop the token generation. + `content`: Set the text to tokenize. ## More examples ### Interactive mode -This mode allows interacting in a chat-like manner. It is recommended for models designed as assistants such as `Vicuna`, `WizardLM`, `Koala`, among others. Make sure to add the correct stop word for the corresponding model. +Check the sample in [chat.mjs](chat.mjs). +Run with NodeJS version 16 or later: -The prompt should be generated by you, according to the model's guidelines. You should keep adding the model's completions to the context as well. - -This example works well for `Vicuna - version 1`. - -```javascript -const axios = require("axios"); - -let prompt = `A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. -### Human: Hello, Assistant. -### Assistant: Hello. How may I help you today? -### Human: Please tell me the largest city in Europe. -### Assistant: Sure. The largest city in Europe is Moscow, the capital of Russia.`; - -async function ChatCompletion(answer) { - // the user's next question to the prompt - prompt += `\n### Human: ${answer}\n` - - result = await axios.post("http://127.0.0.1:8080/completion", { - prompt, - batch_size: 128, - temperature: 0.2, - top_k: 40, - top_p: 0.9, - n_keep: -1, - n_predict: 2048, - stop: ["\n### Human:"], // when detect this, stop completion - exclude: ["### Assistant:"], // no show in the completion - threads: 8, - as_loop: true, // use this to request the completion token by token - interactive: true, // enable the detection of a stop word - }); - - // create a loop to receive every token predicted - // note: this operation is blocking, avoid use this in a ui thread - - let message = ""; - while (true) { - // you can stop the inference adding '?stop=true' like this http://127.0.0.1:8080/next-token?stop=true - result = await axios.get("http://127.0.0.1:8080/next-token"); - process.stdout.write(result.data.content); - message += result.data.content; - - // to avoid an infinite loop - if (result.data.stop) { - console.log("Completed"); - // make sure to add the completion to the prompt. - prompt += `### Assistant: ${message}`; - break; - } - } -} - -// This function should be called every time a question to the model is needed. -async function Test() { - // the server can't inference in paralell - await ChatCompletion("Write a long story about a time magician in a fantasy world"); - await ChatCompletion("Summary the story"); -} - -Test(); +```sh +node chat.mjs ``` -### Alpaca example +Another sample in [chat.sh](chat.sh). +Requires [bash](https://www.gnu.org/software/bash/), [curl](https://curl.se) and [jq](https://jqlang.github.io/jq/). +Run with bash: -**Temporaly note:** no tested, if you have the model, please test it and report me some issue - -```javascript -const axios = require("axios"); - -let prompt = `Below is an instruction that describes a task. Write a response that appropriately completes the request. -`; - -async function DoInstruction(instruction) { - prompt += `\n\n### Instruction:\n\n${instruction}\n\n### Response:\n\n`; - result = await axios.post("http://127.0.0.1:8080/completion", { - prompt, - batch_size: 128, - temperature: 0.2, - top_k: 40, - top_p: 0.9, - n_keep: -1, - n_predict: 2048, - stop: ["### Instruction:\n\n"], // when detect this, stop completion - exclude: [], // no show in the completion - threads: 8, - as_loop: true, // use this to request the completion token by token - interactive: true, // enable the detection of a stop word - }); - - // create a loop to receive every token predicted - // note: this operation is blocking, avoid use this in a ui thread - - let message = ""; - while (true) { - result = await axios.get("http://127.0.0.1:8080/next-token"); - process.stdout.write(result.data.content); - message += result.data.content; - - // to avoid an infinite loop - if (result.data.stop) { - console.log("Completed"); - // make sure to add the completion and the user's next question to the prompt. - prompt += message; - break; - } - } -} - -// This function should be called every time a instruction to the model is needed. -DoInstruction("Destroy the world"); // as joke +```sh +bash chat.sh ``` - -### Embeddings - -First, run the server with `--embedding` option: - -```bash -server -m models/7B/ggml-model.bin --ctx_size 2048 --embedding -``` - -Run this code in NodeJS: - -```javascript -const axios = require('axios'); - -async function Test() { - let result = await axios.post("http://127.0.0.1:8080/embedding", { - content: `Hello`, - threads: 5 - }); - // print the embedding array - console.log(result.data.embedding); -} - -Test(); -``` - -### Tokenize - -Run this code in NodeJS: - -```javascript -const axios = require('axios'); - -async function Test() { - let result = await axios.post("http://127.0.0.1:8080/tokenize", { - content: `Hello` - }); - // print the embedding array - console.log(result.data.tokens); -} - -Test(); -``` - -## Common Options - -- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`). -- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. -- `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. -- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. -- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. -- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS. -- `--embedding`: Enable the embedding mode. **Completion function doesn't work in this mode**. -- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`; -- `--port`: Set the port to listen. Default: `8080`. - -### RNG Seed - -- `-s SEED, --seed SEED`: Set the random number generator (RNG) seed (default: -1, < 0 = random seed). - -The RNG seed is used to initialize the random number generator that influences the text generation process. By setting a specific seed value, you can obtain consistent and reproducible results across multiple runs with the same input and settings. This can be helpful for testing, debugging, or comparing the effects of different options on the generated text to see when they diverge. If the seed is set to a value less than 0, a random seed will be used, which will result in different outputs on each run. - -## Performance Tuning and Memory Options - -### No Memory Mapping - -- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed. However, if the model is larger than your total amount of RAM or if your system is low on available memory, using mmap might increase the risk of pageouts, negatively impacting performance. - -### Memory Float 32 - -- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. This doubles the context memory requirement but does not appear to increase generation quality in a measurable way. Not recommended. - -## Limitations: - -- The actual implementation of llama.cpp need a `llama-state` for handle multiple contexts and clients, but this could require more powerful hardware. diff --git a/examples/server/chat.mjs b/examples/server/chat.mjs new file mode 100644 index 000000000..8269e2592 --- /dev/null +++ b/examples/server/chat.mjs @@ -0,0 +1,89 @@ +import * as readline from 'node:readline' +import { stdin, stdout } from 'node:process' + +const API_URL = 'http://127.0.0.1:8080' + +const chat = [ + { + human: "Hello, Assistant.", + assistant: "Hello. How may I help you today?" + }, + { + human: "Please tell me the largest city in Europe.", + assistant: "Sure. The largest city in Europe is Moscow, the capital of Russia." + }, +] + +const instruction = `A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.` + +function format_prompt(question) { + return `${instruction}\n${ + chat.map(m =>`### Human: ${m.human}\n### Assistant: ${m.assistant}`).join("\n") + }\n### Human: ${question}\n### Assistant:` +} + +async function tokenize(content) { + const result = await fetch(`${API_URL}/tokenize`, { + method: 'POST', + body: JSON.stringify({ content }) + }) + + if (!result.ok) { + return [] + } + + return await result.json().tokens +} + +const n_keep = await tokenize(instruction).length + +async function chat_completion(question) { + const result = await fetch(`${API_URL}/completion`, { + method: 'POST', + body: JSON.stringify({ + prompt: format_prompt(question), + temperature: 0.2, + top_k: 40, + top_p: 0.9, + n_keep: n_keep, + n_predict: 256, + stop: ["\n### Human:"], // stop completion after generating this + stream: true, + }) + }) + + if (!result.ok) { + return + } + + let answer = '' + + for await (var chunk of result.body) { + const t = Buffer.from(chunk).toString('utf8') + if (t.startsWith('data: ')) { + const message = JSON.parse(t.substring(6)) + answer += message.content + process.stdout.write(message.content) + if (message.stop) { + if (message.truncated) { + chat.shift() + } + break + } + } + } + + process.stdout.write('\n') + chat.push({ human: question, assistant: answer.trimStart() }) +} + +const rl = readline.createInterface({ input: stdin, output: stdout }); + +const readlineQuestion = (rl, query, options) => new Promise((resolve, reject) => { + rl.question(query, options, resolve) +}); + +while(true) { + const question = await readlineQuestion(rl, '> ') + await chat_completion(question) +} diff --git a/examples/server/chat.sh b/examples/server/chat.sh new file mode 100644 index 000000000..a89f8e908 --- /dev/null +++ b/examples/server/chat.sh @@ -0,0 +1,77 @@ +#!/bin/bash + +API_URL="${API_URL:-http://127.0.0.1:8080}" + +CHAT=( + "Hello, Assistant." + "Hello. How may I help you today?" + "Please tell me the largest city in Europe." + "Sure. The largest city in Europe is Moscow, the capital of Russia." +) + +INSTRUCTION="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions." + +trim() { + shopt -s extglob + set -- "${1##+([[:space:]])}" + printf "%s" "${1%%+([[:space:]])}" +} + +trim_trailing() { + shopt -s extglob + printf "%s" "${1%%+([[:space:]])}" +} + +format_prompt() { + echo -n "${INSTRUCTION}" + printf "\n### Human: %s\n### Assistant: %s" "${CHAT[@]}" "$1" +} + +tokenize() { + curl \ + --silent \ + --request POST \ + --url "${API_URL}/tokenize" \ + --data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \ + | jq '.tokens[]' +} + +N_KEEP=$(tokenize "${INSTRUCTION}" | wc -l) + +chat_completion() { + PROMPT="$(trim_trailing "$(format_prompt "$1")")" + DATA="$(echo -n "$PROMPT" | jq -Rs --argjson n_keep $N_KEEP '{ + prompt: ., + temperature: 0.2, + top_k: 40, + top_p: 0.9, + n_keep: $n_keep, + n_predict: 256, + stop: ["\n### Human:"], + stream: true + }')" + + ANSWER='' + + while IFS= read -r LINE; do + if [[ $LINE = data:* ]]; then + CONTENT="$(echo "${LINE:5}" | jq -r '.content')" + printf "%s" "${CONTENT}" + ANSWER+="${CONTENT}" + fi + done < <(curl \ + --silent \ + --no-buffer \ + --request POST \ + --url "${API_URL}/completion" \ + --data-raw "${DATA}") + + printf "\n" + + CHAT+=("$1" "$(trim "$ANSWER")") +} + +while true; do + read -r -e -p "> " QUESTION + chat_completion "${QUESTION}" +done diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 872750053..12d4e2fa4 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -1,799 +1,928 @@ -#include -#include #include "common.h" #include "llama.h" +#include "build-info.h" -struct server_params -{ - std::string hostname = "127.0.0.1"; - int32_t port = 8080; -}; +// single thread +#define CPPHTTPLIB_THREAD_POOL_COUNT 1 +#ifndef NDEBUG +// crash the server in debug mode, otherwise send an http 500 error +#define CPPHTTPLIB_NO_EXCEPTIONS 1 +#endif -struct llama_server_context -{ - bool as_loop = false; - bool has_next_token = false; - std::string generated_text = ""; +#include "httplib.h" +#include "json.hpp" - int32_t num_tokens_predicted = 0; - int32_t n_past = 0; - int32_t n_consumed = 0; - int32_t n_session_consumed = 0; - int32_t n_remain = 0; - - std::vector embd; - std::vector last_n_tokens; - std::vector processed_tokens; - std::vector llama_token_newline; - std::vector embd_inp; - std::vector> no_show_words; - std::vector tokens_predicted; - - llama_context *ctx; - gpt_params params; - - void rewind() { - as_loop = false; - params.antiprompt.clear(); - no_show_words.clear(); - num_tokens_predicted = 0; - generated_text = ""; - } - - bool loadModel(gpt_params params_) - { - params = params_; - ctx = llama_init_from_gpt_params(params); - if (ctx == NULL) - { - fprintf(stderr, "%s: error: unable to load model\n", __func__); - return false; - } - // determine newline token - llama_token_newline = ::llama_tokenize(ctx, "\n", false); - last_n_tokens.resize(params.n_ctx); - std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); - return true; - } - - bool loadPrompt() { - params.prompt.insert(0, 1, ' '); // always add a first space - std::vector prompt_tokens = ::llama_tokenize(ctx, params.prompt, true); - // compare the evaluated prompt with the new prompt - int new_prompt_len = 0; - for (size_t i = 0; i < prompt_tokens.size(); i++) { - if (i < processed_tokens.size() && - processed_tokens[i] == prompt_tokens[i]) - { - continue; - } - else - { - embd_inp.push_back(prompt_tokens[i]); - if(new_prompt_len == 0) { - if(int32_t(i) - 1 < n_past) { - processed_tokens.erase(processed_tokens.begin() + i, processed_tokens.end()); - } - // Evaluate the new fragment prompt from the last token processed. - n_past = processed_tokens.size(); - } - new_prompt_len ++; - } - } - if(n_past > 0 && params.interactive) { - n_remain -= new_prompt_len; - } - if ((int)embd_inp.size() > params.n_ctx - 4) - { - return false; - } - has_next_token = true; - return true; - } - - void beginCompletion() - { - if(n_remain == 0) { - // number of tokens to keep when resetting context - if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size()) - { - params.n_keep = (int)embd_inp.size(); - } - } - n_remain = params.n_predict; - } - - llama_token nextToken() { - llama_token result = -1; - if (embd.size() > 0) - { - if (n_past + (int)embd.size() > params.n_ctx) - { - // Reset context - const int n_left = n_past - params.n_keep; - n_past = std::max(1, params.n_keep); - processed_tokens.erase(processed_tokens.begin() + n_past, processed_tokens.end()); - embd.insert(embd.begin(), last_n_tokens.begin() + params.n_ctx - n_left / 2 - embd.size(), last_n_tokens.end() - embd.size()); - } - for (int i = 0; i < (int)embd.size(); i += params.n_batch) - { - int n_eval = (int)embd.size() - i; - if (n_eval > params.n_batch) - { - n_eval = params.n_batch; - } - if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) - { - fprintf(stderr, "%s : failed to eval\n", __func__); - has_next_token = false; - return result; - } - n_past += n_eval; - } - } - embd.clear(); - if ((int)embd_inp.size() <= n_consumed && has_next_token) - { - // out of user input, sample next token - const float temp = params.temp; - // const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; - const float top_p = params.top_p; - const float tfs_z = params.tfs_z; - const float typical_p = params.typical_p; - const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n; - const float repeat_penalty = params.repeat_penalty; - const float alpha_presence = params.presence_penalty; - const float alpha_frequency = params.frequency_penalty; - const int mirostat = params.mirostat; - const float mirostat_tau = params.mirostat_tau; - const float mirostat_eta = params.mirostat_eta; - const bool penalize_nl = params.penalize_nl; - llama_token id = 0; - { - auto logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(ctx); - - // Apply params.logit_bias map - for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) - { - logits[it->first] += it->second; - } - - std::vector candidates; - candidates.reserve(n_vocab); - for (llama_token token_id = 0; token_id < n_vocab; token_id++) - { - candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); - } - - llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false}; - - // Apply penalties - float nl_logit = logits[llama_token_nl()]; - auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx); - llama_sample_repetition_penalty(ctx, &candidates_p, - last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, - last_n_repeat, repeat_penalty); - llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, - last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, - last_n_repeat, alpha_frequency, alpha_presence); - if (!penalize_nl) - { - logits[llama_token_nl()] = nl_logit; - } - - if (temp <= 0) - { - // Greedy sampling - id = llama_sample_token_greedy(ctx, &candidates_p); - } - else - { - if (mirostat == 1) - { - static float mirostat_mu = 2.0f * mirostat_tau; - const int mirostat_m = 100; - llama_sample_temperature(ctx, &candidates_p, temp); - id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); - } - else if (mirostat == 2) - { - static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temperature(ctx, &candidates_p, temp); - id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); - } - else - { - // Temperature sampling - llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); - llama_sample_typical(ctx, &candidates_p, typical_p, 1); - llama_sample_top_p(ctx, &candidates_p, top_p, 1); - llama_sample_temperature(ctx, &candidates_p, temp); - id = llama_sample_token(ctx, &candidates_p); - } - } - last_n_tokens.erase(last_n_tokens.begin()); - last_n_tokens.push_back(id); - processed_tokens.push_back(id); - num_tokens_predicted++; - } - - // replace end of text token with newline token when in interactive mode - if (id == llama_token_eos() && params.interactive) - { - id = llama_token_newline.front(); - if (params.antiprompt.size() != 0) - { - // tokenize and inject first reverse prompt - const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false); - embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end()); - } - } - - // add it to the context - embd.push_back(id); - for (auto id : embd) - { - result = id; - } - // decrement remaining sampling budget - --n_remain; - } - else - { - // some user input remains from prompt or interaction, forward it to processing - while ((int)embd_inp.size() > n_consumed) - { - embd.push_back(embd_inp[n_consumed]); - last_n_tokens.erase(last_n_tokens.begin()); - last_n_tokens.push_back(embd_inp[n_consumed]); - processed_tokens.push_back(embd_inp[n_consumed]); - ++n_consumed; - if ((int)embd.size() >= params.n_batch) - { - break; - } - } - } - if (params.interactive && (int)embd_inp.size() <= n_consumed) - { - // check for reverse prompt - if (params.antiprompt.size()) - { - std::string last_output; - for (auto id : last_n_tokens) - { - last_output += llama_token_to_str(ctx, id); - } - has_next_token = true; - // Check if each of the reverse prompts appears at the end of the output. - for (std::string &antiprompt : params.antiprompt) - { - if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) - { - has_next_token = false; - return result; - } - } - } - if (n_past > 0) - { - has_next_token = true; - } - } - - if (!embd.empty() && embd.back() == llama_token_eos()) { - has_next_token = false; - } - - if (params.interactive && n_remain <= 0 && params.n_predict != -1) - { - n_remain = params.n_predict; - } - has_next_token = n_remain != 0; - return result; - } - - std::string doCompletion() - { - llama_token token = nextToken(); - if (token == -1) { - return ""; - } - tokens_predicted.clear(); - tokens_predicted.push_back(token); - - // Avoid add the no show words to the response - for (std::vector word_tokens : no_show_words) - { - size_t match_token = 1; - if (tokens_predicted.front() == word_tokens.front()) - { - bool execute_matching = true; - if (tokens_predicted.size() > 1) { // if previus tokens had been tested - for (size_t i = 1; i < word_tokens.size(); i++) - { - if (i >= tokens_predicted.size()) { - match_token = i; - break; - } - if (tokens_predicted[i] == word_tokens[i]) - { - continue; - } - else - { - execute_matching = false; - break; - } - } - } - while (execute_matching) { - if (match_token == word_tokens.size()) { - return ""; - } - token = nextToken(); - tokens_predicted.push_back(token); - if (token == word_tokens[match_token]) - { // the token follow the sequence - match_token++; - } - else if (match_token < word_tokens.size()) - { // no complete all word sequence - break; - } - } - } - } - if(as_loop) { - generated_text = ""; - } - for (llama_token tkn : tokens_predicted) - { - generated_text += llama_token_to_str(ctx, tkn); - } - return generated_text; - } - - std::vector embedding(std::string content, int threads) { - content.insert(0, 1, ' '); - std::vector tokens = ::llama_tokenize(ctx, content, true); - if (tokens.size() > 0) - { - if (llama_eval(ctx, tokens.data(), tokens.size(), 0, threads)) - { - fprintf(stderr, "%s : failed to eval\n", __func__); - std::vector embeddings_; - return embeddings_; - } - } - const int n_embd = llama_n_embd(ctx); - const auto embeddings = llama_get_embeddings(ctx); - std::vector embeddings_(embeddings, embeddings + n_embd); - return embeddings_; - } -}; +#ifndef SERVER_VERBOSE +#define SERVER_VERBOSE 1 +#endif using namespace httplib; - using json = nlohmann::json; -void server_print_usage(int /*argc*/, char **argv, const gpt_params ¶ms) -{ - fprintf(stderr, "usage: %s [options]\n", argv[0]); - fprintf(stderr, "\n"); - fprintf(stderr, "options:\n"); - fprintf(stderr, " -h, --help show this help message and exit\n"); - fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); - fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); - fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); - fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n"); - fprintf(stderr, " --embedding enable embedding mode\n"); - fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); - if (llama_mlock_supported()) - { - fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n"); - } - if (llama_mmap_supported()) - { - fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); - } -#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD - fprintf(stderr, " -ngl N, --n-gpu-layers N\n"); - fprintf(stderr, " number of layers to store in VRAM\n"); - fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n"); - fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); - fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); - fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" ); - fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n" ); -#endif - fprintf(stderr, " -m FNAME, --model FNAME\n"); - fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); - fprintf(stderr, " -a ALIAS, --alias ALIAS\n"); - fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n"); - fprintf(stderr, " --host ip address to listen (default 127.0.0.1)\n"); - fprintf(stderr, " --port PORT port to listen (default 8080)\n"); - fprintf(stderr, "\n"); +struct server_params { + std::string hostname = "127.0.0.1"; + int32_t port = 8080; + int32_t read_timeout = 600; + int32_t write_timeout = 600; +}; + +static size_t common_part(const std::vector & a, const std::vector & b) { + size_t i; + for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {} + return i; } -bool server_params_parse(int argc, char **argv, server_params &sparams, gpt_params ¶ms) -{ - gpt_params default_params; - std::string arg; - bool invalid_param = false; +enum stop_type { + STOP_FULL, + STOP_PARTIAL, +}; - for (int i = 1; i < argc; i++) - { - arg = argv[i]; - if (arg == "--port") - { - if (++i >= argc) - { - invalid_param = true; - break; - } - sparams.port = std::stoi(argv[i]); - } - else if (arg == "--host") - { - if (++i >= argc) - { - invalid_param = true; - break; - } - sparams.hostname = argv[i]; - } - else if (arg == "-s" || arg == "--seed") - { -#if defined(GGML_USE_CUBLAS) - fprintf(stderr, "WARNING: when using cuBLAS generation results are NOT guaranteed to be reproducible.\n"); -#endif - if (++i >= argc) - { - invalid_param = true; - break; - } - params.seed = std::stoi(argv[i]); - } - else if (arg == "-m" || arg == "--model") - { - if (++i >= argc) - { - invalid_param = true; - break; - } - params.model = argv[i]; - } - else if (arg == "-a" || arg == "--alias") - { - if (++i >= argc) - { - invalid_param = true; - break; - } - params.model_alias = argv[i]; - } - else if (arg == "--embedding") - { - params.embedding = true; - } - else if (arg == "-h" || arg == "--help") - { - server_print_usage(argc, argv, default_params); - exit(0); - } - else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") - { - if (++i >= argc) - { - invalid_param = true; - break; - } - params.n_ctx = std::stoi(argv[i]); - } - else if (arg == "--memory-f32" || arg == "--memory_f32") - { - params.memory_f16 = false; - } - else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") - { - if (++i >= argc) - { - invalid_param = true; - break; - } -#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD - params.n_gpu_layers = std::stoi(argv[i]); -#else - fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); - fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); -#endif - } - else if (arg == "--tensor-split" || arg == "-ts") - { - if (++i >= argc) - { - invalid_param = true; - break; - } -#ifdef GGML_USE_CUBLAS - std::string arg_next = argv[i]; - - // split string by , and / - const std::regex regex{R"([,/]+)"}; - std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; - std::vector split_arg{it, {}}; - GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); - - for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) - { - if (i < split_arg.size()) - { - params.tensor_split[i] = std::stof(split_arg[i]); - } - else - { - params.tensor_split[i] = 0.0f; - } - } -#else - fprintf(stderr, "WARNING: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n"); -#endif // GGML_USE_CUBLAS - } - else if (arg == "--low-vram" || arg == "-lv") - { -#ifdef GGML_USE_CUBLAS - params.low_vram = true; -#else - fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); -#endif // GGML_USE_CUBLAS - } - else if (arg == "--main-gpu" || arg == "-mg") - { - if (++i >= argc) - { - invalid_param = true; - break; - } -#ifdef GGML_USE_CUBLAS - params.main_gpu = std::stoi(argv[i]); -#else - fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n"); -#endif - } - else - { - fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); - server_print_usage(argc, argv, default_params); - exit(1); - } - } - - if (invalid_param) - { - fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); - server_print_usage(argc, argv, default_params); - exit(1); - } - return true; +static bool ends_with(const std::string & str, const std::string & suffix) { + return str.size() >= suffix.size() && + 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); } -bool parse_options_completion(json body, llama_server_context& llama, Response &res) { - if (!body["threads"].is_null()) - { - llama.params.n_threads = body["threads"].get(); - } - if (!body["n_predict"].is_null()) - { - llama.params.n_predict = body["n_predict"].get(); - } - if (!body["top_k"].is_null()) - { - llama.params.top_k = body["top_k"].get(); - } - if (!body["top_p"].is_null()) - { - llama.params.top_p = body["top_p"].get(); - } - if (!body["temperature"].is_null()) - { - llama.params.temp = body["temperature"].get(); - } - if (!body["batch_size"].is_null()) - { - llama.params.n_batch = body["batch_size"].get(); - } - if (!body["n_keep"].is_null()) - { - llama.params.n_keep = body["n_keep"].get(); - } - if (!body["as_loop"].is_null()) - { - llama.as_loop = body["as_loop"].get(); - } - if (!body["interactive"].is_null()) - { - llama.params.interactive = body["interactive"].get(); - } - if (!body["prompt"].is_null()) - { - llama.params.prompt = body["prompt"].get(); - } - else - { - json data = { - {"status", "error"}, - {"reason", "You need to pass the prompt"}}; - res.set_content(data.dump(), "application/json"); - res.status = 400; - return false; - } - if (!body["stop"].is_null()) - { - std::vector stop_words = body["stop"].get>(); - for (std::string stop_word : stop_words) - { - llama.params.antiprompt.push_back(stop_word); - llama.no_show_words.push_back(::llama_tokenize(llama.ctx, stop_word, false)); - } - } - if (!body["exclude"].is_null()) - { - std::vector no_show_words = body["exclude"].get>(); - for (std::string no_show : no_show_words) - { - llama.no_show_words.push_back(::llama_tokenize(llama.ctx, no_show, false)); - } - } - return true; -} - -int main(int argc, char **argv) -{ - // own arguments required by this example - gpt_params params; - server_params sparams; - - // struct that contains llama context and inference - llama_server_context llama; - params.model = "ggml-model.bin"; - - if (server_params_parse(argc, argv, sparams, params) == false) - { - return 1; - } - - if (params.seed <= 0) - { - params.seed = time(NULL); - } - - fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); - - // load the model - if (!llama.loadModel(params)) - { - return 1; - } - - Server svr; - - svr.Get("/", [](const Request &, Response &res) - { res.set_content("

llama.cpp server works

", "text/html"); }); - - svr.Post("/completion", [&llama](const Request &req, Response &res) - { - if(llama.params.embedding) { - json data = { - {"status", "error"}, - {"reason", "To use completion function disable embedding mode"}}; - res.set_content(data.dump(), "application/json"); - res.status = 400; - return; - } - - llama.rewind(); - - if(parse_options_completion(json::parse(req.body), llama, res) == false){ - return; - } - - if (!llama.loadPrompt()) - { - json data = { - {"status", "error"}, - {"reason", "Context too long, please be more specific"}}; - res.set_content(data.dump(), "application/json"); - res.status = 400; - return; - } - - llama.beginCompletion(); - if(llama.as_loop) { - json data = { - {"status", "done" } }; - return res.set_content(data.dump(), "application/json"); - } else { - // loop inference until finish completion - while (llama.has_next_token) - { - llama.doCompletion(); +static size_t find_partial_stop_string(const std::string & stop, + const std::string & text) { + if (!text.empty() && !stop.empty()) { + const char text_last_char = text.back(); + for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { + if (stop[char_index] == text_last_char) { + const std::string current_partial = stop.substr(0, char_index + 1); + if (ends_with(text, current_partial)) { + return text.size() - char_index - 1; } - try - { - json data = { - {"model", llama.params.model_alias }, - {"content", llama.generated_text }, - {"tokens_predicted", llama.num_tokens_predicted}}; - return res.set_content(data.dump(), "application/json"); - } - catch (const json::exception &e) - { - // Some tokens have bad UTF-8 strings, the json parser is very sensitive - json data = { - {"content", "Bad encoding token"}, - {"tokens_predicted", 0}}; - return res.set_content(data.dump(), "application/json"); - } - } }); - - svr.Post("/tokenize", [&llama](const Request &req, Response &res) - { - json body = json::parse(req.body); - json data = { - {"tokens", ::llama_tokenize(llama.ctx, body["content"].get(), false) } }; - return res.set_content(data.dump(), "application/json"); - }); - - svr.Post("/embedding", [&llama](const Request &req, Response &res) - { - if(!llama.params.embedding) { - std::vector empty; - json data = { - {"embedding", empty}}; - fprintf(stderr, "[llama-server] : You need enable embedding mode adding: --embedding option\n"); - return res.set_content(data.dump(), "application/json"); - } - json body = json::parse(req.body); - std::string content = body["content"].get(); - int threads = body["threads"].get(); - json data = { - {"embedding", llama.embedding(content, threads) } }; - return res.set_content(data.dump(), "application/json"); - }); - - svr.Get("/next-token", [&llama](const Request &req, Response &res) - { - if(llama.params.embedding) { - res.set_content("{}", "application/json"); - return; } - std::string result = ""; - if (req.has_param("stop")) { - llama.has_next_token = false; + } + } + return std::string::npos; +} + +template +static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { + std::string ret; + for (; begin != end; ++begin) { + ret += llama_token_to_str(ctx, *begin); + } + return ret; +} + +static void server_log(const char * level, const char * function, int line, + const char * message, const nlohmann::ordered_json & extra) { + nlohmann::ordered_json log { + { "timestamp", time(nullptr) }, + { "level", level }, + { "function", function }, + { "line", line }, + { "message", message }, + }; + + if (!extra.empty()) { + log.merge_patch(extra); + } + + const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace); + fprintf(stdout, "%.*s\n", (int)str.size(), str.data()); + fflush(stdout); +} + +static bool server_verbose = false; + +#if SERVER_VERBOSE != 1 +# define LOG_VERBOSE(MSG, ...) +#else +# define LOG_VERBOSE(MSG, ...) \ + do { \ + if (server_verbose) { \ + server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \ + } \ + } while(0) +#endif + +#define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__) +#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__) +#define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__) + +struct llama_server_context { + bool stream = false; + bool has_next_token = false; + std::string generated_text; + + size_t num_tokens_predicted = 0; + size_t n_past = 0; + size_t n_remain = 0; + + std::vector embd; + std::vector last_n_tokens; + + llama_context * ctx = nullptr; + gpt_params params; + + bool truncated = false; + bool stopped_eos = false; + bool stopped_word = false; + bool stopped_limit = false; + std::string stopping_word; + int32_t multibyte_pending = 0; + + ~llama_server_context() { + if (ctx) { + llama_free(ctx); + ctx = nullptr; + } + } + + void rewind() { + params.antiprompt.clear(); + num_tokens_predicted = 0; + generated_text = ""; + generated_text.reserve(params.n_ctx); + truncated = false; + stopped_eos = false; + stopped_word = false; + stopped_limit = false; + stopping_word = ""; + multibyte_pending = 0; + + n_remain = 0; + n_past = 0; + } + + bool loadModel(const gpt_params & params_) { + params = params_; + ctx = llama_init_from_gpt_params(params); + if (ctx == nullptr) { + LOG_ERROR("unable to load model", { { "model", params_.model } }); + return false; + } + + last_n_tokens.resize(params.n_ctx); + std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); + return true; + } + + void loadPrompt() { + params.prompt.insert(0, 1, ' '); // always add a first space + std::vector prompt_tokens = ::llama_tokenize(ctx, params.prompt, true); + + if (params.n_keep < 0) { + params.n_keep = (int)prompt_tokens.size(); + } + params.n_keep = std::min(params.n_ctx - 4, params.n_keep); + + // if input prompt is too big, truncate like normal + if (prompt_tokens.size() >= (size_t)params.n_ctx) { + const int n_left = (params.n_ctx - params.n_keep) / 2; + std::vector new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); + const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_left - 1) / n_left; + new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); + std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin()); + + LOG_VERBOSE("input truncated", { + { "n_ctx", params.n_ctx }, + { "n_keep", params.n_keep }, + { "n_left", n_left }, + { "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) }, + }); + + truncated = true; + prompt_tokens = new_tokens; + } else { + const size_t ps = prompt_tokens.size(); + std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0); + std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps); + } + + // compare the evaluated prompt with the new prompt + n_past = common_part(embd, prompt_tokens); + embd = prompt_tokens; + if (n_past == prompt_tokens.size()) { + // we have to evaluate at least 1 token to generate logits. + n_past--; + } + + LOG_VERBOSE("prompt ingested", { + { "n_past", n_past }, + { "cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past) }, + { "to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) }, + }); + + has_next_token = true; + } + + void beginCompletion() { + // number of tokens to keep when resetting context + n_remain = params.n_predict; + llama_set_rng_seed(ctx, params.seed); + } + + llama_token nextToken() { + llama_token result = -1; + + if (embd.size() >= (size_t)params.n_ctx) { + // Reset context + const int n_left = (params.n_ctx - params.n_keep) / 2; + + std::vector new_tokens(embd.begin(), embd.begin() + params.n_keep); + new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end()); + embd = new_tokens; + n_past = params.n_keep; + truncated = true; + LOG_VERBOSE("input truncated", { + { "n_ctx", params.n_ctx }, + { "n_keep", params.n_keep }, + { "n_left", n_left }, + { "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) }, + }); + } + + while (n_past < embd.size()) { + int n_eval = (int)embd.size() - n_past; + if (n_eval > params.n_batch) { + n_eval = params.n_batch; + } + if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads)) { + LOG_ERROR("failed to eval", { + { "n_eval", n_eval }, + { "n_past", n_past }, + { "n_threads", params.n_threads }, + { "embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) }, + }); + has_next_token = false; + return result; + } + n_past += n_eval; + } + + // out of user input, sample next token + const float temp = params.temp; + const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; + const float top_p = params.top_p; + const float tfs_z = params.tfs_z; + const float typical_p = params.typical_p; + const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n; + const float repeat_penalty = params.repeat_penalty; + const float alpha_presence = params.presence_penalty; + const float alpha_frequency = params.frequency_penalty; + const int mirostat = params.mirostat; + const float mirostat_tau = params.mirostat_tau; + const float mirostat_eta = params.mirostat_eta; + const bool penalize_nl = params.penalize_nl; + llama_token id = 0; + + { + auto * logits = llama_get_logits(ctx); + auto n_vocab = llama_n_vocab(ctx); + + // Apply params.logit_bias map + for (const auto & it : params.logit_bias) { + logits[it.first] += it.second; + } + + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + + // Apply penalties + float nl_logit = logits[llama_token_nl()]; + auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx); + llama_sample_repetition_penalty(ctx, &candidates_p, + last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, + last_n_repeat, repeat_penalty); + llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, + last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, + last_n_repeat, alpha_frequency, alpha_presence); + if (!penalize_nl) { + logits[llama_token_nl()] = nl_logit; + } + + if (temp <= 0) { + // Greedy sampling + id = llama_sample_token_greedy(ctx, &candidates_p); } else { - result = llama.doCompletion(); // inference next token + if (mirostat == 1) { + static float mirostat_mu = 2.0f * mirostat_tau; + const int mirostat_m = 100; + llama_sample_temperature(ctx, &candidates_p, temp); + id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); + } else if (mirostat == 2) { + static float mirostat_mu = 2.0f * mirostat_tau; + llama_sample_temperature(ctx, &candidates_p, temp); + id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); + } else { + // Temperature sampling + llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); + llama_sample_typical(ctx, &candidates_p, typical_p, 1); + llama_sample_top_p(ctx, &candidates_p, top_p, 1); + llama_sample_top_k(ctx, &candidates_p, top_k, 1); + llama_sample_temperature(ctx, &candidates_p, temp); + id = llama_sample_token(ctx, &candidates_p); + } } - try { - json data = { - {"content", result }, - {"stop", !llama.has_next_token }}; - return res.set_content(data.dump(), "application/json"); - } catch (const json::exception &e) { - // Some tokens have bad UTF-8 strings, the json parser is very sensitive - json data = { - {"content", "" }, - {"stop", !llama.has_next_token }}; - return res.set_content(data.dump(), "application/json"); + last_n_tokens.erase(last_n_tokens.begin()); + last_n_tokens.push_back(id); + num_tokens_predicted++; + } + + // add it to the context + embd.push_back(id); + result = id; + // decrement remaining sampling budget + --n_remain; + + if (!embd.empty() && embd.back() == llama_token_eos()) { + //stopping_word = llama_token_to_str(ctx, embd.back()); + has_next_token = false; + stopped_eos = true; + LOG_VERBOSE("eos token found", {}); + return result; + } + + has_next_token = params.n_predict == -1 || n_remain != 0; + return result; + } + + size_t findStoppingStrings(const std::string & text, const size_t last_token_size, + const stop_type type) { + size_t stop_pos = std::string::npos; + for (const std::string & word : params.antiprompt) { + size_t pos; + if (type == STOP_FULL) { + const size_t tmp = word.size() + last_token_size; + const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; + pos = text.find(word, from_pos); } - }); + else { + pos = find_partial_stop_string(word, text); + } + if (pos != std::string::npos && + (stop_pos == std::string::npos || pos < stop_pos)) { + if (type == STOP_FULL) { + stopping_word = word; + stopped_word = true; + has_next_token = false; + } + stop_pos = pos; + } + } + return stop_pos; + } - fprintf(stderr, "%s: http server Listening at http://%s:%i\n", __func__, sparams.hostname.c_str(), sparams.port); + std::string doCompletion() { + const llama_token token = nextToken(); - if(params.embedding) { - fprintf(stderr, "NOTE: Mode embedding enabled. Completion function doesn't work in this mode.\n"); - } + const std::string token_text = token == -1 ? "" : llama_token_to_str(ctx, token); + generated_text += token_text; - // change hostname and port - svr.listen(sparams.hostname, sparams.port); + if (multibyte_pending > 0) { + multibyte_pending -= token_text.size(); + } else if (token_text.size() == 1) { + const char c = token_text[0]; + // 2-byte characters: 110xxxxx 10xxxxxx + if ((c & 0xE0) == 0xC0) { + multibyte_pending = 1; + // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx + } else if ((c & 0xF0) == 0xE0) { + multibyte_pending = 2; + // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx + } else if ((c & 0xF8) == 0xF0) { + multibyte_pending = 3; + } else { + multibyte_pending = 0; + } + } + + if (multibyte_pending > 0 && !has_next_token) { + has_next_token = true; + n_remain++; + } + + if (!has_next_token && n_remain == 0) { + stopped_limit = true; + } + + LOG_VERBOSE("next token", { + { "token", token }, + { "token_text", llama_token_to_str(ctx, token) }, + { "has_next_token", has_next_token }, + { "n_remain", n_remain }, + { "num_tokens_predicted", num_tokens_predicted }, + { "stopped_eos", stopped_eos }, + { "stopped_word", stopped_word }, + { "stopped_limit", stopped_limit }, + { "stopping_word", stopping_word }, + }); + + return token_text; + } +}; + +static void server_print_usage(const char * argv0, const gpt_params & params, + const server_params & sparams) { + fprintf(stderr, "usage: %s [options]\n", argv0); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); + fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); + fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); + fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); + fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n"); + if (llama_mlock_supported()) { + fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n"); + } + if (llama_mmap_supported()) { + fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); + } +#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD + fprintf(stderr, " -ngl N, --n-gpu-layers N\n"); + fprintf(stderr, " number of layers to store in VRAM\n"); + fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n"); + fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); + fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); + fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); + fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n"); +#endif + fprintf(stderr, " -m FNAME, --model FNAME\n"); + fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); + fprintf(stderr, " -a ALIAS, --alias ALIAS\n"); + fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n"); + fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); + fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); + fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str()); + fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port); + fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout); + fprintf(stderr, "\n"); +} + +static void server_params_parse(int argc, char ** argv, server_params & sparams, + gpt_params & params) { + gpt_params default_params; + server_params default_sparams; + std::string arg; + bool invalid_param = false; + + for (int i = 1; i < argc; i++) { + arg = argv[i]; + if (arg == "--port") { + if (++i >= argc) { + invalid_param = true; + break; + } + sparams.port = std::stoi(argv[i]); + } else if (arg == "--host") { + if (++i >= argc) { + invalid_param = true; + break; + } + sparams.hostname = argv[i]; + } else if (arg == "--timeout" || arg == "-to") { + if (++i >= argc) { + invalid_param = true; + break; + } + sparams.read_timeout = std::stoi(argv[i]); + sparams.write_timeout = std::stoi(argv[i]); + } else if (arg == "-m" || arg == "--model") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.model = argv[i]; + } else if (arg == "-a" || arg == "--alias") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.model_alias = argv[i]; + } else if (arg == "-h" || arg == "--help") { + server_print_usage(argv[0], default_params, default_sparams); + exit(0); + } else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_ctx = std::stoi(argv[i]); + } else if (arg == "--memory-f32" || arg == "--memory_f32") { + params.memory_f16 = false; + } else if (arg == "--threads" || arg == "-t") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_threads = std::stoi(argv[i]); + } else if (arg == "-b" || arg == "--batch-size") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_batch = std::stoi(argv[i]); + params.n_batch = std::min(512, params.n_batch); + } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { + if (++i >= argc) { + invalid_param = true; + break; + } +#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD + params.n_gpu_layers = std::stoi(argv[i]); +#else + LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. " + "See main README.md for information on enabling GPU BLAS support", { { "n_gpu_layers", params.n_gpu_layers } }); +#endif + } + else if (arg == "--tensor-split" || arg == "-ts") { + if (++i >= argc) { + invalid_param = true; + break; + } +#ifdef GGML_USE_CUBLAS + std::string arg_next = argv[i]; + + // split string by , and / + const std::regex regex{ R"([,/]+)" }; + std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; + std::vector split_arg{ it, {} }; + GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); + + for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) { + if (i_device < split_arg.size()) { + params.tensor_split[i_device] = std::stof(split_arg[i_device]); + } + else { + params.tensor_split[i_device] = 0.0f; + } + } +#else + LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.", {}); +#endif // GGML_USE_CUBLAS + } + else if (arg == "--low-vram" || arg == "-lv") + { +#ifdef GGML_USE_CUBLAS + params.low_vram = true; +#else + fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); +#endif // GGML_USE_CUBLAS + } + else if (arg == "--main-gpu" || arg == "-mg") { + if (++i >= argc) { + invalid_param = true; + break; + } +#ifdef GGML_USE_CUBLAS + params.main_gpu = std::stoi(argv[i]); +#else + LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {}); +#endif + } else if (arg == "--lora") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.lora_adapter = argv[i]; + params.use_mmap = false; + } else if (arg == "--lora-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.lora_base = argv[i]; + } else if (arg == "-v" || arg == "--verbose") { +#if SERVER_VERBOSE != 1 + LOG_WARNING("server.cpp is not built with verbose logging.", {}); +#else + server_verbose = true; +#endif + } else if (arg == "--mlock") { + params.use_mlock = true; + } else if (arg == "--no-mmap") { + params.use_mmap = false; + } else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + server_print_usage(argv[0], default_params, default_sparams); + exit(1); + } + } + + if (invalid_param) { + fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); + server_print_usage(argv[0], default_params, default_sparams); + exit(1); + } +} + +static json format_generation_settings(llama_server_context & llama) { + const auto eos_bias = llama.params.logit_bias.find(llama_token_eos()); + const bool ignore_eos = eos_bias != llama.params.logit_bias.end() && + eos_bias->second < 0.0f && std::isinf(eos_bias->second); + + return json { + { "seed", llama.params.seed }, + { "temp", llama.params.temp }, + { "top_k", llama.params.top_k }, + { "top_p", llama.params.top_p }, + { "tfs_z", llama.params.tfs_z }, + { "typical_p", llama.params.typical_p }, + { "repeat_last_n", llama.params.repeat_last_n }, + { "repeat_penalty", llama.params.repeat_penalty }, + { "presence_penalty", llama.params.presence_penalty }, + { "frequency_penalty", llama.params.frequency_penalty }, + { "mirostat", llama.params.mirostat }, + { "mirostat_tau", llama.params.mirostat_tau }, + { "mirostat_eta", llama.params.mirostat_eta }, + { "penalize_nl", llama.params.penalize_nl }, + { "stop", llama.params.antiprompt }, + { "n_predict", llama.params.n_predict }, + { "n_keep", llama.params.n_keep }, + { "ignore_eos", ignore_eos }, + { "stream", llama.stream }, + { "logit_bias", llama.params.logit_bias }, + }; +} + +static json format_final_response(llama_server_context & llama, const std::string & content) { + return json { + { "content", content }, + { "stop", true }, + { "model", llama.params.model_alias }, + { "tokens_predicted", llama.num_tokens_predicted }, + { "generation_settings", format_generation_settings(llama) }, + { "prompt", llama.params.prompt }, + { "truncated", llama.truncated }, + { "stopped_eos", llama.stopped_eos }, + { "stopped_word", llama.stopped_word }, + { "stopped_limit", llama.stopped_limit }, + { "stopping_word", llama.stopping_word }, + }; +} + +static json format_partial_response(const std::string & content) { + return json { + { "content", content }, + { "stop", false }, + }; +} + +static json format_tokenizer_response(const std::vector & tokens) { + return json { + { "tokens", tokens } + }; +} + +static void parse_options_completion(const json & body, llama_server_context & llama) { + gpt_params default_params; + + llama.stream = body.value("stream", false); + llama.params.n_predict = body.value("n_predict", default_params.n_predict); + llama.params.top_k = body.value("top_k", default_params.top_k); + llama.params.top_p = body.value("top_p", default_params.top_p); + llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z); + llama.params.typical_p = body.value("typical_p", default_params.typical_p); + llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n); + llama.params.temp = body.value("temperature", default_params.temp); + llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty); + llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty); + llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty); + llama.params.mirostat = body.value("mirostat", default_params.mirostat); + llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau); + llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta); + llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl); + llama.params.n_keep = body.value("n_keep", default_params.n_keep); + llama.params.seed = body.value("seed", default_params.seed); + llama.params.prompt = body.value("prompt", default_params.prompt); + + llama.params.logit_bias.clear(); + if (body.value("ignore_eos", false)) { + llama.params.logit_bias[llama_token_eos()] = -INFINITY; + } + + const auto & logit_bias = body.find("logit_bias"); + if (logit_bias != body.end() && logit_bias->is_array()) { + const int n_vocab = llama_n_vocab(llama.ctx); + for (const auto & el : *logit_bias) { + if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) { + llama_token tok = el[0].get(); + if (tok >= 0 && tok < n_vocab) { + if (el[1].is_number()) { + llama.params.logit_bias[tok] = el[1].get(); + } else if (el[1].is_boolean() && !el[1].get()) { + llama.params.logit_bias[tok] = -INFINITY; + } + } + } + } + } + + llama.params.antiprompt.clear(); + const auto & stop = body.find("stop"); + if (stop != body.end() && stop->is_array()) { + for (const auto & word : *stop) { + if (!word.empty()) { + llama.params.antiprompt.push_back(word); + } + } + } + + LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama)); +} + +static void log_server_request(const Request & req, const Response & res) { + LOG_INFO("request", { + { "remote_addr", req.remote_addr }, + { "remote_port", req.remote_port }, + { "status", res.status }, + { "path", req.path }, + { "request", req.body }, + { "response", res.body }, + }); +} + +int main(int argc, char ** argv) { + // own arguments required by this example + gpt_params params; + server_params sparams; + + // struct that contains llama context and inference + llama_server_context llama; + + server_params_parse(argc, argv, sparams, params); + + if (params.model_alias == "unknown") { + params.model_alias = params.model; + } + + llama_init_backend(); + + LOG_INFO("build info", { + { "build", BUILD_NUMBER }, + { "commit", BUILD_COMMIT } + }); + LOG_INFO("system info", { + { "n_threads", params.n_threads }, + { "total_threads", std::thread::hardware_concurrency() }, + { "system_info", llama_print_system_info() }, + }); + + // load the model + if (!llama.loadModel(params)) { + return 1; + } + + Server svr; + + svr.set_default_headers({ + { "Access-Control-Allow-Origin", "*" }, + { "Access-Control-Allow-Headers", "content-type" } + }); + + svr.Get("/", [](const Request &, Response & res) { + res.set_content("

llama.cpp server works

", "text/html"); + }); + + svr.Post("/completion", [&llama](const Request & req, Response & res) { + llama.rewind(); + llama_reset_timings(llama.ctx); + + parse_options_completion(json::parse(req.body), llama); + + llama.loadPrompt(); + llama.beginCompletion(); + + if (!llama.stream) { + size_t stop_pos = std::string::npos; + + while (llama.has_next_token) { + const std::string token_text = llama.doCompletion(); + + stop_pos = llama.findStoppingStrings(llama.generated_text, + token_text.size(), STOP_FULL); + } + + if (stop_pos == std::string::npos) { + stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL); + } + if (stop_pos != std::string::npos) { + llama.generated_text.erase(llama.generated_text.begin() + stop_pos, + llama.generated_text.end()); + } + + const json data = format_final_response(llama, llama.generated_text); + + llama_print_timings(llama.ctx); + + res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), + "application/json"); + } else { + const auto chunked_content_provider = [&](size_t, DataSink & sink) { + size_t sent_count = 0; + + while (llama.has_next_token) { + const std::string token_text = llama.doCompletion(); + if (llama.multibyte_pending > 0) { + continue; + } + + size_t pos = std::min(sent_count, llama.generated_text.size()); + + const std::string str_test = llama.generated_text.substr(pos); + size_t stop_pos = + llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL); + if (stop_pos != std::string::npos) { + llama.generated_text.erase( + llama.generated_text.begin() + pos + stop_pos, + llama.generated_text.end()); + pos = std::min(sent_count, llama.generated_text.size()); + } else { + stop_pos = llama.findStoppingStrings(str_test, token_text.size(), + STOP_PARTIAL); + } + + const std::string to_send = llama.generated_text.substr(pos, stop_pos); + sent_count += to_send.size(); + + const json data = llama.has_next_token + ? format_partial_response(to_send) + // Generation is done, send extra information. + : format_final_response(llama, to_send); + + const std::string str = + "data: " + + data.dump(-1, ' ', false, json::error_handler_t::replace) + + "\n\n"; + + LOG_VERBOSE("data stream", { + { "to_send", str } + }); + + if (!sink.write(str.data(), str.size())) { + LOG_VERBOSE("stream closed", {}); + llama_print_timings(llama.ctx); + return false; + } + } + + llama_print_timings(llama.ctx); + sink.done(); + return true; + }; + res.set_chunked_content_provider("text/event-stream", chunked_content_provider); + } + }); + + svr.Options(R"(/.*)", [](const Request &, Response & res) { + return res.set_content("", "application/json"); + }); + + svr.Post("/tokenize", [&llama](const Request & req, Response & res) { + const json body = json::parse(req.body); + const std::string content = body["content"].get(); + const std::vector tokens = llama_tokenize(llama.ctx, content, false); + const json data = format_tokenizer_response(tokens); + return res.set_content(data.dump(), "application/json"); + }); + + svr.set_logger(log_server_request); + + svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) { + const auto * fmt = "500 Internal Server Error\n%s"; + char buf[BUFSIZ]; + try { + std::rethrow_exception(std::move(ep)); + } catch (std::exception & e) { + snprintf(buf, sizeof(buf), fmt, e.what()); + } catch (...) { + snprintf(buf, sizeof(buf), fmt, "Unknown Exception"); + } + res.set_content(buf, "text/plain"); + res.status = 500; + }); + + // set timeouts and change hostname and port + svr.set_read_timeout(sparams.read_timeout); + svr.set_write_timeout(sparams.write_timeout); + + if (!svr.bind_to_port(sparams.hostname, sparams.port)) { + LOG_ERROR("couldn't bind to server socket", { + { "hostname", sparams.hostname }, + { "port", sparams.port }, + }); + return 1; + } + + LOG_INFO("HTTP server listening", { + { "hostname", sparams.hostname }, + { "port", sparams.port }, + }); + + if (!svr.listen_after_bind()) { + return 1; + } + + return 0; } From fc45a81bc642b9ef33d9004f2b363d558438a6c9 Mon Sep 17 00:00:00 2001 From: Faez Shakil Date: Sat, 17 Jun 2023 17:13:05 +0500 Subject: [PATCH 034/135] exposed modules so that they can be invoked by nix run github:ggerganov/llama.cpp#server etc (#1863) --- flake.nix | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/flake.nix b/flake.nix index f3180c841..bba3d71f7 100644 --- a/flake.nix +++ b/flake.nix @@ -48,6 +48,19 @@ ''; meta.mainProgram = "llama"; }; + apps.llama-server = { + type = "app"; + program = "${self.packages.${system}.default}/bin/llama-server"; + }; + apps.llama-embedding = { + type = "app"; + program = "${self.packages.${system}.default}/bin/embedding"; + }; + apps.llama = { + type = "app"; + program = "${self.packages.${system}.default}/bin/llama"; + }; + apps.default = self.apps.${system}.llama; devShells.default = pkgs.mkShell { packages = with pkgs; [ cmake From 0711a5f6dce7f04c2a791b14bc47f7d4cb545408 Mon Sep 17 00:00:00 2001 From: Aaron Miller Date: Sat, 17 Jun 2023 07:37:49 -0700 Subject: [PATCH 035/135] metal : add norm, cpy f16->f16, alibi kernels (#1823) --- ggml-metal.m | 73 +++++++++++++++++++++++ ggml-metal.metal | 149 +++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 222 insertions(+) diff --git a/ggml-metal.m b/ggml-metal.m index 0e9b56aa3..814851203 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -57,6 +57,7 @@ struct ggml_metal_context { GGML_METAL_DECL_KERNEL(get_rows_q5_k); GGML_METAL_DECL_KERNEL(get_rows_q6_k); GGML_METAL_DECL_KERNEL(rms_norm); + GGML_METAL_DECL_KERNEL(norm); GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32); @@ -66,8 +67,10 @@ struct ggml_metal_context { GGML_METAL_DECL_KERNEL(mul_mat_q5_k_f32); GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32); GGML_METAL_DECL_KERNEL(rope); + GGML_METAL_DECL_KERNEL(alibi_f32); GGML_METAL_DECL_KERNEL(cpy_f32_f16); GGML_METAL_DECL_KERNEL(cpy_f32_f32); + GGML_METAL_DECL_KERNEL(cpy_f16_f16); #undef GGML_METAL_DECL_KERNEL }; @@ -162,6 +165,7 @@ struct ggml_metal_context * ggml_metal_init(void) { GGML_METAL_ADD_KERNEL(get_rows_q5_k); GGML_METAL_ADD_KERNEL(get_rows_q6_k); GGML_METAL_ADD_KERNEL(rms_norm); + GGML_METAL_ADD_KERNEL(norm); GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32); @@ -171,8 +175,10 @@ struct ggml_metal_context * ggml_metal_init(void) { GGML_METAL_ADD_KERNEL(mul_mat_q5_k_f32); GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32); GGML_METAL_ADD_KERNEL(rope); + GGML_METAL_ADD_KERNEL(alibi_f32); GGML_METAL_ADD_KERNEL(cpy_f32_f16); GGML_METAL_ADD_KERNEL(cpy_f32_f32); + GGML_METAL_ADD_KERNEL(cpy_f16_f16); #undef GGML_METAL_ADD_KERNEL } @@ -735,6 +741,65 @@ void ggml_metal_graph_compute( [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; + case GGML_OP_NORM: + { + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } + + const float eps = 1e-5f; + + const int nth = 256; + + [encoder setComputePipelineState:ctx->pipeline_norm]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; + [encoder setBytes:&eps length:sizeof( float) atIndex:4]; + [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; + + const int64_t nrows = ggml_nrows(src0); + + [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ALIBI: + { + GGML_ASSERT((src0t == GGML_TYPE_F32)); + const int n_past = ((int32_t *) src1->data)[0]; + const int n_head = ((int32_t *) src1->data)[1]; + const float max_bias = ((float *) src1->data)[2]; + if (__builtin_popcount(n_head) != 1) { + GGML_ASSERT(false && "only power-of-two n_head implemented"); + } + const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); + const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); + if (encoder == nil) { + encoder = [command_buffer computeCommandEncoder]; + } + [encoder setComputePipelineState:ctx->pipeline_alibi_f32]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; + const int nth = 32; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; case GGML_OP_ROPE: { if (encoder == nil) { @@ -788,6 +853,14 @@ void ggml_metal_graph_compute( default: GGML_ASSERT(false && "not implemented"); }; } break; + case GGML_TYPE_F16: + { + switch (dstt) { + case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break; + case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break; + default: GGML_ASSERT(false && "not implemented"); + }; + } break; default: GGML_ASSERT(false && "not implemented"); } diff --git a/ggml-metal.metal b/ggml-metal.metal index 09e12a879..d1e49222d 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -256,6 +256,72 @@ kernel void kernel_get_rows_q4_1( (device float *) ((device char *) dst + i*nb1), ne00); } +kernel void kernel_norm( + device const void * src0, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant float & eps, + threadgroup float * sum [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint ntg[[threads_per_threadgroup]]) { + device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01); + // MEAN + // parallel sum + sum[tpitg] = 0.0f; + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + sum[tpitg] += x[i00]; + } + // reduce + threadgroup_barrier(mem_flags::mem_threadgroup); + for (uint i = ntg/2; i > 0; i /= 2) { + if (tpitg < i) { + sum[tpitg] += sum[tpitg + i]; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + } + // broadcast + if (tpitg == 0) { + sum[0] /= ne00; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + const float mean = sum[0]; + + // recenter + device float * y = dst + tgpig*ne00; + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + y[i00] = x[i00] - mean; + } + + // VARIANCE + // parallel sum + sum[tpitg] = 0.0f; + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + sum[tpitg] += y[i00] * y[i00]; + } + // reduce + threadgroup_barrier(mem_flags::mem_threadgroup); + for (uint i = ntg/2; i > 0; i /= 2) { + if (tpitg < i) { + sum[tpitg] += sum[tpitg + i]; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + } + // broadcast + if (tpitg == 0) { + sum[0] /= ne00; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + const float variance = sum[0]; + + const float scale = 1.0f/sqrt(variance + eps); + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + y[i00] = y[i00] * scale; + } +} + + kernel void kernel_rms_norm( device const void * src0, device float * dst, @@ -485,6 +551,48 @@ kernel void kernel_mul_mat_f16_f32( } } +kernel void kernel_alibi_f32( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant float & m0, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + float m_k = pow(m0, i2 + 1); + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + dst_data[i00] = src[0] + m_k * (i00 - ne00 + 1); + } +} + kernel void kernel_rope( device const void * src0, device float * dst, @@ -540,6 +648,47 @@ kernel void kernel_rope( } } +kernel void kernel_cpy_f16_f16( + device const half * src0, + device half * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + dst_data[i00] = src[0]; + } +} + kernel void kernel_cpy_f32_f16( device const float * src0, device half * dst, From 3d59ec5935ea1d33e9d51060a8dd737169b9b89b Mon Sep 17 00:00:00 2001 From: Howard Su Date: Sat, 17 Jun 2023 23:46:15 +0800 Subject: [PATCH 036/135] ggml : fix warnings under MSVC (#1908) --- ggml-cuda.cu | 4 ++++ ggml-opencl.cpp | 4 ++++ llama.cpp | 2 +- 3 files changed, 9 insertions(+), 1 deletion(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 7edd1a9f8..fed2a7ce1 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -13,6 +13,10 @@ #include "ggml-cuda.h" #include "ggml.h" +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); #define CUDA_CHECK(err) \ diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 1d4db96ee..95f4cec6d 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -15,6 +15,10 @@ #include "ggml.h" +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + #define CL_DMMV_BLOCK_SIZE 32 #define MULTILINE_QUOTE(...) #__VA_ARGS__ diff --git a/llama.cpp b/llama.cpp index 81f047ed2..a50846f71 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1253,7 +1253,7 @@ static void llama_model_load_internal( vram_scratch = n_batch * MB; ggml_cuda_set_scratch_size(vram_scratch); if (n_gpu_layers > 0) { - fprintf(stderr, "%s: allocating batch_size x 1 MB = %ld MB VRAM for the scratch buffer\n", + fprintf(stderr, "%s: allocating batch_size x 1 MB = %zd MB VRAM for the scratch buffer\n", __func__, vram_scratch / MB); } } From 86c7571864ff331f8cdb9e092f3abeb123729a56 Mon Sep 17 00:00:00 2001 From: DaniAndTheWeb <57776841+DaniAndTheWeb@users.noreply.github.com> Date: Sat, 17 Jun 2023 18:17:22 +0200 Subject: [PATCH 037/135] make : update for latest Arch (#1701) With the upcoming change to the openblas package in arch the Makefile workaround is no longer needed. --- Makefile | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/Makefile b/Makefile index eee9eeb53..72d6ad40c 100644 --- a/Makefile +++ b/Makefile @@ -144,11 +144,7 @@ endif # LLAMA_NO_ACCELERATE ifdef LLAMA_OPENBLAS CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas - ifneq ($(shell grep -e "Arch Linux" -e "ID_LIKE=arch" /etc/os-release 2>/dev/null),) - LDFLAGS += -lopenblas -lcblas - else - LDFLAGS += -lopenblas - endif + LDFLAGS += -lopenblas endif # LLAMA_OPENBLAS ifdef LLAMA_BLIS From 051e1b0e6a6e3aee7d989b47760980e6fda5861c Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 17 Jun 2023 19:30:22 +0300 Subject: [PATCH 038/135] llama : fix kv_cache `n` init (close #1903) --- .gitignore | 1 + examples/CMakeLists.txt | 1 + llama.cpp | 2 ++ 3 files changed, 4 insertions(+) diff --git a/.gitignore b/.gitignore index e68fd724a..e7bfd52e3 100644 --- a/.gitignore +++ b/.gitignore @@ -34,6 +34,7 @@ models/* /perplexity /embedding /train-text-from-scratch +/simple /benchmark-matmult /vdot /server diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index de005f3e3..cf9c4a223 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -38,6 +38,7 @@ else() add_subdirectory(benchmark) add_subdirectory(baby-llama) add_subdirectory(train-text-from-scratch) + add_subdirectory(simple) if (LLAMA_METAL) add_subdirectory(metal) endif() diff --git a/llama.cpp b/llama.cpp index a50846f71..a2916b3e8 100644 --- a/llama.cpp +++ b/llama.cpp @@ -886,6 +886,7 @@ static bool kv_cache_init( const int64_t n_elements = n_embd*n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); + cache.n = 0; struct ggml_init_params params; params.mem_size = cache.buf.size; @@ -904,6 +905,7 @@ static bool kv_cache_init( ggml_set_name(cache.k, "cache_k"); ggml_set_name(cache.v, "cache_v"); + (void) n_gpu_layers; #ifdef GGML_USE_CUBLAS if (n_gpu_layers > n_layer + 1) { ggml_cuda_assign_buffers_no_scratch(cache.v); From 2c9380dd2f77e41149340f3ecb09764d793b16db Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sat, 17 Jun 2023 19:15:02 +0200 Subject: [PATCH 039/135] Only one CUDA stream per device for async compute (#1898) --- README.md | 1 - examples/common.cpp | 3 --- ggml-cuda.cu | 54 +++++++++++++++++---------------------------- 3 files changed, 20 insertions(+), 38 deletions(-) diff --git a/README.md b/README.md index b9759b00b..7defb7584 100644 --- a/README.md +++ b/README.md @@ -336,7 +336,6 @@ Building the program with BLAS support may lead to some performance improvements cmake .. -DLLAMA_CUBLAS=ON cmake --build . --config Release ``` - Note: Because llama.cpp uses multiple CUDA streams for matrix multiplication results [are not guaranteed to be reproducible](https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility). If you need reproducibility, set `GGML_CUDA_MAX_STREAMS` in the file `ggml-cuda.cu` to 1. The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. diff --git a/examples/common.cpp b/examples/common.cpp index 055383bef..fed24e027 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -106,9 +106,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } if (arg == "-s" || arg == "--seed") { -#if defined(GGML_USE_CUBLAS) - fprintf(stderr, "WARNING: when using cuBLAS generation results are NOT guaranteed to be reproducible.\n"); -#endif if (++i >= argc) { invalid_param = true; break; diff --git a/ggml-cuda.cu b/ggml-cuda.cu index fed2a7ce1..16488b9f9 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1467,19 +1467,13 @@ static void * g_scratch_buffer = nullptr; static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default static size_t g_scratch_offset = 0; -#define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication. -#define GGML_CUDA_MAX_EVENTS 64 - static int g_device_count = -1; static int g_main_device = 0; static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0}; static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr}; -static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr }; - -static cudaStream_t g_cudaStreams_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr }; -static cudaEvent_t g_cudaEvents_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_EVENTS] = { nullptr }; +static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr }; void ggml_init_cublas() { static bool initialized = false; @@ -1503,15 +1497,8 @@ void ggml_init_cublas() { for (int id = 0; id < g_device_count; ++id) { CUDA_CHECK(cudaSetDevice(id)); - // create streams - for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) { - CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id][i], cudaStreamNonBlocking)); - CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_memcpy_src1[id][i], cudaStreamNonBlocking)); - } - // create events - for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) { - CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents_memcpy_src1[id][i], cudaEventDisableTiming)); - } + // create main stream + CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id], cudaStreamNonBlocking)); // create cublas handle CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id])); @@ -1978,6 +1965,12 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0}; size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0}; + // if multiple GPUs are used they need to wait for the main GPU to finish + if (split && g_device_count > 1) { + CUDA_CHECK(cudaSetDevice(g_main_device)); + CUDA_CHECK(cudaDeviceSynchronize()); + } + for (int id = 0; id < g_device_count; ++id) { if (!split && id != g_main_device) { continue; @@ -2076,9 +2069,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm } const int64_t i11 = i13*ne12 + i12; - cudaStream_t cudaStream_main = g_cudaStreams_main[id][i0 % GGML_CUDA_MAX_STREAMS]; - cudaStream_t cudaStream_memcpy_src1 = g_cudaStreams_memcpy_src1[id][i0 % GGML_CUDA_MAX_STREAMS]; - cudaEvent_t cudaEvent_memcpy_src1 = g_cudaEvents_memcpy_src1[id][i0 % GGML_CUDA_MAX_EVENTS]; + cudaStream_t cudaStream_main = g_cudaStreams_main[id]; // for split tensors the data begins at i0 == i0_offset_low char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs; @@ -2106,14 +2097,14 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm if (src1->backend == GGML_BACKEND_CPU) { GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1)); int64_t nrows1 = flatten_rows ? nrows0 : ne11; - CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_memcpy_src1)); + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_main)); } else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) { if (id != g_main_device) { GGML_ASSERT(!flatten_rows); float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device]; src1_ddf_i_source += i11*src1_stride; CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float), - cudaMemcpyDeviceToDevice, cudaStream_memcpy_src1)); + cudaMemcpyDeviceToDevice, cudaStream_main)); } } else if (src1_on_device && !src1_is_contiguous) { GGML_ASSERT(!split); @@ -2122,7 +2113,6 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm GGML_ASSERT(false); } } - CUDA_CHECK(cudaEventRecord(cudaEvent_memcpy_src1, cudaStream_memcpy_src1)); if (!src0_on_device || !src0_is_contiguous) { if (src0_is_f32) { @@ -2138,9 +2128,6 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm CUDA_CHECK(cudaGetLastError()); } - // wait with main stream until src1 memcpy is done - CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, cudaEvent_memcpy_src1, 0)); - // do the computation op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main); @@ -2178,8 +2165,13 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm // wait until each device is finished, then free their buffers for (int id = 0; id < g_device_count; ++id) { + if (src0_asq[id] == 0 && src0_asf[id] == 0 && src1_asf[id] == 0 && dst_asf[id] == 0) { + continue; + } + CUDA_CHECK(cudaSetDevice(id)); CUDA_CHECK(cudaDeviceSynchronize()); + if (src0_asq[id] > 0) { ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]); } @@ -2245,7 +2237,7 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr const int64_t ne02 = src0->ne[2]; CUDA_CHECK(cudaSetDevice(g_main_device)); - cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0]; + cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device]; struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; void * src0_ddq = src0_extra->data_device[g_main_device]; @@ -2257,8 +2249,6 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main); - - CUDA_CHECK(cudaDeviceSynchronize()); } void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ @@ -2276,7 +2266,7 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1 const int64_t nb02 = src0->nb[2]; CUDA_CHECK(cudaSetDevice(g_main_device)); - cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0]; + cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device]; struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; void * src0_ddq = src0_extra->data_device[g_main_device]; @@ -2291,8 +2281,6 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1 const int channel_stride_x = nb02 / sizeof(half); ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main); - - CUDA_CHECK(cudaDeviceSynchronize()); } void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -2348,7 +2336,7 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens const int64_t nb12 = src1->nb[2]; CUDA_CHECK(cudaSetDevice(g_main_device)); - cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0]; + cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device]; const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; @@ -2366,8 +2354,6 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens GGML_ASSERT(false); } - CUDA_CHECK(cudaDeviceSynchronize()); - (void) dst; } From 4f9c43e3bd488b7561119785485e1155dba338d7 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 17 Jun 2023 20:24:11 +0300 Subject: [PATCH 040/135] minor : warning fixes --- examples/main/main.cpp | 2 +- ggml-metal.m | 27 ++++++++++++++++----------- 2 files changed, 17 insertions(+), 12 deletions(-) diff --git a/examples/main/main.cpp b/examples/main/main.cpp index a051fcbc5..941312f9c 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -354,7 +354,7 @@ int main(int argc, char ** argv) { if ((int)embd.size() > max_embd_size) { auto skipped_tokens = embd.size() - max_embd_size; console_set_color(con_st, CONSOLE_COLOR_ERROR); - printf("<>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); + printf("<>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); console_set_color(con_st, CONSOLE_COLOR_DEFAULT); fflush(stdout); embd.resize(max_embd_size); diff --git a/ggml-metal.m b/ggml-metal.m index 814851203..07da62a25 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -256,10 +256,10 @@ bool ggml_metal_add_buffer( if (ctx->buffers[ctx->n_buffers].metal == nil) { fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0); return false; - } else { - fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0); } + fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0); + ++ctx->n_buffers; } @@ -765,18 +765,23 @@ void ggml_metal_graph_compute( } break; case GGML_OP_ALIBI: { - GGML_ASSERT((src0t == GGML_TYPE_F32)); - const int n_past = ((int32_t *) src1->data)[0]; - const int n_head = ((int32_t *) src1->data)[1]; - const float max_bias = ((float *) src1->data)[2]; - if (__builtin_popcount(n_head) != 1) { - GGML_ASSERT(false && "only power-of-two n_head implemented"); - } - const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); - const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } + + GGML_ASSERT((src0t == GGML_TYPE_F32)); + + const int n_past = ((int32_t *) src1->data)[0]; UNUSED(n_past); + const int n_head = ((int32_t *) src1->data)[1]; + const float max_bias = ((float *) src1->data)[2]; + + if (__builtin_popcount(n_head) != 1) { + GGML_ASSERT(false && "only power-of-two n_head implemented"); + } + + const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); + const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); + [encoder setComputePipelineState:ctx->pipeline_alibi_f32]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; From b2416493ab3ab21686d47c96669da6d6c6af08a4 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 17 Jun 2023 20:55:03 +0300 Subject: [PATCH 041/135] make : do not print help for simple example --- Makefile | 3 --- 1 file changed, 3 deletions(-) diff --git a/Makefile b/Makefile index 72d6ad40c..cf590862b 100644 --- a/Makefile +++ b/Makefile @@ -276,9 +276,6 @@ main: examples/main/main.cpp build-info.h ggml. simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) - @echo - @echo '==== Run ./simple -h for help. ====' - @echo quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) From 57cd69460f736031a3fc54af1e97c03f80128478 Mon Sep 17 00:00:00 2001 From: Howard Su Date: Sun, 18 Jun 2023 12:29:47 +0800 Subject: [PATCH 042/135] cmake : add CUDA_ARCHITECTURES to new target ggml_static (#1917) --- CMakeLists.txt | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/CMakeLists.txt b/CMakeLists.txt index f5a968533..736771954 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -492,6 +492,10 @@ if (GGML_SOURCES_CUDA) message(STATUS "GGML CUDA sources found, configuring CUDA architecture") set_property(TARGET ggml PROPERTY CUDA_ARCHITECTURES OFF) set_property(TARGET ggml PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") + + set_property(TARGET ggml_static PROPERTY CUDA_ARCHITECTURES OFF) + set_property(TARGET ggml_static PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") + set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES OFF) endif() From ce2c7d72e2d06988b5ddec6811ab923254542077 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 18 Jun 2023 09:09:47 +0300 Subject: [PATCH 043/135] metal : handle buffers larger than device's maxBufferLength (#1826) * metal : handle buffers larger than device's maxBufferLength * metal : print more verbose device info + handle errors * metal : fix prints for overlapping views * metal : minimize view overlap to try to utilize device memory better --- Makefile | 2 +- ggml-metal.h | 5 ++- ggml-metal.m | 98 ++++++++++++++++++++++++++++++++++++++++++---------- ggml.c | 24 +++++++++++-- ggml.h | 5 +-- llama.cpp | 26 ++++++++------ 6 files changed, 125 insertions(+), 35 deletions(-) diff --git a/Makefile b/Makefile index cf590862b..afd06e0a6 100644 --- a/Makefile +++ b/Makefile @@ -252,7 +252,7 @@ $(info ) ggml.o: ggml.c ggml.h ggml-cuda.h $(CC) $(CFLAGS) -c $< -o $@ -llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h +llama.o: llama.cpp ggml.h ggml-cuda.h ggml-metal.h llama.h llama-util.h $(CXX) $(CXXFLAGS) -c $< -o $@ common.o: examples/common.cpp examples/common.h diff --git a/ggml-metal.h b/ggml-metal.h index 033c4d86a..b9e50ac74 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -41,12 +41,15 @@ void ggml_metal_free(struct ggml_metal_context * ctx); // - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute // - the mapping is used during computation to determine the arguments of the compute kernels // - you don't need to keep the host memory buffer allocated as it is never accessed by Metal +// - max_size specifies the maximum size of a tensor and is used to create shared views such +// that it is guaranteed that the tensor will fit in at least one of the views // bool ggml_metal_add_buffer( struct ggml_metal_context * ctx, const char * name, void * data, - size_t size); + size_t size, + size_t max_size); // set data from host memory into the device void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t); diff --git a/ggml-metal.m b/ggml-metal.m index 07da62a25..a7e104dc7 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -183,6 +183,14 @@ struct ggml_metal_context * ggml_metal_init(void) { #undef GGML_METAL_ADD_KERNEL } + fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); + fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); + if (ctx->device.maxTransferRate != 0) { + fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); + } else { + fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__); + } + return ctx; } @@ -199,10 +207,13 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { static id ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) { //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); + const int64_t tsize = ggml_nbytes(t); + + // find the view that contains the tensor fully for (int i = 0; i < ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; - if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { + if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) { *offs = (size_t) ioffs; //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); @@ -220,7 +231,8 @@ bool ggml_metal_add_buffer( struct ggml_metal_context * ctx, const char * name, void * data, - size_t size) { + size_t size, + size_t max_size) { if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { fprintf(stderr, "%s: too many buffers\n", __func__); return false; @@ -237,30 +249,68 @@ bool ggml_metal_add_buffer( } } - size_t page_size = getpagesize(); - size_t aligned_size = size; - if ((aligned_size % page_size) != 0) { - aligned_size += (page_size - (aligned_size % page_size)); + const size_t size_page = getpagesize(); + + size_t size_aligned = size; + if ((size_aligned % size_page) != 0) { + size_aligned += (size_page - (size_aligned % size_page)); } - ctx->buffers[ctx->n_buffers].name = name; - ctx->buffers[ctx->n_buffers].data = data; - ctx->buffers[ctx->n_buffers].size = size; + // the buffer fits into the max buffer size allowed by the device + if (size_aligned <= ctx->device.maxBufferLength) { + ctx->buffers[ctx->n_buffers].name = name; + ctx->buffers[ctx->n_buffers].data = data; + ctx->buffers[ctx->n_buffers].size = size; - if (ctx->device.maxBufferLength < aligned_size) { - fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength); - return false; - } - ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil]; + ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; - if (ctx->buffers[ctx->n_buffers].metal == nil) { - fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0); - return false; + if (ctx->buffers[ctx->n_buffers].metal == nil) { + fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); + return false; + } + + fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); + + ++ctx->n_buffers; + } else { + // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into + // one of the views + const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case + const size_t size_step = ctx->device.maxBufferLength - size_ovlp; + const size_t size_view = ctx->device.maxBufferLength; + + for (size_t i = 0; i < size; i += size_step) { + const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); + + ctx->buffers[ctx->n_buffers].name = name; + ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i); + ctx->buffers[ctx->n_buffers].size = size_step_aligned; + + ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; + + if (ctx->buffers[ctx->n_buffers].metal == nil) { + fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); + return false; + } + + fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); + if (i + size_step < size) { + fprintf(stderr, "\n"); + } + + ++ctx->n_buffers; + } } - fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0); + fprintf(stderr, ", (%8.2f / %8.2f)", + ctx->device.currentAllocatedSize / 1024.0 / 1024.0, + ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); - ++ctx->n_buffers; + if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) { + fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n"); + } else { + fprintf(stderr, "\n"); + } } return true; @@ -909,4 +959,14 @@ void ggml_metal_graph_compute( dispatch_barrier_sync(queue, ^{}); [command_buffers[n_cb - 1] waitUntilCompleted]; + + // check status of command buffers + // needed to detect if the device ran out-of-memory for example (#1881) + for (int i = 0; i < n_cb; i++) { + MTLCommandBufferStatus status = (MTLCommandBufferStatus) [command_buffers[i] status]; + if (status != MTLCommandBufferStatusCompleted) { + fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status); + GGML_ASSERT(false); + } + } } diff --git a/ggml.c b/ggml.c index 0eda7f338..78c365354 100644 --- a/ggml.c +++ b/ggml.c @@ -4154,14 +4154,34 @@ void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) { ctx->no_alloc = no_alloc; } -void * ggml_get_mem_buffer(struct ggml_context * ctx) { +void * ggml_get_mem_buffer(const struct ggml_context * ctx) { return ctx->mem_buffer; } -size_t ggml_get_mem_size(struct ggml_context * ctx) { +size_t ggml_get_mem_size(const struct ggml_context * ctx) { return ctx->mem_size; } +size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) { + size_t max_size = 0; + + struct ggml_object * obj = ctx->objects_begin; + + while (obj != NULL) { + struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs); + + const size_t size = ggml_nbytes(tensor); + + if (max_size < size) { + max_size = size; + } + + obj = obj->next; + } + + return max_size; +} + // IMPORTANT: // when creating "opt" tensors, always save and load the scratch buffer // this is an error prone process, but it is necessary to support inplace diff --git a/ggml.h b/ggml.h index 9b0c846f8..1380c530f 100644 --- a/ggml.h +++ b/ggml.h @@ -500,8 +500,9 @@ extern "C" { GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch); GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc); - GGML_API void * ggml_get_mem_buffer(struct ggml_context * ctx); - GGML_API size_t ggml_get_mem_size (struct ggml_context * ctx); + GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx); + GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx); + GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx); GGML_API struct ggml_tensor * ggml_new_tensor( struct ggml_context * ctx, diff --git a/llama.cpp b/llama.cpp index a2916b3e8..c165d3239 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2696,16 +2696,21 @@ struct llama_context * llama_init_from_file( // this allocates all Metal resources and memory buffers ctx->ctx_metal = ggml_metal_init(); - void *data_ptr = NULL; + void * data_ptr = NULL; size_t data_size = 0; + if (params.use_mmap) { - data_ptr = ctx->model.mapping->addr; - data_size= ctx->model.mapping->size; + data_ptr = ctx->model.mapping->addr; + data_size = ctx->model.mapping->size; } else { - data_ptr = ggml_get_mem_buffer(ctx->model.ctx); - data_size= ggml_get_mem_size(ctx->model.ctx); + data_ptr = ggml_get_mem_buffer(ctx->model.ctx); + data_size = ggml_get_mem_size (ctx->model.ctx); } + const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx); + + printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0); + #define LLAMA_METAL_CHECK_BUF(result) \ if (!(result)) { \ fprintf(stderr, "%s: failed to add buffer\n", __func__); \ @@ -2713,12 +2718,13 @@ struct llama_context * llama_init_from_file( return NULL; \ } - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size, 0)); + + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0)); #undef LLAMA_METAL_CHECK_BUF } #endif From 90cc59d6ab1363a5c69c60c4b94db647d3a54a18 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sun, 18 Jun 2023 10:52:10 +0300 Subject: [PATCH 044/135] examples : fix examples/metal (#1920) Co-authored-by: Iwan Kawrakow --- examples/metal/metal.cpp | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/examples/metal/metal.cpp b/examples/metal/metal.cpp index 77aca94a3..cdfe4bfe9 100644 --- a/examples/metal/metal.cpp +++ b/examples/metal/metal.cpp @@ -40,8 +40,10 @@ int main(int argc, char ** argv) { // this allocates all Metal resources and memory buffers auto * ctx_metal = ggml_metal_init(); - ggml_metal_add_buffer(ctx_metal, "data", ggml_get_mem_buffer(ctx_data), ggml_get_mem_size(ctx_data)); - ggml_metal_add_buffer(ctx_metal, "eval", ggml_get_mem_buffer(ctx_eval), ggml_get_mem_size(ctx_eval)); + const size_t max_size_data = ggml_get_max_tensor_size(ctx_data); + const size_t max_size_eval = ggml_get_max_tensor_size(ctx_eval); + ggml_metal_add_buffer(ctx_metal, "data", ggml_get_mem_buffer(ctx_data), ggml_get_mem_size(ctx_data), max_size_data); + ggml_metal_add_buffer(ctx_metal, "eval", ggml_get_mem_buffer(ctx_eval), ggml_get_mem_size(ctx_eval), max_size_eval); // main { From 8ab8ba62eb27cc340be2edf3418e051b1d967416 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sun, 18 Jun 2023 11:13:43 +0300 Subject: [PATCH 045/135] llama : prevent usage of k-quants when tensor size is not a multiple of 256 (#1921) * Fix examples/metal * k-quants: prevent usage when tensor size is not divisible by 256 --------- Co-authored-by: Iwan Kawrakow --- llama.cpp | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) diff --git a/llama.cpp b/llama.cpp index c165d3239..dfbb85a68 100644 --- a/llama.cpp +++ b/llama.cpp @@ -19,6 +19,11 @@ #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif +#ifdef GGML_USE_K_QUANTS +#ifndef QK_K +#define QK_K 256 +#endif +#endif #include #include @@ -2491,6 +2496,17 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } else { new_type = quantized_type; #ifdef GGML_USE_K_QUANTS + if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K || + quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) { + int nx = tensor.ne.at(0); + int ny = tensor.ne.at(0); + if (nx % QK_K != 0 || ny % QK_K != 0) { + fprintf(stderr, "\n\n========================= Tensor sizes %d x %d are not divisible by %d\n",nx,ny,QK_K); + fprintf(stderr, "This is required to be able to use k-quants for now!\n"); + fprintf(stderr, "========================================================================================\n\n"); + throw std::runtime_error("Unsupported tensor size encountered\n"); + } + } if (tensor.name == "output.weight") { new_type = GGML_TYPE_Q6_K; } else if (tensor.name.find("attention.wv.weight") != std::string::npos) { From e1886cf4fe0d0f31661dda52a4a9f34bd9b9009a Mon Sep 17 00:00:00 2001 From: Mike Date: Sun, 18 Jun 2023 16:28:26 +0800 Subject: [PATCH 046/135] readme : update Android build instructions (#1922) Add steps for using termux on android devices to prevent common errors. --- README.md | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 7defb7584..e5b3f59b3 100644 --- a/README.md +++ b/README.md @@ -617,7 +617,12 @@ And after 4.45 hours, you will have the final perplexity. #### Building the Project using Android NDK You can easily run `llama.cpp` on Android device with [termux](https://termux.dev/). -First, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake: + +First, install the essential packages for termux: +``` +pkg install clang wget git cmake +``` +Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake: ``` $ mkdir build-android $ cd build-android From 8596af427722775f0df4a7c90b9af067ba90d4ef Mon Sep 17 00:00:00 2001 From: l3utterfly Date: Sun, 18 Jun 2023 19:19:16 +0800 Subject: [PATCH 047/135] ggml : fix bug in ggml_compute_forward_add_q_f32 (#1918) --- ggml.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml.c b/ggml.c index 78c365354..037f0bc99 100644 --- a/ggml.c +++ b/ggml.c @@ -7918,7 +7918,7 @@ static void ggml_compute_forward_add_q_f32( void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)); - void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0)); + void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); assert(ne00 % 32 == 0); From 0ede372a51fd8160688e01b587582666c14e94e5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sun, 18 Jun 2023 16:07:09 +0200 Subject: [PATCH 048/135] Fixed incorrectly applying RMS norm twice (#1925) --- llama.cpp | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/llama.cpp b/llama.cpp index dfbb85a68..45360cea3 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1657,11 +1657,7 @@ static bool llama_eval_internal( { cur = ggml_rms_norm(ctx0, inpL); offload_func_nr(cur); - ggml_set_name(cur, "rms_norm_inpL"); - - cur = ggml_rms_norm(ctx0, cur); - offload_func_nr(cur); - ggml_set_name(cur, "rms_norm_after"); + ggml_set_name(cur, "rms_norm_2"); // cur = cur*norm(broadcasted) cur = ggml_mul(ctx0, cur, model.norm); From b24c3049d96557c24782e4d32feaae65f47277af Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sun, 18 Jun 2023 17:41:26 +0200 Subject: [PATCH 049/135] Added tokens per second to info prints (#1928) --- llama.cpp | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/llama.cpp b/llama.cpp index 45360cea3..2105e3279 100644 --- a/llama.cpp +++ b/llama.cpp @@ -3467,9 +3467,12 @@ void llama_print_timings(struct llama_context * ctx) { fprintf(stderr, "\n"); fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0); - fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample); - fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval); - fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval); + fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", + __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample, 1e6 / ctx->t_sample_us * n_sample); + fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", + __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval, 1e6 / ctx->t_p_eval_us * n_p_eval); + fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", + __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval, 1e6 / ctx->t_eval_us * n_eval); fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0); } From 16b9cd193965769089881bb8ec012fccca7b37b6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Mon, 19 Jun 2023 10:23:56 +0200 Subject: [PATCH 050/135] Convert vector to f16 for dequantize mul mat vec (#1913) * Convert vector to f16 for dmmv * compile option * Added compilation option description to README * Changed cmake CUDA_ARCHITECTURES from "OFF" to "native" --- CMakeLists.txt | 10 ++- Makefile | 3 + README.md | 9 ++- ggml-cuda.cu | 202 ++++++++++++++++++++++++++++++++++--------------- llama.cpp | 2 +- 5 files changed, 158 insertions(+), 68 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 736771954..dc06365d1 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -70,6 +70,7 @@ set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor") option(LLAMA_CUBLAS "llama: use cuBLAS" OFF) set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels") set(LLAMA_CUDA_DMMV_Y "1" CACHE STRING "llama: y block size for dmmv CUDA kernels") +option(LLAMA_CUDA_DMMV_F16 "llama: use 16 bit floats for dmmv CUDA kernels" OFF) set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K") option(LLAMA_CLBLAST "llama: use CLBlast" OFF) option(LLAMA_METAL "llama: use Metal" OFF) @@ -238,6 +239,9 @@ if (LLAMA_CUBLAS) add_compile_definitions(GGML_USE_CUBLAS) add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X}) add_compile_definitions(GGML_CUDA_DMMV_Y=${LLAMA_CUDA_DMMV_Y}) + if (LLAMA_CUDA_DMMV_F16) + add_compile_definitions(GGML_CUDA_DMMV_F16) + endif() add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER}) if (LLAMA_STATIC) @@ -490,13 +494,13 @@ endif() if (GGML_SOURCES_CUDA) message(STATUS "GGML CUDA sources found, configuring CUDA architecture") - set_property(TARGET ggml PROPERTY CUDA_ARCHITECTURES OFF) + set_property(TARGET ggml PROPERTY CUDA_ARCHITECTURES "native") set_property(TARGET ggml PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") - set_property(TARGET ggml_static PROPERTY CUDA_ARCHITECTURES OFF) + set_property(TARGET ggml_static PROPERTY CUDA_ARCHITECTURES "native") set_property(TARGET ggml_static PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") - set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES OFF) + set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES "native") endif() diff --git a/Makefile b/Makefile index afd06e0a6..5dd676fad 100644 --- a/Makefile +++ b/Makefile @@ -169,6 +169,9 @@ ifdef LLAMA_CUDA_DMMV_Y else NVCCFLAGS += -DGGML_CUDA_DMMV_Y=1 endif # LLAMA_CUDA_DMMV_Y +ifdef LLAMA_CUDA_DMMV_F16 + NVCCFLAGS += -DGGML_CUDA_DMMV_F16 +endif # LLAMA_CUDA_DMMV_F16 ifdef LLAMA_CUDA_KQUANTS_ITER NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER) else diff --git a/README.md b/README.md index e5b3f59b3..2d05de333 100644 --- a/README.md +++ b/README.md @@ -337,7 +337,14 @@ Building the program with BLAS support may lead to some performance improvements cmake --build . --config Release ``` - The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. + The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance: + + | Option | Legal values | Default | Description | + |-------------------------|------------------------|---------|-------------| + | LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. | + | LLAMA_CUDA_DMMV_Y | Positive integer | 1 | Block size in y direction for the CUDA dequantization + mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. | + | LLAMA_CUDA_DMMV_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels. Can improve performance on relatively recent GPUs. | + | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value 2 1 can improve performance for slow GPUs. | - #### CLBlast diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 16488b9f9..9ebc57aff 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -50,7 +50,15 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); } while (0) #endif // CUDART_VERSION >= 11 -typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1); +#ifdef GGML_CUDA_DMMV_F16 +typedef half dfloat; // dequantize float +typedef half2 dfloat2; +#else +typedef float dfloat; // dequantize float +typedef float2 dfloat2; +#endif //GGML_CUDA_DMMV_F16 + +typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v); typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v); typedef void (*cpy_kernel_t)(const char * cx, char * cdst); @@ -234,82 +242,106 @@ static __global__ void rms_norm_f32(const float * x, float * dst, const int ncol } } -static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ +static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){ const block_q4_0 * x = (const block_q4_0 *) vx; - const float d = x[ib].d; + const dfloat d = x[ib].d; - const uint8_t vui = x[ib].qs[iqs]; + const int vui = x[ib].qs[iqs]; - const int8_t vi0 = vui & 0xF; - const int8_t vi1 = vui >> 4; + v.x = vui & 0xF; + v.y = vui >> 4; - v0 = (vi0 - 8)*d; - v1 = (vi1 - 8)*d; +#ifdef GGML_CUDA_DMMV_F16 + v = __hsub2(v, {8.0f, 8.0f}); + v = __hmul2(v, {d, d}); +#else + v.x = (v.x - 8.0f) * d; + v.y = (v.y - 8.0f) * d; +#endif // GGML_CUDA_DMMV_F16 } -static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){ +static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){ const block_q4_1 * x = (const block_q4_1 *) vx; - const float d = x[ib].d; - const float m = x[ib].m; + const dfloat d = x[ib].d; + const dfloat m = x[ib].m; - const uint8_t vui = x[ib].qs[iqs]; + const int vui = x[ib].qs[iqs]; - const int8_t vi0 = vui & 0xF; - const int8_t vi1 = vui >> 4; + v.x = vui & 0xF; + v.y = vui >> 4; - v0 = vi0*d + m; - v1 = vi1*d + m; +#ifdef GGML_CUDA_DMMV_F16 + v = __hmul2(v, {d, d}); + v = __hadd2(v, {m, m}); +#else + v.x = (v.x * d) + m; + v.y = (v.y * d) + m; +#endif // GGML_CUDA_DMMV_F16 } -static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ +static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){ const block_q5_0 * x = (const block_q5_0 *) vx; - const float d = x[ib].d; + const dfloat d = x[ib].d; uint32_t qh; memcpy(&qh, x[ib].qh, sizeof(qh)); - const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; - const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; + const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; + const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10; - const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; - const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; + v.x = ((x[ib].qs[iqs] & 0xf) | xh_0); + v.y = ((x[ib].qs[iqs] >> 4) | xh_1); - v0 = x0*d; - v1 = x1*d; +#ifdef GGML_CUDA_DMMV_F16 + v = __hsub2(v, {16.0f, 16.0f}); + v = __hmul2(v, {d, d}); +#else + v.x = (v.x - 16.0f) * d; + v.y = (v.y - 16.0f) * d; +#endif // GGML_CUDA_DMMV_F16 } -static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){ +static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){ const block_q5_1 * x = (const block_q5_1 *) vx; - const float d = x[ib].d; - const float m = x[ib].m; + const dfloat d = x[ib].d; + const dfloat m = x[ib].m; uint32_t qh; memcpy(&qh, x[ib].qh, sizeof(qh)); - const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; - const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; + const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; + const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10; - const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); - const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); + v.x = ((x[ib].qs[iqs] & 0xf) | xh_0); + v.y = ((x[ib].qs[iqs] >> 4) | xh_1); - v0 = x0*d + m; - v1 = x1*d + m; +#ifdef GGML_CUDA_DMMV_F16 + v = __hmul2(v, {d, d}); + v = __hadd2(v, {m, m}); +#else + v.x = (v.x * d) + m; + v.y = (v.y * d) + m; +#endif // GGML_CUDA_DMMV_F16 } -static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ +static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){ const block_q8_0 * x = (const block_q8_0 *) vx; - const float d = x[ib].d; + const dfloat d = x[ib].d; - const int8_t vi0 = x[ib].qs[iqs + 0]; - const int8_t vi1 = x[ib].qs[iqs + 1]; + v.x = x[ib].qs[iqs + 0]; + v.y = x[ib].qs[iqs + 1]; - v0 = vi0*d; - v1 = vi1*d; +#ifdef GGML_CUDA_DMMV_F16 + v = __hmul2(v, {d, d}); +#else + v.x *= d; + v.y *= d; +#endif // GGML_CUDA_DMMV_F16 } //================================== k-quants @@ -843,11 +875,12 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * vx, const float } } -static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){ +static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){ const half * x = (const half *) vx; - v0 = __half2float(x[ib + iqs + 0]); - v1 = __half2float(x[ib + iqs + 1]); + // automatic half -> float type cast if dfloat == float + v.x = x[ib + iqs + 0]; + v.y = x[ib + iqs + 1]; } template @@ -864,13 +897,15 @@ static __global__ void dequantize_block(const void * vx, float * y, const int k) const int y_offset = qr == 1 ? 1 : qk/2; // dequantize - float & v0 = y[iybs + iqs + 0]; - float & v1 = y[iybs + iqs + y_offset]; - dequantize_kernel(vx, ib, iqs, v0, v1); + dfloat2 v; + dequantize_kernel(vx, ib, iqs, v); + + y[iybs + iqs + 0] = v.x; + y[iybs + iqs + y_offset] = v.y; } template -static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols, const int nrows) { +static __global__ void dequantize_mul_mat_vec(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows) { // qk = quantized weights per x block // qr = number of quantized weights per data value in x block const int row = blockIdx.y*blockDim.y + threadIdx.y; @@ -885,7 +920,12 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter const int y_offset = qr == 1 ? 1 : qk/2; - float tmp = 0.0f; // partial sum for thread in warp +// partial sum for each thread +#ifdef GGML_CUDA_DMMV_F16 + half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics +#else + float tmp = 0.0f; +#endif // GGML_CUDA_DMMV_F16 for (int i = 0; i < ncols; i += iter_stride) { const int col = i + vals_per_iter*tid; @@ -899,14 +939,21 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, // process 2 vals per j iter // dequantize - float v0, v1; - dequantize_kernel(vx, ib, iqs + j/qr, v0, v1); // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val + dfloat2 v; + dequantize_kernel(vx, ib, iqs + j/qr, v); // matrix multiplication - tmp += v0 * y[iybs + iqs + j/qr + 0]; - tmp += v1 * y[iybs + iqs + j/qr + y_offset]; // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2 +#ifdef GGML_CUDA_DMMV_F16 + tmp += __hmul2(v, { + y[iybs + iqs + j/qr + 0], + y[iybs + iqs + j/qr + y_offset] + }); +#else + tmp += v.x * y[iybs + iqs + j/qr + 0]; + tmp += v.y * y[iybs + iqs + j/qr + y_offset]; +#endif // GGML_CUDA_DMMV_F16 } } @@ -918,7 +965,11 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, } if (tid == 0) { +#ifdef GGML_CUDA_DMMV_F16 + dst[row] = tmp.x + tmp.y; +#else dst[row] = tmp; +#endif // GGML_CUDA_DMMV_F16 } } @@ -1213,7 +1264,7 @@ static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cu dequantize_block_q6_K<<>>(vx, y); } -static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { +static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; const dim3 block_nums(1, block_num_y, 1); @@ -1222,7 +1273,7 @@ static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, f <<>>(vx, y, dst, ncols, nrows); } -static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { +static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; const dim3 block_nums(1, block_num_y, 1); @@ -1231,7 +1282,7 @@ static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, f <<>>(vx, y, dst, ncols, nrows); } -static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { +static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; const dim3 block_nums(1, block_num_y, 1); @@ -1240,7 +1291,7 @@ static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, f <<>>(vx, y, dst, ncols, nrows); } -static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { +static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; const dim3 block_nums(1, block_num_y, 1); @@ -1249,7 +1300,7 @@ static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, f <<>>(vx, y, dst, ncols, nrows); } -static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { +static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; const dim3 block_nums(1, block_num_y, 1); @@ -1299,7 +1350,7 @@ static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, c dequantize_block<1, 1, convert_f16><<>>(vx, y, k); } -static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { +static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; const dim3 block_nums(1, block_num_y, 1); @@ -1714,21 +1765,40 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec( const int64_t ne00 = src0->ne[0]; const int64_t nrows = i01_high - i01_low; +// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics +#ifdef GGML_CUDA_DMMV_F16 + size_t ash; + dfloat * src1_dfloat = nullptr; // dfloat == half + + bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 || + src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 || + src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16; + + if (src1_convert_f16) { + src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash); + ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00, + ne00, 1, sizeof(float), 0, 0, + ne00, 1, sizeof(half), 0, 0, cudaStream_main); + } +#else + dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion +#endif // GGML_CUDA_DMMV_F16 + switch (src0->type) { case GGML_TYPE_Q4_0: - dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q4_1: - dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q5_0: - dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q5_1: - dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q8_0: - dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q2_K: dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); @@ -1746,7 +1816,7 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec( dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_F16: - convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); break; default: GGML_ASSERT(false); @@ -1754,6 +1824,12 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec( } CUDA_CHECK(cudaGetLastError()); +#ifdef GGML_CUDA_DMMV_F16 + if (src1_convert_f16) { + ggml_cuda_pool_free(src1_dfloat, ash); + } +#endif // GGML_CUDA_DMMV_F16 + (void) src1; (void) dst; (void) src0_ddf_i; diff --git a/llama.cpp b/llama.cpp index 2105e3279..5401db00e 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1620,7 +1620,7 @@ static bool llama_eval_internal( model.layers[il].w1, cur); offload_func(cur); - ggml_set_name(cur, "result_w2"); + ggml_set_name(cur, "result_w1"); // SILU activation cur = ggml_silu(ctx0, cur); From 1e3abfcef073e73c2b31e8570cb06c5cb2fd1f55 Mon Sep 17 00:00:00 2001 From: Howard Su Date: Mon, 19 Jun 2023 23:10:37 +0800 Subject: [PATCH 051/135] cmake : fix build shared ggml when CUDA is enabled (#1929) Co-authored-by: Georgi Gerganov --- CMakeLists.txt | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/CMakeLists.txt b/CMakeLists.txt index dc06365d1..a598593b6 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -469,6 +469,7 @@ add_library(ggml_static STATIC $) if (BUILD_SHARED_LIBS) set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON) add_library(ggml_shared SHARED $) + target_link_libraries(ggml_shared PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS}) endif() add_library(llama @@ -500,6 +501,11 @@ if (GGML_SOURCES_CUDA) set_property(TARGET ggml_static PROPERTY CUDA_ARCHITECTURES "native") set_property(TARGET ggml_static PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") + if (BUILD_SHARED_LIBS) + set_property(TARGET ggml_shared PROPERTY CUDA_ARCHITECTURES "native") + set_property(TARGET ggml_shared PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") + endif() + set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES "native") endif() From b97ca431db35ec96a339a721acb1219c1dd78bed Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 19 Jun 2023 18:12:33 +0300 Subject: [PATCH 052/135] ggml : sync latest ggml repo (#1924) * ggml : sync latest ggml repo * ggml : remove unused comments * ggml : asserts --- ggml.c | 801 ++++++++++++++++++++++++++++++++++++++++++++++++++------- ggml.h | 144 ++++++++++- 2 files changed, 844 insertions(+), 101 deletions(-) diff --git a/ggml.c b/ggml.c index 037f0bc99..14e08f9d6 100644 --- a/ggml.c +++ b/ggml.c @@ -112,6 +112,7 @@ typedef void* thread_ret_t; /*#define GGML_PERF*/ #define GGML_DEBUG 0 #define GGML_GELU_FP16 +#define GGML_GELU_QUICK_FP16 #define GGML_SILU_FP16 #define GGML_SOFT_MAX_UNROLL 4 @@ -340,6 +341,9 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { // precomputed gelu table for f16 (128 KB) static ggml_fp16_t table_gelu_f16[1 << 16]; +// precomputed quick gelu table for f16 (128 KB) +static ggml_fp16_t table_gelu_quick_f16[1 << 16]; + // precomputed silu table for f16 (128 KB) static ggml_fp16_t table_silu_f16[1 << 16]; @@ -1677,14 +1681,17 @@ quantize_fns_t ggml_internal_get_quantize_fn(size_t i) { #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x) #define GGML_F32x4_REDUCE(res, x) \ { \ - for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ - x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f32(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F32_ARR/4; ++i) { \ - x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f32(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F32_ARR/8; ++i) { \ - x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f32(x[i], x[offset+i]); \ } \ res = GGML_F32x4_REDUCE_ONE(x[0]); \ } @@ -1715,14 +1722,17 @@ quantize_fns_t ggml_internal_get_quantize_fn(size_t i) { #define GGML_F16x8_MUL vmulq_f16 #define GGML_F16x8_REDUCE(res, x) \ { \ - for (int i = 0; i < GGML_F16_ARR/2; ++i) { \ - x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \ + int offset = GGML_F16_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f16(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F16_ARR/4; ++i) { \ - x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f16(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F16_ARR/8; ++i) { \ - x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f16(x[i], x[offset+i]); \ } \ const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \ const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \ @@ -1789,14 +1799,17 @@ quantize_fns_t ggml_internal_get_quantize_fn(size_t i) { #define GGML_F32x8_MUL _mm256_mul_ps #define GGML_F32x8_REDUCE(res, x) \ { \ - for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ - x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm256_add_ps(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F32_ARR/4; ++i) { \ - x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm256_add_ps(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F32_ARR/8; ++i) { \ - x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm256_add_ps(x[i], x[offset+i]); \ } \ const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \ _mm256_extractf128_ps(x[0], 1)); \ @@ -1886,14 +1899,17 @@ static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) { #define GGML_F32x4_MUL vec_mul #define GGML_F32x4_REDUCE(res, x) \ { \ - for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ - x[2*i] = vec_add(x[2*i], x[2*i+1]); \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vec_add(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F32_ARR/4; ++i) { \ - x[4*i] = vec_add(x[4*i], x[4*i+2]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vec_add(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F32_ARR/8; ++i) { \ - x[8*i] = vec_add(x[8*i], x[8*i+4]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vec_add(x[i], x[offset+i]); \ } \ res = vec_extract(x[0], 0) + \ vec_extract(x[0], 1) + \ @@ -1949,14 +1965,17 @@ static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) { #define GGML_F32x4_MUL wasm_f32x4_mul #define GGML_F32x4_REDUCE(res, x) \ { \ - for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ - x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F32_ARR/4; ++i) { \ - x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F32_ARR/8; ++i) { \ - x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ } \ res = wasm_f32x4_extract_lane(x[0], 0) + \ wasm_f32x4_extract_lane(x[0], 1) + \ @@ -2011,14 +2030,17 @@ inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) { #define GGML_F16x4_MUL wasm_f32x4_mul #define GGML_F16x4_REDUCE(res, x) \ { \ - for (int i = 0; i < GGML_F16_ARR/2; ++i) { \ - x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \ + int offset = GGML_F16_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F16_ARR/4; ++i) { \ - x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F16_ARR/8; ++i) { \ - x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ } \ res = wasm_f32x4_extract_lane(x[0], 0) + \ wasm_f32x4_extract_lane(x[0], 1) + \ @@ -2060,14 +2082,17 @@ inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) { #define GGML_F32x4_MUL _mm_mul_ps #define GGML_F32x4_REDUCE(res, x) \ { \ - for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ - x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm_add_ps(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F32_ARR/4; ++i) { \ - x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm_add_ps(x[i], x[offset+i]); \ } \ - for (int i = 0; i < GGML_F32_ARR/8; ++i) { \ - x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm_add_ps(x[i], x[offset+i]); \ } \ const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \ res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \ @@ -3356,6 +3381,7 @@ inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } static const float GELU_COEF_A = 0.044715f; +static const float GELU_QUICK_COEF = -1.702f; static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; inline static float ggml_gelu_f32(float x) { @@ -3386,6 +3412,34 @@ inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { } #endif +inline static float ggml_gelu_quick_f32(float x) { + return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x))); +} + +//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { +// const uint16_t * i16 = (const uint16_t *) x; +// for (int i = 0; i < n; ++i) { +// y[i] = table_gelu_quick_f16[i16[i]]; +// } +//} + +#ifdef GGML_GELU_QUICK_FP16 +inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) { + uint16_t t; + for (int i = 0; i < n; ++i) { + ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); + memcpy(&t, &fp16, sizeof(uint16_t)); + y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]); + } +} +#else +inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) { + for (int i = 0; i < n; ++i) { + y[i] = ggml_gelu_quick_f32(x[i]); + } +} +#endif + // Sigmoid Linear Unit (SiLU) function inline static float ggml_silu_f32(float x) { return x/(1.0f + expf(-x)); @@ -3616,6 +3670,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "STEP", "RELU", "GELU", + "GELU_QUICK", "SILU", "SILU_BACK", "NORM", @@ -3644,12 +3699,15 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "ROPE_BACK", "ALIBI", "CLAMP", - "CONV_1D_1S", - "CONV_1D_2S", + "CONV_1D_S1_PH", + "CONV_1D_S2_PH", + "CONV_2D_SK_P0", "FLASH_ATTN", "FLASH_FF", "FLASH_ATTN_BACK", + "WIN_PART", + "WIN_UNPART", "MAP_UNARY", "MAP_BINARY", @@ -3658,7 +3716,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57"); +static_assert(GGML_OP_COUNT == 61, "GGML_OP_COUNT != 61"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -3684,6 +3742,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "step(x)", "relu(x)", "gelu(x)", + "gelu_quick(x)", "silu(x)", "silu_back(x)", "norm(x)", @@ -3712,12 +3771,15 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "rope_back(x)", "alibi(x)", "clamp(x)", - "conv_1d_1s(x)", - "conv_1d_2s(x)", + "conv_1d_s1_ph(x)", + "conv_1d_s2_ph(x)", + "conv_2d_sk_p0(x)", "flash_attn(x)", "flash_ff(x)", "flash_attn_back(x)", + "win_part(x)", + "win_unpart(x)", "f(x)", "f(x,y)", @@ -3726,7 +3788,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57"); +static_assert(GGML_OP_COUNT == 61, "GGML_OP_COUNT != 61"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); @@ -4017,7 +4079,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { // initialize time system (required on Windows) ggml_time_init(); - // initialize GELU, SILU and EXP F32 tables + // initialize GELU, Quick GELU, SILU and EXP F32 tables { const uint64_t t_start = ggml_time_us(); UNUSED(t_start); @@ -4027,13 +4089,14 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { memcpy(&ii, &ui, sizeof(ii)); const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii); table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f)); + table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f)); table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f)); table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f)); } const uint64_t t_end = ggml_time_us(); UNUSED(t_end); - GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); + GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); } // initialize g_state @@ -4665,9 +4728,10 @@ const char * ggml_get_name(const struct ggml_tensor * tensor) { return tensor->name; } -void ggml_set_name(struct ggml_tensor * tensor, const char * name) { +struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) { strncpy(tensor->name, name, sizeof(tensor->name)); tensor->name[sizeof(tensor->name) - 1] = '\0'; + return tensor; } struct ggml_tensor * ggml_view_tensor( @@ -5446,6 +5510,40 @@ struct ggml_tensor * ggml_gelu_inplace( return ggml_gelu_impl(ctx, a, true); } +// ggml_gelu_quick + +struct ggml_tensor * ggml_gelu_quick_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_GELU_QUICK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_gelu_quick( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_gelu_quick_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_gelu_quick_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_gelu_quick_impl(ctx, a, true); +} + // ggml_silu struct ggml_tensor * ggml_silu_impl( @@ -6645,7 +6743,7 @@ struct ggml_tensor * ggml_clamp( ggml_scratch_save(ctx); - struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3); + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2); ((float *) b->data)[0] = min; ((float *) b->data)[1] = max; @@ -6660,9 +6758,9 @@ struct ggml_tensor * ggml_clamp( return result; } -// ggml_conv_1d_1s +// ggml_conv_1d_s1_ph -struct ggml_tensor * ggml_conv_1d_1s( +struct ggml_tensor * ggml_conv_1d_s1_ph( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { @@ -6679,7 +6777,7 @@ struct ggml_tensor * ggml_conv_1d_1s( const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, }; struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); - result->op = GGML_OP_CONV_1D_1S; + result->op = GGML_OP_CONV_1D_S1_PH; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src0 = a; result->src1 = b; @@ -6687,9 +6785,9 @@ struct ggml_tensor * ggml_conv_1d_1s( return result; } -// ggml_conv_1d_2s +// ggml_conv_1d_s2_ph -struct ggml_tensor * ggml_conv_1d_2s( +struct ggml_tensor * ggml_conv_1d_s2_ph( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { @@ -6706,7 +6804,35 @@ struct ggml_tensor * ggml_conv_1d_2s( const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, }; struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); - result->op = GGML_OP_CONV_1D_2S; + result->op = GGML_OP_CONV_1D_S2_PH; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_conv_2d_sk_p0 + +struct ggml_tensor * ggml_conv_2d_sk_p0( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(b->ne[3] == 1); + GGML_ASSERT(a->ne[2] == b->ne[2]); + GGML_ASSERT(b->ne[0] % a->ne[0] == 0); + GGML_ASSERT(b->ne[1] % a->ne[1] == 0); + bool is_node = false; + + if (a->grad || b->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { b->ne[0]/a->ne[0], b->ne[1]/a->ne[1], a->ne[3], 1, }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + result->op = GGML_OP_CONV_2D_SK_P0; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src0 = a; result->src1 = b; @@ -6840,6 +6966,89 @@ struct ggml_tensor * ggml_flash_attn_back( return result; } +// ggml_win_part + +struct ggml_tensor * ggml_win_part( + struct ggml_context * ctx, + struct ggml_tensor * a, + int w) { + GGML_ASSERT(a->ne[3] == 1); + GGML_ASSERT(a->type == GGML_TYPE_F32); + + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + // padding + const int px = (w - a->ne[1]%w)%w; + const int py = (w - a->ne[2]%w)%w; + + const int npx = (px + a->ne[1])/w; + const int npy = (py + a->ne[2])/w; + const int np = npx*npy; + + const int64_t ne[4] = { a->ne[0], w, w, np, }; + + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + ggml_scratch_save(ctx); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3); + + ((int32_t *) b->data)[0] = npx; + ((int32_t *) b->data)[1] = npy; + ((int32_t *) b->data)[2] = w; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_WIN_PART; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + result->opt[0] = b; + + return result; +} + +// ggml_win_unpart + +struct ggml_tensor * ggml_win_unpart( + struct ggml_context * ctx, + struct ggml_tensor * a, + int w0, + int h0, + int w) { + GGML_ASSERT(a->type == GGML_TYPE_F32); + + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { a->ne[0], w0, h0, 1, }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne); + + ggml_scratch_save(ctx); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1); + + ((int32_t *) b->data)[0] = w; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_WIN_UNPART; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + result->opt[0] = b; + + return result; +} // ggml_map_unary @@ -9479,8 +9688,65 @@ static void ggml_compute_forward_gelu( GGML_ASSERT(false); } break; } +} - //printf("XXXXXXXX gelu\n"); +// ggml_compute_forward_gelu_quick + +static void ggml_compute_forward_gelu_quick_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + ggml_vec_gelu_quick_f32(nc, + (float *) ((char *) dst->data + i1*( dst->nb[1])), + (float *) ((char *) src0->data + i1*(src0->nb[1]))); + +#ifndef NDEBUG + for (int k = 0; k < nc; k++) { + const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; + UNUSED(x); + assert(!isnan(x)); + assert(!isinf(x)); + } +#endif + } +} + +static void ggml_compute_forward_gelu_quick( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_gelu_quick_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } } // ggml_compute_forward_silu @@ -10878,7 +11144,7 @@ static void ggml_compute_forward_set_f32( const int im2 = (ne12 == 0 ? 0 : ne12-1); const int im3 = (ne13 == 0 ? 0 : ne13-1); - GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst)); + GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst)); GGML_ASSERT(nb10 == sizeof(float)); @@ -11599,8 +11865,9 @@ static void ggml_compute_forward_alibi_f32( const struct ggml_tensor * src1, struct ggml_tensor * dst) { assert(params->ith == 0); - assert(src1->type == GGML_TYPE_I32); - assert(ggml_nelements(src1) == 3); + + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_nelements(src1) == 3); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; @@ -11663,8 +11930,9 @@ static void ggml_compute_forward_alibi_f16( const struct ggml_tensor * src1, struct ggml_tensor * dst) { assert(params->ith == 0); - assert(src1->type == GGML_TYPE_I32); - assert(ggml_nelements(src1) == 3); + + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_nelements(src1) == 3); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; @@ -11766,15 +12034,16 @@ static void ggml_compute_forward_clamp_f32( const struct ggml_tensor * src1, struct ggml_tensor * dst) { assert(params->ith == 0); - assert(src1->type == GGML_TYPE_I32); - assert(ggml_nelements(src1) == 2); + + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT(ggml_nelements(src1) == 2); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } - const int min = ((float *) src1->data)[0]; - const int max = ((float *) src1->data)[1]; + const float min = ((float *) src1->data)[0]; + const float max = ((float *) src1->data)[1]; const int ith = params->ith; const int nth = params->nth; @@ -12332,9 +12601,9 @@ static void ggml_compute_forward_rope_back( } } -// ggml_compute_forward_conv_1d_1s +// ggml_compute_forward_conv_1d_s1_ph -static void ggml_compute_forward_conv_1d_1s_f16_f32( +static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -12454,7 +12723,7 @@ static void ggml_compute_forward_conv_1d_1s_f16_f32( } } -static void ggml_compute_forward_conv_1d_1s_f32( +static void ggml_compute_forward_conv_1d_s1_ph_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -12574,7 +12843,7 @@ static void ggml_compute_forward_conv_1d_1s_f32( } } -static void ggml_compute_forward_conv_1d_1s( +static void ggml_compute_forward_conv_1d_s1_ph( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -12582,11 +12851,11 @@ static void ggml_compute_forward_conv_1d_1s( switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst); + ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst); + ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst); } break; default: { @@ -12595,9 +12864,9 @@ static void ggml_compute_forward_conv_1d_1s( } } -// ggml_compute_forward_conv_1d_2s +// ggml_compute_forward_conv_1d_s2_ph -static void ggml_compute_forward_conv_1d_2s_f16_f32( +static void ggml_compute_forward_conv_1d_s2_ph_f16_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -12717,7 +12986,7 @@ static void ggml_compute_forward_conv_1d_2s_f16_f32( } } -static void ggml_compute_forward_conv_1d_2s_f32( +static void ggml_compute_forward_conv_1d_s2_ph_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -12837,7 +13106,7 @@ static void ggml_compute_forward_conv_1d_2s_f32( } } -static void ggml_compute_forward_conv_1d_2s( +static void ggml_compute_forward_conv_1d_s2_ph( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -12845,11 +13114,148 @@ static void ggml_compute_forward_conv_1d_2s( switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst); + ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst); + ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_conv_2d_sk_p0 + +static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + //const int ne03 = src0->ne[3]; + + const int ne10 = src1->ne[0]; + //const int ne11 = src1->ne[1]; + const int ne12 = src1->ne[2]; + //const int ne13 = src1->ne[3]; + + const int ne0 = dst->ne[0]; + const int ne1 = dst->ne[1]; + const int ne2 = dst->ne[2]; + //const int ne3 = dst->ne[3]; + //const int ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + //const int nb01 = src0->nb[1]; + //const int nb02 = src0->nb[2]; + const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + //const int nb11 = src1->nb[1]; + const int nb12 = src1->nb[2]; + //const int nb13 = src1->nb[3]; + + //const int nb0 = dst->nb[0]; + //const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + //const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int nk0 = ne00; + const int nk1 = ne01; + + // size of the convolution row - the kernel size unrolled across all channels + // round-up so it is more suitable for SIMD + const int ew0 = ggml_up32(nk0*nk1*ne02); + + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_INIT) { + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + + // prepare source data (src1) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + + for (int i12 = 0; i12 < ne12; i12++) { + const float * const src = (float *)((char *) src1->data + i12*nb12); + ggml_fp16_t * dst_data = wdata; + + for (int i1 = 0; i1 < ne1; i1++) { + for (int i0 = 0; i0 < ne0; i0++) { + for (int ik1 = 0; ik1 < nk1; ik1++) { + for (int ik0 = 0; ik0 < nk0; ik0++) { + dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] = + GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]); + } + } + } + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // total patches in dst + const int np = ne2; + + // patches per thread + const int dp = (np + nth - 1)/nth; + + // patch range for this thread + const int ip0 = dp*ith; + const int ip1 = MIN(ip0 + dp, np); + + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + + for (int i2 = ip0; i2 < ip1; i2++) { + float * dst_data = (float *)((char *) dst->data + i2*nb2); + + for (int i1 = 0; i1 < ne1; ++i1) { + for (int i0 = 0; i0 < ne0; ++i0) { + ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0, + (ggml_fp16_t *) ((char *) src0->data + i2*nb03), + (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0); + } + } + } +} + +static void ggml_compute_forward_conv_2d_sk_p0( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst); + GGML_ASSERT(false); } break; default: { @@ -13952,6 +14358,145 @@ static void ggml_compute_forward_flash_attn_back( } } +// ggml_compute_forward_win_part + +static void ggml_compute_forward_win_part_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int64_t ne00 = src0->ne[0]; UNUSED(ne00); + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; UNUSED(ne03); + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; UNUSED(ne3); + + const int32_t nep0 = ((const int32_t *)(opt0->data))[0]; + const int32_t nep1 = ((const int32_t *)(opt0->data))[1]; + const int32_t w = ((const int32_t *)(opt0->data))[2]; + + assert(ne00 == ne0); + assert(ne3 == nep0*nep1); + + // TODO: optimize / multi-thread + for (int py = 0; py < nep1; ++py) { + for (int px = 0; px < nep0; ++px) { + const int64_t i3 = py*nep0 + px; + for (int64_t i2 = 0; i2 < ne2; ++i2) { + for (int64_t i1 = 0; i1 < ne1; ++i1) { + for (int64_t i0 = 0; i0 < ne0; ++i0) { + const int64_t i02 = py*w + i2; + const int64_t i01 = px*w + i1; + const int64_t i00 = i0; + + const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0; + const int64_t j = i02*ne01*ne00 + i01*ne00 + i00; + + if (py*w + i2 >= ne02 || px*w + i1 >= ne01) { + ((float *) dst->data)[i] = 0.0f; + } else { + ((float *) dst->data)[i] = ((float *) src0->data)[j]; + } + } + } + } + } + } +} + +static void ggml_compute_forward_win_part( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_win_part_f32(params, src0, opt0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_win_unpart + +static void ggml_compute_forward_win_unpart_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + //const int64_t ne03 = src0->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + + const int32_t w = ((const int32_t *)(opt0->data))[0]; + + // padding + const int px = (w - ne1%w)%w; + //const int py = (w - ne2%w)%w; + + const int npx = (px + ne1)/w; + //const int npy = (py + ne2)/w; + + assert(ne0 == ne00); + + // TODO: optimize / multi-thread + for (int64_t i2 = 0; i2 < ne2; ++i2) { + for (int64_t i1 = 0; i1 < ne1; ++i1) { + for (int64_t i0 = 0; i0 < ne0; ++i0) { + const int ip2 = i2/w; + const int ip1 = i1/w; + + const int64_t i02 = i2%w; + const int64_t i01 = i1%w; + const int64_t i00 = i0; + + const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00; + const int64_t j = i2*ne1*ne0 + i1*ne0 + i0; + + ((float *) dst->data)[j] = ((float *) src0->data)[i]; + } + } + } +} + +static void ggml_compute_forward_win_unpart( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_map_unary static void ggml_compute_forward_map_unary_f32( @@ -14424,6 +14969,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_gelu(params, tensor->src0, tensor); } break; + case GGML_OP_GELU_QUICK: + { + ggml_compute_forward_gelu_quick(params, tensor->src0, tensor); + } break; case GGML_OP_SILU: { ggml_compute_forward_silu(params, tensor->src0, tensor); @@ -14528,19 +15077,23 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor); } break; - case GGML_OP_CONV_1D_1S: + case GGML_OP_CONV_1D_S1_PH: { - ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor); + ggml_compute_forward_conv_1d_s1_ph(params, tensor->src0, tensor->src1, tensor); } break; - case GGML_OP_CONV_1D_2S: + case GGML_OP_CONV_1D_S2_PH: { - ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor); + ggml_compute_forward_conv_1d_s2_ph(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_CONV_2D_SK_P0: + { + ggml_compute_forward_conv_2d_sk_p0(params, tensor->src0, tensor->src1, tensor); } break; case GGML_OP_FLASH_ATTN: { - int32_t t = ggml_get_i32_1d(tensor->opt[1], 0); + const int32_t t = ggml_get_i32_1d(tensor->opt[1], 0); GGML_ASSERT(t == 0 || t == 1); - bool masked = t != 0; + const bool masked = t != 0; ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor); } break; case GGML_OP_FLASH_FF: @@ -14554,6 +15107,14 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm bool masked = t != 0; ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor); } break; + case GGML_OP_WIN_PART: + { + ggml_compute_forward_win_part(params, tensor->src0, tensor->opt[0], tensor); + } break; + case GGML_OP_WIN_UNPART: + { + ggml_compute_forward_win_unpart(params, tensor->src0, tensor->opt[0], tensor); + } break; case GGML_OP_MAP_UNARY: { const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data); @@ -14825,6 +15386,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // TODO: not implemented } break; + case GGML_OP_GELU_QUICK: + { + GGML_ASSERT(false); // TODO: not implemented + } break; case GGML_OP_ALIBI: { GGML_ASSERT(false); // TODO: not implemented @@ -15187,11 +15752,15 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // noop } } break; - case GGML_OP_CONV_1D_1S: + case GGML_OP_CONV_1D_S1_PH: { GGML_ASSERT(false); // TODO: not implemented } break; - case GGML_OP_CONV_1D_2S: + case GGML_OP_CONV_1D_S2_PH: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CONV_2D_SK_P0: { GGML_ASSERT(false); // TODO: not implemented } break; @@ -15360,6 +15929,8 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // not supported } break; + case GGML_OP_WIN_PART: + case GGML_OP_WIN_UNPART: case GGML_OP_MAP_UNARY: case GGML_OP_MAP_BINARY: { @@ -15768,6 +16339,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) } break; case GGML_OP_MUL: case GGML_OP_GELU: + case GGML_OP_GELU_QUICK: case GGML_OP_SILU: case GGML_OP_SILU_BACK: case GGML_OP_NORM: @@ -15874,8 +16446,8 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { node->n_tasks = 1; //TODO } break; - case GGML_OP_CONV_1D_1S: - case GGML_OP_CONV_1D_2S: + case GGML_OP_CONV_1D_S1_PH: + case GGML_OP_CONV_1D_S2_PH: { node->n_tasks = n_threads; @@ -15902,6 +16474,41 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) GGML_ASSERT(false); } + work_size = MAX(work_size, cur); + } break; + case GGML_OP_CONV_2D_SK_P0: + { + node->n_tasks = n_threads; + + GGML_ASSERT(node->src1->ne[3] == 1); + + const int64_t ne00 = node->src0->ne[0]; // W + const int64_t ne01 = node->src0->ne[1]; // H + const int64_t ne02 = node->src0->ne[2]; // C + const int64_t ne03 = node->src0->ne[3]; // N + + const int64_t ne10 = node->src1->ne[0]; // W + const int64_t ne11 = node->src1->ne[1]; // H + const int64_t ne12 = node->src1->ne[2]; // C + + const int64_t nk = ne00*ne01; + + UNUSED(ne02); + UNUSED(ne03); + UNUSED(nk); + + size_t cur = 0; + + if (node->src0->type == GGML_TYPE_F16 && + node->src1->type == GGML_TYPE_F32) { + cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12); + } else if (node->src0->type == GGML_TYPE_F32 && + node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)* (ne10*ne11*ne12); + } else { + GGML_ASSERT(false); + } + work_size = MAX(work_size, cur); } break; case GGML_OP_FLASH_ATTN: @@ -15963,6 +16570,8 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) work_size = MAX(work_size, cur); } break; + case GGML_OP_WIN_PART: + case GGML_OP_WIN_UNPART: case GGML_OP_MAP_UNARY: case GGML_OP_MAP_BINARY: { @@ -16495,16 +17104,20 @@ struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** if (!*ctx_data) { fprintf(stderr, "%s: failed to create ggml context\n", __func__); + fclose(fin); return result; } } data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize); - const size_t ret = fread(data->data, sizeof(char), fsize, fin); - if (ret != fsize) { - fprintf(stderr, "%s: failed to read %s\n", __func__, fname); - return result; + { + const size_t ret = fread(data->data, sizeof(char), fsize, fin); + if (ret != fsize) { + fprintf(stderr, "%s: failed to read %s\n", __func__, fname); + fclose(fin); + return result; + } } fclose(fin); diff --git a/ggml.h b/ggml.h index 1380c530f..18c78551f 100644 --- a/ggml.h +++ b/ggml.h @@ -303,6 +303,7 @@ extern "C" { GGML_OP_STEP, GGML_OP_RELU, GGML_OP_GELU, + GGML_OP_GELU_QUICK, GGML_OP_SILU, GGML_OP_SILU_BACK, GGML_OP_NORM, // normalize @@ -331,12 +332,15 @@ extern "C" { GGML_OP_ROPE_BACK, GGML_OP_ALIBI, GGML_OP_CLAMP, - GGML_OP_CONV_1D_1S, - GGML_OP_CONV_1D_2S, + GGML_OP_CONV_1D_S1_PH, + GGML_OP_CONV_1D_S2_PH, + GGML_OP_CONV_2D_SK_P0, GGML_OP_FLASH_ATTN, GGML_OP_FLASH_FF, GGML_OP_FLASH_ATTN_BACK, + GGML_OP_WIN_PART, + GGML_OP_WIN_UNPART, GGML_OP_MAP_UNARY, GGML_OP_MAP_BINARY, @@ -557,8 +561,8 @@ extern "C" { GGML_API void * ggml_get_data (const struct ggml_tensor * tensor); GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor); - GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor); - GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name); + GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor); + GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name); // // operations on tensors with backpropagation @@ -611,24 +615,47 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_sub_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_mul( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_mul_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_div( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_div_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_sqr( struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_sqr_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_sqrt( struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_sqrt_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_log( struct ggml_context * ctx, struct ggml_tensor * a); @@ -668,31 +695,67 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_abs_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_sgn( struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_sgn_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_neg( struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_neg_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_step( struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_step_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_relu( struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_relu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + // TODO: double-check this computation is correct GGML_API struct ggml_tensor * ggml_gelu( struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_gelu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_gelu_quick( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_gelu_quick_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_silu( struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_silu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + // a - x // b - dy GGML_API struct ggml_tensor * ggml_silu_back( @@ -706,10 +769,18 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_rms_norm( struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_rms_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + // a - x // b - dy GGML_API struct ggml_tensor * ggml_rms_norm_back( @@ -999,16 +1070,55 @@ extern "C" { float min, float max); - // padding = 1 + // TODO: implement general-purpose convolutions + // GGML_API struct ggml_tensor * ggml_conv_1d( + // struct ggml_context * ctx, + // struct ggml_tensor * a, + // struct ggml_tensor * b, + // int s0 + // int p0, + // int d0); + // + // GGML_API struct ggml_tensor * ggml_conv_2d( + // struct ggml_context * ctx, + // struct ggml_tensor * a, + // struct ggml_tensor * b, + // int s0, + // int s1, + // int p0, + // int p1, + // int d0, + // int d1); + + // padding = half // TODO: we don't support extra parameters for now // that's why we are hard-coding the stride, padding, and dilation // not great .. - GGML_API struct ggml_tensor * ggml_conv_1d_1s( + // example: + // a: 3 80 768 1 + // b: 3000 80 1 1 + // res: 3000 768 1 1 + // used in whisper + GGML_API struct ggml_tensor * ggml_conv_1d_s1_ph( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); - GGML_API struct ggml_tensor * ggml_conv_1d_2s( + // used in whisper + GGML_API struct ggml_tensor * ggml_conv_1d_s2_ph( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // kernel size is a->ne[0] x a->ne[1] + // stride is equal to kernel size + // padding is zero + // example: + // a: 16 16 3 768 + // b: 1024 1024 3 1 + // res: 64 64 768 1 + // used in sam + GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); @@ -1036,6 +1146,26 @@ extern "C" { struct ggml_tensor * c0, struct ggml_tensor * c1); + // partition into non-overlapping windows with padding if needed + // example: + // a: 768 64 64 1 + // w: 14 + // res: 768 14 14 25 + // used in sam + GGML_API struct ggml_tensor * ggml_win_part( + struct ggml_context * ctx, + struct ggml_tensor * a, + int w); + + // reverse of ggml_win_part + // used in sam + GGML_API struct ggml_tensor * ggml_win_unpart( + struct ggml_context * ctx, + struct ggml_tensor * a, + int w0, + int h0, + int w); + // Mapping operations typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *); typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *); From ca7c3f4da5d144d4cd1dd44903552e6ba49b8ec8 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Mon, 19 Jun 2023 18:14:09 +0300 Subject: [PATCH 053/135] cuda : faster k-quants on older GPUs (#1930) * k_quants: hopefully much faster Q4_K on older GPUs On the GTX-1660 that I have available to represent "old GPUs", token prediction drops from 65.5 ms/tok to 41.5 ms/tok! * k_quants: hopefully much faster Q3_K on older GPUs On the GTX-1660 that I have available to represent "old GPUs", token prediction drops from 60.3 ms/tok to 41.0 ms/tok! * k_quants: faster Q2_K on older GPUs It looks like I didn't need to change anything compared to what we already had, so this is just adding clarifying comments. But I now measure 36.3 ms/tok on the GTX-1660, instead fo the 47.2 ms/tok that I have written in the faster k-quants PR. * k_quants: faster Q5_K on older GPUs 68.5 ms/tok -> 62.0 ms/tok on GTX-1660. For some reason the same access pattern that leads to such resounding success for Q2_K to Q4_K did not work at all for Q5_K. It is also more difficult to measure because for Q5_K_S we only have 32 layers on the GTX-1660, so output, tok embeddings and kv cache are done on the CPU. --------- Co-authored-by: Iwan Kawrakow --- ggml-cuda.cu | 83 +++++++++++++++++++++++++++++++--------------------- 1 file changed, 50 insertions(+), 33 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 9ebc57aff..36a251ecc 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -515,15 +515,15 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float const block_q2_K * x = (const block_q2_K *)vx + ib0; - const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 - const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15 + const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 const int step = 16/K_QUANTS_PER_ITERATION; - const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... - const int in = tid - step*im; // 0...7 + const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - step*im; // 0...15 or 0...7 - const int l0 = K_QUANTS_PER_ITERATION*in; // 0...14 in steps of 4 + const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2 const int q_offset = 32*im + l0; const int s_offset = 8*im; const int y_offset = 128*im + l0; @@ -578,27 +578,30 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float } } -static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float * yy, float * dst, const int ncols) { +static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) { const uint16_t kmask1 = 0x0303; const uint16_t kmask2 = 0x0f0f; - const int row = blockIdx.x; + const int row = blockIdx.y*blockDim.y + threadIdx.y; + if (row > nrows) return; + const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row; const block_q3_K * x = (const block_q3_K *)vx + ib0; - const int tid = threadIdx.x/2; // 0...15 - const int ix = threadIdx.x%2; // 0, 1 + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 + const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 - const int n = 2; // iterations in the inner loop - const int im = tid/8; // 0 or 1. 0 computes 0..., 1 computes 128... - const int in = tid - 8*im; // 0...7 + const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop + const int step = 16/K_QUANTS_PER_ITERATION; + const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - step*im; // 0....15 or 0...7 const uint8_t m = 1 << (4*im); - const int l0 = n*in; // 0...28 in steps of 4 + const int l0 = n*in; // 0...15 or 0...14 in steps of 2 const int q_offset = 32*im + l0; const int y_offset = 128*im + l0; @@ -609,7 +612,7 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float float tmp = 0; // partial sum for thread in warp - for (int i = ix; i < num_blocks_per_row; i += 2) { + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { const float * y = yy + i * QK_K + y_offset; const uint8_t * q = x[i].qs + q_offset; @@ -650,22 +653,25 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float } } -static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float * yy, float * dst, const int ncols) { +static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) { const uint16_t kmask1 = 0x3f3f; const uint16_t kmask2 = 0x0f0f; const uint16_t kmask3 = 0xc0c0; - const int row = blockIdx.x; + const int row = blockIdx.y*blockDim.y + threadIdx.y; + if (row > nrows) return; const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row; - const int tid = threadIdx.x/2; // 0...15 - const int ix = threadIdx.x%2; + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 + const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 - const int il = tid/4; // 0...3 - const int ir = tid - 4*il;// 0...3 - const int n = 4; + const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4 + + const int il = tid/step; // 0...3 + const int ir = tid - step*il; // 0...7 or 0...3 + const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4 const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const int in = il%2; @@ -681,7 +687,7 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float float tmp = 0; // partial sum for thread in warp - for (int i = ix; i < num_blocks_per_row; i += 2) { + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { const uint8_t * q1 = x[i].qs + q_offset; const uint8_t * q2 = q1 + 64; @@ -736,7 +742,7 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float const int il = tid/4; // 0...3 const int ir = tid - 4*il;// 0...3 - const int n = 4; + const int n = 2; const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const int in = il%2; @@ -775,11 +781,16 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float float4 sum = {0.f, 0.f, 0.f, 0.f}; float smin = 0; for (int l = 0; l < n; ++l) { - sum.x += y1[l+ 0] * ((ql1[l] & 0xF) + (qh[l] & (hm1 << 0) ? 16 : 0)); - sum.y += y1[l+32] * ((ql1[l] >> 4) + (qh[l] & (hm1 << 1) ? 16 : 0)); - sum.z += y2[l+ 0] * ((ql2[l] & 0xF) + (qh[l] & (hm2 << 0) ? 16 : 0)); - sum.w += y2[l+32] * ((ql2[l] >> 4) + (qh[l] & (hm2 << 1) ? 16 : 0)); - smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; + sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0)) + + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0)); + sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0)) + + y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0)); + sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0)) + + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0)); + sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0)) + + y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0)); + smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3] + + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7]; } tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin; @@ -1311,7 +1322,7 @@ static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const int ny = 2; + const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2 const int block_num_y = (nrows + ny - 1) / ny; const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(32, ny, 1); @@ -1320,14 +1331,20 @@ static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, f static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const dim3 block_dims(32, 1, 1); - dequantize_mul_mat_vec_q3_k<<>>(vx, y, dst, ncols); + const int ny = 2 / K_QUANTS_PER_ITERATION; + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_q3_k<<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); - const dim3 block_dims(32, 1, 1); - dequantize_mul_mat_vec_q4_k<<>>(vx, y, dst, ncols); + const int ny = 2 / K_QUANTS_PER_ITERATION; + const int block_num_y = (nrows + ny - 1) / ny; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_q4_k<<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { From cb40dfca694b5cb849837548fd69932117c78362 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Mon, 19 Jun 2023 18:17:03 +0300 Subject: [PATCH 054/135] llama : only use Q6_K for output weights if tensor size is multiple of 256 (#1932) * Only use Q6_K for output weights if tensor size is multiple of 256 * Fixed copy/paste mistake --------- Co-authored-by: Iwan Kawrakow --- llama.cpp | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/llama.cpp b/llama.cpp index 5401db00e..dad31cbcb 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2495,7 +2495,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K || quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) { int nx = tensor.ne.at(0); - int ny = tensor.ne.at(0); + int ny = tensor.ne.at(1); if (nx % QK_K != 0 || ny % QK_K != 0) { fprintf(stderr, "\n\n========================= Tensor sizes %d x %d are not divisible by %d\n",nx,ny,QK_K); fprintf(stderr, "This is required to be able to use k-quants for now!\n"); @@ -2504,7 +2504,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } } if (tensor.name == "output.weight") { - new_type = GGML_TYPE_Q6_K; + int nx = tensor.ne.at(0); + int ny = tensor.ne.at(1); + if (nx % QK_K == 0 && ny % QK_K == 0) { + new_type = GGML_TYPE_Q6_K; + } } else if (tensor.name.find("attention.wv.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; From 23fc5c219a9aebd57c8af3fac454062cc4622980 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 19 Jun 2023 18:18:34 +0300 Subject: [PATCH 055/135] cmake : fix trailing whitespaces --- CMakeLists.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index a598593b6..2846d9b94 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -505,7 +505,7 @@ if (GGML_SOURCES_CUDA) set_property(TARGET ggml_shared PROPERTY CUDA_ARCHITECTURES "native") set_property(TARGET ggml_shared PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") endif() - + set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES "native") endif() From ba4e85a8339b9dd7cdffad31838235f2fe45a8ea Mon Sep 17 00:00:00 2001 From: l3utterfly Date: Mon, 19 Jun 2023 23:20:06 +0800 Subject: [PATCH 056/135] llama : use aligned memory during ggml_init call from loading saved sessions (#1934) * fixed issue: memory is not guaranteed to be aligned properly during ggml_init call from loading saved sessions * - removed commented out old code from fix - updated another instance of same issue below original --- llama.cpp | 8 ++------ 1 file changed, 2 insertions(+), 6 deletions(-) diff --git a/llama.cpp b/llama.cpp index dad31cbcb..4a7d01b32 100644 --- a/llama.cpp +++ b/llama.cpp @@ -3126,9 +3126,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { if (kv_size) { const size_t elt_size = ggml_element_size(kv_self.k); - char buffer[4096]; - - ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true }); + ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_cgraph gf{}; gf.n_threads = 1; @@ -3234,9 +3232,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { const size_t elt_size = ggml_element_size(kv_self.k); - char buffer[4096]; - - ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true }); + ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_cgraph gf{}; gf.n_threads = 1; From 18b35625c3c19c64b7818a12460ba5ddb006dfdc Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 19 Jun 2023 20:43:30 +0300 Subject: [PATCH 057/135] ggml : fix bug in LBFGS optimizer (found by ggml tests) --- ggml.c | 1 - 1 file changed, 1 deletion(-) diff --git a/ggml.c b/ggml.c index 14e08f9d6..4319683f5 100644 --- a/ggml.c +++ b/ggml.c @@ -18237,7 +18237,6 @@ GGML_API void ggml_opt_init( ggml_set_zero(opt->lbfgs.g); ggml_set_zero(opt->lbfgs.gp); ggml_set_zero(opt->lbfgs.d); - ggml_set_zero(opt->lbfgs.pf); if (opt->lbfgs.pf) { ggml_set_zero(opt->lbfgs.pf); } From 20568fe60f00155fa25e92eb3a7f6b911d557967 Mon Sep 17 00:00:00 2001 From: Henri Vasserman Date: Tue, 20 Jun 2023 01:12:39 +0300 Subject: [PATCH 058/135] [Fix] Reenable server embedding endpoint (#1937) * Add back embedding feature * Update README --- examples/server/README.md | 13 +++++++++-- examples/server/server.cpp | 44 +++++++++++++++++++++++++++++++++++++- 2 files changed, 54 insertions(+), 3 deletions(-) diff --git a/examples/server/README.md b/examples/server/README.md index 474a28b20..fa95c0044 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -21,6 +21,7 @@ Command line options: - `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`. - `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`. - `--port`: Set the port to listen. Default: `8080`. +- `--embedding`: Enable embedding extraction, Default: disabled. ## Build @@ -119,14 +120,14 @@ node . `top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9). - `n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. (default: 128, -1 = infinity). + `n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: 128, -1 = infinity). `n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context. By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt. `stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`. - `prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. + `prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. A space is inserted in the front like main.cpp does. `stop`: Specify a JSON array of stopping strings. These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []). @@ -163,6 +164,14 @@ node . `content`: Set the text to tokenize. + Note that the special `BOS` token is not added in fron of the text and also a space character is not inserted automatically as it is for `/completion`. + +- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does. + + *Options:* + + `content`: Set the text to process. + ## More examples ### Interactive mode diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 12d4e2fa4..c0984aadb 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -254,6 +254,11 @@ struct llama_server_context { n_past += n_eval; } + if (params.n_predict == 0) { + has_next_token = false; + return llama_token_eos(); + } + // out of user input, sample next token const float temp = params.temp; const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; @@ -419,6 +424,19 @@ struct llama_server_context { return token_text; } + + std::vector getEmbedding() { + static const int n_embd = llama_n_embd(ctx); + if (!params.embedding) { + LOG_WARNING("embedding disabled", { + { "params.embedding", params.embedding }, + }); + return std::vector(n_embd, 0.0f); + } + const float * data = llama_get_embeddings(ctx); + std::vector embedding(data, data + n_embd); + return embedding; + } }; static void server_print_usage(const char * argv0, const gpt_params & params, @@ -457,6 +475,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str()); fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port); fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout); + fprintf(stderr, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled"); fprintf(stderr, "\n"); } @@ -603,6 +622,8 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams, params.use_mlock = true; } else if (arg == "--no-mmap") { params.use_mmap = false; + } else if (arg == "--embedding") { + params.embedding = true; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); server_print_usage(argv[0], default_params, default_sparams); @@ -646,6 +667,12 @@ static json format_generation_settings(llama_server_context & llama) { }; } +static json format_embedding_response(llama_server_context & llama) { + return json { + { "embedding", llama.getEmbedding() }, + }; +} + static json format_final_response(llama_server_context & llama, const std::string & content) { return json { { "content", content }, @@ -881,12 +908,27 @@ int main(int argc, char ** argv) { svr.Post("/tokenize", [&llama](const Request & req, Response & res) { const json body = json::parse(req.body); - const std::string content = body["content"].get(); + const std::string content = body.value("content", ""); const std::vector tokens = llama_tokenize(llama.ctx, content, false); const json data = format_tokenizer_response(tokens); return res.set_content(data.dump(), "application/json"); }); + svr.Post("/embedding", [&llama](const Request & req, Response & res) { + const json body = json::parse(req.body); + + llama.rewind(); + llama_reset_timings(llama.ctx); + llama.params.prompt = body.value("content", ""); + llama.params.n_predict = 0; + llama.loadPrompt(); + llama.beginCompletion(); + llama.doCompletion(); + + const json data = format_embedding_response(llama); + return res.set_content(data.dump(), "application/json"); + }); + svr.set_logger(log_server_request); svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) { From aacdbd40562684665b6f7b8ba6695b7a2088bbb0 Mon Sep 17 00:00:00 2001 From: Ettore Di Giacinto Date: Tue, 20 Jun 2023 03:24:39 +0200 Subject: [PATCH 059/135] llama : fix params struct slignment (#1936) * Workaround struct misalignment during value-copy Signed-off-by: mudler * Move booleans at the bottom of the structure Signed-off-by: mudler * Add comment Signed-off-by: mudler --------- Signed-off-by: mudler --- llama.cpp | 6 +++--- llama.h | 17 ++++++++--------- 2 files changed, 11 insertions(+), 12 deletions(-) diff --git a/llama.cpp b/llama.cpp index 4a7d01b32..e597f5048 100644 --- a/llama.cpp +++ b/llama.cpp @@ -925,21 +925,21 @@ static bool kv_cache_init( struct llama_context_params llama_context_default_params() { struct llama_context_params result = { + /*.seed =*/ -1, /*.n_ctx =*/ 512, /*.n_batch =*/ 512, /*.gpu_layers =*/ 0, /*.main_gpu =*/ 0, /*.tensor_split =*/ {0}, + /*.progress_callback =*/ nullptr, + /*.progress_callback_user_data =*/ nullptr, /*.low_vram =*/ false, - /*.seed =*/ -1, /*.f16_kv =*/ true, /*.logits_all =*/ false, /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, /*.embedding =*/ false, - /*.progress_callback =*/ nullptr, - /*.progress_callback_user_data =*/ nullptr, }; return result; diff --git a/llama.h b/llama.h index 1241ba6c0..0de530d45 100644 --- a/llama.h +++ b/llama.h @@ -71,28 +71,27 @@ extern "C" { typedef void (*llama_progress_callback)(float progress, void *ctx); - struct llama_context_params { + struct llama_context_params { + int seed; // RNG seed, -1 for random int n_ctx; // text context int n_batch; // prompt processing batch size int n_gpu_layers; // number of layers to store in VRAM int main_gpu; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs - bool low_vram; // if true, reduce VRAM usage at the cost of performance - int seed; // RNG seed, -1 for random + // called with a progress value between 0 and 1, pass NULL to disable + llama_progress_callback progress_callback; + // context pointer passed to the progress callback + void * progress_callback_user_data; + // Keep the booleans together to avoid misalignment during copy-by-value. + bool low_vram; // if true, reduce VRAM usage at the cost of performance bool f16_kv; // use fp16 for KV cache bool logits_all; // the llama_eval() call computes all logits, not just the last one bool vocab_only; // only load the vocabulary, no weights bool use_mmap; // use mmap if possible bool use_mlock; // force system to keep model in RAM bool embedding; // embedding mode only - - // called with a progress value between 0 and 1, pass NULL to disable - llama_progress_callback progress_callback; - // context pointer passed to the progress callback - void * progress_callback_user_data; }; - // model file types enum llama_ftype { LLAMA_FTYPE_ALL_F32 = 0, From 2322ec223a21625dfe9bd73ee677444a98a24ac9 Mon Sep 17 00:00:00 2001 From: Xiake Sun Date: Tue, 20 Jun 2023 05:42:40 -0700 Subject: [PATCH 060/135] Fix typo (#1949) --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 2d05de333..8136e7064 100644 --- a/README.md +++ b/README.md @@ -378,7 +378,7 @@ Building the program with BLAS support may lead to some performance improvements ```sh git clone https://github.com/CNugteren/CLBlast.git mkdir CLBlast/build - cd CLBLast/build + cd CLBlast/build cmake .. -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF cmake --build . --config Release cmake --install . --prefix /some/path From 049aa16b8c5c6d086246e4e6b9feb18de4fbd663 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 20 Jun 2023 19:05:54 +0300 Subject: [PATCH 061/135] readme : add link to p1 --- README.md | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/README.md b/README.md index 8136e7064..67012adab 100644 --- a/README.md +++ b/README.md @@ -9,12 +9,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ **Hot topics:** +- p1 : LLM-based code completion engine at the edge : https://github.com/ggml-org/p1/discussions/1 - Roadmap June 2023: https://github.com/ggerganov/llama.cpp/discussions/1729 -- GPU support with Metal (Apple Silicon): https://github.com/ggerganov/llama.cpp/pull/1642 -- High-quality 2,3,4,5,6-bit quantization: https://github.com/ggerganov/llama.cpp/pull/1684 -- Multi-GPU support: https://github.com/ggerganov/llama.cpp/pull/1607 -- Training LLaMA models from scratch: https://github.com/ggerganov/llama.cpp/pull/1652 -- CPU threading improvements: https://github.com/ggerganov/llama.cpp/pull/1632
Table of Contents From fb98254f99d769fcbbf20966ef386abdb48ef601 Mon Sep 17 00:00:00 2001 From: Rahul Vivek Nair <68507071+RahulVivekNair@users.noreply.github.com> Date: Thu, 22 Jun 2023 03:18:43 +0530 Subject: [PATCH 062/135] Fix typo in README.md (#1961) --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 67012adab..ace588606 100644 --- a/README.md +++ b/README.md @@ -340,7 +340,7 @@ Building the program with BLAS support may lead to some performance improvements | LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. | | LLAMA_CUDA_DMMV_Y | Positive integer | 1 | Block size in y direction for the CUDA dequantization + mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. | | LLAMA_CUDA_DMMV_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels. Can improve performance on relatively recent GPUs. | - | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value 2 1 can improve performance for slow GPUs. | + | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. | - #### CLBlast From bbca06e26949686d61a5126332680ba3cccf235c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Wed, 21 Jun 2023 23:49:25 +0200 Subject: [PATCH 063/135] cmake: revert CUDA arch default to 52, 61 if f16 (#1959) --- CMakeLists.txt | 25 +++++++++---------------- 1 file changed, 9 insertions(+), 16 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 2846d9b94..cc7560a7a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -250,6 +250,15 @@ if (LLAMA_CUBLAS) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt) endif() + if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES) + if (LLAMA_CUDA_DMMV_F16) + set(CMAKE_CUDA_ARCHITECTURES "61") # needed for f16 CUDA intrinsics + else() + set(CMAKE_CUDA_ARCHITECTURES "52") # lowest CUDA 12 standard + endif() + endif() + message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}") + else() message(WARNING "cuBLAS not found") endif() @@ -493,22 +502,6 @@ if (BUILD_SHARED_LIBS) endif() endif() -if (GGML_SOURCES_CUDA) - message(STATUS "GGML CUDA sources found, configuring CUDA architecture") - set_property(TARGET ggml PROPERTY CUDA_ARCHITECTURES "native") - set_property(TARGET ggml PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") - - set_property(TARGET ggml_static PROPERTY CUDA_ARCHITECTURES "native") - set_property(TARGET ggml_static PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") - - if (BUILD_SHARED_LIBS) - set_property(TARGET ggml_shared PROPERTY CUDA_ARCHITECTURES "native") - set_property(TARGET ggml_shared PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") - endif() - - set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES "native") -endif() - # # programs, examples and tests From 7487137227eb32ed9b12156338b865cb29b2dfd1 Mon Sep 17 00:00:00 2001 From: Erik Scholz Date: Thu, 22 Jun 2023 14:20:47 +0200 Subject: [PATCH 064/135] rework convert.py to read hyper-parameters from config.json (#1958) * Read hyper-parameters from HuggingFace-transformer config.json, if they exist, and fall back to guessing, like before otherwise. This allows converting open_llama 3B and other non-standard model designs. --- convert.py | 91 +++++++++++++++++++++++++++++++++++++++++------------- 1 file changed, 69 insertions(+), 22 deletions(-) diff --git a/convert.py b/convert.py index 265c41fa0..de6c39c67 100644 --- a/convert.py +++ b/convert.py @@ -130,6 +130,14 @@ TENSORS_LIST = make_tensors_list() TENSORS_SET = set(TENSORS_LIST) +def find_n_mult(n_ff: int, n_embd: int) -> int: + # hardcoded magic range + for n_mult in range(256, 1, -1): + calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult + if calc_ff == n_ff: + return n_mult + return 1 + @dataclass class Params: n_vocab: int @@ -137,21 +145,61 @@ class Params: n_mult: int n_head: int n_layer: int - file_type: GGMLFileType @staticmethod - def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params': - n_vocab, n_embd = model["tok_embeddings.weight"].shape + def guessed(model: 'LazyModel') -> 'Params': + # try transformer naming first + n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape + + # try transformer naming first + if "model.layers.0.self_attn.q_proj.weight" in model: + n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model) + else: + n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model) + + n_head=n_embd // 128 # guessed return Params( n_vocab=n_vocab, n_embd=n_embd, n_mult=256, - n_head=n_embd // 128, - n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model), - file_type=file_type, + n_head=n_head, + n_layer=n_layer, ) + @staticmethod + def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params': + config = json.load(open(config_path)) + + n_vocab = config["vocab_size"]; + n_embd = config["hidden_size"]; + n_head = config["num_attention_heads"]; + n_layer = config["num_hidden_layers"]; + n_ff = config["intermediate_size"]; + + n_mult = find_n_mult(n_ff, n_embd); + + return Params( + n_vocab=n_vocab, + n_embd=n_embd, + n_mult=n_mult, + n_head=n_head, + n_layer=n_layer, + ) + + @staticmethod + def load(model_plus: 'ModelPlus') -> 'Params': + orig_config_path = model_plus.paths[0].parent / "params.json" + hf_transformer_config_path = model_plus.paths[0].parent / "config.json" + + if hf_transformer_config_path.exists(): + params = Params.loadHFTransformerJson(model_plus.model, hf_transformer_config_path) + else: + params = Params.guessed(model_plus.model) + + print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd} n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}') + return params + class SentencePieceVocab: def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None: @@ -595,18 +643,17 @@ def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor: return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) -def convert_transformers_to_orig(model: LazyModel) -> LazyModel: +def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel: out: LazyModel = {} out["tok_embeddings.weight"] = model["model.embed_tokens.weight"] out["norm.weight"] = model["model.norm.weight"] out["output.weight"] = model["lm_head.weight"] - n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128 for i in itertools.count(): if f"model.layers.{i}.self_attn.q_proj.weight" not in model: break - out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head) - out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head) + out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head) + out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head) out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"] @@ -920,7 +967,7 @@ class OutputFile: def __init__(self, fname_out: Path) -> None: self.fout = open(fname_out, "wb") - def write_file_header(self, params: Params) -> None: + def write_file_header(self, params: Params, file_type: GGMLFileType) -> None: self.fout.write(b"ggjt"[::-1]) # magic values = [ 1, # file version @@ -930,7 +977,7 @@ class OutputFile: params.n_head, params.n_layer, params.n_embd // params.n_head, # rot (obsolete) - params.file_type.value, + file_type.value, ] self.fout.write(struct.pack("i" * len(values), *values)) @@ -958,10 +1005,10 @@ class OutputFile: of.fout.close() @staticmethod - def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None: + def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None: check_vocab_size(params, vocab) of = OutputFile(fname_out) - of.write_file_header(params) + of.write_file_header(params, file_type) print("Writing vocab...") of.write_vocab(vocab) @@ -997,11 +1044,11 @@ def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFi raise Exception(f"Unexpected combination of types: {name_to_type}") -def do_necessary_conversions(model: LazyModel) -> LazyModel: +def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel: model = handle_quantization(model) if "lm_head.weight" in model: - model = convert_transformers_to_orig(model) + model = convert_transformers_to_orig(model, params) model = filter_and_sort_tensors(model) return model @@ -1107,14 +1154,14 @@ def load_vocab(path: Path) -> SentencePieceVocab: return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None) -def default_outfile(model_paths: List[Path], params: Params) -> Path: +def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path: namestr = { GGMLFileType.AllF32: "f32", GGMLFileType.MostlyF16: "f16", GGMLFileType.MostlyQ4_0: "q4_0", GGMLFileType.MostlyQ4_1: "q4_1", GGMLFileType.PerLayerIsQ4_1: "q4_1", - }[params.file_type] + }[file_type] ret = model_paths[0].parent / f"ggml-model-{namestr}.bin" if ret in model_paths: sys.stderr.write( @@ -1164,13 +1211,13 @@ def main(args_in: Optional[List[str]] = None) -> None: else: vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent vocab = load_vocab(vocab_dir) + params = Params.load(model_plus) model = model_plus.model - model = do_necessary_conversions(model) + model = do_necessary_conversions(model, params) output_type = pick_output_type(model, args.outtype) model = convert_to_output_type(model, output_type) - params = Params.guessed(model, output_type) - outfile = args.outfile or default_outfile(model_plus.paths, params) - OutputFile.write_all(outfile, params, model, vocab) + outfile = args.outfile or default_outfile(model_plus.paths, output_type) + OutputFile.write_all(outfile, params, output_type, model, vocab) print(f"Wrote {outfile}") From d7b7484f74d486f77feb4c0b7af7e1718ed91651 Mon Sep 17 00:00:00 2001 From: eiery <19350831+eiery@users.noreply.github.com> Date: Fri, 23 Jun 2023 04:38:01 -0400 Subject: [PATCH 065/135] Add OpenLLaMA instructions to the README (#1954) * add openllama to readme --- README.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/README.md b/README.md index ace588606..b09498be6 100644 --- a/README.md +++ b/README.md @@ -29,6 +29,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
  • Quantization
  • Interactive mode
  • Instruction mode with Alpaca
  • +
  • Using OpenLLaMA
  • Using GPT4All
  • Using Pygmalion 7B & Metharme 7B
  • Obtaining the Facebook LLaMA original model and Stanford Alpaca model data
  • @@ -543,6 +544,13 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach. > ``` +### Using [OpenLLaMA](https://github.com/openlm-research/open_llama) + +OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It uses the same architecture and is a drop-in replacement for the original LLaMA weights. + +- Download the [3B](https://huggingface.co/openlm-research/open_llama_3b), [7B](https://huggingface.co/openlm-research/open_llama_7b), or [13B](https://huggingface.co/openlm-research/open_llama_13b) model from Hugging Face. +- Convert the model to ggml FP16 format using `python convert.py ` + ### Using [GPT4All](https://github.com/nomic-ai/gpt4all) - Obtain the `tokenizer.model` file from LLaMA model and put it to `models` From 527b6fba1d237befb324fd846bda7418c0fa394d Mon Sep 17 00:00:00 2001 From: Didzis Gosko Date: Sat, 24 Jun 2023 11:47:58 +0300 Subject: [PATCH 066/135] llama : make model stateless and context stateful (llama_state) (#1797) * llama : make model stateless and context stateful * llama : minor cleanup * llama : update internal API declaration * Apply suggestions from code review fix style Co-authored-by: Georgi Gerganov * Missing model memory release * Fix style * Add deprecated warning for public API function llama_init_from_file * Update public API use cases: move away from deprecated llama_init_from_file * Deprecate public API function llama_apply_lora_from_file --------- Co-authored-by: Georgi Gerganov --- examples/common.cpp | 24 ++- examples/common.h | 3 +- examples/embedding/embedding.cpp | 6 +- examples/main/main.cpp | 8 +- examples/perplexity/perplexity.cpp | 6 +- examples/quantize-stats/quantize-stats.cpp | 15 +- examples/save-load-state/save-load-state.cpp | 29 ++- examples/server/server.cpp | 9 +- examples/simple/simple.cpp | 8 +- .../train-text-from-scratch.cpp | 5 +- llama.cpp | 172 ++++++++++++------ llama.h | 35 +++- tests/test-tokenizer-0.cpp | 16 +- 13 files changed, 244 insertions(+), 92 deletions(-) diff --git a/examples/common.cpp b/examples/common.cpp index fed24e027..6ac484555 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -536,7 +536,7 @@ std::vector llama_tokenize(struct llama_context * ctx, const std::s return res; } -struct llama_context * llama_init_from_gpt_params(const gpt_params & params) { +std::tuple llama_init_from_gpt_params(const gpt_params & params) { auto lparams = llama_context_default_params(); lparams.n_ctx = params.n_ctx; @@ -552,25 +552,33 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params) { lparams.logits_all = params.perplexity; lparams.embedding = params.embedding; - llama_context * lctx = llama_init_from_file(params.model.c_str(), lparams); - - if (lctx == NULL) { + llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams); + if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); - return NULL; + return std::make_tuple(nullptr, nullptr); + } + + llama_context * lctx = llama_new_context_with_model(model, lparams); + if (lctx == NULL) { + fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); + llama_free_model(model); + return std::make_tuple(nullptr, nullptr); } if (!params.lora_adapter.empty()) { - int err = llama_apply_lora_from_file(lctx, + int err = llama_model_apply_lora_from_file(model, params.lora_adapter.c_str(), params.lora_base.empty() ? NULL : params.lora_base.c_str(), params.n_threads); if (err != 0) { fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); - return NULL; + llama_free(lctx); + llama_free_model(model); + return std::make_tuple(nullptr, nullptr); } } - return lctx; + return std::make_tuple(model, lctx); } void console_init(console_state & con_st) { diff --git a/examples/common.h b/examples/common.h index 6c2953cb2..713320179 100644 --- a/examples/common.h +++ b/examples/common.h @@ -9,6 +9,7 @@ #include #include #include +#include #if !defined (_WIN32) #include @@ -95,7 +96,7 @@ std::vector llama_tokenize(struct llama_context * ctx, const std::s // Model utils // -struct llama_context * llama_init_from_gpt_params(const gpt_params & params); +std::tuple llama_init_from_gpt_params(const gpt_params & params); // // Console utils diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 860f99f67..369eac1d1 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -37,11 +37,12 @@ int main(int argc, char ** argv) { llama_init_backend(); + llama_model * model; llama_context * ctx; // load the model - ctx = llama_init_from_gpt_params(params); - if (ctx == NULL) { + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } @@ -90,6 +91,7 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); llama_free(ctx); + llama_free_model(model); return 0; } diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 941312f9c..c1e6bf126 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -107,12 +107,13 @@ int main(int argc, char ** argv) { llama_init_backend(); + llama_model * model; llama_context * ctx; g_ctx = &ctx; // load the model and apply lora adapter, if any - ctx = llama_init_from_gpt_params(params); - if (ctx == NULL) { + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } @@ -139,6 +140,7 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); llama_free(ctx); + llama_free_model(model); return 0; } @@ -147,6 +149,7 @@ int main(int argc, char ** argv) { if (params.export_cgraph) { llama_eval_export(ctx, "llama.ggml"); llama_free(ctx); + llama_free_model(model); return 0; } @@ -666,6 +669,7 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); llama_free(ctx); + llama_free_model(model); return 0; } diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index ae8cfe0af..b59f5971e 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -149,11 +149,12 @@ int main(int argc, char ** argv) { llama_init_backend(); + llama_model * model; llama_context * ctx; // load the model and apply lora adapter, if any - ctx = llama_init_from_gpt_params(params); - if (ctx == NULL) { + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } @@ -169,6 +170,7 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); llama_free(ctx); + llama_free_model(model); return 0; } diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 6b8018ee2..9cea472de 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -320,6 +320,7 @@ int main(int argc, char ** argv) { fprintf(stderr, "Loading model\n"); const int64_t t_main_start_us = ggml_time_us(); + llama_model * model; llama_context * ctx; { @@ -330,10 +331,18 @@ int main(int argc, char ** argv) { lparams.f16_kv = false; lparams.use_mlock = false; - ctx = llama_init_from_file(params.model.c_str(), lparams); + model = llama_load_model_from_file(params.model.c_str(), lparams); + + if (model == NULL) { + fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); + return 1; + } + + ctx = llama_new_context_with_model(model, lparams); if (ctx == NULL) { - fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); + fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); + llama_free_model(model); return 1; } } @@ -357,6 +366,7 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s: error: Quantization should be tested with a float model, " "this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type); llama_free(ctx); + llama_free_model(model); return 1; } included_layers++; @@ -415,6 +425,7 @@ int main(int argc, char ** argv) { llama_free(ctx); + llama_free_model(model); // report timing { const int64_t t_main_end_us = ggml_time_us(); diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index da4d37ad0..4c8688503 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -35,12 +35,22 @@ int main(int argc, char ** argv) { auto last_n_tokens_data = std::vector(params.repeat_last_n, 0); // init - auto ctx = llama_init_from_file(params.model.c_str(), lparams); + auto model = llama_load_model_from_file(params.model.c_str(), lparams); + if (model == nullptr) { + return 1; + } + auto ctx = llama_new_context_with_model(model, lparams); + if (ctx == nullptr) { + llama_free_model(model); + return 1; + } auto tokens = std::vector(params.n_ctx); auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), int(tokens.size()), true); if (n_prompt_tokens < 1) { fprintf(stderr, "%s : failed to tokenize prompt\n", __func__); + llama_free(ctx); + llama_free_model(model); return 1; } @@ -84,6 +94,8 @@ int main(int argc, char ** argv) { printf("%s", next_token_str); if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); + llama_free(ctx); + llama_free_model(model); return 1; } n_past += 1; @@ -91,23 +103,27 @@ int main(int argc, char ** argv) { printf("\n\n"); - // free old model + // free old context llama_free(ctx); - // load new model - auto ctx2 = llama_init_from_file(params.model.c_str(), lparams); + // make new context + auto ctx2 = llama_new_context_with_model(model, lparams); // Load state (rng, logits, embedding and kv_cache) from file { FILE *fp_read = fopen("dump_state.bin", "rb"); if (state_size != llama_get_state_size(ctx2)) { fprintf(stderr, "\n%s : failed to validate state size\n", __func__); + llama_free(ctx2); + llama_free_model(model); return 1; } const size_t ret = fread(state_mem, 1, state_size, fp_read); if (ret != state_size) { fprintf(stderr, "\n%s : failed to read state\n", __func__); + llama_free(ctx2); + llama_free_model(model); return 1; } @@ -138,6 +154,8 @@ int main(int argc, char ** argv) { printf("%s", next_token_str); if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); + llama_free(ctx2); + llama_free_model(model); return 1; } n_past += 1; @@ -145,5 +163,8 @@ int main(int argc, char ** argv) { printf("\n\n"); + llama_free(ctx2); + llama_free_model(model); + return 0; } diff --git a/examples/server/server.cpp b/examples/server/server.cpp index c0984aadb..de22d3013 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -115,6 +115,7 @@ struct llama_server_context { std::vector embd; std::vector last_n_tokens; + llama_model * model = nullptr; llama_context * ctx = nullptr; gpt_params params; @@ -130,6 +131,10 @@ struct llama_server_context { llama_free(ctx); ctx = nullptr; } + if (model) { + llama_free_model(model); + model = nullptr; + } } void rewind() { @@ -150,8 +155,8 @@ struct llama_server_context { bool loadModel(const gpt_params & params_) { params = params_; - ctx = llama_init_from_gpt_params(params); - if (ctx == nullptr) { + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == nullptr) { LOG_ERROR("unable to load model", { { "model", params_.model } }); return false; } diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp index 76f991cdc..fc45c9340 100644 --- a/examples/simple/simple.cpp +++ b/examples/simple/simple.cpp @@ -68,11 +68,12 @@ int main(int argc, char ** argv) llama_init_backend(); - llama_context * ctx ; + llama_model * model; + llama_context * ctx; - ctx = llama_init_from_gpt_params( params ); + std::tie(model, ctx) = llama_init_from_gpt_params( params ); - if ( ctx == NULL ) + if ( model == NULL ) { fprintf( stderr , "%s: error: unable to load model\n" , __func__ ); return 1; @@ -170,6 +171,7 @@ int main(int argc, char ** argv) } // wend of main loop llama_free( ctx ); + llama_free_model( model ); return 0; } diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index 7ec85951a..61c829e5c 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -3054,7 +3054,8 @@ int main(int argc, char ** argv) { struct llama_context_params llama_params = llama_context_default_params(); llama_params.vocab_only = true; - struct llama_context * lctx = llama_init_from_file(params.fn_vocab_model, llama_params); + struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); + struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); struct llama_vocab vocab; { @@ -3395,6 +3396,8 @@ int main(int argc, char ** argv) { delete[] compute_addr; delete[] compute_buf_0; delete[] compute_buf_1; + llama_free(lctx); + llama_free_model(lmodel); ggml_free(model.ctx); return 0; diff --git a/llama.cpp b/llama.cpp index e597f5048..a528eef4a 100644 --- a/llama.cpp +++ b/llama.cpp @@ -182,6 +182,19 @@ struct llama_kv_cache { } }; +struct llama_vocab { + using id = int32_t; + using token = std::string; + + struct token_score { + token tok; + float score; + }; + + std::unordered_map token_to_id; + std::vector id_to_token; +}; + struct llama_model { e_model type = MODEL_UNKNOWN; @@ -198,10 +211,6 @@ struct llama_model { // context struct ggml_context * ctx = NULL; - // key + value cache for the self attention - // TODO: move to llama_state - struct llama_kv_cache kv_self; - // the model memory buffer llama_ctx_buffer buf; @@ -215,6 +224,11 @@ struct llama_model { // for quantize-stats only std::vector> tensors_by_name; + int64_t t_load_us = 0; + int64_t t_start_us = 0; + + llama_vocab vocab; + ~llama_model() { if (ctx) { ggml_free(ctx); @@ -233,24 +247,11 @@ struct llama_model { } }; -struct llama_vocab { - using id = int32_t; - using token = std::string; - - struct token_score { - token tok; - float score; - }; - - std::unordered_map token_to_id; - std::vector id_to_token; -}; - struct llama_context { + llama_context(const llama_model & model, const llama_vocab & vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {} + std::mt19937 rng; - int64_t t_load_us = 0; - int64_t t_start_us = 0; bool has_evaluated_once = false; int64_t t_sample_us = 0; @@ -261,8 +262,16 @@ struct llama_context { int32_t n_eval = 0; // number of eval calls int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) - llama_model model; - llama_vocab vocab; + const llama_model & model; + const llama_vocab & vocab; + + bool model_owner = false; + + int64_t t_load_us; + int64_t t_start_us; + + // key + value cache for the self attention + struct llama_kv_cache kv_self; size_t mem_per_token = 0; @@ -1033,7 +1042,8 @@ static const char *llama_model_type_name(e_model type) { static void llama_model_load_internal( const std::string & fname, - llama_context & lctx, + llama_model & model, + llama_vocab & vocab, int n_ctx, int n_batch, int n_gpu_layers, @@ -1047,12 +1057,11 @@ static void llama_model_load_internal( llama_progress_callback progress_callback, void * progress_callback_user_data) { - lctx.t_start_us = ggml_time_us(); + model.t_start_us = ggml_time_us(); std::unique_ptr ml(new llama_model_loader(fname, use_mmap, vocab_only)); - lctx.vocab = std::move(ml->file_loaders.at(0)->vocab); - auto & model = lctx.model; + vocab = std::move(ml->file_loaders.at(0)->vocab); model.hparams = ml->file_loaders.at(0)->hparams; model.n_gpu_layers = n_gpu_layers; llama_file_version file_version = ml->file_loaders.at(0)->file_version; @@ -1122,15 +1131,15 @@ static void llama_model_load_internal( // create the ggml context { - lctx.model.buf.resize(ctx_size); + model.buf.resize(ctx_size); if (use_mlock) { - lctx.model.mlock_buf.init(lctx.model.buf.addr); - lctx.model.mlock_buf.grow_to(lctx.model.buf.size); + model.mlock_buf.init(model.buf.addr); + model.mlock_buf.grow_to(model.buf.size); } struct ggml_init_params params = { - /*.mem_size =*/ lctx.model.buf.size, - /*.mem_buffer =*/ lctx.model.buf.addr, + /*.mem_size =*/ model.buf.size, + /*.mem_buffer =*/ model.buf.addr, /*.no_alloc =*/ ml->use_mmap, }; @@ -1311,7 +1320,7 @@ static void llama_model_load_internal( } #endif - ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); + ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL); if (progress_callback) { progress_callback(1.0f, progress_callback_user_data); @@ -1321,12 +1330,13 @@ static void llama_model_load_internal( // loading time will be recalculate after the first eval, so // we take page faults deferred by mmap() into consideration - lctx.t_load_us = ggml_time_us() - lctx.t_start_us; + model.t_load_us = ggml_time_us() - model.t_start_us; } static bool llama_model_load( const std::string & fname, - llama_context & lctx, + llama_model & model, + llama_vocab & vocab, int n_ctx, int n_batch, int n_gpu_layers, @@ -1340,7 +1350,7 @@ static bool llama_model_load( llama_progress_callback progress_callback, void *progress_callback_user_data) { try { - llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type, + llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type, use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); return true; } catch (const std::exception & err) { @@ -1378,7 +1388,7 @@ static bool llama_eval_internal( const auto & model = lctx.model; const auto & hparams = model.hparams; - const auto & kv_self = model.kv_self; + const auto & kv_self = lctx.kv_self; LLAMA_ASSERT(!!kv_self.ctx); @@ -1726,7 +1736,7 @@ static bool llama_eval_internal( //memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N); // update kv token count - lctx.model.kv_self.n = n_past + N; + lctx.kv_self.n = n_past + N; // extract logits { @@ -2634,12 +2644,39 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // interface implementation // -struct llama_context * llama_init_from_file( +struct llama_model * llama_load_model_from_file( const char * path_model, struct llama_context_params params) { ggml_time_init(); - llama_context * ctx = new llama_context; + llama_model * model = new llama_model; + + ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; + + if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers, + params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock, + params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { + delete model; + fprintf(stderr, "%s: failed to load model\n", __func__); + return nullptr; + } + + return model; +} + +void llama_free_model(struct llama_model * model) { + delete model; +} + +struct llama_context * llama_new_context_with_model( + struct llama_model * model, + struct llama_context_params params) { + + if (!model) { + return nullptr; + } + + llama_context * ctx = new llama_context(*model, model->vocab); if (params.seed < 0) { params.seed = time(NULL); @@ -2667,24 +2704,16 @@ struct llama_context * llama_init_from_file( ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; - if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, params.main_gpu, - params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock, - params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { - fprintf(stderr, "%s: failed to load model\n", __func__); - llama_free(ctx); - return nullptr; - } - // reserve memory for context buffers if (!params.vocab_only) { - if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) { + if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; } { - const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v); + const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v); fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } @@ -2736,8 +2765,8 @@ struct llama_context * llama_init_from_file( LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size, 0)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0)); @@ -2748,7 +2777,23 @@ struct llama_context * llama_init_from_file( return ctx; } +struct llama_context * llama_init_from_file( + const char * path_model, + struct llama_context_params params) { + + struct llama_model * model = llama_load_model_from_file(path_model, params); + if (!model) { + return nullptr; + } + struct llama_context * ctx = llama_new_context_with_model(model, params); + ctx->model_owner = true; + return ctx; +} + void llama_free(struct llama_context * ctx) { + if (ctx->model_owner) { + delete &ctx->model; + } delete ctx; } @@ -2765,11 +2810,9 @@ int llama_model_quantize( } } -int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { +int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) { fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); - auto & model = ctx->model; - const int64_t t_start_lora_us = ggml_time_us(); auto fin = std::ifstream(path_lora, std::ios::binary); @@ -3012,7 +3055,16 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { try { - return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads); + return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads); + } catch (const std::exception & err) { + fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); + return 1; + } +} + +int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) { + try { + return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads); } catch (const std::exception & err) { fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; @@ -3020,7 +3072,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor } int llama_get_kv_cache_token_count(const struct llama_context * ctx) { - return ctx->model.kv_self.n; + return ctx->kv_self.n; } #define LLAMA_MAX_RNG_STATE (64*1024) @@ -3045,7 +3097,7 @@ size_t llama_get_state_size(const struct llama_context * ctx) { const size_t s_embedding = ctx->embedding.size() * sizeof(float); const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); - const size_t s_kv = ctx->model.kv_self.buf.size; + const size_t s_kv = ctx->kv_self.buf.size; const size_t s_total = ( + s_rng_size @@ -3111,7 +3163,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { // copy kv cache { - const auto & kv_self = ctx->model.kv_self; + const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd; @@ -3215,7 +3267,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { // set kv cache { - const auto & kv_self = ctx->model.kv_self; + const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd; @@ -3259,7 +3311,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { ggml_free(cpy_ctx); } - ctx->model.kv_self.n = kv_ntok; + ctx->kv_self.n = kv_ntok; } const size_t nread = inp - src; @@ -3506,6 +3558,6 @@ const char * llama_print_system_info(void) { } // For internal test use -std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx) { +const std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx) { return ctx->model.tensors_by_name; } diff --git a/llama.h b/llama.h index 0de530d45..a833a7f4d 100644 --- a/llama.h +++ b/llama.h @@ -26,6 +26,14 @@ # define LLAMA_API #endif +#ifdef __GNUC__ +# define DEPRECATED(func, hint) func __attribute__((deprecated(hint))) +#elif defined(_MSC_VER) +# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func +#else +# define DEPRECATED(func, hint) func +#endif + #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt' #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla' #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf' @@ -53,6 +61,7 @@ extern "C" { // TODO: show sample usage // + struct llama_model; struct llama_context; typedef int llama_token; @@ -136,12 +145,23 @@ extern "C" { LLAMA_API int64_t llama_time_us(); + LLAMA_API struct llama_model * llama_load_model_from_file( + const char * path_model, + struct llama_context_params params); + + LLAMA_API void llama_free_model(struct llama_model * model); + + LLAMA_API struct llama_context * llama_new_context_with_model( + struct llama_model * model, + struct llama_context_params params); + // Various functions for loading a ggml llama model. // Allocate (almost) all memory needed for the model. // Return NULL on failure - LLAMA_API struct llama_context * llama_init_from_file( + LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file( const char * path_model, - struct llama_context_params params); + struct llama_context_params params), + "please use llama_load_model_from_file combined with llama_new_context_with_model instead"); // Frees all allocated memory LLAMA_API void llama_free(struct llama_context * ctx); @@ -158,8 +178,15 @@ extern "C" { // The model needs to be reloaded before applying a new adapter, otherwise the adapter // will be applied on top of the previous one // Returns 0 on success - LLAMA_API int llama_apply_lora_from_file( + LLAMA_API DEPRECATED(int llama_apply_lora_from_file( struct llama_context * ctx, + const char * path_lora, + const char * path_base_model, + int n_threads), + "please use llama_model_apply_lora_from_file instead"); + + LLAMA_API int llama_model_apply_lora_from_file( + const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads); @@ -310,7 +337,7 @@ extern "C" { #include struct ggml_tensor; -std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx); +const std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx); #endif diff --git a/tests/test-tokenizer-0.cpp b/tests/test-tokenizer-0.cpp index ab1538a0c..20abe7100 100644 --- a/tests/test-tokenizer-0.cpp +++ b/tests/test-tokenizer-0.cpp @@ -28,6 +28,7 @@ int main(int argc, char **argv) { fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str()); + llama_model * model; llama_context * ctx; // load the vocab @@ -36,10 +37,18 @@ int main(int argc, char **argv) { lparams.vocab_only = true; - ctx = llama_init_from_file(fname.c_str(), lparams); + model = llama_load_model_from_file(fname.c_str(), lparams); + + if (model == NULL) { + fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); + return 1; + } + + ctx = llama_new_context_with_model(model, lparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); + llama_free_model(model); return 1; } } @@ -48,6 +57,8 @@ int main(int argc, char **argv) { if (n_vocab != 32000) { fprintf(stderr, "%s : expected 32000 tokens, got %d\n", __func__, n_vocab); + llama_free_model(model); + llama_free(ctx); return 2; } @@ -77,10 +88,13 @@ int main(int argc, char **argv) { } fprintf(stderr, "\n"); + llama_free_model(model); + llama_free(ctx); return 3; } } + llama_free_model(model); llama_free(ctx); return 0; From b061ba9e2a7a2c335a200df8c11aed5e31e4ccbb Mon Sep 17 00:00:00 2001 From: Alex Renda Date: Sat, 24 Jun 2023 03:15:01 -0700 Subject: [PATCH 067/135] llama : fix top-p sampling to match the canonical definition (#1953) * Fix top-p sampling to match the standard definition (smallest set that has probability mass at least p, not largest set with probability mass less than p) * top-p: correct gt to gte * add test for correct top-p behavior --- llama.cpp | 7 ++++--- tests/test-sampling.cpp | 1 + 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/llama.cpp b/llama.cpp index a528eef4a..ac22a48f8 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2015,9 +2015,10 @@ void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * can for (size_t i = 0; i < candidates->size; ++i) { cum_sum += candidates->data[i].p; - // Check if the running sum is greater than p or if we have kept at least min_keep tokens - if (cum_sum > p && i >= min_keep) { - last_idx = i; + // Check if the running sum is at least p or if we have kept at least min_keep tokens + // we set the last index to i+1 to indicate that the current iterate should be included in the set + if (cum_sum >= p && i + 1 >= min_keep) { + last_idx = i + 1; break; } } diff --git a/tests/test-sampling.cpp b/tests/test-sampling.cpp index 5d693f7b5..64f9455d7 100644 --- a/tests/test-sampling.cpp +++ b/tests/test-sampling.cpp @@ -181,6 +181,7 @@ int main(void) { test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f); + test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1); test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f); From 235b610d650cbfed6dbd5d671f750d35fc18cd7d Mon Sep 17 00:00:00 2001 From: Alberto <57916483+albbus-stack@users.noreply.github.com> Date: Sat, 24 Jun 2023 12:32:13 +0200 Subject: [PATCH 068/135] readme : fixed termux instructions (#1973) --- README.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index b09498be6..10462c6b0 100644 --- a/README.md +++ b/README.md @@ -680,12 +680,13 @@ Upon completion of the aforementioned steps, you will have successfully compiled ``` GGML_OPENCL_PLATFORM=0 GGML_OPENCL_DEVICE=0 -export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH -./main (...) +export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH ``` For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle. +Place your desired model into the `/llama.cpp/models/` directory and execute the `./main (...)` script. + ### Docker #### Prerequisites From 11da1a85cd69af84b5861134738c7e9e20907470 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 24 Jun 2023 13:38:18 +0300 Subject: [PATCH 069/135] readme : fix whitespaces --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 10462c6b0..6aa6ce319 100644 --- a/README.md +++ b/README.md @@ -685,7 +685,7 @@ export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle. -Place your desired model into the `/llama.cpp/models/` directory and execute the `./main (...)` script. +Place your desired model into the `/llama.cpp/models/` directory and execute the `./main (...)` script. ### Docker From f2c754e1c38936fdde74e4848ac468a696eb73c6 Mon Sep 17 00:00:00 2001 From: slaren Date: Sat, 24 Jun 2023 12:57:18 +0200 Subject: [PATCH 070/135] ggml : improve ggml_graph_dump_dot, add ggml_format_name (#1978) * Improve ggml_graph_dump_dot, add ggml_format_name * add more automatic names to view ops * fix name of copies --- ggml.c | 135 ++++++++++++++++++++++++++++++++++++++++----------------- ggml.h | 1 + 2 files changed, 97 insertions(+), 39 deletions(-) diff --git a/ggml.c b/ggml.c index 4319683f5..ef9e8585d 100644 --- a/ggml.c +++ b/ggml.c @@ -24,6 +24,7 @@ #include #include #include +#include #ifdef GGML_USE_METAL #include @@ -4734,10 +4735,19 @@ struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * nam return tensor; } +struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) { + va_list args; + va_start(args, fmt); + vsnprintf(tensor->name, sizeof(tensor->name), fmt, args); + va_end(args); + return tensor; +} + struct ggml_tensor * ggml_view_tensor( struct ggml_context * ctx, const struct ggml_tensor * src) { struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data); + ggml_format_name(result, "%s (view)", src->name); result->nb[0] = src->nb[0]; result->nb[1] = src->nb[1]; @@ -5899,6 +5909,11 @@ struct ggml_tensor * ggml_cpy_impl( // make a view of the destination struct ggml_tensor * result = ggml_view_tensor(ctx, b); + if (strlen(b->name) > 0) { + ggml_format_name(result, "%s (copy of %s)", b->name, a->name); + } else { + ggml_format_name(result, "%s (copy)", a->name); + } result->op = GGML_OP_CPY; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -5935,6 +5950,7 @@ struct ggml_tensor * ggml_cont_impl( } struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + ggml_format_name(result, "%s (cont)", a->name); result->op = GGML_OP_CONT; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -5978,6 +5994,7 @@ struct ggml_tensor * ggml_reshape( } struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data); + ggml_format_name(result, "%s (reshaped)", a->name); result->op = GGML_OP_RESHAPE; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -6002,6 +6019,7 @@ struct ggml_tensor * ggml_reshape_1d( const int64_t ne[1] = { ne0 }; struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data); + ggml_format_name(result, "%s (reshaped)", a->name); result->op = GGML_OP_RESHAPE; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -6027,6 +6045,7 @@ struct ggml_tensor * ggml_reshape_2d( const int64_t ne[2] = { ne0, ne1 }; struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data); + ggml_format_name(result, "%s (reshaped)", a->name); result->op = GGML_OP_RESHAPE; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -6053,6 +6072,7 @@ struct ggml_tensor * ggml_reshape_3d( const int64_t ne[3] = { ne0, ne1, ne2 }; struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data); + ggml_format_name(result, "%s (reshaped)", a->name); result->op = GGML_OP_RESHAPE; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -6081,6 +6101,7 @@ struct ggml_tensor * ggml_reshape_4d( const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data); + ggml_format_name(result, "%s (reshaped)", a->name); result->op = GGML_OP_RESHAPE; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -6105,10 +6126,12 @@ struct ggml_tensor * ggml_view_1d( } struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset); + ggml_format_name(result, "%s (view)", a->name); ggml_scratch_save(ctx); struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2); + ggml_set_name(offs, "offset"); memcpy(offs->data, &offset, 2*sizeof(int32_t)); ggml_scratch_load(ctx); @@ -6141,10 +6164,12 @@ struct ggml_tensor * ggml_view_2d( const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 }; struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset); + ggml_format_name(result, "%s (view)", a->name); ggml_scratch_save(ctx); struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2); + ggml_set_name(offs, "offset"); memcpy(offs->data, &offset, 2*sizeof(int32_t)); ggml_scratch_load(ctx); @@ -6183,10 +6208,12 @@ struct ggml_tensor * ggml_view_3d( const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 }; struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset); + ggml_format_name(result, "%s (view)", a->name); ggml_scratch_save(ctx); struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2); + ggml_set_name(offs, "offset"); memcpy(offs->data, &offset, 2*sizeof(int32_t)); ggml_scratch_load(ctx); @@ -6227,10 +6254,12 @@ struct ggml_tensor * ggml_view_4d( const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 }; struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset); + ggml_format_name(result, "%s (view)", a->name); ggml_scratch_save(ctx); struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2); + ggml_set_name(offs, "offset"); memcpy(offs->data, &offset, 2*sizeof(int32_t)); ggml_scratch_load(ctx); @@ -6276,6 +6305,7 @@ struct ggml_tensor * ggml_permute( } struct ggml_tensor * result = ggml_view_tensor(ctx, a); + ggml_format_name(result, "%s (permuted)", a->name); int ne[GGML_MAX_DIMS]; int nb[GGML_MAX_DIMS]; @@ -6335,6 +6365,7 @@ struct ggml_tensor * ggml_transpose( } struct ggml_tensor * result = ggml_view_tensor(ctx, a); + ggml_format_name(result, "%s (transposed)", a->name); result->ne[0] = a->ne[1]; result->ne[1] = a->ne[0]; @@ -16004,7 +16035,7 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES); if (strlen(node->name) == 0) { - snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs); + ggml_format_name(node, "leaf_%d", cgraph->n_leafs); } cgraph->leafs[cgraph->n_leafs] = node; @@ -16013,7 +16044,7 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES); if (strlen(node->name) == 0) { - snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes); + ggml_format_name(node, "node_%d", cgraph->n_nodes); } cgraph->nodes[cgraph->n_nodes] = node; @@ -17397,6 +17428,26 @@ static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgr return NULL; } +static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) { + struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node); + struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent); + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n", + gparent0 ? (void *) gparent0 : (void *) parent, + gparent0 ? "g" : "x", + gparent ? (void *) gparent : (void *) node, + gparent ? "g" : "x", + gparent ? "empty" : "vee", + gparent ? "dashed" : "solid", + label); +} + +static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) { + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n", + (void *) parent, "x", + (void *) node, "x", + label); +} + void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) { char color[16]; @@ -17432,7 +17483,9 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph (void *) node, color); if (strlen(node->name) > 0) { - fprintf(fp, "%s |", node->name); + fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type)); + } else { + fprintf(fp, "(%s)|", ggml_type_name(node->type)); } if (node->n_dims == 2) { @@ -17441,7 +17494,6 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | %s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]); } - if (node->grad) { fprintf(fp, " | %s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]); } else { @@ -17460,18 +17512,29 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph (void *) node, color); if (strlen(node->name) > 0) { - fprintf(fp, "%s | ", node->name); + fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type)); + } else { + fprintf(fp, "(%s)|", ggml_type_name(node->type)); } - if (ggml_nelements(node) == 1) { - if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) { - fprintf(fp, "%d", ggml_get_i32_1d(node, 0)); + + fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]); + if (ggml_nelements(node) < 5) { + fprintf(fp, " | ("); + for (int j = 0; j < ggml_nelements(node); j++) { + if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) { + fprintf(fp, "%d", ggml_get_i32_1d(node, j)); + } + else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) { + fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j)); + } + else { + fprintf(fp, "#"); + } + if (j < ggml_nelements(node) - 1) { + fprintf(fp, ", "); + } } - else { - fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0)); - } - } - else { - fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]); + fprintf(fp, ")"); } fprintf(fp, "\"; ]\n"); } @@ -17479,30 +17542,20 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph for (int i = 0; i < gb->n_nodes; i++) { struct ggml_tensor * node = gb->nodes[i]; - struct ggml_tensor * parent = ggml_graph_get_parent(gb, node); - if (node->src0) { - struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0); - - fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n", - parent0 ? (void *) parent0 : (void *) node->src0, - parent0 ? "g" : "x", - parent ? (void *) parent : (void *) node, - parent ? "g" : "x", - parent ? "empty" : "vee", - parent ? "dashed" : "solid"); + ggml_graph_dump_dot_node_edge(fp, gb, node, node->src0, "x"); } if (node->src1) { - struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1); + ggml_graph_dump_dot_node_edge(fp, gb, node, node->src1, "y"); + } - fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n", - parent1 ? (void *) parent1 : (void *) node->src1, - parent1 ? "g" : "x", - parent ? (void *) parent : (void *) node, - parent ? "g" : "x", - parent ? "empty" : "vee", - parent ? "dashed" : "solid"); + for (int j = 0; j < GGML_MAX_OPT; j++) { + if (node->opt[j]) { + char label[16]; + snprintf(label, sizeof(label), "opt %d", j); + ggml_graph_dump_dot_node_edge(fp, gb, node, node->opt[j], label); + } } } @@ -17510,15 +17563,19 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph struct ggml_tensor * node = gb->leafs[i]; if (node->src0) { - fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n", - (void *) node->src0, "x", - (void *) node, "x"); + ggml_graph_dump_dot_leaf_edge(fp, node, node->src0, "x"); } if (node->src1) { - fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n", - (void *) node->src1, "x", - (void *) node, "x"); + ggml_graph_dump_dot_leaf_edge(fp, node, node->src1, "y"); + } + + for (int j = 0; j < GGML_MAX_OPT; j++) { + if (node->opt[j]) { + char label[16]; + snprintf(label, sizeof(label), "opt %d", j); + ggml_graph_dump_dot_leaf_edge(fp, node, node->opt[j], label); + } } } diff --git a/ggml.h b/ggml.h index 18c78551f..4b6b72845 100644 --- a/ggml.h +++ b/ggml.h @@ -563,6 +563,7 @@ extern "C" { GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor); GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name); + GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...); // // operations on tensors with backpropagation From c943d823c14cef33092205ca3944de6fdf7abf99 Mon Sep 17 00:00:00 2001 From: AN Long Date: Sat, 24 Jun 2023 19:02:06 +0800 Subject: [PATCH 071/135] convert : fix invalid params in write_vocab_only (#1975) --- convert.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/convert.py b/convert.py index de6c39c67..e340d2273 100644 --- a/convert.py +++ b/convert.py @@ -998,9 +998,9 @@ class OutputFile: def write_vocab_only(fname_out: Path, vocab: Vocab) -> None: of = OutputFile(fname_out) params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, - n_head=1, n_layer=0, file_type=GGMLFileType.AllF32) + n_head=1, n_layer=0) of = OutputFile(fname_out) - of.write_file_header(params) + of.write_file_header(params, file_type=GGMLFileType.AllF32) of.write_vocab(vocab) of.fout.close() From fdd18609113862dc6eb34dfc44a093d54c59ff1f Mon Sep 17 00:00:00 2001 From: Rowan Hart Date: Sat, 24 Jun 2023 04:07:08 -0700 Subject: [PATCH 072/135] flake : fix ggml-metal.metal path and run nixfmt (#1974) --- flake.nix | 50 ++++++++++++++++++++++++++------------------------ 1 file changed, 26 insertions(+), 24 deletions(-) diff --git a/flake.nix b/flake.nix index bba3d71f7..cebb47b94 100644 --- a/flake.nix +++ b/flake.nix @@ -9,27 +9,33 @@ inherit (pkgs.stdenv) isAarch64 isDarwin; inherit (pkgs.lib) optionals; isM1 = isAarch64 && isDarwin; - osSpecific = - if isM1 then with pkgs.darwin.apple_sdk_11_0.frameworks; [ Accelerate MetalKit MetalPerformanceShaders MetalPerformanceShadersGraph ] - else if isDarwin then with pkgs.darwin.apple_sdk.frameworks; [ Accelerate CoreGraphics CoreVideo ] - else [ ]; - pkgs = import nixpkgs { - inherit system; - }; - llama-python = pkgs.python310.withPackages (ps: with ps; [ - numpy - sentencepiece - ]); - in - { + osSpecific = if isM1 then + with pkgs.darwin.apple_sdk_11_0.frameworks; [ + Accelerate + MetalKit + MetalPerformanceShaders + MetalPerformanceShadersGraph + ] + else if isDarwin then + with pkgs.darwin.apple_sdk.frameworks; [ + Accelerate + CoreGraphics + CoreVideo + ] + else + [ ]; + pkgs = import nixpkgs { inherit system; }; + llama-python = + pkgs.python310.withPackages (ps: with ps; [ numpy sentencepiece ]); + in { packages.default = pkgs.stdenv.mkDerivation { name = "llama.cpp"; src = ./.; - postPatch = - if isM1 then '' - substituteInPlace ./ggml-metal.m \ - --replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/ggml-metal.metal\";" - '' else ""; + postPatch = if isM1 then '' + substituteInPlace ./ggml-metal.m \ + --replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";" + '' else + ""; nativeBuildInputs = with pkgs; [ cmake ]; buildInputs = osSpecific; cmakeFlags = [ "-DLLAMA_BUILD_SERVER=ON" ] ++ (optionals isM1 [ @@ -62,11 +68,7 @@ }; apps.default = self.apps.${system}.llama; devShells.default = pkgs.mkShell { - packages = with pkgs; [ - cmake - llama-python - ] ++ osSpecific; + packages = with pkgs; [ cmake llama-python ] ++ osSpecific; }; - } - ); + }); } From 65bdd52a867539691007f85c5508146d507f72c1 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 24 Jun 2023 19:40:18 +0300 Subject: [PATCH 073/135] tests : sync test-grad0 from ggml --- tests/test-grad0.c | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) diff --git a/tests/test-grad0.c b/tests/test-grad0.c index c8c2c0f71..b5a499c1d 100644 --- a/tests/test-grad0.c +++ b/tests/test-grad0.c @@ -1,3 +1,4 @@ +#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows #include "ggml.h" #include @@ -5,6 +6,10 @@ #include #include +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + #define MAX_NARGS 3 #undef MIN @@ -197,8 +202,23 @@ bool check_gradient( float max_error_abs, float max_error_rel) { + static int n_threads = -1; + if (n_threads < 0) { + n_threads = GGML_DEFAULT_N_THREADS; + + const char *env = getenv("GGML_N_THREADS"); + if (env) { + n_threads = atoi(env); + } + + printf("GGML_N_THREADS = %d\n", n_threads); + } + struct ggml_cgraph gf = ggml_build_forward (f); + gf.n_threads = n_threads; + struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); + gb.n_threads = n_threads; ggml_graph_compute(ctx0, &gf); ggml_graph_reset (&gf); From 5ec8dd5a3c6a9a109351d2257bb9d53869bd0a94 Mon Sep 17 00:00:00 2001 From: Robyn Date: Sun, 25 Jun 2023 04:10:29 +1000 Subject: [PATCH 074/135] #1869 Fix null reference errors when training from scratch with CUDA (#1907) * #1869 Fix null reference errors when training from scratch with CUDA build Calling ggml_compute_forward when node->src0 was null was causing train-text-from-scratch.exe to terminate unexpectedly. * ggml : do not dereference src0 if NULL --------- Co-authored-by: Georgi Gerganov --- ggml-cuda.cu | 2 +- ggml.c | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 36a251ecc..010682edb 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -2635,7 +2635,7 @@ void ggml_cuda_free_scratch() { bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){ ggml_cuda_func_t func; const bool any_on_device = tensor->backend == GGML_BACKEND_GPU - || tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT + || (tensor->src0 != nullptr && (tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT)) || (tensor->src1 != nullptr && tensor->src1->backend == GGML_BACKEND_GPU); switch (tensor->op) { diff --git a/ggml.c b/ggml.c index ef9e8585d..7104be01b 100644 --- a/ggml.c +++ b/ggml.c @@ -14911,7 +14911,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm if (skip_cpu) { return; } - GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU); + GGML_ASSERT(tensor->src0 == NULL || tensor->src0->backend == GGML_BACKEND_CPU); GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU); #endif // GGML_USE_CUBLAS From e65ca7e14ac76c4046091da39d41a9017abaa9b3 Mon Sep 17 00:00:00 2001 From: sjinzh Date: Sun, 25 Jun 2023 13:45:44 +0800 Subject: [PATCH 075/135] zig : upgrade build system support (#1981) * upgrade zig build system support * zig : add new line at the end of the file --------- Co-authored-by: Georgi Gerganov --- build.zig | 87 +++++++++++++++++++++++++++---------------------------- 1 file changed, 42 insertions(+), 45 deletions(-) diff --git a/build.zig b/build.zig index 306127ffe..49c159ebf 100644 --- a/build.zig +++ b/build.zig @@ -1,61 +1,58 @@ const std = @import("std"); +// Zig Version: 0.11.0-dev.3379+629f0d23b pub fn build(b: *std.build.Builder) void { const target = b.standardTargetOptions(.{}); - const optimize = b.standardReleaseOptions(); - const want_lto = b.option(bool, "lto", "Want -fLTO"); - - const lib = b.addStaticLibrary("llama", null); - lib.want_lto = want_lto; - lib.setTarget(target); - lib.setBuildMode(optimize); + const optimize = b.standardOptimizeOption(.{}); + const lib = b.addStaticLibrary(.{ + .name = "llama", + .target = target, + .optimize = optimize, + }); + lib.linkLibC(); lib.linkLibCpp(); lib.addIncludePath("."); - lib.addIncludePath("examples"); + lib.addIncludePath("./examples"); lib.addCSourceFiles(&.{ "ggml.c", }, &.{"-std=c11"}); lib.addCSourceFiles(&.{ "llama.cpp", }, &.{"-std=c++11"}); - lib.install(); + b.installArtifact(lib); - const build_args = .{ .b = b, .lib = lib, .target = target, .optimize = optimize, .want_lto = want_lto }; + const examples = .{ + "main", + "baby-llama", + "embedding", + // "metal", + "perplexity", + "quantize", + "quantize-stats", + "save-load-state", + // "server", + "simple", + "train-text-from-scratch", + }; - const exe = build_example("main", build_args); - _ = build_example("quantize", build_args); - _ = build_example("perplexity", build_args); - _ = build_example("embedding", build_args); - - // create "zig build run" command for ./main - - const run_cmd = exe.run(); - run_cmd.step.dependOn(b.getInstallStep()); - if (b.args) |args| { - run_cmd.addArgs(args); + inline for (examples) |example_name| { + const exe = b.addExecutable(.{ + .name = example_name, + .target = target, + .optimize = optimize, + }); + exe.addIncludePath("."); + exe.addIncludePath("./examples"); + exe.addCSourceFiles(&.{ + std.fmt.comptimePrint("examples/{s}/{s}.cpp", .{example_name, example_name}), + "examples/common.cpp", + }, &.{"-std=c++11"}); + exe.linkLibrary(lib); + b.installArtifact(exe); + const run_cmd = b.addRunArtifact(exe); + run_cmd.step.dependOn(b.getInstallStep()); + if (b.args) |args| run_cmd.addArgs(args); + const run_step = b.step("run_" ++ example_name, "Run the app"); + run_step.dependOn(&run_cmd.step); } - - const run_step = b.step("run", "Run the app"); - run_step.dependOn(&run_cmd.step); -} - -fn build_example(comptime name: []const u8, args: anytype) *std.build.LibExeObjStep { - const b = args.b; - const lib = args.lib; - const want_lto = args.want_lto; - - const exe = b.addExecutable(name, null); - exe.want_lto = want_lto; - lib.setTarget(args.target); - lib.setBuildMode(args.optimize); - exe.addIncludePath("."); - exe.addIncludePath("examples"); - exe.addCSourceFiles(&.{ - std.fmt.comptimePrint("examples/{s}/{s}.cpp", .{name, name}), - "examples/common.cpp", - }, &.{"-std=c++11"}); - exe.linkLibrary(lib); - exe.install(); - - return exe; } From 66a2555ba6cab954c56d653b29c27bfbbacfbfb1 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 25 Jun 2023 09:07:03 +0300 Subject: [PATCH 076/135] readme : add Azure CI discussion link --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 6aa6ce319..3a71e16db 100644 --- a/README.md +++ b/README.md @@ -9,6 +9,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ **Hot topics:** +- Azure CI brainstorming: https://github.com/ggerganov/llama.cpp/discussions/1985 - p1 : LLM-based code completion engine at the edge : https://github.com/ggml-org/p1/discussions/1 - Roadmap June 2023: https://github.com/ggerganov/llama.cpp/discussions/1729 From c2a08f87b8d180115d04b8688f383d1b2761b16d Mon Sep 17 00:00:00 2001 From: anon998 <131767832+anon998@users.noreply.github.com> Date: Sun, 25 Jun 2023 08:48:36 +0000 Subject: [PATCH 077/135] fix server sampling: top k sampler first (#1977) Co-authored-by: anon --- examples/server/server.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index de22d3013..79df5e847 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -325,10 +325,10 @@ struct llama_server_context { id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); } else { // Temperature sampling + llama_sample_top_k(ctx, &candidates_p, top_k, 1); llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); llama_sample_typical(ctx, &candidates_p, typical_p, 1); llama_sample_top_p(ctx, &candidates_p, top_p, 1); - llama_sample_top_k(ctx, &candidates_p, top_k, 1); llama_sample_temperature(ctx, &candidates_p, temp); id = llama_sample_token(ctx, &candidates_p); } From bd34cdde38f8fd661890ddd5f57ca30bf279877b Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 25 Jun 2023 14:25:08 +0300 Subject: [PATCH 078/135] ggml : sync latest ggml (custom operators) --- ggml.c | 369 ++++++++++++++++++++++++++++++++++++++++++++++++++++----- ggml.h | 60 +++++++++- 2 files changed, 397 insertions(+), 32 deletions(-) diff --git a/ggml.c b/ggml.c index 7104be01b..e3f0c939c 100644 --- a/ggml.c +++ b/ggml.c @@ -1,5 +1,5 @@ -// Defines CLOCK_MONOTONIC on Linux -#define _GNU_SOURCE +#define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux +#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows #include "ggml.h" @@ -131,6 +131,34 @@ typedef void* thread_ret_t; #define GGML_MEM_ALIGN 16 #endif +// +// logging +// + +#if (GGML_DEBUG >= 1) +#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG(...) +#endif + +#if (GGML_DEBUG >= 5) +#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_5(...) +#endif + +#if (GGML_DEBUG >= 10) +#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_10(...) +#endif + +#define GGML_PRINT(...) printf(__VA_ARGS__) + +// +// end of logging block +// + #if defined(_MSC_VER) || defined(__MINGW32__) #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN) #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) @@ -144,6 +172,17 @@ inline static void* ggml_aligned_malloc(size_t size) { #endif if (result != 0) { // Handle allocation failure + const char *error_desc = "unknown allocation error"; + switch (result) { + case EINVAL: + error_desc = "invalid alignment value"; + break; + case ENOMEM: + error_desc = "insufficient memory"; + break; + } + GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", + __func__, error_desc, size/(1024.0*1024.0)); return NULL; } return aligned_memory; @@ -3530,30 +3569,6 @@ inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x *s = 1.f/(*s); } -// -// logging -// - -#if (GGML_DEBUG >= 1) -#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) -#else -#define GGML_PRINT_DEBUG(...) -#endif - -#if (GGML_DEBUG >= 5) -#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) -#else -#define GGML_PRINT_DEBUG_5(...) -#endif - -#if (GGML_DEBUG >= 10) -#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) -#else -#define GGML_PRINT_DEBUG_10(...) -#endif - -#define GGML_PRINT(...) printf(__VA_ARGS__) - // // data types // @@ -3713,11 +3728,15 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "MAP_UNARY", "MAP_BINARY", + "MAP_CUSTOM1", + "MAP_CUSTOM2", + "MAP_CUSTOM3", + "CROSS_ENTROPY_LOSS", "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 61, "GGML_OP_COUNT != 61"); +static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -3785,11 +3804,15 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "f(x)", "f(x,y)", + "custom(x)", + "custom(x,y)", + "custom(x,y,z)", + "cross_entropy_loss(x,y)", "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 61, "GGML_OP_COUNT != 61"); +static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); @@ -7094,9 +7117,14 @@ struct ggml_tensor * ggml_map_unary_impl_f32( is_node = true; } + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; - struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_load(ctx); result->op = GGML_OP_MAP_UNARY; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -7136,9 +7164,14 @@ struct ggml_tensor * ggml_map_binary_impl_f32( is_node = true; } + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; - struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_load(ctx); result->op = GGML_OP_MAP_BINARY; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -7165,6 +7198,150 @@ struct ggml_tensor * ggml_map_binary_inplace_f32( return ggml_map_binary_impl_f32(ctx, a, b, fun, true); } +// ggml_map_custom1 + +struct ggml_tensor * ggml_map_custom1_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_custom1_op_f32_t fun, + bool inplace) { + bool is_node = false; + + if (!inplace && a->grad) { + is_node = true; + } + + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); + *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_MAP_CUSTOM1; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->opt[0] = addr_tensor; + + return result; +} + +struct ggml_tensor * ggml_map_custom1_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_custom1_op_f32_t fun) { + return ggml_map_custom1_impl_f32(ctx, a, fun, false); +} + +struct ggml_tensor * ggml_map_custom1_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_custom1_op_f32_t fun) { + return ggml_map_custom1_impl_f32(ctx, a, fun, true); +} + +// ggml_map_custom2 + +struct ggml_tensor * ggml_map_custom2_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_custom2_op_f32_t fun, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); + *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_MAP_CUSTOM2; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + result->opt[0] = addr_tensor; + + return result; +} + +struct ggml_tensor * ggml_map_custom2_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_custom2_op_f32_t fun) { + return ggml_map_custom2_impl_f32(ctx, a, b, fun, false); +} + +struct ggml_tensor * ggml_map_custom2_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_custom2_op_f32_t fun) { + return ggml_map_custom2_impl_f32(ctx, a, b, fun, true); +} + +// ggml_map_custom3 + +struct ggml_tensor * ggml_map_custom3_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + const ggml_custom3_op_f32_t fun, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad || b->grad || c->grad)) { + is_node = true; + } + + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); + *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_MAP_CUSTOM3; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + result->opt[0] = addr_tensor; + result->opt[1] = c; + + return result; +} + +struct ggml_tensor * ggml_map_custom3_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + const ggml_custom3_op_f32_t fun) { + return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false); +} + +struct ggml_tensor * ggml_map_custom3_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + const ggml_custom3_op_f32_t fun) { + return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true); +} + // ggml_cross_entropy_loss struct ggml_tensor * ggml_cross_entropy_loss( @@ -14621,6 +14798,114 @@ static void ggml_compute_forward_map_binary( } } +// ggml_compute_forward_map_custom1 + +static void ggml_compute_forward_map_custom1_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * a, + struct ggml_tensor * dst, + const ggml_custom1_op_f32_t fun) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + fun(dst, a); +} + + +static void ggml_compute_forward_map_custom1( + const struct ggml_compute_params * params, + const struct ggml_tensor * a, + struct ggml_tensor * dst, + const ggml_custom1_op_f32_t fun) { + switch (a->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_custom1_f32(params, a, dst, fun); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_map_custom2 + +static void ggml_compute_forward_map_custom2_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * a, + const struct ggml_tensor * b, + struct ggml_tensor * dst, + const ggml_custom2_op_f32_t fun) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + fun(dst, a, b); +} + + +static void ggml_compute_forward_map_custom2( + const struct ggml_compute_params * params, + const struct ggml_tensor * a, + const struct ggml_tensor * b, + struct ggml_tensor * dst, + const ggml_custom2_op_f32_t fun) { + switch (a->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_map_custom3 + +static void ggml_compute_forward_map_custom3_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * a, + const struct ggml_tensor * b, + const struct ggml_tensor * c, + struct ggml_tensor * dst, + const ggml_custom3_op_f32_t fun) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + fun(dst, a, b, c); +} + + +static void ggml_compute_forward_map_custom3( + const struct ggml_compute_params * params, + const struct ggml_tensor * a, + const struct ggml_tensor * b, + const struct ggml_tensor * c, + struct ggml_tensor * dst, + const ggml_custom3_op_f32_t fun) { + switch (a->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_cross_entropy_loss static void ggml_compute_forward_cross_entropy_loss_f32( @@ -15158,6 +15443,24 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun); } break; + case GGML_OP_MAP_CUSTOM1: + { + const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->opt[0]->data); + ggml_compute_forward_map_custom1(params, tensor->src0, tensor, fun); + } + break; + case GGML_OP_MAP_CUSTOM2: + { + const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->opt[0]->data); + ggml_compute_forward_map_custom2(params, tensor->src0, tensor->src1, tensor, fun); + } + break; + case GGML_OP_MAP_CUSTOM3: + { + const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->opt[0]->data); + ggml_compute_forward_map_custom3(params, tensor->src0, tensor->src1, tensor->opt[1], tensor, fun); + } + break; case GGML_OP_CROSS_ENTROPY_LOSS: { ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor); @@ -15964,6 +16267,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor case GGML_OP_WIN_UNPART: case GGML_OP_MAP_UNARY: case GGML_OP_MAP_BINARY: + case GGML_OP_MAP_CUSTOM1: + case GGML_OP_MAP_CUSTOM2: + case GGML_OP_MAP_CUSTOM3: { GGML_ASSERT(false); // not supported } break; @@ -16605,6 +16911,9 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) case GGML_OP_WIN_UNPART: case GGML_OP_MAP_UNARY: case GGML_OP_MAP_BINARY: + case GGML_OP_MAP_CUSTOM1: + case GGML_OP_MAP_CUSTOM2: + case GGML_OP_MAP_CUSTOM3: { node->n_tasks = 1; } break; diff --git a/ggml.h b/ggml.h index 4b6b72845..5ebd9c46c 100644 --- a/ggml.h +++ b/ggml.h @@ -345,6 +345,10 @@ extern "C" { GGML_OP_MAP_UNARY, GGML_OP_MAP_BINARY, + GGML_OP_MAP_CUSTOM1, + GGML_OP_MAP_CUSTOM2, + GGML_OP_MAP_CUSTOM3, + GGML_OP_CROSS_ENTROPY_LOSS, GGML_OP_CROSS_ENTROPY_LOSS_BACK, @@ -1167,21 +1171,73 @@ extern "C" { int h0, int w); - // Mapping operations - typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *); + // custom operators + + typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *); typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *); + typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *); + typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *); + typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *); + GGML_API struct ggml_tensor * ggml_map_unary_f32( struct ggml_context * ctx, struct ggml_tensor * a, ggml_unary_op_f32_t fun); + GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + ggml_unary_op_f32_t fun); + GGML_API struct ggml_tensor * ggml_map_binary_f32( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, ggml_binary_op_f32_t fun); + GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + ggml_binary_op_f32_t fun); + + GGML_API struct ggml_tensor * ggml_map_custom1_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + ggml_custom1_op_f32_t fun); + + GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + ggml_custom1_op_f32_t fun); + + GGML_API struct ggml_tensor * ggml_map_custom2_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + ggml_custom2_op_f32_t fun); + + GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + ggml_custom2_op_f32_t fun); + + GGML_API struct ggml_tensor * ggml_map_custom3_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + ggml_custom3_op_f32_t fun); + + GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + ggml_custom3_op_f32_t fun); + // loss function GGML_API struct ggml_tensor * ggml_cross_entropy_loss( From 447ccbe8c39332fcdd0d98a041b6e2ff6f06219d Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 25 Jun 2023 16:08:12 +0300 Subject: [PATCH 079/135] readme : add new roadmap + manifesto --- README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 3a71e16db..ad1a5cfc0 100644 --- a/README.md +++ b/README.md @@ -5,13 +5,15 @@ [![Actions Status](https://github.com/ggerganov/llama.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/llama.cpp/actions) [![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) +[Roadmap](https://github.com/users/ggerganov/projects/7) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml) + Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ **Hot topics:** +- New roadmap: https://github.com/users/ggerganov/projects/7 - Azure CI brainstorming: https://github.com/ggerganov/llama.cpp/discussions/1985 - p1 : LLM-based code completion engine at the edge : https://github.com/ggml-org/p1/discussions/1 -- Roadmap June 2023: https://github.com/ggerganov/llama.cpp/discussions/1729
    Table of Contents From cbebf61ca7584e9709265395f0127ae7fc0f1882 Mon Sep 17 00:00:00 2001 From: Howard Su Date: Mon, 26 Jun 2023 23:15:47 +0800 Subject: [PATCH 080/135] Fix assert when free invalid cuda pointer (#2005) Fix assert via initializing extra structure always. CUDA error 1 at C:\GPT\llama.cpp\ggml-cuda.cu:2536: invalid argument --- ggml-cuda.cu | 1 + 1 file changed, 1 insertion(+) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 010682edb..5e2fbc724 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -2553,6 +2553,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) { tensor->backend = GGML_BACKEND_GPU; struct ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu; + memset(extra, 0, sizeof(*extra)); const bool inplace = (tensor->src0 != nullptr && tensor->src0->data == tensor->data) || tensor->op == GGML_OP_VIEW; From 6769e944c727c63612dcafbef52009d21ae00fff Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Mon, 26 Jun 2023 19:43:07 +0300 Subject: [PATCH 081/135] k-quants : support for super-block size of 64 (#2001) * k_quants: WIP super-blocks with 64 weights * k_quants: WIP super-blocks with 64 weights Q6_K scalar and AVX2 works * k_quants: WIP super-blocks with 64 weights Q4_K scalar and AVX2 works * k_quants: WIP super-blocks with 64 weights Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower than the scalar implementation) * k_quants: WIP super-blocks with 64 weights Q3_K scalar and AVX2 works. * k_quants: WIP super-blocks with 64 weights Q5_K scalar and AVX2 works, and with that all k_quants are done on AVX2 and scalar * k_quants: WIP super-blocks with 64 weights Q6_K working on CUDA. Cannot make it run quite as gast as with super-blocks with 256 weigths: 8% slower on 4080, 20% slower on the 1660 (but there we fit 1 less layer on the GPU because pf the larger model size), so some fraction of these 20% is due to that, * k_quants: WIP super-blocks with 64 weights Q4_K working on CUDA. ~10% slower on GTX-1660, 16% slower on 4080. * k_quants: WIP super-blocks with 64 weights Q2_K working on CUDA. ~3% slower on GTX-1660, 10% slower on 4080. * k_quants: WIP super-blocks with 64 weights Q3_K working on CUDA. * k_quants: WIP super-blocks with 64 weights Q5_K working on CUDA, and with this CUDA is done. * k_quants: WIP super-blocks with 64 weights Q6_K working on ARM_NEON * k_quants: WIP super-blocks with 64 weights Q4_K working on ARM_NEON, but quite a bit slower than 256 weights * k_quants: WIP super-blocks with 64 weights Q2_K working on ARM_NEON, but quite a bit slower than 256 weights * k_quants: WIP super-blocks with 64 weights Q3_K working on ARM_NEON, but quite a bit slower than 256 weights. * k_quants: WIP super-blocks with 64 weights Q5_K working on ARM_NEON, but quite a bit slower than 256 weights. With that, we have full support for ARM_NEON, although performance is not quite there. * k_quants: WIP super-blocks with 64 weights Slightly more efficient Q3_K and Q5_K * k_quants: WIP super-blocks with 64 weights Another small improvement for Q3_K and Q5_K on ARM_NEON * k_quants: WIP super-blocks with 64 weights Yet another speedup for Q5_K on ARM_NEON. We are now within 10% of the QK_K = 256 version. * k_quants: WIP super-blocks with 64 weights * We are able to pass preprocessor macros to the Metal compiler * Q6_K works and is actually slightly more efficient than the QK_K = 256 version (25.2 ms vs 25.8 ms) * k_quants: WIP super-blocks with 64 weights Q4_K works on Metal and is actually slightly faster than QK_K = 256 (21.95 ms vs 24.0 ms). * k_quants: WIP super-blocks with 64 weights Q2_K works on Metal and is very slightly faster than QK_K = 256 (23.8 ms vs 24.2 ms). * k_quants: WIP super-blocks with 64 weights Q3_K works on Metal and is slightly faster than QK_K = 256 (26.6 ms vs 28.3 ms). * k_quants: WIP super-blocks with 64 weights Q5_K works on Metal and is slightly faster than QK_K = 256 (23.7 ms vs 26.3 ms). * k_quants: call them _K, not _k, also on Metal * k_quants: correctly define QK_K in llama.cpp * Fixed bug in q4_K quantization added with the 64-block addition * Simplify via lambda * k_quants: swicth Q3_K to 4-bit scales when QK_K = 64 Otherwise there isn't much benefit from this quantization type. There is some very slight loss in accuracy, but we reduce size by ~7%. E.g., for OpenLLaMA-3B, Q3_K_S perplexity is 8.6131 with 8-bit scales and 8.6352 with 4-bit, while file size decreases from 1.53G to 1.44G. * k_quants: switch Q4_K to 4-bit scales when QK_K = 64 Here the loss in accuracy is greater than for Q3_K, but the Q4_K points still move further to the left on the perplexity vs size curve. * k_quants: forgot to add the Metal changes in last commit * k_quants: change Q5_K to be type 0 when QK_K = 64 Still needs AVX2 implementation * k_quants: AVX2 implementation for new 64-weight Q5_K * k_quants: 10% faster ARM_NEON Q5_K dot product * k_quants: fixed issue caused by merging with master --------- Co-authored-by: Iwan Kawrakow --- CMakeLists.txt | 14 +- Makefile | 9 +- ggml-cuda.cu | 370 ++++++++++++--- ggml-metal.m | 66 +-- ggml-metal.metal | 414 +++++++++++++---- k_quants.c | 1140 +++++++++++++++++++++++++++++++++++++++++++++- k_quants.h | 51 ++- llama.cpp | 17 +- 8 files changed, 1880 insertions(+), 201 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index cc7560a7a..ffda74a70 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -75,6 +75,7 @@ set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for option(LLAMA_CLBLAST "llama: use CLBlast" OFF) option(LLAMA_METAL "llama: use Metal" OFF) option(LLAMA_K_QUANTS "llama: use k-quants" ON) +option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF) option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE}) option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE}) @@ -225,6 +226,14 @@ if (LLAMA_BLAS) endif() endif() +if (LLAMA_K_QUANTS) + set(GGML_SOURCES_EXTRA ${GGML_SOURCES_EXTRA} k_quants.c k_quants.h) + add_compile_definitions(GGML_USE_K_QUANTS) + if (LLAMA_QKK_64) + add_compile_definitions(GGML_QKK_64) + endif() +endif() + if (LLAMA_CUBLAS) cmake_minimum_required(VERSION 3.17) @@ -289,11 +298,6 @@ if (LLAMA_METAL) ) endif() -if (LLAMA_K_QUANTS) - set(GGML_SOURCES_EXTRA ${GGML_SOURCES_EXTRA} k_quants.c k_quants.h) - add_compile_definitions(GGML_USE_K_QUANTS) -endif() - if (LLAMA_CLBLAST) find_package(CLBlast) if (CLBlast_FOUND) diff --git a/Makefile b/Makefile index 5dd676fad..bda11791d 100644 --- a/Makefile +++ b/Makefile @@ -43,8 +43,11 @@ endif # keep standard at C11 and C++11 # -Ofast tends to produce faster code, but may not be available for some compilers. -#OPT = -Ofast +ifdef LLAMA_FAST +OPT = -Ofast +else OPT = -O3 +endif CFLAGS = -I. $(OPT) -std=c11 -fPIC CXXFLAGS = -I. -I./examples $(OPT) -std=c++11 -fPIC LDFLAGS = @@ -131,6 +134,10 @@ ifndef LLAMA_NO_K_QUANTS CFLAGS += -DGGML_USE_K_QUANTS CXXFLAGS += -DGGML_USE_K_QUANTS OBJS += k_quants.o +ifdef LLAMA_QKK_64 + CFLAGS += -DGGML_QKK_64 + CXXFLAGS += -DGGML_QKK_64 +endif endif ifndef LLAMA_NO_ACCELERATE diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 5e2fbc724..c34e96abf 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -117,7 +117,13 @@ static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 blo //================================= k-quants +#ifdef GGML_QKK_64 +#define QK_K 64 +#define K_SCALE_SIZE 4 +#else #define QK_K 256 +#define K_SCALE_SIZE 12 +#endif typedef struct { uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits @@ -128,13 +134,25 @@ typedef struct { static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding"); typedef struct { - uint8_t hmask[QK_K/8]; - uint8_t qs[QK_K/4]; // nibbles / quants - uint8_t scales[3*QK_K/64]; - half d; + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits +#ifdef GGML_QKK_64 + uint8_t scales[2]; // scales, quantized with 8 bits +#else + uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits +#endif + half d; // super-block scale } block_q3_K; -static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_K block size/padding"); +//static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding"); +#ifdef GGML_QKK_64 +typedef struct { + half d[2]; // super-block scales/mins + uint8_t scales[2]; // 4-bit block scales/mins + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_K; +static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding"); +#else typedef struct { half d; // super-block scale for quantized scales half dmin; // super-block scale for quantized mins @@ -142,15 +160,26 @@ typedef struct { uint8_t qs[QK_K/2]; // 4--bit quants } block_q4_K; static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding"); +#endif +#ifdef GGML_QKK_64 typedef struct { - half d; // super-block scale for quantized scales - half dmin; // super-block scale for quantized mins - uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits + half d; // super-block scale + int8_t scales[QK_K/16]; // block scales + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_K; +static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding"); +#else +typedef struct { + half d; // super-block scale for quantized scales + half dmin; // super-block scale for quantized mins + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits uint8_t qh[QK_K/8]; // quants, high bit uint8_t qs[QK_K/2]; // quants, low 4 bits } block_q5_K; -static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); +static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); +#endif typedef struct { uint8_t ql[QK_K/2]; // quants, lower 4 bits @@ -349,13 +378,14 @@ static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const in static __global__ void dequantize_block_q2_K(const void * vx, float * yy) { const int i = blockIdx.x; + const block_q2_K * x = (const block_q2_K *) vx; + const int tid = threadIdx.x; +#if QK_K == 256 const int n = tid/32; const int l = tid - 32*n; const int is = 8*n + l/16; - const block_q2_K * x = (const block_q2_K *) vx; - const uint8_t q = x[i].qs[32*n + l]; float * y = yy + i*QK_K + 128*n; @@ -365,21 +395,32 @@ static __global__ void dequantize_block_q2_K(const void * vx, float * yy) { y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4); y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4); y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4); +#else + const int is = tid/16; // 0 or 1 + const int il = tid%16; // 0...15 + const uint8_t q = x[i].qs[il] >> (2*is); + float * y = yy + i*QK_K + 16*is + il; + float dall = x[i].d; + float dmin = x[i].dmin; + y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4); + y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4); +#endif } static __global__ void dequantize_block_q3_K(const void * vx, float * yy) { - int r = threadIdx.x/4; - int i = blockIdx.x; - int tid = r/2; - int is0 = r%2; - int l0 = 16*is0 + 4*(threadIdx.x%4); - int n = tid / 4; - int j = tid - 4*n; - + const int i = blockIdx.x; const block_q3_K * x = (const block_q3_K *) vx; +#if QK_K == 256 + const int r = threadIdx.x/4; + const int tid = r/2; + const int is0 = r%2; + const int l0 = 16*is0 + 4*(threadIdx.x%4); + const int n = tid / 4; + const int j = tid - 4*n; + uint8_t m = 1 << (4*n + j); int is = 8*n + 2*j + is0; int shift = 2*j; @@ -396,9 +437,31 @@ static __global__ void dequantize_block_q3_K(const void * vx, float * yy) { const uint8_t * hm = x[i].hmask; for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); +#else + const int tid = threadIdx.x; + const int is = tid/16; // 0 or 1 + const int il = tid%16; // 0...15 + const int im = il/8; // 0...1 + const int in = il%8; // 0...7 + + float * y = yy + i*QK_K + 16*is + il; + + const uint8_t q = x[i].qs[il] >> (2*is); + const uint8_t h = x[i].hmask[in] >> (2*is + im); + const float d = (float)x[i].d; + + if (is == 0) { + y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4)); + y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4)); + } else { + y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4)); + y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4)); + } +#endif } +#if QK_K == 256 static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) { if (j < 4) { d = q[j] & 63; m = q[j + 4] & 63; @@ -407,19 +470,14 @@ static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); } } +#endif static __global__ void dequantize_block_q4_K(const void * vx, float * yy) { const block_q4_K * x = (const block_q4_K *) vx; const int i = blockIdx.x; - //// assume 64 threads - this is very slightly better than the one below - //const int tid = threadIdx.x; - //const int il = tid/16; - //const int ir = tid%16; - //const int is = 2*il; - //const int n = 2; - +#if QK_K == 256 // assume 32 threads const int tid = threadIdx.x; const int il = tid/8; @@ -443,6 +501,15 @@ static __global__ void dequantize_block_q4_K(const void * vx, float * yy) { y[l + 0] = d1 * (q[l] & 0xF) - m1; y[l +32] = d2 * (q[l] >> 4) - m2; } +#else + const int tid = threadIdx.x; + const uint8_t * q = x[i].qs; + float * y = yy + i*QK_K; + const float d = (float)x[i].d[0]; + const float m = (float)x[i].d[1]; + y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4); + y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4); +#endif } static __global__ void dequantize_block_q5_K(const void * vx, float * yy) { @@ -450,6 +517,7 @@ static __global__ void dequantize_block_q5_K(const void * vx, float * yy) { const int i = blockIdx.x; +#if QK_K == 256 // assume 64 threads - this is very slightly better than the one below const int tid = threadIdx.x; const int il = tid/16; // il is in 0...3 @@ -476,12 +544,25 @@ static __global__ void dequantize_block_q5_K(const void * vx, float * yy) { hm <<= 1; y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2; y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2; +#else + const int tid = threadIdx.x; + const uint8_t q = x[i].qs[tid]; + const int im = tid/8; // 0...3 + const int in = tid%8; // 0...7 + const int is = tid/16; // 0 or 1 + const uint8_t h = x[i].qh[in] >> im; + const float d = x[i].d; + float * y = yy + i*QK_K + tid; + y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16)); + y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16)); +#endif } static __global__ void dequantize_block_q6_K(const void * vx, float * yy) { const block_q6_K * x = (const block_q6_K *) vx; const int i = blockIdx.x; +#if QK_K == 256 // assume 64 threads - this is very slightly better than the one below const int tid = threadIdx.x; @@ -501,6 +582,24 @@ static __global__ void dequantize_block_q6_K(const void * vx, float * yy) { y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); +#else + + // assume 32 threads + const int tid = threadIdx.x; + const int ip = tid/16; // 0 or 1 + const int il = tid - 16*ip; // 0...15 + + float * y = yy + i*QK_K + 16*ip + il; + + const float d = x[i].d; + + const uint8_t ql = x[i].ql[16*ip + il]; + const uint8_t qh = x[i].qh[il] >> (2*ip); + const int8_t * sc = x[i].scales; + + y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32); + y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32); +#endif } static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) { @@ -515,6 +614,9 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float const block_q2_K * x = (const block_q2_K *)vx + ib0; + float tmp = 0; // partial sum for thread in warp + +#if QK_K == 256 const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15 const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 @@ -528,8 +630,6 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float const int s_offset = 8*im; const int y_offset = 128*im + l0; - float tmp = 0; // partial sum for thread in warp - uint32_t aux[4]; const uint8_t * d = (const uint8_t *)aux; const uint8_t * m = (const uint8_t *)(aux + 2); @@ -565,6 +665,39 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float tmp += dall * sum1 - dmin * sum2; } +#else + const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7 + const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3 + const int offset = tid * K_QUANTS_PER_ITERATION; + + uint32_t uaux[2]; + const uint8_t * d = (const uint8_t *)uaux; + + for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + offset; + const uint8_t * q = x[i].qs + offset; + const uint32_t * s = (const uint32_t *)x[i].scales; + + uaux[0] = s[0] & 0x0f0f0f0f; + uaux[1] = (s[0] >> 4) & 0x0f0f0f0f; + + const half2 * dh = (const half2 *)&x[i].d; + + const float2 dall = __half22float2(dh[0]); + + float sum1 = 0, sum2 = 0; + for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { + const uint8_t ql = q[l]; + sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3) + + y[l+16] * d[1] * ((ql >> 2) & 3) + + y[l+32] * d[2] * ((ql >> 4) & 3) + + y[l+48] * d[3] * ((ql >> 6) & 3); + sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7]; + } + tmp += dall.x * sum1 - dall.y * sum2; + } +#endif // sum up partial sums and write back result __syncthreads(); @@ -573,16 +706,13 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); } - if (tid == 0) { + if (threadIdx.x == 0) { dst[row] = tmp; } } static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) { - const uint16_t kmask1 = 0x0303; - const uint16_t kmask2 = 0x0f0f; - const int row = blockIdx.y*blockDim.y + threadIdx.y; if (row > nrows) return; @@ -591,6 +721,13 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float const block_q3_K * x = (const block_q3_K *)vx + ib0; + float tmp = 0; // partial sum for thread in warp + +#if QK_K == 256 + + const uint16_t kmask1 = 0x0303; + const uint16_t kmask2 = 0x0f0f; + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 @@ -610,8 +747,6 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float const uint16_t s_shift = 4*im; - float tmp = 0; // partial sum for thread in warp - for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { const float * y = yy + i * QK_K + y_offset; @@ -640,6 +775,34 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float tmp += d * sum; } +#else + + const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7 + const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3 + const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14 + const int in = offset/8; // 0 or 1 + const int im = offset%8; // 0...7 + + for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + offset; + const uint8_t * q = x[i].qs + offset; + const uint8_t * s = x[i].scales; + + const float dall = (float)x[i].d; + + float sum = 0; + for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { + const uint8_t hl = x[i].hmask[im+l] >> in; + const uint8_t ql = q[l]; + sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4)) + + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4)) + + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4)) + + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4)); + } + tmp += sum; + } +#endif // sum up partial sums and write back result __syncthreads(); @@ -648,22 +811,25 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); } - if (tid == 0) { + if (threadIdx.x == 0) { dst[row] = tmp; } } static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) { - const uint16_t kmask1 = 0x3f3f; - const uint16_t kmask2 = 0x0f0f; - const uint16_t kmask3 = 0xc0c0; - const int row = blockIdx.y*blockDim.y + threadIdx.y; if (row > nrows) return; const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row; + const block_q4_K * x = (const block_q4_K *)vx + ib0; + +#if QK_K == 256 + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1 @@ -683,8 +849,6 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float uint16_t aux[4]; const uint8_t * sc = (const uint8_t *)aux; - const block_q4_K * x = (const block_q4_K *)vx + ib0; - float tmp = 0; // partial sum for thread in warp for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { @@ -713,6 +877,36 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float tmp += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin; } +#else + const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 + const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); + + const int step = tid * K_QUANTS_PER_ITERATION; + + uint16_t aux16[2]; + const uint8_t * s = (const uint8_t *)aux16; + + float tmp = 0; + + for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { + const uint8_t * q = x[i].qs + step; + const float * y = yy + i*QK_K + step; + const uint16_t * a = (const uint16_t *)x[i].scales; + aux16[0] = a[0] & 0x0f0f; + aux16[1] = (a[0] >> 4) & 0x0f0f; + const float d = (float)x[i].d[0]; + const float m = (float)x[i].d[1]; + float sum = 0.f; + for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { + sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2]) + + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2]) + + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3]) + + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]); + } + tmp += sum; + } + +#endif // sum up partial sums and write back result __syncthreads(); @@ -728,15 +922,19 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float * yy, float * dst, const int ncols) { - const uint16_t kmask1 = 0x3f3f; - const uint16_t kmask2 = 0x0f0f; - const uint16_t kmask3 = 0xc0c0; - - //const int row = blockIdx.x*blockDim.y + threadIdx.y; const int row = blockIdx.x; const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row; + const block_q5_K * x = (const block_q5_K *)vx + ib0; + + float tmp = 0; // partial sum for thread in warp + +#if QK_K == 256 + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + const int tid = threadIdx.x/2; // 0...15 const int ix = threadIdx.x%2; @@ -757,10 +955,6 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float uint16_t aux[4]; const uint8_t * sc = (const uint8_t *)aux; - const block_q5_K * x = (const block_q5_K *)vx + ib0; - - float tmp = 0; // partial sum for thread in warp - for (int i = ix; i < num_blocks_per_row; i += 2) { const uint8_t * ql1 = x[i].qs + q_offset; @@ -793,9 +987,32 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7]; } tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin; - } +#else + const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 + const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); + const int step = tid * K_QUANTS_PER_ITERATION; + const int im = step/8; + const int in = step%8; + + for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { + const uint8_t * q = x[i].qs + step; + const int8_t * s = x[i].scales; + const float * y = yy + i*QK_K + step; + const float d = x[i].d; + float sum = 0.f; + for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { + const uint8_t h = x[i].qh[in+j] >> im; + sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16)) + + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16)) + + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16)) + + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16)); + } + tmp += sum; + } +#endif + // sum up partial sums and write back result __syncthreads(); #pragma unroll @@ -803,7 +1020,7 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); } - if (tid == 0) { + if (threadIdx.x == 0) { dst[row] = tmp; } } @@ -820,6 +1037,8 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * vx, const float const block_q6_K * x = (const block_q6_K *)vx + ib0; +#if QK_K == 256 + const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1 @@ -874,6 +1093,37 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * vx, const float } +#else + + const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7 + const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3 + + const int step = tid * K_QUANTS_PER_ITERATION; + + float tmp = 0; // partial sum for thread in warp + + for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) { + + const float * y = yy + i * QK_K + step; + const uint8_t * ql = x[i].ql + step; + const uint8_t * qh = x[i].qh + step; + const int8_t * s = x[i].scales; + + const float d = x[i+0].d; + + float sum = 0; + for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { + sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32) + + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32) + + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32) + + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32); + } + tmp += sum; + + } + +#endif + // sum up partial sums and write back result __syncthreads(); #pragma unroll @@ -1252,12 +1502,20 @@ static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cu static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; +#if QK_K == 256 dequantize_block_q2_K<<>>(vx, y); +#else + dequantize_block_q2_K<<>>(vx, y); +#endif } static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; +#if QK_K == 256 dequantize_block_q3_K<<>>(vx, y); +#else + dequantize_block_q3_K<<>>(vx, y); +#endif } static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { @@ -1267,12 +1525,20 @@ static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cu static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; +#if QK_K == 256 dequantize_block_q5_K<<>>(vx, y); +#else + dequantize_block_q5_K<<>>(vx, y); +#endif } static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; +#if QK_K == 256 dequantize_block_q6_K<<>>(vx, y); +#else + dequantize_block_q6_K<<>>(vx, y); +#endif } static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { diff --git a/ggml-metal.m b/ggml-metal.m index a7e104dc7..7551231b9 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -51,21 +51,21 @@ struct ggml_metal_context { GGML_METAL_DECL_KERNEL(get_rows_f16); GGML_METAL_DECL_KERNEL(get_rows_q4_0); GGML_METAL_DECL_KERNEL(get_rows_q4_1); - GGML_METAL_DECL_KERNEL(get_rows_q2_k); - GGML_METAL_DECL_KERNEL(get_rows_q3_k); - GGML_METAL_DECL_KERNEL(get_rows_q4_k); - GGML_METAL_DECL_KERNEL(get_rows_q5_k); - GGML_METAL_DECL_KERNEL(get_rows_q6_k); + GGML_METAL_DECL_KERNEL(get_rows_q2_K); + GGML_METAL_DECL_KERNEL(get_rows_q3_K); + GGML_METAL_DECL_KERNEL(get_rows_q4_K); + GGML_METAL_DECL_KERNEL(get_rows_q5_K); + GGML_METAL_DECL_KERNEL(get_rows_q6_K); GGML_METAL_DECL_KERNEL(rms_norm); GGML_METAL_DECL_KERNEL(norm); GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q3_k_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q5_k_f32); - GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32); + GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32); + GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32); + GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32); + GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32); + GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32); GGML_METAL_DECL_KERNEL(rope); GGML_METAL_DECL_KERNEL(alibi_f32); GGML_METAL_DECL_KERNEL(cpy_f32_f16); @@ -132,7 +132,13 @@ struct ggml_metal_context * ggml_metal_init(void) { exit(1); } +#ifdef GGML_QKK_64 + MTLCompileOptions* options = [MTLCompileOptions new]; + options.preprocessorMacros = @{ @"QK_K" : @(64) }; + ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error]; +#else ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error]; +#endif if (error) { fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); exit(1); @@ -159,21 +165,21 @@ struct ggml_metal_context * ggml_metal_init(void) { GGML_METAL_ADD_KERNEL(get_rows_f16); GGML_METAL_ADD_KERNEL(get_rows_q4_0); GGML_METAL_ADD_KERNEL(get_rows_q4_1); - GGML_METAL_ADD_KERNEL(get_rows_q2_k); - GGML_METAL_ADD_KERNEL(get_rows_q3_k); - GGML_METAL_ADD_KERNEL(get_rows_q4_k); - GGML_METAL_ADD_KERNEL(get_rows_q5_k); - GGML_METAL_ADD_KERNEL(get_rows_q6_k); + GGML_METAL_ADD_KERNEL(get_rows_q2_K); + GGML_METAL_ADD_KERNEL(get_rows_q3_K); + GGML_METAL_ADD_KERNEL(get_rows_q4_K); + GGML_METAL_ADD_KERNEL(get_rows_q5_K); + GGML_METAL_ADD_KERNEL(get_rows_q6_K); GGML_METAL_ADD_KERNEL(rms_norm); GGML_METAL_ADD_KERNEL(norm); GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q3_k_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q5_k_f32); - GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32); + GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32); + GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32); + GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32); + GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32); + GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32); GGML_METAL_ADD_KERNEL(rope); GGML_METAL_ADD_KERNEL(alibi_f32); GGML_METAL_ADD_KERNEL(cpy_f32_f16); @@ -662,7 +668,7 @@ void ggml_metal_graph_compute( nth0 = 4; nth1 = 16; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32]; } break; case GGML_TYPE_Q3_K: { @@ -671,7 +677,7 @@ void ggml_metal_graph_compute( nth0 = 4; nth1 = 16; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_k_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32]; } break; case GGML_TYPE_Q4_K: { @@ -680,7 +686,7 @@ void ggml_metal_graph_compute( nth0 = 4; nth1 = 16; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32]; } break; case GGML_TYPE_Q5_K: { @@ -689,7 +695,7 @@ void ggml_metal_graph_compute( nth0 = 4; nth1 = 16; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_k_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32]; } break; case GGML_TYPE_Q6_K: { @@ -698,7 +704,7 @@ void ggml_metal_graph_compute( nth0 = 4; nth1 = 16; - [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32]; + [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32]; } break; default: { @@ -750,11 +756,11 @@ void ggml_metal_graph_compute( case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; - case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break; - case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_k]; break; - case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break; - case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_k]; break; - case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break; + case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break; + case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break; + case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break; + case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break; + case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break; default: GGML_ASSERT(false && "not implemented"); } diff --git a/ggml-metal.metal b/ggml-metal.metal index d1e49222d..e62fe6842 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -428,7 +428,7 @@ kernel void kernel_mul_mat_q4_0_f32( } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith == 0) { - for (uint i = 16; i < nth; i += 16) sum[0] += sum[i]; + for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; dst[r1*ne0 + r0] = sum[0]; } } @@ -497,7 +497,7 @@ kernel void kernel_mul_mat_q4_1_f32( } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith == 0) { - for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; + for (uint i = 16; i < nth; i += 16) sum[0] += sum[i]; dst[r1*ne0 + r0] = sum[0]; } } @@ -775,47 +775,76 @@ kernel void kernel_cpy_f32_f32( //============================================ k-quants ====================================================== +#ifndef QK_K #define QK_K 256 +#else +static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64"); +#endif + +#if QK_K == 256 +#define K_SCALE_SIZE 12 +#else +#define K_SCALE_SIZE 4 +#endif typedef struct { uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits uint8_t qs[QK_K/4]; // quants half d; // super-block scale for quantized scales half dmin; // super-block scale for quantized mins -} block_q2_k; +} block_q2_K; // 84 bytes / block typedef struct { uint8_t hmask[QK_K/8]; // quants - high bit uint8_t qs[QK_K/4]; // quants - low 2 bits - uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits - half d; // super-block scale -} block_q3_k; -// 110 bytes / block +#if QK_K == 64 + uint8_t scales[2]; +#else + uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits +#endif + half d; // super-block scale +} block_q3_K; +#if QK_K == 64 +typedef struct { + half d[2]; // super-block scales/mins + uint8_t scales[2]; + uint8_t qs[QK_K/2]; // 4-bit quants +} block_q4_K; +#else typedef struct { half d; // super-block scale for quantized scales half dmin; // super-block scale for quantized mins - uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits uint8_t qs[QK_K/2]; // 4--bit quants -} block_q4_k; -// 144 bytes / block +} block_q4_K; +#endif +#if QK_K == 64 +typedef struct { + half d; // super-block scales/mins + int8_t scales[QK_K/16]; // 8-bit block scales + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_K; +#else typedef struct { half d; // super-block scale for quantized scales half dmin; // super-block scale for quantized mins uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits uint8_t qh[QK_K/8]; // quants, high bit uint8_t qs[QK_K/2]; // quants, low 4 bits -} block_q5_k; +} block_q5_K; // 176 bytes / block +#endif typedef struct { uint8_t ql[QK_K/2]; // quants, lower 4 bits uint8_t qh[QK_K/4]; // quants, upper 2 bits int8_t scales[QK_K/16]; // scales, quantized with 8 bits half d; // super-block scale -} block_q6_k; +} block_q6_K; // 210 bytes / block static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) { @@ -836,7 +865,7 @@ static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) { //========================================== dequantization ============================= -static void dequantize_row_q2_k(device const block_q2_k * x, device float * y, int k) { +static void dequantize_row_q2_K(device const block_q2_K * x, device float * y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -847,6 +876,7 @@ static void dequantize_row_q2_k(device const block_q2_k * x, device float * y, i device const uint8_t * q = x[i].qs; +#if QK_K == 256 int is = 0; float dl, ml; for (int n = 0; n < QK_K; n += 128) { @@ -865,14 +895,29 @@ static void dequantize_row_q2_k(device const block_q2_k * x, device float * y, i } q += 32; } +#else + float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4); + float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4); + float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4); + float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4); + for (int l = 0; l < 16; ++l) { + y[l+ 0] = dl1 * ((q[l] >> 0) & 3) - ml1; + y[l+16] = dl2 * ((q[l] >> 2) & 3) - ml2; + y[l+32] = dl3 * ((q[l] >> 4) & 3) - ml3; + y[l+48] = dl4 * ((q[l] >> 6) & 3) - ml4; + } + y += QK_K; +#endif } } -static void dequantize_row_q3_k(device const block_q3_k * x, device float * y, int k) { +static void dequantize_row_q3_K(device const block_q3_K * x, device float * y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; +#if QK_K == 256 + const uint16_t kmask1 = 0x0303; const uint16_t kmask2 = 0x0f0f; @@ -918,22 +963,49 @@ static void dequantize_row_q3_k(device const block_q3_k * x, device float * y, i } q += 32; } - } +#else + for (int i = 0; i < nb; i++) { + + const float d_all = (float)(x[i].d); + + device const uint8_t * q = x[i].qs; + device const uint8_t * hm = x[i].hmask; + + const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8); + const float d2 = d_all * ((x[i].scales[0] >> 4) - 8); + const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8); + const float d4 = d_all * ((x[i].scales[1] >> 4) - 8); + + for (int l = 0; l < 8; ++l) { + uint8_t h = hm[l]; + y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4)); + y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4)); + y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4)); + y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4)); + y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4)); + y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4)); + y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4)); + y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4)); + } + y += QK_K; + } +#endif } -static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, int k) { +static void dequantize_row_q4_K(device const block_q4_K * x, device float * y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; - for (int i = 0; i < nb; i++) { + device const uint8_t * q = x[i].qs; + +#if QK_K == 256 const float d = x[i].d; const float min = x[i].dmin; - device const uint8_t * q = x[i].qs; device const uint8_t * scales = x[i].scales; int is = 0; @@ -945,14 +1017,29 @@ static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, i for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2; q += 32; is += 2; } +#else + device const uint8_t * s = x[i].scales; + device const half2 * dh = (device const half2 *)x[i].d; + const float2 d = (float2)dh[0]; + const float d1 = d[0] * (s[0] & 0xF); + const float d2 = d[0] * (s[1] & 0xF); + const float m1 = d[1] * (s[0] >> 4); + const float m2 = d[1] * (s[1] >> 4); + for (int l = 0; l < 32; ++l) { + y[l+ 0] = d1 * (q[l] & 0xF) - m1; + y[l+32] = d2 * (q[l] >> 4) - m2; + } + y += QK_K; +#endif } } -static void dequantize_row_q5_k(device const block_q5_k * x, device float * y, int k) { +static void dequantize_row_q5_K(device const block_q5_K * x, device float * y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; +#if QK_K == 256 for (int i = 0; i < nb; i++) { const float d = (float)(x[i].d); @@ -973,10 +1060,32 @@ static void dequantize_row_q5_k(device const block_q5_k * x, device float * y, i u1 <<= 2; u2 <<= 2; } } +#else + for (int i = 0; i < nb; i++) { + + const float d = (float)x[i].d; + + device const uint8_t * ql = x[i].qs; + device const uint8_t * qh = x[i].qh; + device const int8_t * sc = x[i].scales; + + for (int l = 0; l < 8; ++l) { + y[l+ 0] = d * sc[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16)); + y[l+ 8] = d * sc[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16)); + y[l+16] = d * sc[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16)); + y[l+24] = d * sc[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16)); + y[l+32] = d * sc[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16)); + y[l+40] = d * sc[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16)); + y[l+48] = d * sc[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16)); + y[l+56] = d * sc[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16)); + } + y += QK_K; + } +#endif } -static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) { +static void dequantize_row_q6_K(device const block_q6_K * x, device float * y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -988,6 +1097,7 @@ static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, i const float d = x[i].d; +#if QK_K == 256 for (int n = 0; n < QK_K; n += 128) { for (int l = 0; l < 32; ++l) { int is = l/16; @@ -1005,10 +1115,23 @@ static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, i qh += 32; sc += 8; } +#else + for (int l = 0; l < 16; ++l) { + const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; + const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; + const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; + const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; + y[l+ 0] = d * sc[0] * q1; + y[l+16] = d * sc[1] * q2; + y[l+32] = d * sc[2] * q3; + y[l+48] = d * sc[3] * q4; + } + y += 64; +#endif } } -kernel void kernel_get_rows_q2_k( +kernel void kernel_get_rows_q2_K( device const void * src0, device const int * src1, device float * dst, @@ -1019,12 +1142,12 @@ kernel void kernel_get_rows_q2_k( const int i = tpig; const int r = ((device int32_t *) src1)[i]; - dequantize_row_q2_k( - (device const block_q2_k *) ((device char *) src0 + r*nb01), + dequantize_row_q2_K( + (device const block_q2_K *) ((device char *) src0 + r*nb01), (device float *) ((device char *) dst + i*nb1), ne00); } -kernel void kernel_get_rows_q3_k( +kernel void kernel_get_rows_q3_K( device const void * src0, device const int * src1, device float * dst, @@ -1035,12 +1158,12 @@ kernel void kernel_get_rows_q3_k( const int i = tpig; const int r = ((device int32_t *) src1)[i]; - dequantize_row_q3_k( - (device const block_q3_k *) ((device char *) src0 + r*nb01), + dequantize_row_q3_K( + (device const block_q3_K *) ((device char *) src0 + r*nb01), (device float *) ((device char *) dst + i*nb1), ne00); } -kernel void kernel_get_rows_q4_k( +kernel void kernel_get_rows_q4_K( device const void * src0, device const int * src1, device float * dst, @@ -1051,12 +1174,12 @@ kernel void kernel_get_rows_q4_k( const int i = tpig; const int r = ((device int32_t *) src1)[i]; - dequantize_row_q4_k( - (device const block_q4_k *) ((device char *) src0 + r*nb01), + dequantize_row_q4_K( + (device const block_q4_K *) ((device char *) src0 + r*nb01), (device float *) ((device char *) dst + i*nb1), ne00); } -kernel void kernel_get_rows_q5_k( +kernel void kernel_get_rows_q5_K( device const void * src0, device const int * src1, device float * dst, @@ -1067,12 +1190,12 @@ kernel void kernel_get_rows_q5_k( const int i = tpig; const int r = ((device int32_t *) src1)[i]; - dequantize_row_q5_k( - (device const block_q5_k *) ((device char *) src0 + r*nb01), + dequantize_row_q5_K( + (device const block_q5_K *) ((device char *) src0 + r*nb01), (device float *) ((device char *) dst + i*nb1), ne00); } -kernel void kernel_get_rows_q6_k( +kernel void kernel_get_rows_q6_K( device const void * src0, device const int * src1, device float * dst, @@ -1083,14 +1206,14 @@ kernel void kernel_get_rows_q6_k( const int i = tpig; const int r = ((device int32_t *) src1)[i]; - dequantize_row_q6_k( - (device const block_q6_k *) ((device char *) src0 + r*nb01), + dequantize_row_q6_K( + (device const block_q6_K *) ((device char *) src0 + r*nb01), (device float *) ((device char *) dst + i*nb1), ne00); } //====================================== dot products ========================= -kernel void kernel_mul_mat_q2_k_f32( +kernel void kernel_mul_mat_q2_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1107,12 +1230,15 @@ kernel void kernel_mul_mat_q2_k_f32( const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; - device const block_q2_k * x = (device const block_q2_k *) src0 + r0*nb; + device const block_q2_K * x = (device const block_q2_K *) src0 + r0*nb; device const float * yy = (device const float *) src1 + r1*ne10; const int nth = tptg.x*tptg.y; const int ith = tptg.y*tpitg.x + tpitg.y; + float sumf = 0; + +#if QK_K == 256 const int tid = tpitg.y; // 0...16 const int il = tid/4; // 0...3 const int ir = tid%4; // 0...3 @@ -1125,9 +1251,6 @@ kernel void kernel_mul_mat_q2_k_f32( const int y_offset = 64*il + n*ir; const int q_offset = 32*ip + n*ir; - sum[ith] = 0.0f; - - float sumf = 0; for (int i = tpitg.x; i < nb; i += tptg.x) { device const uint8_t * q = x[i].qs + q_offset; @@ -1140,7 +1263,6 @@ kernel void kernel_mul_mat_q2_k_f32( device const float * y = yy + i*QK_K + y_offset; - //float4 s = {0.f, 0.f, 0.f, 0.f}; float2 s = {0.f, 0.f}; float smin = 0; for (int l = 0; l < n; ++l) { @@ -1155,25 +1277,38 @@ kernel void kernel_mul_mat_q2_k_f32( sumf += dall * (s[0] * d1 + s[1] * d2) - dmin * smin; } +#else + const int il = 4 * tpitg.x; + + uint32_t aux[2]; + thread const uint8_t * d = (thread const uint8_t *)aux; + thread const uint8_t * m = (thread const uint8_t *)aux + 4; + + for (int i = tpitg.y; i < nb; i += tptg.y) { + + device const uint8_t * q = x[i].qs + il; + device const float * y = yy + i*QK_K + il; + + const float dall = (float)x[i].d; + const float dmin = (float)x[i].dmin; + + device const uint32_t * a = (device const uint32_t *)x[i].scales; + aux[0] = a[0] & 0x0f0f0f0f; + aux[1] = (a[0] >> 4) & 0x0f0f0f0f; + + for (int l = 0; l < 4; ++l) { + sumf += y[l+ 0] * (dall * d[0] * ((q[l] >> 0) & 3) - dmin * m[0]) + + y[l+16] * (dall * d[1] * ((q[l] >> 2) & 3) - dmin * m[1]) + + y[l+32] * (dall * d[2] * ((q[l] >> 4) & 3) - dmin * m[2]) + + y[l+48] * (dall * d[3] * ((q[l] >> 6) & 3) - dmin * m[3]); + } + } +#endif + sum[ith] = sumf; - //int mask1 = (ith%4 == 0); - //int mask2 = (ith%16 == 0); - - //threadgroup_barrier(mem_flags::mem_threadgroup); - //for (int i = 1; i < 4; ++i) sum[ith] += mask1 * sum[ith + i]; - //threadgroup_barrier(mem_flags::mem_threadgroup); - //for (int i = 4; i < 16; i += 4) sum[ith] += mask2 * sum[ith + i]; - //threadgroup_barrier(mem_flags::mem_threadgroup); - //if (ith == 0) { - // for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; - // dst[r1*ne0 + r0] = sum[0]; - //} - // // Accumulate the sum from all threads in the threadgroup - // This version is slightly faster than the commented out one below, - // which I copy-pasted from ggerganov's q4_0 dot product for metal. // threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%4 == 0) { @@ -1190,7 +1325,7 @@ kernel void kernel_mul_mat_q2_k_f32( } } -kernel void kernel_mul_mat_q3_k_f32( +kernel void kernel_mul_mat_q3_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1203,23 +1338,25 @@ kernel void kernel_mul_mat_q3_k_f32( uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { - const uint16_t kmask1 = 0x0303; - const uint16_t kmask2 = 0x0f0f; - - const uint8_t m3 = 3; - const int8_t m4 = 4; - const int nb = ne00/QK_K; const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; - device const block_q3_k * x = (device const block_q3_k *) src0 + r0*nb; + device const block_q3_K * x = (device const block_q3_K *) src0 + r0*nb; device const float * yy = (device const float *) src1 + r1*ne10; const int nth = tptg.x*tptg.y; const int ith = tptg.y*tpitg.x + tpitg.y; +#if QK_K == 256 + + const uint8_t m3 = 3; + const int8_t m4 = 4; + + const uint16_t kmask1 = 0x0303; + const uint16_t kmask2 = 0x0f0f; + const int tid = tpitg.y; // expecting 16 const int ip = tid/8; // 0 or 1 const int il = tid/2 - 4*ip; // 0...3 @@ -1273,6 +1410,39 @@ kernel void kernel_mul_mat_q3_k_f32( //sum[ith] = sumf; sum[ith] = sumf1 - 32.f*sumf2; +#else + const int il = 4 * tpitg.x; // 0, 4, 8, 12 + const int im = il/8; // 0, 0, 1, 1 + const int in = il%8; // 0, 4, 0, 4 + + float sumf = 0; + + for (int i = tpitg.y; i < nb; i += tptg.y) { + + const float d_all = (float)(x[i].d); + + device const uint8_t * q = x[i].qs + il; + device const uint8_t * h = x[i].hmask + in; + device const float * y = yy + i * QK_K + il; + + const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8); + const float d2 = d_all * ((x[i].scales[0] >> 4) - 8); + const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8); + const float d4 = d_all * ((x[i].scales[1] >> 4) - 8); + + for (int l = 0; l < 4; ++l) { + const uint8_t hm = h[l] >> im; + sumf += y[l+ 0] * d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((hm & 0x01) ? 0 : 4)) + + y[l+16] * d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((hm & 0x04) ? 0 : 4)) + + y[l+32] * d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((hm & 0x10) ? 0 : 4)) + + y[l+48] * d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((hm & 0x40) ? 0 : 4)); + } + + } + + sum[ith] = sumf; + +#endif // // Accumulate the sum from all threads in the threadgroup @@ -1293,7 +1463,7 @@ kernel void kernel_mul_mat_q3_k_f32( } -kernel void kernel_mul_mat_q4_k_f32( +kernel void kernel_mul_mat_q4_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1305,21 +1475,25 @@ kernel void kernel_mul_mat_q4_k_f32( uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { - const uint16_t kmask1 = 0x3f3f; - const uint16_t kmask2 = 0x0f0f; - const uint16_t kmask3 = 0xc0c0; - const int nb = ne00/QK_K; const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; - device const block_q4_k * x = (device const block_q4_k *) src0 + r0*nb; - device const float * yy = (device const float *) src1 + r1*ne10; - const int nth = tptg.x*tptg.y; const int ith = tptg.y*tpitg.x + tpitg.y; + device const block_q4_K * x = (device const block_q4_K *) src0 + r0*nb; + device const float * yy = (device const float *) src1 + r1*ne10; + + float sumf = 0; + +#if QK_K == 256 + + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + const int tid = tpitg.y; // 0...16 const int il = tid/4; // 0...3 const int ir = tid - 4*il;// 0...3 @@ -1332,11 +1506,8 @@ kernel void kernel_mul_mat_q4_k_f32( const int q_offset = 32*im + l0; const int y_offset = 64*im + l0; - sum[ith] = 0.0f; - uchar2 sc1, sc2, sc3, sc4; - float sumf = 0; for (int i = tpitg.x; i < nb; i += tptg.x) { device const uint8_t * q1 = (x + i)->qs + q_offset; @@ -1365,6 +1536,30 @@ kernel void kernel_mul_mat_q4_k_f32( sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin; } +#else + uint16_t aux16[2]; + thread const uint8_t * scales = (thread const uint8_t *)aux16; + + const int il = 4*tpitg.x; + + for (int i = tpitg.y; i < nb; i += tptg.y) { + + device const uint8_t * q = x[i].qs + il; + device const float * y = yy + i * QK_K + il; + + const float d = (float)x[i].d[0]; + const float m = (float)x[i].d[1]; + + device const uint16_t * a = (device const uint16_t *)x[i].scales; + aux16[0] = a[0] & 0x0f0f; + aux16[1] = (a[0] >> 4) & 0x0f0f; + + for (int l = 0; l < 4; ++l) { + sumf += d * scales[0] * (y[l+ 0] * (q[l] & 0xF) + y[l+16] * (q[l+16] & 0xF)) - m * scales[2] * (y[l+ 0] + y[l+16]) + + d * scales[1] * (y[l+32] * (q[l] >> 4) + y[l+48] * (q[l+16] >> 4)) - m * scales[3] * (y[l+32] + y[l+48]); + } + } +#endif sum[ith] = sumf; @@ -1401,7 +1596,7 @@ kernel void kernel_mul_mat_q4_k_f32( //} } -kernel void kernel_mul_mat_q5_k_f32( +kernel void kernel_mul_mat_q5_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1413,21 +1608,25 @@ kernel void kernel_mul_mat_q5_k_f32( uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { - const uint16_t kmask1 = 0x3f3f; - const uint16_t kmask2 = 0x0f0f; - const uint16_t kmask3 = 0xc0c0; - const int nb = ne00/QK_K; const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; - device const block_q5_k * x = (device const block_q5_k *) src0 + r0*nb; + device const block_q5_K * x = (device const block_q5_K *) src0 + r0*nb; device const float * yy = (device const float *) src1 + r1*ne10; const int nth = tptg.x*tptg.y; const int ith = tptg.y*tpitg.x + tpitg.y; + float sumf = 0; + +#if QK_K == 256 + + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + const int tid = tpitg.y; // 0...16 const int il = tid/4; // 0...3 const int ir = tid - 4*il;// 0...3 @@ -1447,7 +1646,6 @@ kernel void kernel_mul_mat_q5_k_f32( uchar2 sc1, sc2, sc3, sc4; - float sumf = 0; for (int i = tpitg.x; i < nb; i += tptg.x) { device const uint8_t * q1 = (x + i)->qs + q_offset; @@ -1479,6 +1677,28 @@ kernel void kernel_mul_mat_q5_k_f32( sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin; } +#else + const int il = 4 * tpitg.x; // 0, 4, 8, 12 + const int im = il/8; // 0, 0, 1, 1 + const int in = il%8; // 0, 4, 0, 4 + + for (int i = tpitg.y; i < nb; i += tptg.y) { + + const float d = (float)x[i].d; + device const uint8_t * q = x[i].qs + il; + device const uint8_t * h = x[i].qh + in; + device const int8_t * s = x[i].scales; + device const float * y = yy + i*QK_K + il; + + for (int l = 0; l < 4; ++l) { + const uint8_t hl = h[l] >> im; + sumf += y[l+ 0] * d * s[0] * ((q[l+ 0] & 0xF) - (hl & 0x01 ? 0 : 16)) + + y[l+16] * d * s[1] * ((q[l+16] & 0xF) - (hl & 0x04 ? 0 : 16)) + + y[l+32] * d * s[2] * ((q[l+ 0] >> 4) - (hl & 0x10 ? 0 : 16)) + + y[l+48] * d * s[3] * ((q[l+16] >> 4) - (hl & 0x40 ? 0 : 16)); + } + } +#endif sum[ith] = sumf; // @@ -1500,7 +1720,7 @@ kernel void kernel_mul_mat_q5_k_f32( } -kernel void kernel_mul_mat_q6_k_f32( +kernel void kernel_mul_mat_q6_K_f32( device const void * src0, device const float * src1, device float * dst, @@ -1522,12 +1742,15 @@ kernel void kernel_mul_mat_q6_k_f32( const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; - device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb; + device const block_q6_K * x = (device const block_q6_K *) src0 + r0*nb; device const float * yy = (device const float *) src1 + r1*ne10; const int nth = tptg.x*tptg.y; const int ith = tptg.y*tpitg.x + tpitg.y; + float sumf = 0; + +#if QK_K == 256 // Note: we absolutely assume that tptg.y = 16 and QK_K = 256! const int iqs = 16 * tpitg.y; const int ip = iqs / 128; // 0 or 1 @@ -1540,7 +1763,6 @@ kernel void kernel_mul_mat_q6_k_f32( const int q_offset_l = 64*ip + l0; const int q_offset_h = 32*ip + l0; - float sumf = 0; for (int i = tpitg.x; i < nb; i += tptg.x) { device const uint8_t * ql = x[i].ql + q_offset_l; @@ -1562,6 +1784,28 @@ kernel void kernel_mul_mat_q6_k_f32( sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]); } +#else + const int il = 4*tpitg.x; // 0, 4, 8, 12 + + for (int i = tpitg.y; i < nb; i += tptg.y) { + device const float * y = yy + i * QK_K + il; + device const uint8_t * ql = x[i].ql + il; + device const uint8_t * qh = x[i].qh + il; + device const int8_t * s = x[i].scales; + + const float d = x[i].d; + + float4 sums = {0.f, 0.f, 0.f, 0.f}; + for (int l = 0; l < 4; ++l) { + sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32); + sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32); + sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32); + sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32); + } + sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]); + } + +#endif sum[ith] = sumf; diff --git a/k_quants.c b/k_quants.c index a48c82171..46dd884b0 100644 --- a/k_quants.c +++ b/k_quants.c @@ -261,6 +261,7 @@ static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t return scale; } +#if QK_K == 256 static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) { if (j < 4) { *d = q[j] & 63; *m = q[j + 4] & 63; @@ -269,6 +270,7 @@ static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); } } +#endif //========================- 2-bit (de)-quantization @@ -330,11 +332,17 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict } } +#if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); } } +#else + for (int l = 0; l < 16; ++l) { + y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); + } +#endif x += QK_K; @@ -352,6 +360,7 @@ void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int const uint8_t * q = x[i].qs; +#if QK_K == 256 int is = 0; float dl, ml; for (int n = 0; n < QK_K; n += 128) { @@ -370,7 +379,19 @@ void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int } q += 32; } - +#else + float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4); + float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4); + float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4); + float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4); + for (int l = 0; l < 16; ++l) { + y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1; + y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2; + y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3; + y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4; + } + y += QK_K; +#endif } } @@ -412,6 +433,7 @@ void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict } } +#if QK_K == 256 memset(y[i].scales, 0, 12); if (max_scale) { float iscale = -32.f/max_scale; @@ -445,9 +467,39 @@ void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict L[16*j + ii] = l + 4; } } +#else + if (max_scale) { + float iscale = -8.f/max_scale; + for (int j = 0; j < QK_K/16; j+=2) { + int l1 = nearest_int(iscale*scales[j]); + l1 = 8 + MAX(-8, MIN(7, l1)); + int l2 = nearest_int(iscale*scales[j+1]); + l2 = 8 + MAX(-8, MIN(7, l2)); + y[i].scales[j/2] = l1 | (l2 << 4); + } + y[i].d = ggml_fp32_to_fp16(1/iscale); + } else { + for (int j = 0; j < QK_K/16; j+=2) { + y[i].scales[j/2] = 0; + } + y[i].d = ggml_fp32_to_fp16(0.f); + } + for (int j = 0; j < QK_K/16; ++j) { + int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4; + float d = ggml_fp16_to_fp32(y[i].d) * (s - 8); + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-4, MIN(3, l)); + L[16*j + ii] = l + 4; + } + } +#endif memset(y[i].hmask, 0, QK_K/8); - // We put the high-bit for the 1st 32 quants into bit 0, the next 32 into bit 1, etc. + // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc. int m = 0; uint8_t hm = 1; for (int j = 0; j < QK_K; ++j) { @@ -459,19 +511,25 @@ void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict m = 0; hm <<= 1; } } +#if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); } } +#else + for (int l = 0; l < 16; ++l) { + y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); + } +#endif x += QK_K; } } +#if QK_K == 256 void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); - assert(QK_K == 256); const int nb = k / QK_K; const uint32_t kmask1 = 0x03030303; @@ -519,6 +577,39 @@ void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int } } +#else +void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) { + assert(k % QK_K == 0); + assert(QK_K == 64); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d_all = ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict q = x[i].qs; + const uint8_t * restrict hm = x[i].hmask; + + const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8); + const float d2 = d_all * ((x[i].scales[0] >> 4) - 8); + const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8); + const float d4 = d_all * ((x[i].scales[1] >> 4) - 8); + + for (int l=0; l<8; ++l) { + uint8_t h = hm[l]; + y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4)); + y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4)); + y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4)); + y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4)); + y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4)); + y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4)); + y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4)); + y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4)); + } + y += QK_K; + } +} +#endif void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) { quantize_row_q3_K_reference(x, vy, k); @@ -563,6 +654,7 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict } } +#if QK_K == 256 float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; float inv_min = max_min > 0 ? 63.f/max_min : 0.f; for (int j = 0; j < QK_K/32; ++j) { @@ -594,9 +686,43 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict L[32*j + ii] = l; } } +#else + const float s_factor = 15.f; + float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f; + float inv_min = max_min > 0 ? s_factor/max_min : 0.f; + int d1 = nearest_int(inv_scale*scales[0]); + int m1 = nearest_int(inv_min*mins[0]); + int d2 = nearest_int(inv_scale*scales[1]); + int m2 = nearest_int(inv_min*mins[1]); + y[i].scales[0] = d1 | (m1 << 4); + y[i].scales[1] = d2 | (m2 << 4); + y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor); + y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor); + + float sumlx = 0; + int suml2 = 0; + for (int j = 0; j < QK_K/32; ++j) { + const uint8_t sd = y[i].scales[j] & 0xF; + const uint8_t sm = y[i].scales[j] >> 4; + const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd; + if (!d) continue; + const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + m)/d); + l = MAX(0, MIN(15, l)); + L[32*j + ii] = l; + sumlx += (x[32*j + ii] + m)*l*sd; + suml2 += l*l*sd*sd; + } + } + if (suml2) { + y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2); + } +#endif uint8_t * q = y[i].qs; for (int j = 0; j < QK_K; j += 64) { - for (int l = 0; l < 32; ++l) *q++ = L[j + l] | (L[j + l + 32] << 4); + for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4); + q += 32; } x += QK_K; @@ -610,11 +736,13 @@ void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int for (int i = 0; i < nb; i++) { - const float d = ggml_fp16_to_fp32(x[i].d); - const float min = ggml_fp16_to_fp32(x[i].dmin); - const uint8_t * q = x[i].qs; +#if QK_K == 256 + + const float d = ggml_fp16_to_fp32(x[i].d); + const float min = ggml_fp16_to_fp32(x[i].dmin); + int is = 0; uint8_t sc, m; for (int j = 0; j < QK_K; j += 64) { @@ -626,6 +754,17 @@ void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2; q += 32; is += 2; } +#else + const float dall = ggml_fp16_to_fp32(x[i].d[0]); + const float mall = ggml_fp16_to_fp32(x[i].d[1]); + const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4); + const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4); + for (int l = 0; l < 32; ++l) { + y[l+ 0] = d1 * (q[l] & 0xF) - m1; + y[l+32] = d2 * (q[l] >> 4) - m2; + } + y += QK_K; +#endif } } @@ -653,12 +792,19 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict assert(k % QK_K == 0); const int nb = k / QK_K; +#if QK_K == 256 uint8_t L[QK_K]; float mins[QK_K/32]; float scales[QK_K/32]; +#else + int8_t L[QK_K]; + float scales[QK_K/16]; +#endif for (int i = 0; i < nb; i++) { +#if QK_K == 256 + float max_scale = 0; // as we are deducting the min, scales are always positive float max_min = 0; for (int j = 0; j < QK_K/32; ++j) { @@ -725,6 +871,52 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict m1 <<= 2; m2 <<= 2; ql += 32; } +#else + float max_scale = 0, amax = 0; + for (int j = 0; j < QK_K/16; ++j) { + scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1); + float abs_scale = fabsf(scales[j]); + if (abs_scale > amax) { + amax = abs_scale; + max_scale = scales[j]; + } + } + + float iscale = -128.f/max_scale; + for (int j = 0; j < QK_K/16; ++j) { + int l = nearest_int(iscale*scales[j]); + y[i].scales[j] = MAX(-128, MIN(127, l)); + } + y[i].d = ggml_fp32_to_fp16(1/iscale); + + for (int j = 0; j < QK_K/16; ++j) { + const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j]; + if (!d) continue; + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-16, MIN(15, l)); + L[16*j + ii] = l + 16; + } + } + + uint8_t * restrict qh = y[i].qh; + uint8_t * restrict ql = y[i].qs; + memset(qh, 0, QK_K/8); + + for (int j = 0; j < 32; ++j) { + int jm = j%8; + int is = j/8; + int l1 = L[j]; + if (l1 > 15) { + l1 -= 16; qh[jm] |= (1 << is); + } + int l2 = L[j + 32]; + if (l2 > 15) { + l2 -= 16; qh[jm] |= (1 << (4 + is)); + } + ql[j] = l1 | (l2 << 4); + } +#endif x += QK_K; @@ -737,12 +929,14 @@ void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int for (int i = 0; i < nb; i++) { - const float d = ggml_fp16_to_fp32(x[i].d); - const float min = ggml_fp16_to_fp32(x[i].dmin); - const uint8_t * ql = x[i].qs; const uint8_t * qh = x[i].qh; +#if QK_K == 256 + + const float d = ggml_fp16_to_fp32(x[i].d); + const float min = ggml_fp16_to_fp32(x[i].dmin); + int is = 0; uint8_t sc, m; uint8_t u1 = 1, u2 = 2; @@ -756,6 +950,21 @@ void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int ql += 32; is += 2; u1 <<= 2; u2 <<= 2; } +#else + float d = ggml_fp16_to_fp32(x[i].d); + const int8_t * restrict s = x[i].scales; + for (int l = 0; l < 8; ++l) { + y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16)); + y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16)); + y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16)); + y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16)); + y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16)); + y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16)); + y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16)); + y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16)); + } + y += QK_K; +#endif } } @@ -823,6 +1032,7 @@ void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict uint8_t * restrict ql = y[i].ql; uint8_t * restrict qh = y[i].qh; +#if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { const uint8_t q1 = L[j + l + 0] & 0xF; @@ -836,6 +1046,16 @@ void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict ql += 64; qh += 32; } +#else + for (int l = 0; l < 32; ++l) { + const uint8_t q1 = L[l + 0] & 0xF; + const uint8_t q2 = L[l + 32] & 0xF; + ql[l] = q1 | (q2 << 4); + } + for (int l = 0; l < 16; ++l) { + qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6); + } +#endif x += QK_K; @@ -854,6 +1074,7 @@ void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int const uint8_t * restrict qh = x[i].qh; const int8_t * restrict sc = x[i].scales; +#if QK_K == 256 for (int n = 0; n < QK_K; n += 128) { for (int l = 0; l < 32; ++l) { int is = l/16; @@ -871,6 +1092,19 @@ void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int qh += 32; sc += 8; } +#else + for (int l = 0; l < 16; ++l) { + const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; + const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; + const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; + const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; + y[l+ 0] = d * sc[0] * q1; + y[l+16] = d * sc[1] * q2; + y[l+32] = d * sc[2] * q3; + y[l+48] = d * sc[3] * q4; + } + y += 64; +#endif } } @@ -1002,6 +1236,7 @@ static inline __m128i get_scale_shuffle(int i) { } #endif +#if QK_K == 256 void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { const block_q2_K * restrict x = vx; @@ -1201,6 +1436,168 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri #endif } +#else + +void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + + const block_q2_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + + const uint8x16_t m3 = vdupq_n_u8(0x3); + const int32x4_t vzero = vdupq_n_s32(0); + + int8x16x4_t q2bytes; + + uint32_t aux32[2]; + const uint8_t * scales = (const uint8_t *)aux32; + + float sum = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * (float)x[i].d; + const float dmin = -y[i].d * (float)x[i].dmin; + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + + aux32[0] = sc[0] & 0x0f0f0f0f; + aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; + + sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]); + + int isum1 = 0, isum2 = 0; + + const uint8x16_t q2bits = vld1q_u8(q2); + + const int8x16x4_t q8bytes = vld1q_s8_x4(q8); + + q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3)); + q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3)); + q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3)); + q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3)); + +#if defined(__ARM_FEATURE_DOTPROD) + isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0]; + isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1]; + isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2]; + isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3]; +#else + const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])), + vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0]))); + const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])), + vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1]))); + isum1 += vaddvq_s16(p1) * scales[0]; + isum2 += vaddvq_s16(p2) * scales[1]; + + const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])), + vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2]))); + const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])), + vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3]))); + isum1 += vaddvq_s16(p3) * scales[2]; + isum2 += vaddvq_s16(p4) * scales[3]; +#endif + sum += d * (isum1 + isum2); + + } + + *s = sum; + +#elif defined __AVX2__ + + const __m256i m3 = _mm256_set1_epi8(3); + + __m256 acc = _mm256_setzero_ps(); + + uint32_t ud, um; + const uint8_t * restrict db = (const uint8_t *)&ud; + const uint8_t * restrict mb = (const uint8_t *)&um; + + float summs = 0; + + // TODO: optimize this + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + ud = (sc[0] >> 0) & 0x0f0f0f0f; + um = (sc[0] >> 4) & 0x0f0f0f0f; + + int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3]; + summs += dmin * smin; + + const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); + const __m256i q2_0 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 2), q2bits), m3); + const __m256i q2_1 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0); + const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1); + + const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0)); + const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1)); + const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0)); + const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1)); + + acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc); + acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc); + acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc); + acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc); + } + + *s = hsum_float_8(acc) + summs; + +#else + + float sumf = 0; + + int isum[4]; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * q2 = x[i].qs; + const int8_t * q8 = y[i].qs; + const uint8_t * sc = x[i].scales; + + int summs = 0; + for (int j = 0; j < QK_K/16; ++j) { + summs += y[i].bsums[j] * (sc[j] >> 4); + } + + const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + isum[0] = isum[1] = isum[2] = isum[3] = 0; + for (int l = 0; l < 16; ++l) { + isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3); + isum[1] += q8[l+16] * ((q2[l] >> 2) & 3); + isum[2] += q8[l+32] * ((q2[l] >> 4) & 3); + isum[3] += q8[l+48] * ((q2[l] >> 6) & 3); + } + for (int l = 0; l < 4; ++l) { + isum[l] *= (sc[l] & 0xF); + } + sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs; + } + *s = sumf; +#endif +} +#endif + +#if QK_K == 256 void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { assert(n % QK_K == 0); @@ -1501,6 +1898,206 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri } +#else + +void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + assert(n % QK_K == 0); + + const block_q3_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + +#ifdef __ARM_FEATURE_DOTPROD + const int32x4_t vzero = vdupq_n_s32(0); +#endif + + const uint8x16_t m3b = vdupq_n_u8(0x3); + const uint8x16_t mh = vdupq_n_u8(4); + + int8x16x4_t q3bytes; + + uint16_t aux16[2]; + int8_t * scales = (int8_t *)aux16; + + float sum = 0; + + for (int i = 0; i < nb; ++i) { + + uint8x16x4_t q3h; + + const uint8x8_t hbits = vld1_u8(x[i].hmask); + const uint8x16_t q3bits = vld1q_u8(x[i].qs); + const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs); + + const uint16_t a = *(const uint16_t *)x[i].scales; + aux16[0] = a & 0x0f0f; + aux16[1] = (a >> 4) & 0x0f0f; + + for (int j = 0; j < 4; ++j) scales[j] -= 8; + + int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); + + const float d = y[i].d * (float)x[i].d; + + const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1)); + q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2)); + q3h.val[1] = vandq_u8(mh, htmp); + q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2)); + q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4)); + + q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0])); + q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1])); + q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2])); + q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3])); + +#if defined(__ARM_FEATURE_DOTPROD) + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0]; + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2]; + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1]; + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3]; +#else + const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])), + vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0]))); + const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])), + vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1]))); + const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])), + vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2]))); + const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])), + vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3]))); + isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3]; +#endif + + sum += d * isum; + + } + + *s = sum; + +#elif defined __AVX2__ + + const __m256i m3 = _mm256_set1_epi8(3); + const __m256i m1 = _mm256_set1_epi8(1); + + __m256 acc = _mm256_setzero_ps(); + + uint64_t aux64; + + uint16_t aux16[2]; + const int8_t * aux8 = (const int8_t *)aux16; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint16_t a = *(const uint16_t *)x[i].scales; + aux16[0] = a & 0x0f0f; + aux16[1] = (a >> 4) & 0x0f0f; + + const __m256i scale_0 = _mm256_set_m128i(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8)); + const __m256i scale_1 = _mm256_set_m128i(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8)); + + memcpy(&aux64, x[i].hmask, 8); + + const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0); + __m256i q3h_0 = _mm256_set_m128i(_mm_srli_epi16(haux, 2), haux); + __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4); + q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2); + q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2); + + // load low 2 bits + const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3); + + // prepare low and high bits + const __m256i q3aux = _mm256_set_m128i(_mm_srli_epi16(q3bits, 2), q3bits); + const __m256i q3l_0 = _mm256_and_si256(q3aux, m3); + const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3); + + // load Q8 quants + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, + // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, + // and 2 if the high bit was set) + const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0); + const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1); + + __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0); + __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1); + + p16_0 = _mm256_sub_epi16(p16_0, q8s_0); + p16_1 = _mm256_sub_epi16(p16_1, q8s_1); + + // multiply with scales + p16_0 = _mm256_madd_epi16(scale_0, p16_0); + p16_1 = _mm256_madd_epi16(scale_1, p16_1); + + p16_0 = _mm256_add_epi32(p16_0, p16_1); + + // multiply with block scale and accumulate + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc); + + } + + *s = hsum_float_8(acc); + +#else + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + int32_t scales[4]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict hm = x[i].hmask; + const int8_t * restrict q8 = y[i].qs; + int8_t * restrict a = aux8; + for (int l = 0; l < 8; ++l) { + a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4); + a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4); + a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4); + a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4); + a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4); + a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4); + a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4); + a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4); + } + + scales[0] = (x[i].scales[0] & 0xF) - 8; + scales[1] = (x[i].scales[0] >> 4) - 8; + scales[2] = (x[i].scales[1] & 0xF) - 8; + scales[3] = (x[i].scales[1] >> 4) - 8; + + memset(aux32, 0, 8*sizeof(int32_t)); + for (int j = 0; j < QK_K/16; ++j) { + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l]; + } + const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; + +#endif + +} +#endif + +#if QK_K == 256 void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { assert(n % QK_K == 0); @@ -1614,9 +2211,6 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; @@ -1624,6 +2218,9 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri utmp[2] = uaux; utmp[0] &= kmask1; + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums); @@ -1726,7 +2323,176 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri *s = sumf; #endif } +#else +void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + assert(n % QK_K == 0); + const block_q4_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + + const uint8x16_t m4b = vdupq_n_u8(0xf); + +#ifdef __ARM_FEATURE_DOTPROD + const int32x4_t mzero = vdupq_n_s32(0); +#endif + + float sumf = 0; + + int8x16x2_t q4bytes; + int8x16x4_t q8bytes; + + float sum_mins = 0.f; + + uint16_t aux16[2]; + const uint8_t * restrict scales = (const uint8_t *)aux16; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint16_t * restrict a = (const uint16_t *)x[i].scales; + aux16[0] = a[0] & 0x0f0f; + aux16[1] = (a[0] >> 4) & 0x0f0f; + + const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]); + sum_mins += y[i].d * (float)x[i].d[1] * summi; + + const float d = y[i].d * (float)x[i].d[0]; + + const uint8x16x2_t q4bits = vld1q_u8_x2(q4); + +#ifdef __ARM_FEATURE_DOTPROD + q8bytes = vld1q_s8_x4(q8); + q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); + q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); + + const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); + const int32_t sumi1 = vaddvq_s32(p1) * scales[0]; + + q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); + q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); + + const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]); + const int32_t sumi2 = vaddvq_s32(p2) * scales[1]; + +#else + q8bytes = vld1q_s8_x4(q8); + q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); + q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); + const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), + vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0]))); + const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])), + vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1]))); + int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0]; + + q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); + q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); + const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])), + vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2]))); + const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])), + vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3]))); + int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1]; + +#endif + sumf += d * (sumi1 + sumi2); + + } + + *s = sumf - sum_mins; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + + __m256 acc = _mm256_setzero_ps(); + + float summs = 0; + + uint16_t aux16[2]; + const uint8_t * scales = (const uint8_t *)aux16; + + for (int i = 0; i < nb; ++i) { + + const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d; + const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d; + const __m256 vd = _mm256_set1_ps(d); + + const uint16_t * a = (const uint16_t *)x[i].scales; + aux16[0] = a[0] & 0x0f0f; + aux16[1] = (a[0] >> 4) & 0x0f0f; + + summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); + const __m256i q4l = _mm256_and_si256(q4bits, m4); + const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4); + + const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32)); + + const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l); + const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h); + + const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l); + acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc); + + const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h); + acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc); + + } + + *s = hsum_float_8(acc) - summs; + +#else + + uint8_t aux8[QK_K]; + int16_t aux16[16]; + float sums [8]; + memset(sums, 0, 8*sizeof(float)); + + uint16_t s16[2]; + const uint8_t * restrict scales = (const uint8_t *)s16; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + uint8_t * restrict a = aux8; + for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF; + for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4; + + const uint16_t * restrict b = (const uint16_t *)x[i].scales; + s16[0] = b[0] & 0x0f0f; + s16[1] = (b[0] >> 4) & 0x0f0f; + + sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]); + + for (int j = 0; j < QK_K/32; ++j) { + for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l]; + q8 += 16; a += 16; + for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l]; + q8 += 16; a += 16; + const float dl = d * scales[j]; + for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]); + } + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} +#endif + +#if QK_K == 256 void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { assert(n % QK_K == 0); @@ -1840,18 +2606,23 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri for (int i = 0; i < nb; ++i) { - const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); - const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); - const uint8_t * restrict q5 = x[i].qs; const int8_t * restrict q8 = y[i].qs; +#if QK_K == 256 + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); + memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; +#else + // TODO + const float d = 0, dmin = 0; +#endif const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); @@ -1972,8 +2743,169 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri #endif } +#else + +void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + assert(n % QK_K == 0); + + const block_q5_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + + const uint8x16_t m4b = vdupq_n_u8(0xf); + const int32x4_t mzero = vdupq_n_s32(0); + const uint8x16_t mh = vdupq_n_u8(16); + + int8x16x4_t q5bytes; + uint8x16x4_t q5h; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * (float)x[i].d; + const int8_t * sc = x[i].scales; + + const uint8_t * restrict q5 = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const uint8x8_t qhbits = vld1_u8(qh); + + const uint8x16x2_t q5bits = vld1q_u8_x2(q5); + const int8x16x4_t q8bytes = vld1q_s8_x4(q8); + + const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1)); + q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4)); + q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2)); + q5h.val[2] = vbicq_u8(mh, htmp); + q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2)); + + q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0])); + q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1])); + q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2])); + q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3])); + +#if defined(__ARM_FEATURE_DOTPROD) + + int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0])); + int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1])); + int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2])); + int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3])); + + sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); + +#else + + const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])), + vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0]))); + const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])), + vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1]))); + int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1); + + const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])), + vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2]))); + const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])), + vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3]))); + sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3); + + sumf += d*sumi; +#endif + + } + + *s = sumf; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + const __m256i mone = _mm256_set1_epi8(1); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q5 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + + const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); + + const __m256i scale_l = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0])); + const __m256i scale_h = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2])); + + int64_t aux64; + memcpy(&aux64, x[i].qh, 8); + const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64); + const __m256i haux256 = _mm256_set_m128i(_mm_srli_epi16(haux128, 2), haux128); + + const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4); + const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4); + + const __m256i q5l_0 = _mm256_and_si256(q5bits, m4); + const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0)); + const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1)); + const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0)); + const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1)); + + const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1)); + + acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc); + + } + + *s = hsum_float_8(acc); + +#else + uint8_t aux8[QK_K]; + int16_t aux16[16]; + float sums [8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].qs; + const uint8_t * restrict hm = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + uint8_t * restrict a = aux8; + for (int l = 0; l < 32; ++l) { + a[l+ 0] = q4[l] & 0xF; + a[l+32] = q4[l] >> 4; + } + for (int is = 0; is < 8; ++is) { + uint8_t m = 1 << is; + for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16); + } + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const int8_t * restrict sc = x[i].scales; + + for (int j = 0; j < QK_K/16; ++j) { + const float dl = d * sc[j]; + for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]); + q8 += 16; a += 16; + } + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} +#endif + + +#if QK_K == 256 void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { assert(n % QK_K == 0); @@ -2242,3 +3174,179 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri *s = sumf; #endif } + +#else + +void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + assert(n % QK_K == 0); + + const block_q6_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + + float sum = 0; + + const uint8x16_t m4b = vdupq_n_u8(0xF); + const int32x4_t vzero = vdupq_n_s32(0); + const int8x16_t m32s = vdupq_n_s8(32); + + const uint8x16_t mone = vdupq_n_u8(3); + + int8x16x4_t q6bytes; + uint8x16x4_t q6h; + + for (int i = 0; i < nb; ++i) { + + const float d_all = (float)x[i].d; + + const uint8_t * restrict q6 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const int8_t * restrict scale = x[i].scales; + + int32_t isum = 0; + + uint8x16_t qhbits = vld1q_u8(qh); + uint8x16x2_t q6bits = vld1q_u8_x2(q6); + int8x16x4_t q8bytes = vld1q_s8_x4(q8); + + q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4); + uint8x16_t shifted = vshrq_n_u8(qhbits, 2); + q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits, 4); + q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits, 6); + q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + + q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s); + q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s); + q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s); + q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s); + +#if defined(__ARM_FEATURE_DOTPROD) + + isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; +#else + + int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])), + vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0]))); + int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])), + vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1]))); + isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1]; + + int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])), + vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2]))); + int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])), + vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3]))); + isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3]; +#endif + + sum += isum * d_all * y[i].d; + + } + *s = sum; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + const __m256i m2 = _mm256_set1_epi8(3); + const __m256i m32s = _mm256_set1_epi8(32); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]); + const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]); + const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]); + const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]); + + __m256i sumi = _mm256_setzero_si256(); + + const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1); + const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3); + + const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); + const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh); + + const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4); + const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4); + + const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0); + const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0); + __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1); + + __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0); + __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1); + + p16_0 = _mm256_sub_epi16(p16_0, q8s_0); + p16_1 = _mm256_sub_epi16(p16_1, q8s_1); + + p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0); + p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1); + + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); + + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); + } + + *s = hsum_float_8(acc); + +#else + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + for (int l = 0; l < 16; ++l) { + a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; + a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; + a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; + a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; + } + int is = 0; + for (int j = 0; j < QK_K/16; ++j) { + int scale = x[i].scales[is++]; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + } + const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} + +#endif diff --git a/k_quants.h b/k_quants.h index 10a0baac7..6abe3d7b8 100644 --- a/k_quants.h +++ b/k_quants.h @@ -7,7 +7,13 @@ #include // Super-block size +#ifdef GGML_QKK_64 +#define QK_K 64 +#define K_SCALE_SIZE 4 +#else #define QK_K 256 +#define K_SCALE_SIZE 12 +#endif // // Super-block quantization structures @@ -29,38 +35,67 @@ static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "w // weight is represented as x = a * q // 16 blocks of 16 elemenets each // Effectively 3.4375 bits per weight +#ifdef GGML_QKK_64 typedef struct { uint8_t hmask[QK_K/8]; // quants - high bit uint8_t qs[QK_K/4]; // quants - low 2 bits - uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits + uint8_t scales[2]; ggml_fp16_t d; // super-block scale } block_q3_K; -static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_K block size/padding"); +static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding"); +#else +typedef struct { + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits + uint8_t scales[12]; // scales, quantized with 6 bits + ggml_fp16_t d; // super-block scale +} block_q3_K; +static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding"); +#endif // 4-bit quantization // 16 blocks of 32 elements each // weight is represented as x = a * q + b // Effectively 4.5 bits per weight +#ifdef GGML_QKK_64 +typedef struct { + ggml_fp16_t d[2]; // super-block scales/mins + uint8_t scales[2]; // 4-bit block scales/mins + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_K; +static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding"); +#else typedef struct { ggml_fp16_t d; // super-block scale for quantized scales ggml_fp16_t dmin; // super-block scale for quantized mins - uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits uint8_t qs[QK_K/2]; // 4--bit quants } block_q4_K; -static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding"); +static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding"); +#endif // 5-bit quantization // 16 blocks of 32 elements each // weight is represented as x = a * q + b // Effectively 5.5 bits per weight +#ifdef GGML_QKK_64 typedef struct { - ggml_fp16_t d; // super-block scale for quantized scales - ggml_fp16_t dmin; // super-block scale for quantized mins - uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits + ggml_fp16_t d; // super-block scale + int8_t scales[QK_K/16]; // 8-bit block scales uint8_t qh[QK_K/8]; // quants, high bit uint8_t qs[QK_K/2]; // quants, low 4 bits } block_q5_K; -static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); +static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding"); +#else +typedef struct { + ggml_fp16_t d; // super-block scale for quantized scales + ggml_fp16_t dmin; // super-block scale for quantized mins + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_K; +static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); +#endif // 6-bit quantization // weight is represented as x = a * q diff --git a/llama.cpp b/llama.cpp index ac22a48f8..c41c2a8a3 100644 --- a/llama.cpp +++ b/llama.cpp @@ -21,9 +21,13 @@ #endif #ifdef GGML_USE_K_QUANTS #ifndef QK_K +#ifdef GGML_QKK_64 +#define QK_K 64 +#else #define QK_K 256 #endif #endif +#endif #include #include @@ -2470,6 +2474,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s std::vector workers; std::mutex mutex; + auto use_more_bits = [] (int i_layer, int num_layers) -> bool { + return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2; + }; + size_t idx = 0; for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) { llama_buffer read_data; @@ -2524,15 +2532,16 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && - (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 || - (i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; + use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K; + else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && + (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; ++i_attention_wv; } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && - (i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 || - (i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; + use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; + //else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K; ++i_feed_forward_w2; } else if (tensor.name.find("attention.wo.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; From 412c60e4739367144e51e59add5dc7749d084115 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 26 Jun 2023 19:45:09 +0300 Subject: [PATCH 082/135] readme : add link to new k-quants for visibility --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index ad1a5cfc0..670f35eca 100644 --- a/README.md +++ b/README.md @@ -11,6 +11,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ **Hot topics:** +- k-quants now support super-block size of 64: https://github.com/ggerganov/llama.cpp/pull/2001 - New roadmap: https://github.com/users/ggerganov/projects/7 - Azure CI brainstorming: https://github.com/ggerganov/llama.cpp/discussions/1985 - p1 : LLM-based code completion engine at the edge : https://github.com/ggml-org/p1/discussions/1 From 5743ca80928d8410754ec64a5673d5c2dd6cfbb7 Mon Sep 17 00:00:00 2001 From: katsu560 <118887472+katsu560@users.noreply.github.com> Date: Tue, 27 Jun 2023 01:46:07 +0900 Subject: [PATCH 083/135] k-quants : add AVX support to dot functions (#1916) * k_quants : add AVX support * k_quants : apply review comments --- k_quants.c | 547 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 547 insertions(+) diff --git a/k_quants.c b/k_quants.c index 46dd884b0..923467d7c 100644 --- a/k_quants.c +++ b/k_quants.c @@ -1393,6 +1393,112 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc); +#elif defined __AVX__ + + const __m128i m3 = _mm_set1_epi8(0x3); + const __m128i m4 = _mm_set1_epi8(0xF); + const __m128i m2 = _mm_set1_epi8(0x2); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + // load mins and scales from block_q2_K.scales[QK_K/16] + const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); + const __m128i scales16 = _mm_and_si128(mins_and_scales, m4); + const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); + const __m128i mins_0 = _mm_cvtepi8_epi16(mins16); + const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16)); + + // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2 + const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0])); + const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8])); + + // sumf += -dmin * summs in 32bits*8 + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(_mm256_set_m128i(summs_1, summs_0))), acc); + + const __m128i scales_0 = _mm_cvtepi8_epi16(scales16); + const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16)); + const __m128i scales[2] = { scales_0, scales_1 }; + + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + for (int j = 0; j < QK_K/128; ++j) { + + // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K] + const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + + // load 2bits*16*8 from block_q2_K.qs[QK_K/4] + __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16; + const __m128i q2_0 = _mm_and_si128(q2bits, m3); + const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); + const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); + const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); + q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16; + const __m128i q2_1 = _mm_and_si128(q2bits, m3); + const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); + const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); + const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); + + // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8 + __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0); + __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1); + __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2); + __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3); + __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4); + __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5); + __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6); + __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7); + + // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8 + __m128i shuffle = _mm_set1_epi16(0x0100); + p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0); + shuffle = _mm_add_epi16(shuffle, m2); + p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1); + shuffle = _mm_add_epi16(shuffle, m2); + p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2); + shuffle = _mm_add_epi16(shuffle, m2); + p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3); + shuffle = _mm_add_epi16(shuffle, m2); + p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4); + shuffle = _mm_add_epi16(shuffle, m2); + p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5); + shuffle = _mm_add_epi16(shuffle, m2); + p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6); + shuffle = _mm_add_epi16(shuffle, m2); + p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7); + + p0 = _mm_add_epi32(p0, p1); + p2 = _mm_add_epi32(p2, p3); + p4 = _mm_add_epi32(p4, p5); + p6 = _mm_add_epi32(p6, p7); + + // isum in 32bits*4*2 + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6)); + } + + // sumf += dall * isum - dmin * summs in 32bits + __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0); + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc); + } + + *s = hsum_float_8(acc); + #else float sumf = 0; @@ -1831,6 +1937,147 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc); +#elif defined __AVX__ + + const __m128i m3 = _mm_set1_epi8(3); + const __m128i mone = _mm_set1_epi8(1); + const __m128i m32 = _mm_set1_epi8(32); + const __m128i m2 = _mm_set1_epi8(2); + + __m256 acc = _mm256_setzero_ps(); + + uint32_t *aux; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + // Set up scales + aux = (uint32_t *)x[i].scales; + __m128i scales128 = _mm_set_epi32( + ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), + ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), + (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), + (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); + scales128 = _mm_sub_epi8(scales128, m32); + const __m128i scales_0 = _mm_cvtepi8_epi16(scales128); + const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128)); + const __m128i scales[2] = { scales_0, scales_1 }; + + // high bit *128*2 from block_q3_K.hmask[QK_K/8] + const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]); + const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]); + + // integer accumulator + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + for (int j = 0; j < QK_K/128; ++j) { + // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4] + const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; + const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; + + // prepare low and high bits + const int bit = j << 2; + const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3); + const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3); + const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2); + const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2); + + const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3); + const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3); + const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2); + const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2); + + const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3); + const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3); + const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2); + const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2); + + const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3); + const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3); + const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2); + const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2); + + // load Q8 quants from block_q8_K.qs[QK_K] + const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + + // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, + // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, + // and 2 if the high bit was set) + __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0); + __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1); + __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2); + __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3); + __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4); + __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5); + __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6); + __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7); + + __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0); + __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1); + __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2); + __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3); + __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4); + __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5); + __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6); + __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7); + + p16_0 = _mm_sub_epi16(p16_0, q8s_0); + p16_1 = _mm_sub_epi16(p16_1, q8s_1); + p16_2 = _mm_sub_epi16(p16_2, q8s_2); + p16_3 = _mm_sub_epi16(p16_3, q8s_3); + p16_4 = _mm_sub_epi16(p16_4, q8s_4); + p16_5 = _mm_sub_epi16(p16_5, q8s_5); + p16_6 = _mm_sub_epi16(p16_6, q8s_6); + p16_7 = _mm_sub_epi16(p16_7, q8s_7); + + // multiply with scales + __m128i shuffle = _mm_set1_epi16(0x0100); + p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0); + shuffle = _mm_add_epi16(shuffle, m2); + p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1); + shuffle = _mm_add_epi16(shuffle, m2); + p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2); + shuffle = _mm_add_epi16(shuffle, m2); + p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3); + shuffle = _mm_add_epi16(shuffle, m2); + p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4); + shuffle = _mm_add_epi16(shuffle, m2); + p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5); + shuffle = _mm_add_epi16(shuffle, m2); + p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6); + shuffle = _mm_add_epi16(shuffle, m2); + p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7); + + // accumulate + p16_0 = _mm_add_epi32(p16_0, p16_1); + p16_2 = _mm_add_epi32(p16_2, p16_3); + p16_4 = _mm_add_epi32(p16_4, p16_5); + p16_6 = _mm_add_epi32(p16_6, p16_7); + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6)); + + } + + // multiply with block scale and accumulate + __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0); + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc); + + } + + *s = hsum_float_8(acc); + #else // scalar version // This function is written like this so the compiler can manage to vectorize most of it @@ -2264,6 +2511,88 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); +#elif defined __AVX__ + + const __m128i m4 = _mm_set1_epi8(0xF); + const __m128i m2 = _mm_set1_epi8(0x2); + + __m256 acc = _mm256_setzero_ps(); + __m128 acc_m = _mm_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]); + const __m128i scales = _mm_cvtepu8_epi16(utmps); + const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps)); + + const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]); + const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]); + const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1); + const __m128i prod = _mm_madd_epi16(mins, q8s); + acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m); + + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + __m128i shuffle = _mm_set1_epi16(0x0100); + for (int j = 0; j < QK_K/64; ++j) { + + const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi16(shuffle, m2); + const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi16(shuffle, m2); + + __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + const __m128i q4l_0 = _mm_and_si128(q4bits, m4); + const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4); + q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + const __m128i q4l_1 = _mm_and_si128(q4bits, m4); + const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4); + + const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0); + p16l = _mm_madd_epi16(scale_l, p16l); + sumi_0 = _mm_add_epi32(sumi_0, p16l); + const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + p16l = _mm_maddubs_epi16(q4l_1, q8l_1); + p16l = _mm_madd_epi16(scale_l, p16l); + sumi_1 = _mm_add_epi32(sumi_1, p16l); + + const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0); + p16h = _mm_madd_epi16(scale_h, p16h); + sumi_0 = _mm_add_epi32(sumi_0, p16h); + const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + p16h = _mm_maddubs_epi16(q4h_1, q8h_1); + p16h = _mm_madd_epi16(scale_h, p16h); + sumi_1 = _mm_add_epi32(sumi_1, p16h); + + } + + __m256 vd = _mm256_set1_ps(d); + __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0); + acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc); + + } + + acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m)); + acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m)); + + *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); + #else @@ -2679,6 +3008,106 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc) + summs; +#elif defined __AVX__ + + const __m128i m4 = _mm_set1_epi8(0xF); + const __m128i mzero = _mm_setzero_si128(); + const __m128i mone = _mm_set1_epi8(1); + const __m128i m2 = _mm_set1_epi8(2); + + __m256 acc = _mm256_setzero_ps(); + + float summs = 0.f; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * restrict q5 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]); + const __m128i scales = _mm_cvtepu8_epi16(utmps); + const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps)); + + const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]); + const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]); + const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1); + const __m128i prod = _mm_madd_epi16(mins, q8s); + const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero); + summs += dmin * _mm_extract_epi32(hsum, 0); + + const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]); + const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]); + __m128i hmask = mone; + + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + int bit = 0; + + __m128i shuffle = _mm_set1_epi16(0x0100); + for (int j = 0; j < QK_K/64; ++j) { + + const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi16(shuffle, m2); + const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi16(shuffle, m2); + + const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16; + const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16; + + __m128i q5l_0 = _mm_and_si128(q5bits_0, m4); + __m128i q5l_1 = _mm_and_si128(q5bits_1, m4); + __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4); + __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4); + __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0); + __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1); + hmask = _mm_slli_epi16(hmask, 1); + + __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0); + __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1); + p16_0 = _mm_madd_epi16(scale_0, p16_0); + p16_1 = _mm_madd_epi16(scale_0, p16_1); + + q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4); + q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4); + q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4); + q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4); + q5_0 = _mm_add_epi8(q5l_0, q5h_0); + q5_1 = _mm_add_epi8(q5l_1, q5h_1); + hmask = _mm_slli_epi16(hmask, 1); + + q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0); + __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1); + p16_2 = _mm_madd_epi16(scale_1, p16_2); + p16_3 = _mm_madd_epi16(scale_1, p16_3); + + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); + + } + + __m256 vd = _mm256_set1_ps(d); + __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0); + acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc); + + } + + *s = hsum_float_8(acc) + summs; + #else const uint8_t * scales = (const uint8_t*)&utmp[0]; @@ -3130,6 +3559,124 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri *s = hsum_float_8(acc); +#elif defined __AVX__ + + const __m128i m4 = _mm_set1_epi8(0xF); + const __m128i m3 = _mm_set1_epi8(3); + const __m128i m32s = _mm_set1_epi8(32); + const __m128i m2 = _mm_set1_epi8(2); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); + + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000); + for (int j = 0; j < QK_K/128; ++j) { + + const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16; + const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16; + + const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4); + const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4); + const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4); + const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4); + const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4); + const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4); + const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4); + const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4); + + const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + + const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0); + const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1); + const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2); + const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3); + const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4); + const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5); + const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6); + const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7); + + const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + + __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0); + __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1); + __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2); + __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3); + __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4); + __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5); + __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6); + __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7); + + __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0); + __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1); + __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2); + __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3); + __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4); + __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5); + __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6); + __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7); + + p16_0 = _mm_sub_epi16(p16_0, q8s_0); + p16_1 = _mm_sub_epi16(p16_1, q8s_1); + p16_2 = _mm_sub_epi16(p16_2, q8s_2); + p16_3 = _mm_sub_epi16(p16_3, q8s_3); + p16_4 = _mm_sub_epi16(p16_4, q8s_4); + p16_5 = _mm_sub_epi16(p16_5, q8s_5); + p16_6 = _mm_sub_epi16(p16_6, q8s_6); + p16_7 = _mm_sub_epi16(p16_7, q8s_7); + + const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi8(shuffle, m2); + const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi8(shuffle, m2); + const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi8(shuffle, m2); + const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi8(shuffle, m2); + + p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0); + p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1); + p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2); + p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3); + p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4); + p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5); + p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6); + p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7); + + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7)); + + } + + __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0); + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc); + } + + *s = hsum_float_8(acc); + #else int8_t aux8[QK_K]; From a84ab1da8dc6a59a5b67420ae1322f09503ffc72 Mon Sep 17 00:00:00 2001 From: katsu560 <118887472+katsu560@users.noreply.github.com> Date: Tue, 27 Jun 2023 01:47:02 +0900 Subject: [PATCH 084/135] tests : fix quantize perf (#1990) * fix test quantize perf * avoid the global state --- tests/test-quantize-perf.cpp | 71 ++++++++++++++++++++++++++++++------ 1 file changed, 59 insertions(+), 12 deletions(-) diff --git a/tests/test-quantize-perf.cpp b/tests/test-quantize-perf.cpp index 600375771..c0e361e92 100644 --- a/tests/test-quantize-perf.cpp +++ b/tests/test-quantize-perf.cpp @@ -21,6 +21,7 @@ #define QK 32 #define WARMUP 5 #define ITERATIONS 10 +#define MAX_ITERATIONS 100000000 #define L1_SIZE 32*128 #define L2_SIZE 32*2048 @@ -36,9 +37,9 @@ struct quantize_perf_params { bool op_dequantize_row_q = false; bool op_quantize_row_q_dot = false; bool op_vec_dot_q = false; + int64_t iterations = ITERATIONS; }; - #if defined(__x86_64__) || defined(__i386__) #include @@ -75,7 +76,7 @@ void * align_with_offset(void * ptr, int offset) { return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset; } -void benchmark_function(size_t size, size_t q_size, std::function function) { +void benchmark_function(size_t size, size_t q_size, int64_t iterations, std::function function) { int64_t min_time_us = INT64_MAX; int64_t total_time_us = 0; int64_t min_time_cycles = INT64_MAX; @@ -86,7 +87,7 @@ void benchmark_function(size_t size, size_t q_size, std::function } - for (int i = 0; i < ITERATIONS; i++) { + for (int i = 0; i < iterations; i++) { const int64_t start_time = ggml_time_us(); const int64_t start_cycles = cpu_cycles(); @@ -102,9 +103,38 @@ void benchmark_function(size_t size, size_t q_size, std::function } printf(" min cycles/%d vals : %9.2f\n", QK, QK * min_time_cycles / (float) size); - printf(" avg cycles/%d vals : %9.2f\n", QK, QK * total_time_cycles / (float) (size * ITERATIONS)); - printf(" float32 throughput : %9.2f GB/s\n", gigabytes_per_second(4 * size * ITERATIONS, total_time_us)); - printf(" quantized throughput : %9.2f GB/s\n", gigabytes_per_second(q_size * ITERATIONS, total_time_us)); + printf(" avg cycles/%d vals : %9.2f\n", QK, QK * total_time_cycles / (float) (size * iterations)); + printf(" float32 throughput : %9.2f GB/s\n", gigabytes_per_second(4 * size * iterations, total_time_us)); + printf(" quantized throughput : %9.2f GB/s\n", gigabytes_per_second(q_size * iterations, total_time_us)); +} + +void usage(char * argv[]) { + printf("Benchmark quantization specific functions on synthetic data\n"); + printf("\n"); + printf("usage: %s [options]\n", argv[0]); + printf("\n"); + printf("options: (default)\n"); + printf(" -h, --help show this help message and exit\n"); + printf(" --size SIZE set test size, divisible by 32 (L1_SIZE:%d)\n", L1_SIZE); + printf(" -3 use size as L1, L2, L3 sizes (L1:%d L2:%d L3:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE); + printf(" -4 use size as L1, L2, L3, MEM sizes (L1:%d L2:%d L3:%d MEM:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE, MEM_SIZE); + printf(" --op OP set test opration as quantize_row_q_reference, quantize_row_q, dequantize_row_q,\n"); + printf(" quantize_row_q_dot, vec_dot_q (all)\n"); + printf(" --type TYPE set test type as"); + for (int i = 0; i < GGML_TYPE_COUNT; i++) { + ggml_type type = (ggml_type) i; + quantize_fns_t qfns = ggml_internal_get_quantize_fn(type); + if (ggml_type_name(type) != NULL) { + if (qfns.quantize_row_q && qfns.dequantize_row_q) { + printf(" %s", ggml_type_name(type)); + } + } + } + printf(" (all)\n"); + printf(" --alignment-offset OFFSET\n"); + printf(" set alignment offset as OFFSET (0)\n"); + printf(" -i NUM, --iterations NUM\n"); + printf(" set test iteration number (%d)\n", ITERATIONS); } int main(int argc, char * argv[]) { @@ -178,6 +208,21 @@ int main(int argc, char * argv[]) { break; } params.alignment_offset = alignment; + } else if ((arg == "-i") || (arg == "--iterations")) { + if (++i >= argc) { + invalid_param = true; + break; + } + int number = std::stoi(argv[i]); + if (number < 0 || number > MAX_ITERATIONS) { + fprintf(stderr, "error: iterations must be less than %d\n", MAX_ITERATIONS); + invalid_param = true; + break; + } + params.iterations = number; + } else if ((arg == "-h") || (arg == "--help")) { + usage(argv); + return 1; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); return 1; @@ -213,6 +258,8 @@ int main(int argc, char * argv[]) { generate_data(0, largest, test_data1); generate_data(1, largest, test_data2); + int64_t iterations = params.iterations; + // Initialize GGML, ensures float conversion tables are initialized struct ggml_init_params ggml_params = { @@ -225,7 +272,7 @@ int main(int argc, char * argv[]) { for (int i = 0; i < GGML_TYPE_COUNT; i++) { ggml_type type = (ggml_type) i; quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); - if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) { + if (!params.include_types.empty() && ggml_type_name(type) && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) { continue; } @@ -241,7 +288,7 @@ int main(int argc, char * argv[]) { return test_q1[0]; }; size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); - benchmark_function(size, quantized_size, quantize_fn); + benchmark_function(size, quantized_size, iterations, quantize_fn); } printf("\n"); } @@ -255,7 +302,7 @@ int main(int argc, char * argv[]) { return test_q1[0]; }; size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); - benchmark_function(size, quantized_size, quantize_fn); + benchmark_function(size, quantized_size, iterations, quantize_fn); } printf("\n"); } @@ -270,7 +317,7 @@ int main(int argc, char * argv[]) { return test_out[0]; }; size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); - benchmark_function(size, quantized_size, quantize_fn); + benchmark_function(size, quantized_size, iterations, quantize_fn); } printf("\n"); } @@ -284,7 +331,7 @@ int main(int argc, char * argv[]) { return test_q1[0]; }; size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); - benchmark_function(size, quantized_size, quantize_fn); + benchmark_function(size, quantized_size, iterations, quantize_fn); } printf("\n"); } @@ -301,7 +348,7 @@ int main(int argc, char * argv[]) { return result; }; size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); - benchmark_function(size, quantized_size, quantize_fn); + benchmark_function(size, quantized_size, iterations, quantize_fn); } printf("\n"); } From 9225baef71407d799a6f7f563b77fd7f82791416 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 26 Jun 2023 20:10:52 +0300 Subject: [PATCH 085/135] k-quants : fix indentation --- k_quants.c | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/k_quants.c b/k_quants.c index 923467d7c..c576fd7a7 100644 --- a/k_quants.c +++ b/k_quants.c @@ -1981,7 +1981,8 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; // prepare low and high bits - const int bit = j << 2; + const int bit = j << 2; + const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3); const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3); const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2); From b853d456018b10820686362af41b2f2f75f1eec6 Mon Sep 17 00:00:00 2001 From: zrm Date: Mon, 26 Jun 2023 13:57:59 -0400 Subject: [PATCH 086/135] ggml : add NUMA support (#1556) * detect NUMA systems and pin work threads to nodes (linux) * disable mmap prefetch/readahead for NUMA systems * avoid sending finalize op to thread pool if it does nothing * silence robot * fix args * make --numa a param * recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement * lower synchronization overhead * statically allocate * move numa state to g_state * add description for --numa * ggml : minor style changes * ggml : minor style + try fix sanitizer build * llama : allow to initialize backend with NUMA support * llama : avoid ggml include in llama-util.h * ggml : style / formatting * ggml : fix handling of ops with n_threads > n_tasks > 1 * server : utilize numa parameter --------- Co-authored-by: Georgi Gerganov --- examples/common.cpp | 5 + examples/common.h | 1 + examples/embedding/embedding.cpp | 2 +- examples/main/README.md | 4 + examples/main/main.cpp | 2 +- examples/perplexity/perplexity.cpp | 2 +- examples/quantize/quantize.cpp | 2 +- examples/server/server.cpp | 2 +- examples/simple/simple.cpp | 2 +- ggml.c | 513 ++++++++++++++++------------- ggml.h | 3 + llama-util.h | 24 +- llama.cpp | 10 +- llama.h | 3 +- 14 files changed, 339 insertions(+), 236 deletions(-) diff --git a/examples/common.cpp b/examples/common.cpp index 6ac484555..002302734 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -343,6 +343,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { params.use_mmap = false; } else if (arg == "--mtest") { params.mem_test = true; + } else if (arg == "--numa") { + params.numa = true; } else if (arg == "--export") { params.export_cgraph = true; } else if (arg == "--verbose-prompt") { @@ -488,6 +490,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { if (llama_mmap_supported()) { fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); } + fprintf(stderr, " --numa attempt optimizations that help on some NUMA systems\n"); + fprintf(stderr, " if run without this previously, it is recommended to drop the system page cache before using this\n"); + fprintf(stderr, " see https://github.com/ggerganov/llama.cpp/issues/1437\n"); #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD fprintf(stderr, " -ngl N, --n-gpu-layers N\n"); fprintf(stderr, " number of layers to store in VRAM\n"); diff --git a/examples/common.h b/examples/common.h index 713320179..9d213d6d0 100644 --- a/examples/common.h +++ b/examples/common.h @@ -76,6 +76,7 @@ struct gpt_params { bool use_mmap = true; // use mmap for faster loads bool use_mlock = false; // use mlock to keep model in memory bool mem_test = false; // compute maximum memory usage + bool numa = false; // attempt optimizations that help on some NUMA systems bool export_cgraph = false; // export the computation graph bool verbose_prompt = false; // print prompt tokens before generation }; diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 369eac1d1..3cd5bb794 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -35,7 +35,7 @@ int main(int argc, char ** argv) { params.prompt = gpt_random_prompt(rng); } - llama_init_backend(); + llama_init_backend(params.numa); llama_model * model; llama_context * ctx; diff --git a/examples/main/README.md b/examples/main/README.md index b6d3212fe..9ba1eb384 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -262,6 +262,10 @@ These options help improve the performance and memory usage of the LLaMA models. - `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed. However, if the model is larger than your total amount of RAM or if your system is low on available memory, using mmap might increase the risk of pageouts, negatively impacting performance. Disabling mmap results in slower load times but may reduce pageouts if you're not using `--mlock`. Note that if the model is larger than the total amount of RAM, turning off mmap would prevent the model from loading at all. +### NUMA support + +- `--numa`: Attempt optimizations that help on some systems with non-uniform memory access. This currently consists of pinning an equal proportion of the threads to the cores on each NUMA node, and disabling prefetch and readahead for mmap. The latter causes mapped pages to be faulted in on first access instead of all at once, and in combination with pinning threads to NUMA nodes, more of the pages end up on the NUMA node where they are used. Note that if the model is already in the system page cache, for example because of a previous run without this option, this will have little effect unless you drop the page cache first. This can be done by rebooting the system or on Linux by writing '3' to '/proc/sys/vm/drop\_caches' as root. + ### Memory Float 32 - `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. This doubles the context memory requirement and cached prompt file size but does not appear to increase generation quality in a measurable way. Not recommended. diff --git a/examples/main/main.cpp b/examples/main/main.cpp index c1e6bf126..bcdc98d61 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -105,7 +105,7 @@ int main(int argc, char ** argv) { params.prompt = gpt_random_prompt(rng); } - llama_init_backend(); + llama_init_backend(params.numa); llama_model * model; llama_context * ctx; diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index b59f5971e..f8a6cb516 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -147,7 +147,7 @@ int main(int argc, char ** argv) { params.prompt = gpt_random_prompt(rng); } - llama_init_backend(); + llama_init_backend(params.numa); llama_model * model; llama_context * ctx; diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 4e8e6f523..1eb0f75d6 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -180,7 +180,7 @@ int main(int argc, char ** argv) { usage(argv[0]); } - llama_init_backend(); + llama_init_backend(false); // parse command line arguments const std::string fname_inp = argv[arg_idx]; diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 79df5e847..998d55eac 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -789,7 +789,7 @@ int main(int argc, char ** argv) { params.model_alias = params.model; } - llama_init_backend(); + llama_init_backend(params.numa); LOG_INFO("build info", { { "build", BUILD_NUMBER }, diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp index fc45c9340..2d913cebb 100644 --- a/examples/simple/simple.cpp +++ b/examples/simple/simple.cpp @@ -66,7 +66,7 @@ int main(int argc, char ** argv) // Init LLM : //--------------------------------- - llama_init_backend(); + llama_init_backend(params.numa); llama_model * model; llama_context * ctx; diff --git a/ggml.c b/ggml.c index e3f0c939c..4d51e31ed 100644 --- a/ggml.c +++ b/ggml.c @@ -91,6 +91,11 @@ static int sched_yield (void) { #include typedef void* thread_ret_t; + +#include +#include +#include + #endif // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512 @@ -119,6 +124,30 @@ typedef void* thread_ret_t; #define GGML_SOFT_MAX_UNROLL 4 #define GGML_VEC_DOT_UNROLL 2 +// +// logging +// + +#if (GGML_DEBUG >= 1) +#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG(...) +#endif + +#if (GGML_DEBUG >= 5) +#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_5(...) +#endif + +#if (GGML_DEBUG >= 10) +#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_10(...) +#endif + +#define GGML_PRINT(...) printf(__VA_ARGS__) + #ifdef GGML_USE_ACCELERATE // uncomment to use vDSP for soft max computation // note: not sure if it is actually faster @@ -459,7 +488,6 @@ void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) { } } - // // timing // @@ -522,6 +550,7 @@ int64_t ggml_cycles_per_ms(void) { #define ggml_perf_cycles_per_ms() 0 #endif + // // cache line // @@ -3843,12 +3872,31 @@ struct ggml_context_container { struct ggml_context context; }; +// +// NUMA support +// + +#define GGML_NUMA_MAX_NODES 8 +#define GGML_NUMA_MAX_CPUS 512 + +struct ggml_numa_node { + uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node + uint32_t n_cpus; +}; + +struct ggml_numa_nodes { + struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES]; + uint32_t n_nodes; + uint32_t total_cpus; // hardware threads on system +}; + // // ggml state // struct ggml_state { struct ggml_context_container contexts[GGML_MAX_CONTEXTS]; + struct ggml_numa_nodes numa; }; // global state @@ -3873,6 +3921,75 @@ inline static void ggml_critical_section_end(void) { atomic_fetch_sub(&g_state_barrier, 1); } +void ggml_numa_init(void) { + if (g_state.numa.n_nodes > 0) { + fprintf(stderr, "ggml_numa_init: NUMA already initialized\n"); + + return; + } + +#ifdef __linux__ + struct stat st; + char path[256]; + int rv; + + // enumerate nodes + while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) { + rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes); + GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); + if (stat(path, &st) != 0) { break; } + ++g_state.numa.n_nodes; + } + + // enumerate CPUs + while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) { + rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus); + GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); + if (stat(path, &st) != 0) { break; } + ++g_state.numa.total_cpus; + } + + GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus); + + if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) { + g_state.numa.n_nodes = 0; + return; + } + + for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) { + struct ggml_numa_node * node = &g_state.numa.nodes[n]; + GGML_PRINT_DEBUG("CPUs on node %u:", n); + node->n_cpus = 0; + for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) { + rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c); + GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); + if (stat(path, &st) == 0) { + node->cpus[node->n_cpus++] = c; + GGML_PRINT_DEBUG(" %u", c); + } + } + GGML_PRINT_DEBUG("\n"); + } + + if (ggml_is_numa()) { + FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r"); + if (fptr != NULL) { + char buf[42]; + if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) { + GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n"); + } + fclose(fptr); + } + } +#else + // TODO +#endif +} + +bool ggml_is_numa(void) { + return g_state.numa.n_nodes > 1; +} + //////////////////////////////////////////////////////////////////////////////// void ggml_print_object(const struct ggml_object * obj) { @@ -4129,6 +4246,10 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { g_state = (struct ggml_state) { /*.contexts =*/ { { 0 } }, + /*.numa =*/ { + .n_nodes = 0, + .total_cpus = 0, + }, }; for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) { @@ -16504,68 +16625,172 @@ typedef pthread_t ggml_thread_t; #endif +#ifdef __linux__ +void set_numa_thread_affinity(int thread_n, int n_threads) { + if (!ggml_is_numa()) { + return; + } + + // run thread on node_num thread_n / (threads per node) + const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes); + struct ggml_numa_node * node = &g_state.numa.nodes[node_num]; + size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus); + + cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus); + CPU_ZERO_S(setsize, cpus); + for (size_t i = 0; i < node->n_cpus; ++i) { + CPU_SET_S(node->cpus[i], setsize, cpus); + } + + int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus); + if (rv) { + fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", + strerror(rv)); + } + + CPU_FREE(cpus); +} + +void clear_numa_thread_affinity(void) { + if (!ggml_is_numa()) { + return; + } + + size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus); + + cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus); + CPU_ZERO_S(setsize, cpus); + for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) { + CPU_SET_S(i, setsize, cpus); + } + + int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus); + if (rv) { + fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", + strerror(rv)); + } + + CPU_FREE(cpus); +} +#else +// TODO: Windows etc. +// (the linux implementation may also work on BSD, someone should test) +void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); } +void clear_numa_thread_affinity(void) {} +#endif + struct ggml_compute_state_shared { - ggml_lock_t spin; + struct ggml_cgraph * cgraph; + + int64_t perf_node_start_cycles; + int64_t perf_node_start_time_us; int n_threads; // synchronization primitives - atomic_int n_ready; - atomic_bool has_work; - atomic_bool stop; // stop all threads + atomic_int n_active; // num active threads + atomic_int node_n; // active graph node }; struct ggml_compute_state { ggml_thread_t thrd; - - struct ggml_compute_params params; - struct ggml_tensor * node; - + int ith; struct ggml_compute_state_shared * shared; }; +static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) { + int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles; + int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us; + + node->perf_runs++; + node->perf_cycles += cycles_cur; + node->perf_time_us += time_us_cur; +} + static thread_ret_t ggml_graph_compute_thread(void * data) { struct ggml_compute_state * state = (struct ggml_compute_state *) data; + struct ggml_cgraph * cgraph = state->shared->cgraph; const int n_threads = state->shared->n_threads; + set_numa_thread_affinity(state->ith, n_threads); + + int node_n = -1; while (true) { - if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) { - atomic_store(&state->shared->has_work, false); - } else { - while (atomic_load(&state->shared->has_work)) { - if (atomic_load(&state->shared->stop)) { - return 0; + if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) { + // all other threads are finished and spinning + // do finalize and init here so we don't have synchronize again + struct ggml_compute_params params = { + /*.type =*/ GGML_TASK_FINALIZE, + /*.ith =*/ 0, + /*.nth =*/ 0, + /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0, + /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL, + }; + + if (node_n != -1) { + /* FINALIZE */ + struct ggml_tensor * node = state->shared->cgraph->nodes[node_n]; + params.nth = node->n_tasks; + ggml_compute_forward(¶ms, node); + ggml_graph_compute_perf_stats_node(node, state->shared); + } + + // distribute new work or execute it direct if 1T + while (++node_n < cgraph->n_nodes) { + GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes); + + struct ggml_tensor * node = cgraph->nodes[node_n]; + + state->shared->perf_node_start_cycles = ggml_perf_cycles(); + state->shared->perf_node_start_time_us = ggml_perf_time_us(); + + /* INIT */ + params.type = GGML_TASK_INIT; + params.nth = node->n_tasks; + ggml_compute_forward(¶ms, node); + + if (node->n_tasks == 1) { + // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1, + // they do something more efficient than spinning (?) + params.type = GGML_TASK_COMPUTE; + ggml_compute_forward(¶ms, node); + + params.type = GGML_TASK_FINALIZE; + ggml_compute_forward(¶ms, node); + ggml_graph_compute_perf_stats_node(node, state->shared); + } else { + break; } - ggml_lock_lock (&state->shared->spin); - ggml_lock_unlock(&state->shared->spin); } - } - atomic_fetch_sub(&state->shared->n_ready, 1); - - // wait for work - while (!atomic_load(&state->shared->has_work)) { - if (atomic_load(&state->shared->stop)) { - return 0; - } - ggml_lock_lock (&state->shared->spin); - ggml_lock_unlock(&state->shared->spin); + atomic_store(&state->shared->n_active, n_threads); + atomic_store(&state->shared->node_n, node_n); + } else { + // wait for other threads to finish + const int last = node_n; + do { + sched_yield(); + node_n = atomic_load(&state->shared->node_n); + } while (node_n == last); } // check if we should stop - if (atomic_load(&state->shared->stop)) { - break; - } + if (node_n >= cgraph->n_nodes) break; - if (state->node) { - if (state->params.ith < state->params.nth) { - ggml_compute_forward(&state->params, state->node); - } + /* COMPUTE */ + struct ggml_tensor * node = cgraph->nodes[node_n]; - state->node = NULL; - } else { - break; + struct ggml_compute_params params = { + /*.type =*/ GGML_TASK_COMPUTE, + /*.ith =*/ state->ith, + /*.nth =*/ node->n_tasks, + /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0, + /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL, + }; + + if (state->ith < node->n_tasks) { + ggml_compute_forward(¶ms, node); } } @@ -16576,39 +16801,14 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) const int n_threads = cgraph->n_threads; struct ggml_compute_state_shared state_shared = { - /*.spin =*/ GGML_LOCK_INITIALIZER, - /*.n_threads =*/ n_threads, - /*.n_ready =*/ 0, - /*.has_work =*/ false, - /*.stop =*/ false, + /*.cgraph =*/ cgraph, + /*.perf_node_start_cycles =*/ 0, + /*.perf_node_start_time_us =*/ 0, + /*.n_threads =*/ n_threads, + /*.n_active =*/ n_threads, + /*.node_n =*/ -1, }; - struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL; - - // create thread pool - if (n_threads > 1) { - ggml_lock_init(&state_shared.spin); - - atomic_store(&state_shared.has_work, true); - - for (int j = 0; j < n_threads - 1; j++) { - workers[j] = (struct ggml_compute_state) { - .thrd = 0, - .params = { - .type = GGML_TASK_COMPUTE, - .ith = j + 1, - .nth = n_threads, - .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, - .wdata = cgraph->work ? cgraph->work->data : NULL, - }, - .node = NULL, - .shared = &state_shared, - }; - - int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]); - GGML_ASSERT(rc == 0); - UNUSED(rc); - } - } + struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads); // initialize tasks + work buffer { @@ -16752,7 +16952,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) } break; case GGML_OP_SCALE: { - node->n_tasks = n_threads; + node->n_tasks = 1; } break; case GGML_OP_SET: case GGML_OP_CONT: @@ -16956,166 +17156,37 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) } } + // create thread pool + if (n_threads > 1) { + for (int j = 1; j < n_threads; ++j) { + workers[j] = (struct ggml_compute_state) { + .thrd = 0, + .ith = j, + .shared = &state_shared, + }; + + const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]); + GGML_ASSERT(rc == 0); + } + } + workers[0].ith = 0; + workers[0].shared = &state_shared; + const int64_t perf_start_cycles = ggml_perf_cycles(); const int64_t perf_start_time_us = ggml_perf_time_us(); - for (int i = 0; i < cgraph->n_nodes; i++) { - GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes); + // this is a work thread too + ggml_graph_compute_thread(&workers[0]); - struct ggml_tensor * node = cgraph->nodes[i]; - - // TODO: this could be used to avoid unnecessary computations, but it needs to be improved - //if (node->grad == NULL && node->perf_runs > 0) { - // continue; - //} - - const int64_t perf_node_start_cycles = ggml_perf_cycles(); - const int64_t perf_node_start_time_us = ggml_perf_time_us(); - - // INIT - struct ggml_compute_params params = { - /*.type =*/ GGML_TASK_INIT, - /*.ith =*/ 0, - /*.nth =*/ node->n_tasks, - /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0, - /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL, - }; - - ggml_compute_forward(¶ms, node); - - // COMPUTE - if (node->n_tasks > 1) { - if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { - atomic_store(&state_shared.has_work, false); - } - - while (atomic_load(&state_shared.has_work)) { - ggml_lock_lock (&state_shared.spin); - ggml_lock_unlock(&state_shared.spin); - } - - // launch thread pool - for (int j = 0; j < n_threads - 1; j++) { - workers[j].params = (struct ggml_compute_params) { - .type = GGML_TASK_COMPUTE, - .ith = j + 1, - .nth = node->n_tasks, - .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, - .wdata = cgraph->work ? cgraph->work->data : NULL, - }; - workers[j].node = node; - } - - atomic_fetch_sub(&state_shared.n_ready, 1); - - while (atomic_load(&state_shared.n_ready) > 0) { - ggml_lock_lock (&state_shared.spin); - ggml_lock_unlock(&state_shared.spin); - } - - atomic_store(&state_shared.has_work, true); - } - - params.type = GGML_TASK_COMPUTE; - ggml_compute_forward(¶ms, node); - - // wait for thread pool - if (node->n_tasks > 1) { - if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { - atomic_store(&state_shared.has_work, false); - } - - while (atomic_load(&state_shared.has_work)) { - ggml_lock_lock (&state_shared.spin); - ggml_lock_unlock(&state_shared.spin); - } - - atomic_fetch_sub(&state_shared.n_ready, 1); - - while (atomic_load(&state_shared.n_ready) != 0) { - ggml_lock_lock (&state_shared.spin); - ggml_lock_unlock(&state_shared.spin); - } - } - - // FINALIZE - if (node->n_tasks > 1) { - if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { - atomic_store(&state_shared.has_work, false); - } - - while (atomic_load(&state_shared.has_work)) { - ggml_lock_lock (&state_shared.spin); - ggml_lock_unlock(&state_shared.spin); - } - - // launch thread pool - for (int j = 0; j < n_threads - 1; j++) { - workers[j].params = (struct ggml_compute_params) { - .type = GGML_TASK_FINALIZE, - .ith = j + 1, - .nth = node->n_tasks, - .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, - .wdata = cgraph->work ? cgraph->work->data : NULL, - }; - workers[j].node = node; - } - - atomic_fetch_sub(&state_shared.n_ready, 1); - - while (atomic_load(&state_shared.n_ready) > 0) { - ggml_lock_lock (&state_shared.spin); - ggml_lock_unlock(&state_shared.spin); - } - - atomic_store(&state_shared.has_work, true); - } - - params.type = GGML_TASK_FINALIZE; - ggml_compute_forward(¶ms, node); - - // wait for thread pool - if (node->n_tasks > 1) { - if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { - atomic_store(&state_shared.has_work, false); - } - - while (atomic_load(&state_shared.has_work)) { - ggml_lock_lock (&state_shared.spin); - ggml_lock_unlock(&state_shared.spin); - } - - atomic_fetch_sub(&state_shared.n_ready, 1); - - while (atomic_load(&state_shared.n_ready) != 0) { - ggml_lock_lock (&state_shared.spin); - ggml_lock_unlock(&state_shared.spin); - } - } - - // performance stats (node) - { - int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles; - int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us; - - node->perf_runs++; - node->perf_cycles += perf_cycles_cur; - node->perf_time_us += perf_time_us_cur; - } - } + // don't leave affinity set on the main thread + clear_numa_thread_affinity(); // join thread pool if (n_threads > 1) { - atomic_store(&state_shared.stop, true); - atomic_store(&state_shared.has_work, true); - - for (int j = 0; j < n_threads - 1; j++) { - int rc = ggml_thread_join(workers[j].thrd, NULL); + for (int j = 1; j < n_threads; j++) { + const int rc = ggml_thread_join(workers[j].thrd, NULL); GGML_ASSERT(rc == 0); - UNUSED(rc); } - - ggml_lock_destroy(&state_shared.spin); } // performance stats (graph) diff --git a/ggml.h b/ggml.h index 5ebd9c46c..6b106b1c3 100644 --- a/ggml.h +++ b/ggml.h @@ -469,6 +469,9 @@ extern "C" { GGML_API int64_t ggml_cycles(void); GGML_API int64_t ggml_cycles_per_ms(void); + GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems + GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node + GGML_API void ggml_print_object (const struct ggml_object * obj); GGML_API void ggml_print_objects(const struct ggml_context * ctx); diff --git a/llama-util.h b/llama-util.h index 4f8a4296a..042ebe43c 100644 --- a/llama-util.h +++ b/llama-util.h @@ -172,12 +172,14 @@ struct llama_mmap { #ifdef _POSIX_MAPPED_FILES static constexpr bool SUPPORTED = true; - llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */) { + llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) { size = file->size; int fd = fileno(file->fp); int flags = MAP_SHARED; + // prefetch/readahead impairs performance on NUMA systems + if (numa) { prefetch = 0; } #ifdef __linux__ - flags |= MAP_POPULATE; + if (prefetch) { flags |= MAP_POPULATE; } #endif addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); if (addr == MAP_FAILED) { @@ -191,6 +193,14 @@ struct llama_mmap { strerror(errno)); } } + if (numa) { + // advise the kernel not to use readahead + // (because the next page might not belong on the same node) + if (madvise(addr, file->size, MADV_RANDOM)) { + fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n", + strerror(errno)); + } + } } ~llama_mmap() { @@ -199,7 +209,9 @@ struct llama_mmap { #elif defined(_WIN32) static constexpr bool SUPPORTED = true; - llama_mmap(struct llama_file * file, bool prefetch = true) { + llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) { + (void) numa; + size = file->size; HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp)); @@ -244,8 +256,10 @@ struct llama_mmap { #else static constexpr bool SUPPORTED = false; - llama_mmap(struct llama_file *, bool prefetch = true) { - (void)prefetch; + llama_mmap(struct llama_file *, bool prefetch = true, bool numa = false) { + (void) prefetch; + (void) numa; + throw std::runtime_error(std::string("mmap not supported")); } #endif diff --git a/llama.cpp b/llama.cpp index c41c2a8a3..1a15844bc 100644 --- a/llama.cpp +++ b/llama.cpp @@ -774,7 +774,7 @@ struct llama_model_loader { } if (use_mmap) { - mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size)); + mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size, ggml_is_numa())); if (lmlock) { lmlock->init(mapping->addr); } @@ -977,7 +977,7 @@ bool llama_mlock_supported() { return llama_mlock::SUPPORTED; } -void llama_init_backend() { +void llama_init_backend(bool numa) { ggml_time_init(); // needed to initialize f16 tables @@ -986,6 +986,10 @@ void llama_init_backend() { struct ggml_context * ctx = ggml_init(params); ggml_free(ctx); } + + if (numa) { + ggml_numa_init(); + } } int64_t llama_time_us() { @@ -2899,7 +2903,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const // maybe this should in llama_model_loader if (model_loader->use_mmap) { - model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0)); + model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0, ggml_is_numa())); } } diff --git a/llama.h b/llama.h index a833a7f4d..76239be25 100644 --- a/llama.h +++ b/llama.h @@ -140,8 +140,9 @@ extern "C" { // TODO: not great API - very likely to change // Initialize the llama + ggml backend + // If numa is true, use NUMA optimizations // Call once at the start of the program - LLAMA_API void llama_init_backend(); + LLAMA_API void llama_init_backend(bool numa); LLAMA_API int64_t llama_time_us(); From c824d2e368d193d9f564ff29880a51cda9f90527 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 26 Jun 2023 21:03:59 +0300 Subject: [PATCH 087/135] ggml : avoid conv 2d kernel round up --- ggml.c | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/ggml.c b/ggml.c index 4d51e31ed..c179bee93 100644 --- a/ggml.c +++ b/ggml.c @@ -13508,8 +13508,7 @@ static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( const int nk1 = ne01; // size of the convolution row - the kernel size unrolled across all channels - // round-up so it is more suitable for SIMD - const int ew0 = ggml_up32(nk0*nk1*ne02); + const int ew0 = nk0*nk1*ne02; GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); From aa777abbb73655c4e1e9237b7c0ad66745e8e48c Mon Sep 17 00:00:00 2001 From: Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com> Date: Mon, 26 Jun 2023 16:34:45 -0300 Subject: [PATCH 088/135] readme : LD_LIBRARY_PATH complement for some Android devices when building with CLBlast inside Termux (#2007) * docs - Alternative way to build at Android, with CLBlast. * doc - LD_LIBRARY_PATH complement for some Android devices when building with CLBlast inside Termux. * doc- fix typo --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 670f35eca..69f42bd00 100644 --- a/README.md +++ b/README.md @@ -687,6 +687,8 @@ GGML_OPENCL_DEVICE=0 export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH ``` +(Note: some Android devices, like the Zenfone 8, need the following command instead - "export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH". Source: https://www.reddit.com/r/termux/comments/kc3ynp/opencl_working_in_termux_more_in_comments/ ) + For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle. Place your desired model into the `/llama.cpp/models/` directory and execute the `./main (...)` script. From eaa6ca5a61b8c9501df9ebe3d264f45b75a5f8aa Mon Sep 17 00:00:00 2001 From: David Yang Date: Tue, 27 Jun 2023 03:45:32 +0800 Subject: [PATCH 089/135] ggml : increase max tensor name + clean up compiler warnings in train-text (#1988) * Clean up compiler warnings in train-text Some brackets to disambiguate order of operations * Increase GGML_MAX_NAME Avoiding strncpy danger in train-text-from-scratch and reducing potential future name length issues --- .../train-text-from-scratch.cpp | 23 +++++-------------- ggml.h | 2 +- 2 files changed, 7 insertions(+), 18 deletions(-) diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index 61c829e5c..5c6fd5738 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -294,20 +294,9 @@ void init_model(struct my_llama_model * model) { ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str()); - // 'layers.10.feed_forward.w1.weight' has length of 32. - // ggml_tensor->name only has 32 characters, but we need one more for the '\0' terminator. - // ggml_set_name will set the last character to '\0', so we can only store 'layers.10.feed_forward.w1.weigh'. - // when saving llama compatible model the tensors names will miss a character. - // ggml_set_name(layer.w1, (layers_i + ".feed_forward.w1.weight").c_str()); - // ggml_set_name(layer.w2, (layers_i + ".feed_forward.w2.weight").c_str()); - // ggml_set_name(layer.w3, (layers_i + ".feed_forward.w3.weight").c_str()); - - strncpy(layer.w1->name, (layers_i + ".feed_forward.w1.weight").c_str(), sizeof(layer.w1->name)); - strncpy(layer.w2->name, (layers_i + ".feed_forward.w2.weight").c_str(), sizeof(layer.w2->name)); - strncpy(layer.w3->name, (layers_i + ".feed_forward.w3.weight").c_str(), sizeof(layer.w3->name)); - layer.w1->padding[0] = 0; - layer.w2->padding[0] = 0; - layer.w3->padding[0] = 0; + ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str()); + ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str()); + ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str()); } } @@ -2368,7 +2357,7 @@ void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) { file->write_u32(0); file->write_u32(0); file->write_u32(GGML_TYPE_F32); - file->seek(0-file->tell() & 31, SEEK_CUR); + file->seek((0-file->tell()) & 31, SEEK_CUR); return; } const char * name = ggml_get_name(tensor); @@ -2383,7 +2372,7 @@ void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) { file->write_u32(tensor->type); file->write_raw(ne, sizeof(ne[0]) * nd); file->write_raw(name, name_len); - file->seek(0-file->tell() & 31, SEEK_CUR); + file->seek((0-file->tell()) & 31, SEEK_CUR); file->write_raw(tensor->data, ggml_nbytes(tensor)); } @@ -2404,7 +2393,7 @@ void read_tensor(struct llama_file * file, struct ggml_tensor * tensor) { std::string name = file->read_string(name_len); GGML_ASSERT(strncmp(ggml_get_name(tensor), name.c_str(), sizeof(tensor->name)-1) == 0); - file->seek(0-file->tell() & 31, SEEK_CUR); + file->seek((0-file->tell()) & 31, SEEK_CUR); file->read_raw(tensor->data, ggml_nbytes(tensor)); } diff --git a/ggml.h b/ggml.h index 6b106b1c3..08025e57a 100644 --- a/ggml.h +++ b/ggml.h @@ -198,7 +198,7 @@ #define GGML_MAX_PARAMS 256 #define GGML_MAX_CONTEXTS 64 #define GGML_MAX_OPT 4 -#define GGML_MAX_NAME 32 +#define GGML_MAX_NAME 48 #define GGML_DEFAULT_N_THREADS 4 #define GGML_ASSERT(x) \ From d38e45157862b58a1824387e64860d68ca3533a7 Mon Sep 17 00:00:00 2001 From: Roman Parykin Date: Mon, 26 Jun 2023 22:47:59 +0300 Subject: [PATCH 090/135] readme : add Scala 3 bindings repo (#2010) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 69f42bd00..ee56988c7 100644 --- a/README.md +++ b/README.md @@ -93,6 +93,7 @@ as the main playground for developing new features for the [ggml](https://github - Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node) - Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb) - C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp) +- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s) **UI:** From d9779021bd59ed96daae75e820a5ac5da47ca8ff Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 27 Jun 2023 00:06:51 +0300 Subject: [PATCH 091/135] ggml : add support for ChatGLM RoPE --- ggml.c | 82 ++++++++++++++++++++++++++++++++++++++++++++++++++-------- ggml.h | 7 +++-- 2 files changed, 76 insertions(+), 13 deletions(-) diff --git a/ggml.c b/ggml.c index c179bee93..92faf03f7 100644 --- a/ggml.c +++ b/ggml.c @@ -6778,6 +6778,7 @@ struct ggml_tensor * ggml_rope_impl( int n_past, int n_dims, int mode, + int n_ctx, bool inplace) { GGML_ASSERT(n_past >= 0); bool is_node = false; @@ -6790,11 +6791,12 @@ struct ggml_tensor * ggml_rope_impl( ggml_scratch_save(ctx); - struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3); + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4); ((int32_t *) b->data)[0] = n_past; ((int32_t *) b->data)[1] = n_dims; ((int32_t *) b->data)[2] = mode; + ((int32_t *) b->data)[3] = n_ctx; ggml_scratch_load(ctx); @@ -6811,8 +6813,9 @@ struct ggml_tensor * ggml_rope( struct ggml_tensor * a, int n_past, int n_dims, - int mode) { - return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false); + int mode, + int n_ctx) { + return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false); } struct ggml_tensor * ggml_rope_inplace( @@ -6820,8 +6823,9 @@ struct ggml_tensor * ggml_rope_inplace( struct ggml_tensor * a, int n_past, int n_dims, - int mode) { - return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true); + int mode, + int n_ctx) { + return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true); } // ggml_rope_back @@ -12440,7 +12444,7 @@ static void ggml_compute_forward_rope_f32( const struct ggml_tensor * src1, struct ggml_tensor * dst) { GGML_ASSERT(src1->type == GGML_TYPE_I32); - GGML_ASSERT(ggml_nelements(src1) == 3); + GGML_ASSERT(ggml_nelements(src1) == 4); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; @@ -12449,6 +12453,7 @@ static void ggml_compute_forward_rope_f32( const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; + const int n_ctx = ((int32_t *) src1->data)[3]; assert(n_past >= 0); @@ -12493,6 +12498,7 @@ static void ggml_compute_forward_rope_f32( const float theta_scale = powf(10000.0, -2.0f/n_dims); const bool is_neox = mode & 2; + const bool is_glm = mode & 4; for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) { @@ -12503,7 +12509,32 @@ static void ggml_compute_forward_rope_f32( float theta = (float)p; - if (!is_neox) { + if (is_glm) { + theta = MIN(p, n_ctx - 2); + float block_theta = MAX(p - (n_ctx - 2), 0); + for (int64_t i0 = 0; i0 < ne0 / 4; i0++) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + const float cos_block_theta = cosf(block_theta); + const float sin_block_theta = sinf(block_theta); + + theta *= theta_scale; + block_theta *= theta_scale; + + const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = src[0]; + const float x1 = src[n_dims/2]; + const float x2 = src[n_dims]; + const float x3 = src[n_dims/2*3]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta; + dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta; + dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta; + } + } else if (!is_neox) { for (int64_t i0 = 0; i0 < ne0; i0 += 2) { const float cos_theta = cosf(theta); const float sin_theta = sinf(theta); @@ -12553,7 +12584,7 @@ static void ggml_compute_forward_rope_f16( const struct ggml_tensor * src1, struct ggml_tensor * dst) { GGML_ASSERT(src1->type == GGML_TYPE_I32); - GGML_ASSERT(ggml_nelements(src1) == 3); + GGML_ASSERT(ggml_nelements(src1) == 4); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; @@ -12562,6 +12593,7 @@ static void ggml_compute_forward_rope_f16( const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; + const int n_ctx = ((int32_t *) src1->data)[3]; assert(n_past >= 0); @@ -12606,6 +12638,7 @@ static void ggml_compute_forward_rope_f16( const float theta_scale = powf(10000.0, -2.0f/n_dims); const bool is_neox = mode & 2; + const bool is_glm = mode & 4; for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) { @@ -12616,7 +12649,32 @@ static void ggml_compute_forward_rope_f16( float theta = (float)p; - if (!is_neox) { + if (is_glm) { + theta = MIN(p, n_ctx - 2); + float block_theta = MAX(p - (n_ctx - 2), 0); + for (int64_t i0 = 0; i0 < ne0 / 4; i0++) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + const float cos_block_theta = cosf(block_theta); + const float sin_block_theta = sinf(block_theta); + + theta *= theta_scale; + block_theta *= theta_scale; + + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = GGML_FP16_TO_FP32(src[0]); + const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]); + const float x2 = GGML_FP16_TO_FP32(src[n_dims]); + const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]); + + dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); + dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); + dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta); + dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta); + } + } if (!is_neox) { for (int64_t i0 = 0; i0 < ne0; i0 += 2) { const float cos_theta = cosf(theta); const float sin_theta = sinf(theta); @@ -16189,17 +16247,19 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { if (src0->grad) { assert(src1->type == GGML_TYPE_I32); - assert(ggml_nelements(src1) == 3); + assert(ggml_nelements(src1) == 4); const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; + const int n_ctx = ((int32_t *) src1->data)[3]; src0->grad = ggml_add_impl(ctx, src0->grad, ggml_rope(ctx, tensor->grad, n_past, n_dims, - mode), + mode, + n_ctx), inplace); } if (src1->grad) { diff --git a/ggml.h b/ggml.h index 08025e57a..459913222 100644 --- a/ggml.h +++ b/ggml.h @@ -1036,13 +1036,15 @@ extern "C" { // rotary position embedding // if mode & 1 == 1, skip n_past elements // if mode & 2 == 1, GPT-NeoX style + // if mode & 4 == 1, ChatGLM style // TODO: avoid creating a new tensor every time GGML_API struct ggml_tensor * ggml_rope( struct ggml_context * ctx, struct ggml_tensor * a, int n_past, int n_dims, - int mode); + int mode, + int n_ctx); // in-place, returns view(a) GGML_API struct ggml_tensor * ggml_rope_inplace( @@ -1050,7 +1052,8 @@ extern "C" { struct ggml_tensor * a, int n_past, int n_dims, - int mode); + int mode, + int n_ctx); // rotary position embedding backward, i.e compute dx from dy // a - dy From 181e8d975528a4e27eabb8ae6e9865f9ceae4b37 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 27 Jun 2023 00:37:13 +0300 Subject: [PATCH 092/135] llama : fix rope usage after ChatGLM change --- .../train-text-from-scratch.cpp | 20 +++++++++---------- llama.cpp | 4 ++-- 2 files changed, 12 insertions(+), 12 deletions(-) diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index 5c6fd5738..a05881d16 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -443,8 +443,8 @@ struct ggml_tensor * forward( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, 1] // Kcur shape [n_embd/n_head, n_head, N, 1] - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); // store key and value to memory { @@ -700,8 +700,8 @@ struct ggml_tensor * forward_batch( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Kcur shape [n_embd/n_head, n_head, N, n_batch] - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); @@ -985,8 +985,8 @@ struct ggml_tensor * forward_batch_wo_cache( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Kcur shape [n_embd/n_head, n_head, N, n_batch] - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); @@ -1207,8 +1207,8 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn( // compute Q and K and RoPE them // wq shape [n_embd, n_embd, 1, 1] // wk shape [n_embd, n_embd, 1, 1] - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); @@ -1607,10 +1607,10 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train( use_buf(-1); struct ggml_tensor * t04 = expand(gf, ggml_mul (ctx0, t02, t03)); assert_shape_2d(t04, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t05 = expand(gf, ggml_mul_mat (ctx0, layer.wq, t04)); assert_shape_2d(t05, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t06 = expand(gf, ggml_reshape_4d (ctx0, t05, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch); - use_buf(-1); struct ggml_tensor * t07 = expand(gf, ggml_rope_inplace (ctx0, t06, n_past, n_rot, rope_mode)); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch); + use_buf(-1); struct ggml_tensor * t07 = expand(gf, ggml_rope_inplace (ctx0, t06, n_past, n_rot, rope_mode, 0)); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch); use_buf(-1); struct ggml_tensor * t08 = expand(gf, ggml_mul_mat (ctx0, layer.wk, t04)); assert_shape_2d(t08, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t09 = expand(gf, ggml_reshape_4d (ctx0, t08, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch); - use_buf(-1); struct ggml_tensor * t10 = expand(gf, ggml_rope_inplace (ctx0, t09, n_past, n_rot, rope_mode)); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch); + use_buf(-1); struct ggml_tensor * t10 = expand(gf, ggml_rope_inplace (ctx0, t09, n_past, n_rot, rope_mode, 0)); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch); use_buf(-1); struct ggml_tensor * t11 = expand(gf, ggml_mul_mat (ctx0, t04, layer.wv)); assert_shape_2d(t11, N*n_batch, n_embd); use_buf(-1); struct ggml_tensor * t12 = expand(gf, ggml_reshape_4d (ctx0, t11, N, n_batch, n_embd/n_head, n_head)); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head); use_buf(-1); struct ggml_tensor * t13 = expand(gf, ggml_permute (ctx0, t07, 0, 2, 1, 3)); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch); diff --git a/llama.cpp b/llama.cpp index 1a15844bc..2482bdd18 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1491,11 +1491,11 @@ static bool llama_eval_internal( offload_func_kq(tmpq); ggml_set_name(tmpq, "tmpq"); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); offload_func_kq(Kcur); ggml_set_name(Kcur, "Kcur"); - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0); + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); offload_func_kq(Qcur); ggml_set_name(Qcur, "Qcur"); From 0be54f75a6c3e9a09ea71bdfcdabf9a996a0549b Mon Sep 17 00:00:00 2001 From: Howard Su Date: Tue, 27 Jun 2023 13:07:13 +0800 Subject: [PATCH 093/135] baby-llama : fix build after ggml_rope change (#2016) --- examples/baby-llama/baby-llama.cpp | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index 50e14c4ac..212f54d32 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -566,8 +566,8 @@ struct ggml_tensor * forward( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, 1] // Kcur shape [n_embd/n_head, n_head, N, 1] - struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); - struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); + struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); + struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); // store key and value to memory { @@ -823,8 +823,8 @@ struct ggml_tensor * forward_batch( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Kcur shape [n_embd/n_head, n_head, N, n_batch] - struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); - struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); + struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); @@ -1116,7 +1116,7 @@ struct ggml_tensor * forward_lora( model->layers[il].wqb, cur)), n_embd/n_head, n_head, N), - n_past, n_rot, 0); + n_past, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, @@ -1125,7 +1125,7 @@ struct ggml_tensor * forward_lora( model->layers[il].wkb, cur)), n_embd/n_head, n_head, N), - n_past, n_rot, 0); + n_past, n_rot, 0, 0); // store key and value to memory { From 9d23589d638dc74577d5ff880e6d4248b795f12e Mon Sep 17 00:00:00 2001 From: Erik Scholz Date: Tue, 27 Jun 2023 19:06:33 +0200 Subject: [PATCH 094/135] fix pthreads setaffinity usage on android (#2020) --- ggml.c | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/ggml.c b/ggml.c index 92faf03f7..684caaa37 100644 --- a/ggml.c +++ b/ggml.c @@ -16684,7 +16684,8 @@ typedef pthread_t ggml_thread_t; #endif -#ifdef __linux__ +// Android's libc implementation "bionic" does not support setting affinity +#if defined(__linux__) && !defined(__BIONIC__) void set_numa_thread_affinity(int thread_n, int n_threads) { if (!ggml_is_numa()) { return; From cfa0750bc9dbc2d957a91b8ed09ab0035d8f3d4e Mon Sep 17 00:00:00 2001 From: ningshanwutuobang Date: Wed, 28 Jun 2023 23:53:37 +0800 Subject: [PATCH 095/135] llama : support input embeddings directly (#1910) * add interface for float input * fixed inpL shape and type * add examples of input floats * add test example for embd input * fixed sampling * add free for context * fixed add end condition for generating * add examples for llava.py * add READMD for llava.py * add READMD for llava.py * add example of PandaGPT * refactor the interface and fixed the styles * add cmake build for embd-input * add cmake build for embd-input * Add MiniGPT-4 example * change the order of the args of llama_eval_internal * fix ci error --- .gitignore | 3 +- Makefile | 11 +- convert-lora-to-ggml.py | 6 +- examples/CMakeLists.txt | 1 + examples/embd-input/.gitignore | 4 + examples/embd-input/CMakeLists.txt | 15 ++ examples/embd-input/README.md | 63 +++++++ examples/embd-input/embd-input-lib.cpp | 220 ++++++++++++++++++++++++ examples/embd-input/embd-input-test.cpp | 35 ++++ examples/embd-input/embd-input.h | 30 ++++ examples/embd-input/embd_input.py | 71 ++++++++ examples/embd-input/llava.py | 70 ++++++++ examples/embd-input/minigpt4.py | 128 ++++++++++++++ examples/embd-input/panda_gpt.py | 98 +++++++++++ llama.cpp | 70 ++++++-- llama.h | 8 + 16 files changed, 811 insertions(+), 22 deletions(-) create mode 100644 examples/embd-input/.gitignore create mode 100644 examples/embd-input/CMakeLists.txt create mode 100644 examples/embd-input/README.md create mode 100644 examples/embd-input/embd-input-lib.cpp create mode 100644 examples/embd-input/embd-input-test.cpp create mode 100644 examples/embd-input/embd-input.h create mode 100644 examples/embd-input/embd_input.py create mode 100644 examples/embd-input/llava.py create mode 100644 examples/embd-input/minigpt4.py create mode 100644 examples/embd-input/panda_gpt.py diff --git a/.gitignore b/.gitignore index e7bfd52e3..4fccec31b 100644 --- a/.gitignore +++ b/.gitignore @@ -1,5 +1,6 @@ *.o *.a +*.so .DS_Store .build/ .cache/ @@ -39,8 +40,8 @@ models/* /vdot /server /Pipfile +/embd-input-test /libllama.so - build-info.h arm_neon.h compile_commands.json diff --git a/Makefile b/Makefile index bda11791d..03f38bdba 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple +BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple libembdinput.so embd-input-test ifdef LLAMA_BUILD_SERVER BUILD_TARGETS += server @@ -272,7 +272,7 @@ libllama.so: llama.o ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) clean: - rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot train-text-from-scratch build-info.h + rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot train-text-from-scratch embd-input-test build-info.h # # Examples @@ -305,6 +305,13 @@ save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml. server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) +libembdinput.so: examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) --shared $(CXXFLAGS) $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) + + +embd-input-test: libembdinput.so examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.so,$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput + train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) diff --git a/convert-lora-to-ggml.py b/convert-lora-to-ggml.py index 9090e8d6d..f43c836f5 100644 --- a/convert-lora-to-ggml.py +++ b/convert-lora-to-ggml.py @@ -113,6 +113,10 @@ with open(output_path, "wb") as fout: write_file_header(fout, params) for k, v in model.items(): + if k.endswith(".default.weight"): + k = k.replace(".default.weight", ".weight") + if k in ["llama_proj.weight", "llama_proj.bias"]: + continue if k.endswith("lora_A.weight"): if v.dtype != torch.float16 and v.dtype != torch.float32: v = v.float() @@ -120,7 +124,7 @@ with open(output_path, "wb") as fout: else: v = v.float() - t = v.numpy() + t = v.detach().numpy() tname = translate_tensor_name(k) print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") write_tensor_header(fout, tname, t.shape, t.dtype) diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index cf9c4a223..161960bb8 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -39,6 +39,7 @@ else() add_subdirectory(baby-llama) add_subdirectory(train-text-from-scratch) add_subdirectory(simple) + add_subdirectory(embd-input) if (LLAMA_METAL) add_subdirectory(metal) endif() diff --git a/examples/embd-input/.gitignore b/examples/embd-input/.gitignore new file mode 100644 index 000000000..87ef68771 --- /dev/null +++ b/examples/embd-input/.gitignore @@ -0,0 +1,4 @@ +PandaGPT +MiniGPT-4 +*.pth + diff --git a/examples/embd-input/CMakeLists.txt b/examples/embd-input/CMakeLists.txt new file mode 100644 index 000000000..2b623953e --- /dev/null +++ b/examples/embd-input/CMakeLists.txt @@ -0,0 +1,15 @@ +set(TARGET embdinput) +add_library(${TARGET} embd-input-lib.cpp embd-input.h) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() + +set(TARGET embd-input-test) +add_executable(${TARGET} embd-input-test.cpp) +target_link_libraries(${TARGET} PRIVATE common llama embdinput ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() diff --git a/examples/embd-input/README.md b/examples/embd-input/README.md new file mode 100644 index 000000000..02d028f26 --- /dev/null +++ b/examples/embd-input/README.md @@ -0,0 +1,63 @@ +### Examples for input embedding directly + +## Requirement +build `libembdinput.so` +run the following comman in main dir (../../). +``` +make +``` + +## [LLaVA](https://github.com/haotian-liu/LLaVA/) example (llava.py) + +1. Obtian LLaVA model (following https://github.com/haotian-liu/LLaVA/ , use https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/). +2. Convert it to ggml format. +3. `llava_projection.pth` is [pytorch_model-00003-of-00003.bin](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin). + +``` +import torch + +bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin" +pth_path = "./examples/embd_input/llava_projection.pth" + +dic = torch.load(bin_path) +used_key = ["model.mm_projector.weight","model.mm_projector.bias"] +torch.save({k: dic[k] for k in used_key}, pth_path) +``` +4. Check the path of LLaVA model and `llava_projection.pth` in `llava.py`. + + +## [PandaGPT](https://github.com/yxuansu/PandaGPT) example (panda_gpt.py) + +1. Obtian PandaGPT lora model from https://github.com/yxuansu/PandaGPT. Rename the file to `adapter_model.bin`. Use [convert-lora-to-ggml.py](../../convert-lora-to-ggml.py) to convert it to ggml format. +The `adapter_config.json` is +``` +{ + "peft_type": "LORA", + "fan_in_fan_out": false, + "bias": null, + "modules_to_save": null, + "r": 32, + "lora_alpha": 32, + "lora_dropout": 0.1, + "target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"] +} +``` +2. Papare the `vicuna` v0 model. +3. Obtain the [ImageBind](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) model. +4. Clone the PandaGPT source. +``` +git clone https://github.com/yxuansu/PandaGPT +``` +5. Install the requirement of PandaGPT. +6. Check the path of PandaGPT source, ImageBind model, lora model and vicuna model in panda_gpt.py. + +## [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4/) example (minigpt4.py) + +1. Obtain MiniGPT-4 model from https://github.com/Vision-CAIR/MiniGPT-4/ and put it in `embd-input`. +2. Clone the MiniGPT-4 source. +``` +git clone https://github.com/Vision-CAIR/MiniGPT-4/ +``` +3. Install the requirement of PandaGPT. +4. Papare the `vicuna` v0 model. +5. Check the path of MiniGPT-4 source, MiniGPT-4 model and vicuna model in `minigpt4.py`. diff --git a/examples/embd-input/embd-input-lib.cpp b/examples/embd-input/embd-input-lib.cpp new file mode 100644 index 000000000..37de52ad6 --- /dev/null +++ b/examples/embd-input/embd-input-lib.cpp @@ -0,0 +1,220 @@ +// Defines sigaction on msys: +#ifndef _GNU_SOURCE +#define _GNU_SOURCE +#endif + +#include "embd-input.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +static llama_context ** g_ctx; + +extern "C" { + +struct MyModel* create_mymodel(int argc, char ** argv) { + gpt_params params; + + if (gpt_params_parse(argc, argv, params) == false) { + return nullptr; + } + + fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + + if (params.seed < 0) { + params.seed = time(NULL); + } + fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); + + llama_init_backend(params.numa); + + llama_model * model; + llama_context * ctx; + + g_ctx = &ctx; + + // load the model and apply lora adapter, if any + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == NULL) { + fprintf(stderr, "%s: error: unable to load model\n", __func__); + return nullptr; + } + + // print system information + { + fprintf(stderr, "\n"); + fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", + params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); + } + struct MyModel * ret = new MyModel(); + ret->ctx = ctx; + ret->params = params; + ret->n_past = 0; + // printf("ctx: %d\n", ret->ctx); + return ret; +} + +void free_mymodel(struct MyModel * mymodel) { + llama_context * ctx = mymodel->ctx; + llama_print_timings(ctx); + llama_free(ctx); + delete mymodel; +} + + +bool eval_float(void * model, float * input, int N){ + MyModel * mymodel = (MyModel*)model; + llama_context * ctx = mymodel->ctx; + gpt_params params = mymodel->params; + int n_emb = llama_n_embd(ctx); + int n_past = mymodel->n_past; + int n_batch = N; // params.n_batch; + + for (int i = 0; i < (int) N; i += n_batch) { + int n_eval = (int) N - i; + if (n_eval > n_batch) { + n_eval = n_batch; + } + if (llama_eval_embd(ctx, (input+i*n_emb), n_eval, n_past, params.n_threads)) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return false; + } + n_past += n_eval; + } + mymodel->n_past = n_past; + return true; +} + +bool eval_tokens(void * model, std::vector tokens) { + MyModel * mymodel = (MyModel* )model; + llama_context * ctx; + ctx = mymodel->ctx; + gpt_params params = mymodel->params; + int n_past = mymodel->n_past; + for (int i = 0; i < (int) tokens.size(); i += params.n_batch) { + int n_eval = (int) tokens.size() - i; + if (n_eval > params.n_batch) { + n_eval = params.n_batch; + } + if (llama_eval(ctx, &tokens[i], n_eval, n_past, params.n_threads)) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return false; + } + n_past += n_eval; + } + mymodel->n_past = n_past; + return true; +} + +bool eval_id(struct MyModel* mymodel, int id) { + std::vector tokens; + tokens.push_back(id); + return eval_tokens(mymodel, tokens); +} + +bool eval_string(struct MyModel * mymodel,const char* str){ + llama_context * ctx = mymodel->ctx; + std::string str2 = str; + std::vector embd_inp = ::llama_tokenize(ctx, str2, true); + eval_tokens(mymodel, embd_inp); + return true; +} + +llama_token sampling_id(struct MyModel* mymodel) { + llama_context* ctx = mymodel->ctx; + gpt_params params = mymodel->params; + // int n_ctx = llama_n_ctx(ctx); + + // out of user input, sample next token + const float temp = params.temp; + const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; + const float top_p = params.top_p; + const float tfs_z = params.tfs_z; + const float typical_p = params.typical_p; + // const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; + // const float repeat_penalty = params.repeat_penalty; + // const float alpha_presence = params.presence_penalty; + // const float alpha_frequency = params.frequency_penalty; + const int mirostat = params.mirostat; + const float mirostat_tau = params.mirostat_tau; + const float mirostat_eta = params.mirostat_eta; + // const bool penalize_nl = params.penalize_nl; + + llama_token id = 0; + { + auto logits = llama_get_logits(ctx); + auto n_vocab = llama_n_vocab(ctx); + + // Apply params.logit_bias map + for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { + logits[it->first] += it->second; + } + + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + + // TODO: Apply penalties + // float nl_logit = logits[llama_token_nl()]; + // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); + // llama_sample_repetition_penalty(ctx, &candidates_p, + // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, + // last_n_repeat, repeat_penalty); + // llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, + // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, + // last_n_repeat, alpha_frequency, alpha_presence); + // if (!penalize_nl) { + // logits[llama_token_nl()] = nl_logit; + // } + + if (temp <= 0) { + // Greedy sampling + id = llama_sample_token_greedy(ctx, &candidates_p); + } else { + if (mirostat == 1) { + static float mirostat_mu = 2.0f * mirostat_tau; + const int mirostat_m = 100; + llama_sample_temperature(ctx, &candidates_p, temp); + id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); + } else if (mirostat == 2) { + static float mirostat_mu = 2.0f * mirostat_tau; + llama_sample_temperature(ctx, &candidates_p, temp); + id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); + } else { + // Temperature sampling + llama_sample_top_k(ctx, &candidates_p, top_k, 1); + llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); + llama_sample_typical(ctx, &candidates_p, typical_p, 1); + llama_sample_top_p(ctx, &candidates_p, top_p, 1); + llama_sample_temperature(ctx, &candidates_p, temp); + id = llama_sample_token(ctx, &candidates_p); + } + } + } + + return id; +} + +const char * sampling(struct MyModel * mymodel) { + llama_context * ctx = mymodel->ctx; + int id = sampling_id(mymodel); + std::string ret; + if (id == llama_token_eos()) ret = ""; + else ret = llama_token_to_str(ctx, id); + eval_id(mymodel, id); + return ret.c_str(); +} + +} diff --git a/examples/embd-input/embd-input-test.cpp b/examples/embd-input/embd-input-test.cpp new file mode 100644 index 000000000..e5e040f62 --- /dev/null +++ b/examples/embd-input/embd-input-test.cpp @@ -0,0 +1,35 @@ +#include "embd-input.h" +#include +#include +#include + +int main(int argc, char** argv) { + + auto mymodel = create_mymodel(argc, argv); + int N = 10; + int max_tgt_len = 500; + int n_embd = llama_n_embd(mymodel->ctx); + + // add random float embd to test evaluation + float * data = new float[N*n_embd]; + std::default_random_engine e; + std::uniform_real_distribution u(0,1); + for (int i=0;iparams.prompt.c_str()); + const char* tmp; + for (int i=0; i")==0) break; + printf("%s", tmp); + fflush(stdout); + } + printf("\n"); + free_mymodel(mymodel); + return 0; +} diff --git a/examples/embd-input/embd-input.h b/examples/embd-input/embd-input.h new file mode 100644 index 000000000..4fefabd42 --- /dev/null +++ b/examples/embd-input/embd-input.h @@ -0,0 +1,30 @@ +#ifndef _EMBD_INPUT_H_ +#define _EMBD_INPUT_H_ 1 + +#include "common.h" +#include "llama.h" +#include "build-info.h" + + +extern "C" { + +typedef struct MyModel { + llama_context* ctx; + gpt_params params; + int n_past = 0; +} MyModel; + + +struct MyModel* create_mymodel(int argc, char ** argv); + +bool eval_float(void* model, float* input, int N); +bool eval_tokens(void* model, std::vector tokens); +bool eval_id(struct MyModel* mymodel, int id); +bool eval_string(struct MyModel* mymodel, const char* str); +const char* sampling(struct MyModel* mymodel); +llama_token sampling_id(struct MyModel* mymodel); +void free_mymodel(struct MyModel* mymodel); + +} + +#endif diff --git a/examples/embd-input/embd_input.py b/examples/embd-input/embd_input.py new file mode 100644 index 000000000..be2896614 --- /dev/null +++ b/examples/embd-input/embd_input.py @@ -0,0 +1,71 @@ +import ctypes +from ctypes import cdll, c_char_p, c_void_p, POINTER, c_float, c_int +import numpy as np +import os + +libc = cdll.LoadLibrary("./libembdinput.so") +libc.sampling.restype=c_char_p +libc.create_mymodel.restype=c_void_p +libc.eval_string.argtypes=[c_void_p, c_char_p] +libc.sampling.argtypes=[c_void_p] +libc.eval_float.argtypes=[c_void_p, POINTER(c_float), c_int] + + +class MyModel: + def __init__(self, args): + argc = len(args) + c_str = [c_char_p(i.encode()) for i in args] + args_c = (c_char_p * argc)(*c_str) + self.model = c_void_p(libc.create_mymodel(argc, args_c)) + self.max_tgt_len = 512 + self.print_string_eval = True + + def __del__(self): + libc.free_mymodel(self.model) + + def eval_float(self, x): + libc.eval_float(self.model, x.astype(np.float32).ctypes.data_as(POINTER(c_float)), x.shape[1]) + + def eval_string(self, x): + libc.eval_string(self.model, x.encode()) # c_char_p(x.encode())) + if self.print_string_eval: + print(x) + + def eval_token(self, x): + libc.eval_id(self.model, x) + + def sampling(self): + s = libc.sampling(self.model) + return s + + def stream_generate(self, end=""): + ret = b"" + end = end.encode() + for _ in range(self.max_tgt_len): + tmp = self.sampling() + ret += tmp + yield tmp + if ret.endswith(end): + break + + def generate_with_print(self, end=""): + ret = b"" + for i in self.stream_generate(end=end): + ret += i + print(i.decode(errors="replace"), end="", flush=True) + print("") + return ret.decode(errors="replace") + + + def generate(self, end=""): + text = b"".join(self.stream_generate(end=end)) + return text.decode(errors="replace") + +if __name__ == "__main__": + model = MyModel(["main", "--model", "../llama.cpp/models/ggml-vic13b-q4_1.bin", "-c", "2048"]) + model.eval_string("""user: what is the color of the flag of UN?""") + x = np.random.random((5120,10))# , dtype=np.float32) + model.eval_float(x) + model.eval_string("""assistant:""") + for i in model.generate(): + print(i.decode(errors="replace"), end="", flush=True) diff --git a/examples/embd-input/llava.py b/examples/embd-input/llava.py new file mode 100644 index 000000000..2f20cb722 --- /dev/null +++ b/examples/embd-input/llava.py @@ -0,0 +1,70 @@ +import sys +import os +sys.path.insert(0, os.path.dirname(__file__)) +from embd_input import MyModel +import numpy as np +from torch import nn +import torch +from transformers import CLIPVisionModel, CLIPImageProcessor +from PIL import Image + +# model parameters from 'liuhaotian/LLaVA-13b-delta-v1-1' +vision_tower = "openai/clip-vit-large-patch14" +select_hidden_state_layer = -2 +# (vision_config.image_size // vision_config.patch_size) ** 2 +image_token_len = (224//14)**2 + +class Llava: + def __init__(self, args): + self.image_processor = CLIPImageProcessor.from_pretrained(vision_tower) + self.vision_tower = CLIPVisionModel.from_pretrained(vision_tower) + self.mm_projector = nn.Linear(1024, 5120) + self.model = MyModel(["main", *args]) + + def load_projection(self, path): + state = torch.load(path) + self.mm_projector.load_state_dict({ + "weight": state["model.mm_projector.weight"], + "bias": state["model.mm_projector.bias"]}) + + def chat(self, question): + self.model.eval_string("user: ") + self.model.eval_string(question) + self.model.eval_string("\nassistant: ") + return self.model.generate_with_print() + + def chat_with_image(self, image, question): + with torch.no_grad(): + embd_image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] + image_forward_out = self.vision_tower(embd_image.unsqueeze(0), output_hidden_states=True) + select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer] + image_feature = select_hidden_state[:, 1:] + embd_image = self.mm_projector(image_feature) + embd_image = embd_image.cpu().numpy()[0] + self.model.eval_string("user: ") + self.model.eval_token(32003-2) # im_start + self.model.eval_float(embd_image.T) + for i in range(image_token_len-embd_image.shape[0]): + self.model.eval_token(32003-3) # im_patch + self.model.eval_token(32003-1) # im_end + self.model.eval_string(question) + self.model.eval_string("\nassistant: ") + return self.model.generate_with_print() + + +if __name__=="__main__": + # model form liuhaotian/LLaVA-13b-delta-v1-1 + a = Llava(["--model", "./models/ggml-llava-13b-v1.1.bin", "-c", "2048"]) + # Extract from https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin. + # Also here can use pytorch_model-00003-of-00003.bin directly. + a.load_projection(os.path.join( + os.path.dirname(__file__) , + "llava_projetion.pth")) + respose = a.chat_with_image( + Image.open("./media/llama1-logo.png").convert('RGB'), + "what is the text in the picture?") + respose + a.chat("what is the color of it?") + + + diff --git a/examples/embd-input/minigpt4.py b/examples/embd-input/minigpt4.py new file mode 100644 index 000000000..8e98f8517 --- /dev/null +++ b/examples/embd-input/minigpt4.py @@ -0,0 +1,128 @@ +import sys +import os +sys.path.insert(0, os.path.dirname(__file__)) +from embd_input import MyModel +import numpy as np +from torch import nn +import torch +from PIL import Image + +minigpt4_path = os.path.join(os.path.dirname(__file__), "MiniGPT-4") +sys.path.insert(0, minigpt4_path) +from minigpt4.models.blip2 import Blip2Base +from minigpt4.processors.blip_processors import Blip2ImageEvalProcessor + + +class MiniGPT4(Blip2Base): + """ + MiniGPT4 model from https://github.com/Vision-CAIR/MiniGPT-4 + """ + def __init__(self, + args, + vit_model="eva_clip_g", + q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth", + img_size=224, + drop_path_rate=0, + use_grad_checkpoint=False, + vit_precision="fp32", + freeze_vit=True, + freeze_qformer=True, + num_query_token=32, + llama_model="", + prompt_path="", + prompt_template="", + max_txt_len=32, + end_sym='\n', + low_resource=False, # use 8 bit and put vit in cpu + device_8bit=0 + ): + super().__init__() + self.img_size = img_size + self.low_resource = low_resource + self.preprocessor = Blip2ImageEvalProcessor(img_size) + + print('Loading VIT') + self.visual_encoder, self.ln_vision = self.init_vision_encoder( + vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision + ) + print('Loading VIT Done') + print('Loading Q-Former') + self.Qformer, self.query_tokens = self.init_Qformer( + num_query_token, self.visual_encoder.num_features + ) + self.Qformer.cls = None + self.Qformer.bert.embeddings.word_embeddings = None + self.Qformer.bert.embeddings.position_embeddings = None + for layer in self.Qformer.bert.encoder.layer: + layer.output = None + layer.intermediate = None + self.load_from_pretrained(url_or_filename=q_former_model) + print('Loading Q-Former Done') + self.llama_proj = nn.Linear( + self.Qformer.config.hidden_size, 5120 # self.llama_model.config.hidden_size + ) + self.max_txt_len = max_txt_len + self.end_sym = end_sym + self.model = MyModel(["main", *args]) + # system promt + self.model.eval_string("Give the following image: ImageContent. " + "You will be able to see the image once I provide it to you. Please answer my questions." + "###") + + def encode_img(self, image): + image = self.preprocessor(image) + image = image.unsqueeze(0) + device = image.device + if self.low_resource: + self.vit_to_cpu() + image = image.to("cpu") + + with self.maybe_autocast(): + image_embeds = self.ln_vision(self.visual_encoder(image)).to(device) + image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device) + + query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) + query_output = self.Qformer.bert( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + + inputs_llama = self.llama_proj(query_output.last_hidden_state) + # atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device) + return inputs_llama + + def load_projection(self, path): + state = torch.load(path)["model"] + self.llama_proj.load_state_dict({ + "weight": state["llama_proj.weight"], + "bias": state["llama_proj.bias"]}) + + def chat(self, question): + self.model.eval_string("Human: ") + self.model.eval_string(question) + self.model.eval_string("\n### Assistant:") + return self.model.generate_with_print(end="###") + + def chat_with_image(self, image, question): + with torch.no_grad(): + embd_image = self.encode_img(image) + embd_image = embd_image.cpu().numpy()[0] + self.model.eval_string("Human: ") + self.model.eval_float(embd_image.T) + self.model.eval_string(" ") + self.model.eval_string(question) + self.model.eval_string("\n### Assistant:") + return self.model.generate_with_print(end="###") + + +if __name__=="__main__": + a = MiniGPT4(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048"]) + a.load_projection(os.path.join( + os.path.dirname(__file__) , + "pretrained_minigpt4.pth")) + respose = a.chat_with_image( + Image.open("./media/llama1-logo.png").convert('RGB'), + "what is the text in the picture?") + a.chat("what is the color of it?") diff --git a/examples/embd-input/panda_gpt.py b/examples/embd-input/panda_gpt.py new file mode 100644 index 000000000..0cfac5f32 --- /dev/null +++ b/examples/embd-input/panda_gpt.py @@ -0,0 +1,98 @@ +import sys +import os +sys.path.insert(0, os.path.dirname(__file__)) +from embd_input import MyModel +import numpy as np +from torch import nn +import torch + +# use PandaGPT path +panda_gpt_path = os.path.join(os.path.dirname(__file__), "PandaGPT") +imagebind_ckpt_path = "./models/panda_gpt/" + +sys.path.insert(0, os.path.join(panda_gpt_path,"code","model")) +from ImageBind.models import imagebind_model +from ImageBind import data + +ModalityType = imagebind_model.ModalityType +max_tgt_len = 400 + +class PandaGPT: + def __init__(self, args): + self.visual_encoder,_ = imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path) + self.visual_encoder.eval() + self.llama_proj = nn.Linear(1024, 5120) # self.visual_hidden_size, 5120) + self.max_tgt_len = max_tgt_len + self.model = MyModel(["main", *args]) + self.generated_text = "" + self.device = "cpu" + + def load_projection(self, path): + state = torch.load(path, map_location="cpu") + self.llama_proj.load_state_dict({ + "weight": state["llama_proj.weight"], + "bias": state["llama_proj.bias"]}) + + def eval_inputs(self, inputs): + self.model.eval_string("") + embds = self.extract_multimoal_feature(inputs) + for i in embds: + self.model.eval_float(i.T) + self.model.eval_string(" ") + + def chat(self, question): + return self.chat_with_image(None, question) + + def chat_with_image(self, inputs, question): + if self.generated_text == "": + self.model.eval_string("###") + self.model.eval_string(" Human: ") + if inputs: + self.eval_inputs(inputs) + self.model.eval_string(question) + self.model.eval_string("\n### Assistant:") + ret = self.model.generate_with_print(end="###") + self.generated_text += ret + return ret + + def extract_multimoal_feature(self, inputs): + features = [] + for key in ["image", "audio", "video", "thermal"]: + if key + "_paths" in inputs: + embeds = self.encode_data(key, inputs[key+"_paths"]) + features.append(embeds) + return features + + def encode_data(self, data_type, data_paths): + + type_map = { + "image": ModalityType.VISION, + "audio": ModalityType.AUDIO, + "video": ModalityType.VISION, + "thermal": ModalityType.THERMAL, + } + load_map = { + "image": data.load_and_transform_vision_data, + "audio": data.load_and_transform_audio_data, + "video": data.load_and_transform_video_data, + "thermal": data.load_and_transform_thermal_data + } + + load_function = load_map[data_type] + key = type_map[data_type] + + inputs = {key: load_function(data_paths, self.device)} + with torch.no_grad(): + embeddings = self.visual_encoder(inputs) + embeds = embeddings[key] + embeds = self.llama_proj(embeds).cpu().numpy() + return embeds + + +if __name__=="__main__": + a = PandaGPT(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048", "--lora", "./models/panda_gpt/ggml-adapter-model.bin","--temp", "0"]) + a.load_projection("./models/panda_gpt/adapter_model.bin") + a.chat_with_image( + {"image_paths": ["./media/llama1-logo.png"]}, + "what is the text in the picture? 'llama' or 'lambda'?") + a.chat("what is the color of it?") diff --git a/llama.cpp b/llama.cpp index 2482bdd18..5a142aba6 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1369,22 +1369,26 @@ static bool llama_model_load( // evaluate the transformer // -// - lctx: llama context -// - tokens: new batch of tokens to process -// - n_past: the context size so far -// - n_threads: number of threads to use -// - cgraph_fname: filename of the exported computation graph +// - lctx: llama context +// - tokens: new batch of tokens to process +// - embd embeddings input +// - n_tokens number of tokens +// - n_past: the context size so far +// - n_threads: number of threads to use // static bool llama_eval_internal( - llama_context & lctx, - const llama_token * tokens, - const int n_tokens, - const int n_past, - const int n_threads, + llama_context & lctx, + const llama_token * tokens, + const float * embd, + const int n_tokens, + const int n_past, + const int n_threads, const char * cgraph_fname) { + LLAMA_ASSERT((!tokens && embd) || (tokens && !embd)); + // enforce that the first token is BOS - if (n_past == 0 && tokens[0] != llama_token_bos()) { + if (tokens && n_past == 0 && tokens[0] != llama_token_bos()) { fprintf(stderr, "%s: first token must be BOS\n", __func__); return false; } @@ -1424,12 +1428,18 @@ static bool llama_eval_internal( ggml_cgraph gf = {}; gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads; - struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - ggml_set_name(embd, "embd"); - memcpy(embd->data, tokens, N*ggml_element_size(embd)); - struct ggml_tensor * cur; - struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); + struct ggml_tensor * inpL; + + if (tokens) { + struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + ggml_set_name(embd, "embd"); + memcpy(embd->data, tokens, N*ggml_element_size(embd)); + inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); + } else { + inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N); + memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL)); + } const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start; @@ -2654,6 +2664,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } } + + // // interface implementation // @@ -3421,7 +3433,29 @@ int llama_eval( int n_tokens, int n_past, int n_threads) { - if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads, nullptr)) { + if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) { + fprintf(stderr, "%s: failed to eval\n", __func__); + return 1; + } + + // get a more accurate load time, upon first eval + // TODO: fix this + if (!ctx->has_evaluated_once) { + ctx->t_load_us = ggml_time_us() - ctx->t_start_us; + ctx->has_evaluated_once = true; + } + + return 0; +} + + +int llama_eval_embd( + struct llama_context * ctx, + const float * embd, + int n_tokens, + int n_past, + int n_threads) { + if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } @@ -3442,7 +3476,7 @@ int llama_eval_export(struct llama_context * ctx, const char * fname) { const std::vector tmp(n_batch, llama_token_bos()); - if (!llama_eval_internal(*ctx, tmp.data(), tmp.size(), n_ctx, 1, fname)) { + if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } diff --git a/llama.h b/llama.h index 76239be25..c2f2e5331 100644 --- a/llama.h +++ b/llama.h @@ -226,6 +226,14 @@ extern "C" { int n_past, int n_threads); + // Same as llama_eval, but use float matrix input directly. + LLAMA_API int llama_eval_embd( + struct llama_context * ctx, + const float * embd, + int n_tokens, + int n_past, + int n_threads); + // Export a static computation graph for context of 511 and batch size of 1 // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these // parameters here to keep things simple From 7f9753fa1263c4eded9a3de19778562f0e1093d7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Wed, 28 Jun 2023 18:35:54 +0200 Subject: [PATCH 096/135] CUDA GPU acceleration for LoRAs + f16 models (#1970) --- examples/common.cpp | 7 ------ ggml-cuda.cu | 53 +++++++++++++++++++++++++++++++++++---------- ggml-cuda.h | 1 + llama.cpp | 36 +++++++++++++++++++++++++++++- 4 files changed, 78 insertions(+), 19 deletions(-) diff --git a/examples/common.cpp b/examples/common.cpp index 002302734..5addd10a1 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -416,13 +416,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { exit(1); } -#ifdef GGML_USE_CUBLAS - if (!params.lora_adapter.empty() && params.n_gpu_layers > 0) { - fprintf(stderr, "%s: error: the simultaneous use of LoRAs and GPU acceleration is not supported", __func__); - exit(1); - } -#endif // GGML_USE_CUBLAS - if (escape_prompt) { process_escapes(params.prompt); } diff --git a/ggml-cuda.cu b/ggml-cuda.cu index c34e96abf..be75cb792 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -223,6 +223,15 @@ static __global__ void add_f32(const float * x, const float * y, float * dst, co dst[i] = x[i] + y[i]; } +static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + dst[i] = __hadd(x[i], __float2half(y[i])); +} + static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) { const int i = blockDim.x*blockIdx.x + threadIdx.x; @@ -1459,6 +1468,11 @@ static void add_f32_cuda(const float * x, const float * y, float * dst, const in add_f32<<>>(x, y, dst, k); } +static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE; + add_f16_f32_f16<<>>(x, y, dst, k); +} + static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) { const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE; mul_f32<<>>(x, y, dst, kx, ky); @@ -1941,7 +1955,7 @@ inline void ggml_cuda_op_add( float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, cudaStream_t & cudaStream_main){ - GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr); GGML_ASSERT(src1_ddf_i != nullptr); GGML_ASSERT(dst_ddf_i != nullptr); @@ -1949,7 +1963,13 @@ inline void ggml_cuda_op_add( const int64_t i01_diff = i01_high - i01_low; // compute - add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main); + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main); + } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { + add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne0*i01_diff, cudaStream_main); + } else { + GGML_ASSERT(false); + } CUDA_CHECK(cudaGetLastError()); (void) src1; @@ -2547,8 +2567,14 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm } void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, true, true); + // ggml_cuda_add permits f16 dst even though this could in theory cause problems with the pointer arithmetic in ggml_cuda_op. + // Due to flatten_rows == true this does in practice not make a difference however. + // Better solution would be nice but right now that would require disproportionate changes. + GGML_ASSERT( + (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) && + src1->type == GGML_TYPE_F32 && + (dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16)); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, false, true); } void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -2801,7 +2827,7 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) { delete extra; } -void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) { +void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) { if (scratch && g_scratch_size == 0) { return; } @@ -2810,11 +2836,11 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) { if (tensor->src0 != nullptr && tensor->src0->backend == GGML_BACKEND_CPU) { const ggml_op src0_op = tensor->src0->op; if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW) { - ggml_cuda_assign_buffers_impl(tensor->src0, scratch); + ggml_cuda_assign_buffers_impl(tensor->src0, scratch, force_inplace); } } if (tensor->op == GGML_OP_CPY && tensor->src1->backend == GGML_BACKEND_CPU) { - ggml_cuda_assign_buffers_impl(tensor->src1, scratch); + ggml_cuda_assign_buffers_impl(tensor->src1, scratch, force_inplace); } tensor->backend = GGML_BACKEND_GPU; @@ -2822,11 +2848,12 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) { memset(extra, 0, sizeof(*extra)); const bool inplace = (tensor->src0 != nullptr && tensor->src0->data == tensor->data) || - tensor->op == GGML_OP_VIEW; + tensor->op == GGML_OP_VIEW || + force_inplace; const size_t size = ggml_nbytes(tensor); CUDA_CHECK(cudaSetDevice(g_main_device)); - if (inplace && tensor->src0->backend == GGML_BACKEND_GPU) { + if (inplace && (tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT)) { struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src0->extra; char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; size_t offset = 0; @@ -2865,11 +2892,15 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) { } void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) { - ggml_cuda_assign_buffers_impl(tensor, true); + ggml_cuda_assign_buffers_impl(tensor, true, false); } void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) { - ggml_cuda_assign_buffers_impl(tensor, false); + ggml_cuda_assign_buffers_impl(tensor, false, false); +} + +void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) { + ggml_cuda_assign_buffers_impl(tensor, false, true); } void ggml_cuda_set_main_device(int main_device) { diff --git a/ggml-cuda.h b/ggml-cuda.h index d32b44842..7a65a3558 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -29,6 +29,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor); void ggml_cuda_free_data(struct ggml_tensor * tensor); void ggml_cuda_assign_buffers(struct ggml_tensor * tensor); void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor); +void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor); void ggml_cuda_set_main_device(int main_device); void ggml_cuda_set_scratch_size(size_t scratch_size); void ggml_cuda_free_scratch(void); diff --git a/llama.cpp b/llama.cpp index 5a142aba6..5f3761b0e 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2976,7 +2976,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const return false; } } - ggml_tensor* lora_tensor; + ggml_tensor * lora_tensor; if (n_dims == 2) { lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]); } @@ -2984,6 +2984,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims); return 1; } + ggml_set_name(lora_tensor, "lora_tensor"); // load tensor data size_t offset = fin.tellg(); @@ -2999,6 +3000,21 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) { ggml_tensor * dest_t = model_tensors[base_name]; + + offload_func_t offload_func = llama_nop; + offload_func_t offload_func_force_inplace = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) { + if (dest_t->type != GGML_TYPE_F16) { + throw std::runtime_error(format( + "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__)); + } + offload_func = ggml_cuda_assign_buffers; + offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace; + } +#endif // GGML_USE_CUBLAS + ggml_tensor * base_t; if (model_loader) { // load from base model @@ -3026,7 +3042,12 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const } ggml_tensor * loraA = lora_tensors[base_name + ".loraA"]; + GGML_ASSERT(loraA->type == GGML_TYPE_F32); + ggml_set_name(loraA, "loraA"); + ggml_tensor * loraB = lora_tensors[base_name + ".loraB"]; + GGML_ASSERT(loraB->type == GGML_TYPE_F32); + ggml_set_name(loraB, "loraB"); if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" @@ -3036,19 +3057,32 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const // w = w + BA*s ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB); + offload_func(BA); + ggml_set_name(BA, "BA"); if (scaling != 1.0f) { ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling); + ggml_set_name(scale_tensor, "scale_tensor"); + BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor); + offload_func(BA); + ggml_set_name(BA, "BA_scaled"); } ggml_tensor * r; if (base_t == dest_t) { r = ggml_add_inplace(lora_ctx, dest_t, BA); + offload_func_force_inplace(r); + ggml_set_name(r, "r_add_inplace"); } else { r = ggml_add(lora_ctx, base_t, BA); + offload_func(r); + ggml_set_name(r, "r_add"); + r = ggml_cpy(lora_ctx, r, dest_t); + offload_func(r); + ggml_set_name(r, "r_cpy"); } struct ggml_cgraph gf = ggml_build_forward(r); From b922bc351b69770cec2d35d2aa50fa052b95ca93 Mon Sep 17 00:00:00 2001 From: Howard Su Date: Wed, 28 Jun 2023 10:13:02 -0700 Subject: [PATCH 097/135] llama : remove shards weight file support (#2000) * Remove multiple shards * Remove multiple file loaders * Remove llama_load_tensor_shard class * Simplify load logic * Remove dead code guess_n_parts function * Remove vocab_only from constructor of llama_model_loader * Remove alignment_prevents_mmap which is not more needed. * Remove useless check --- llama.cpp | 233 ++++++++---------------------------------------------- 1 file changed, 35 insertions(+), 198 deletions(-) diff --git a/llama.cpp b/llama.cpp index 5f3761b0e..47e11d03c 100644 --- a/llama.cpp +++ b/llama.cpp @@ -364,96 +364,14 @@ static size_t llama_calc_tensor_size(const std::vector & ne, enum ggml return size / ggml_blck_size(type); } -struct llama_load_tensor_shard { - std::vector ne; - size_t size; - enum ggml_type type; - size_t file_idx; - size_t file_off; - - void calc_size() { - size = llama_calc_tensor_size(ne, type); - } -}; - -enum llama_split_type { - SPLIT_NONE, - SPLIT_BY_COLUMNS, - SPLIT_BY_ROWS -}; - struct llama_load_tensor { - std::vector shards; - std::string name; enum ggml_type type = GGML_TYPE_F32; - llama_split_type split_type = SPLIT_NONE; std::vector ne; + size_t file_off; size_t size; struct ggml_tensor * ggml_tensor = NULL; uint8_t * data; - - llama_load_tensor(const std::string & name) : name(name) {} - - void calc_all() { - calc_type(); - calc_split_type(); - calc_ne(); - calc_size(); - } - - void calc_type() { - const auto & first_shard = shards.at(0); - for (const auto & shard : shards) { - if (shard.type != first_shard.type) { - throw std::runtime_error(format("inconsistent tensor shard type in '%s'", name.c_str())); - } - } - type = first_shard.type; - } - - void calc_split_type() { - if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file - shards.size() == 1) { // only one file? - split_type = SPLIT_NONE; - } else if (name.find("tok_embeddings.") == 0 || - name.find(".attention.wo.weight") != std::string::npos || - name.find(".feed_forward.w2.weight") != std::string::npos) { - split_type = SPLIT_BY_COLUMNS; - } else { - split_type = SPLIT_BY_ROWS; - } - } - - void calc_ne() { - const auto & first_shard = shards.at(0); - for (const auto & shard : shards) { - if (shard.ne != first_shard.ne) { - throw std::runtime_error(format("inconsistent tensor shard shape in '%s': first was %s, other was %s", - name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str())); - } - } - ne = first_shard.ne; - LLAMA_ASSERT(shards.size() <= UINT32_MAX); - uint32_t n_shards = (uint32_t) shards.size(); - switch (split_type) { - case SPLIT_NONE: - ne = first_shard.ne; - break; - case SPLIT_BY_COLUMNS: - ne = {checked_mul(first_shard.ne[0], n_shards), - first_shard.ne[1]}; - break; - case SPLIT_BY_ROWS: - ne = {first_shard.ne[0], - checked_mul(first_shard.ne[1], n_shards)}; - break; - } - } - - void calc_size() { - size = llama_calc_tensor_size(ne, type); - } }; struct llama_load_tensors_map { @@ -476,13 +394,13 @@ struct llama_file_loader { llama_hparams hparams; llama_vocab vocab; - llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map) + llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map) : file(fname, "rb") { fprintf(stderr, "llama.cpp: loading model from %s\n", fname); read_magic(); read_hparams(); read_vocab(); - read_tensor_metadata(file_idx, tensors_map); + read_tensor_metadata(tensors_map); } void read_magic() { uint32_t magic = file.read_u32(); @@ -539,19 +457,19 @@ struct llama_file_loader { tok_score.score = score; } } - void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) { + void read_tensor_metadata(llama_load_tensors_map & tensors_map) { while (file.tell() < file.size) { - llama_load_tensor_shard shard; + llama_load_tensor tensor; uint32_t n_dims = file.read_u32(); uint32_t name_len = file.read_u32(); - shard.type = (enum ggml_type) file.read_u32(); - shard.ne.resize(n_dims); - file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims); + tensor.type = (enum ggml_type) file.read_u32(); + tensor.ne.resize(n_dims); + file.read_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * n_dims); std::string name = file.read_string(name_len); if (n_dims < 1 || n_dims > 2) { throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims)); } - switch (shard.type) { + switch (tensor.type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: @@ -566,30 +484,20 @@ struct llama_file_loader { case GGML_TYPE_Q6_K: break; default: { - throw std::runtime_error(format("unrecognized tensor type %u\n", shard.type)); + throw std::runtime_error(format("unrecognized tensor type %u\n", tensor.type)); } } - if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) { - // skip to the next multiple of 32 bytes - file.seek(-static_cast(file.tell()) & 31, SEEK_CUR); - } - shard.file_idx = file_idx; - shard.file_off = file.tell(); + // skip to the next multiple of 32 bytes + file.seek(-static_cast(file.tell()) & 31, SEEK_CUR); - shard.calc_size(); - file.seek(shard.size, SEEK_CUR); + tensor.file_off = file.tell(); + tensor.name = name; + tensor.size = llama_calc_tensor_size(tensor.ne, tensor.type); + file.seek(tensor.size, SEEK_CUR); - auto it = tensors_map.name_to_idx.find(name); - size_t idx; - if (it != tensors_map.name_to_idx.end()) { - idx = it->second; - } else { - tensors_map.tensors.emplace_back(name); - idx = tensors_map.tensors.size() - 1; - tensors_map.name_to_idx.emplace(name, idx); - } - tensors_map.tensors.at(idx).shards.push_back(shard); + tensors_map.tensors.push_back(tensor); + tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1; } } }; @@ -659,56 +567,19 @@ struct llama_file_saver { }; struct llama_model_loader { - std::vector> file_loaders; + std::unique_ptr file_loader; llama_load_tensors_map tensors_map; bool use_mmap; size_t num_ggml_tensors_created = 0; struct ggml_context * ggml_ctx = NULL; std::unique_ptr mapping; - llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) { - auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map); - file_loaders.emplace_back(first_file); - uint32_t n_parts = vocab_only ? 1 : guess_n_parts(); - for (uint32_t i = 1; i < n_parts; i++) { - std::string fname = fname_base + "." + std::to_string(i); - auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map); - file_loaders.emplace_back(ith_file); - if (ith_file->hparams != first_file->hparams) { - throw std::runtime_error(format("llama.cpp: hparams inconsistent between files")); - } - } + llama_model_loader(const std::string & fname_base, bool use_mmap) { + file_loader = std::unique_ptr(new llama_file_loader(fname_base.c_str(), tensors_map)); if (!llama_mmap::SUPPORTED) { use_mmap = false; } - if (use_mmap && alignment_prevents_mmap()) { - fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n"); - use_mmap = false; - } this->use_mmap = use_mmap; - for (llama_load_tensor & lt : tensors_map.tensors) { - lt.calc_all(); - } - } - - bool alignment_prevents_mmap() { - for (const llama_load_tensor & lt : tensors_map.tensors) { - for (const llama_load_tensor_shard & shard : lt.shards) { - if (shard.file_off & 3) { - return true; - } - } - } - return false; - } - - uint32_t guess_n_parts() const { - auto it = tensors_map.name_to_idx.find("tok_embeddings.weight"); - if (it == tensors_map.name_to_idx.end()) { - throw std::runtime_error(std::string("missing tok_embeddings.weight")); - } - const llama_load_tensor & lt = tensors_map.tensors.at(it->second); - return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0); } void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const { @@ -774,7 +645,7 @@ struct llama_model_loader { } if (use_mmap) { - mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size, ggml_is_numa())); + mapping.reset(new llama_mmap(&file_loader->file, prefetch_size, ggml_is_numa())); if (lmlock) { lmlock->init(mapping->addr); } @@ -830,45 +701,13 @@ struct llama_model_loader { void load_data_for(llama_load_tensor & lt) { if (use_mmap) { - LLAMA_ASSERT(lt.shards.size() == 1); - lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off; - } else if (lt.split_type == SPLIT_NONE) { - llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file; - file.seek(lt.shards.at(0).file_off, SEEK_SET); + lt.data = (uint8_t *) mapping->addr + lt.file_off; + } else { + llama_file & file = file_loader->file; + file.seek(lt.file_off, SEEK_SET); file.read_raw(lt.data, lt.size); - } else if (lt.split_type == SPLIT_BY_ROWS) { - size_t offset = 0; - for (llama_load_tensor_shard & shard : lt.shards) { - llama_file & file = file_loaders.at(shard.file_idx)->file; - file.seek(shard.file_off, SEEK_SET); - file.read_raw(lt.data + offset, shard.size); - offset += shard.size; - } - LLAMA_ASSERT(offset == lt.size); - } else if (lt.split_type == SPLIT_BY_COLUMNS) { - // Let's load the data into temporary buffers to ensure the OS performs large loads. - std::vector tmp_bufs(lt.shards.size()); - for (size_t i = 0; i < lt.shards.size(); i++) { - llama_load_tensor_shard & shard = lt.shards.at(i); - llama_file & file = file_loaders.at(shard.file_idx)->file; - file.seek(shard.file_off, SEEK_SET); - tmp_bufs.at(i).resize(shard.size); - file.read_raw(tmp_bufs.at(i).addr, shard.size); - } - // Then reshape. - size_t num_rows = lt.ne.at(1); - size_t per_shard_row_size = lt.shards.at(0).size / num_rows; - size_t out_offset = 0; - for (size_t row = 0; row < num_rows; row++) { - for (llama_buffer & tmp_buf : tmp_bufs) { - memcpy(lt.data + out_offset, - tmp_buf.addr + row * per_shard_row_size, - per_shard_row_size); - out_offset += per_shard_row_size; - } - } - LLAMA_ASSERT(out_offset == lt.size); } + if (0) { print_checksum(lt); } @@ -1067,12 +906,12 @@ static void llama_model_load_internal( model.t_start_us = ggml_time_us(); - std::unique_ptr ml(new llama_model_loader(fname, use_mmap, vocab_only)); + std::unique_ptr ml(new llama_model_loader(fname, use_mmap)); - vocab = std::move(ml->file_loaders.at(0)->vocab); - model.hparams = ml->file_loaders.at(0)->hparams; + vocab = std::move(ml->file_loader->vocab); + model.hparams = ml->file_loader->hparams; model.n_gpu_layers = n_gpu_layers; - llama_file_version file_version = ml->file_loaders.at(0)->file_version; + llama_file_version file_version = ml->file_loader->file_version; auto & hparams = model.hparams; { @@ -1106,7 +945,6 @@ static void llama_model_load_internal( fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); - fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size()); fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); } @@ -2461,9 +2299,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s nthread = std::thread::hardware_concurrency(); } - std::unique_ptr model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false, - /*vocab_only*/ false)); - llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype); + std::unique_ptr model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false)); + llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype); #ifdef GGML_USE_K_QUANTS int n_attention_wv = 0; @@ -2897,7 +2734,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const llama_buffer base_buf; if (path_base_model) { fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model); - model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false)); + model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true)); size_t ctx_size; size_t mmapped_size; @@ -2915,7 +2752,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const // maybe this should in llama_model_loader if (model_loader->use_mmap) { - model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0, ggml_is_numa())); + model_loader->mapping.reset(new llama_mmap(&model_loader->file_loader->file, /* prefetch */ 0, ggml_is_numa())); } } From 6432aabb6dc887436e4d57414b63116189c3b13b Mon Sep 17 00:00:00 2001 From: "Salvador E. Tropea" Date: Wed, 28 Jun 2023 14:26:26 -0300 Subject: [PATCH 098/135] cuda : fix missing const qualifier in casts (#2027) --- ggml-cuda.cu | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index be75cb792..5f05d9181 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1244,7 +1244,7 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const dfloat * y, } static __global__ void mul_mat_p021_f16_f32(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x) { - const half * x = (half *) vx; + const half * x = (const half *) vx; const int row_x = blockDim.y*blockIdx.y + threadIdx.y; const int channel = blockDim.z*blockIdx.z + threadIdx.z; @@ -1294,7 +1294,7 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x, const int nchannels_x, const int channel_stride_x) { - const half * x = (half *) vx; + const half * x = (const half *) vx; const int row_x = blockDim.y*blockIdx.y + threadIdx.y; const int channel = blockDim.z*blockIdx.z + threadIdx.z; @@ -1337,14 +1337,14 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous } static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) { - const float * xi = (float *) cxi; + const float * xi = (const float *) cxi; float * dsti = (float *) cdsti; *dsti = *xi; } static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) { - const float * xi = (float *) cxi; + const float * xi = (const float *) cxi; half * dsti = (half *) cdsti; *dsti = __float2half(*xi); From 5b351e94d041742cd50ffcf2d44718d63bab398a Mon Sep 17 00:00:00 2001 From: "Salvador E. Tropea" Date: Wed, 28 Jun 2023 14:27:31 -0300 Subject: [PATCH 099/135] cuda : remove nchannels_x argument from mul_mat_vec_nc_f16_f32 (#2028) - Not used --- ggml-cuda.cu | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 5f05d9181..4e0d3dbde 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1292,7 +1292,7 @@ static __global__ void mul_mat_p021_f16_f32(const void * vx, const float * y, fl static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, - const int row_stride_x, const int nchannels_x, const int channel_stride_x) { + const int row_stride_x, const int channel_stride_x) { const half * x = (const half *) vx; @@ -1698,7 +1698,7 @@ static void ggml_mul_mat_vec_nc_f16_f32_cuda( const dim3 block_nums(1, nrows_x, nchannels_x); const dim3 block_dims(WARP_SIZE, 1, 1); mul_mat_vec_nc_f16_f32<<>> - (vx, y, dst, ncols_x, nrows_x, row_stride_x, nchannels_x, channel_stride_x); + (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x); } static void ggml_cpy_f32_f32_cuda( From d3494bb86bf7ad5b0b60aae0220ea576f273b5c0 Mon Sep 17 00:00:00 2001 From: m3ndax Date: Wed, 28 Jun 2023 20:39:08 +0200 Subject: [PATCH 100/135] llama : replacing auto &kv with const auto &kv (#2041) * Replacing auto &kv with const auto &kv * Create codacy.yml * Delete codacy.yml --- llama.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/llama.cpp b/llama.cpp index 47e11d03c..ef80b4e8b 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2723,7 +2723,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const // create a name -> tensor map of the model to accelerate lookups std::unordered_map model_tensors; - for (auto & kv: model.tensors_by_name) { + for (const auto & kv: model.tensors_by_name) { model_tensors.insert(kv); } From 96a712ca1b7f427e3bd7ffc0c70b2105cfc7fbf1 Mon Sep 17 00:00:00 2001 From: LostRuins <39025047+LostRuins@users.noreply.github.com> Date: Thu, 29 Jun 2023 11:56:43 +0800 Subject: [PATCH 101/135] Porting the improved K-Quant CUDA kernels to OpenCL (#1966) * Added broken new q4k quant * xx + ib0 * Fix q2_k fast kernel * Use preprocessor for QK_K * Add q6_k fast matmul kernel * ported q3k speedup successfully * ported q2k and q5k speedups * remove old dot kernels and template * fixed global const struct types * fixing address spaces * fixed string too long CI issue --------- Co-authored-by: 0cc4m --- ggml-opencl.cpp | 545 ++++++++++++++++++++++++++++++++---------------- 1 file changed, 361 insertions(+), 184 deletions(-) diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 95f4cec6d..fed4ffb0c 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -21,11 +21,19 @@ #define CL_DMMV_BLOCK_SIZE 32 +#ifndef K_QUANTS_PER_ITERATION +#define K_QUANTS_PER_ITERATION 1 +#else +static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); +#endif + #define MULTILINE_QUOTE(...) #__VA_ARGS__ static std::string program_source = MULTILINE_QUOTE( typedef char int8_t; typedef uchar uint8_t; +typedef short int16_t; +typedef ushort uint16_t; typedef int int32_t; typedef uint uint32_t; @@ -175,7 +183,9 @@ void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float *v0 = vload_half(0, &x[ib + 0]); *v1 = vload_half(0, &x[ib + 1]); } +); +static std::string k_quants_source = MULTILINE_QUOTE( inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m) { if (j < 4) @@ -199,7 +209,7 @@ __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __globa const int is = 8 * n + l / 16; const uint8_t q = x[i].qs[32 * n + l]; - __global float *y = yy + i * 256 + 128 * n; + __global float *y = yy + i * QK_K + 128 * n; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); @@ -231,7 +241,7 @@ __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __globa float d_all = vload_half(0, &x[i].d); float dl = d_all * (us - 32); - __global float *y = yy + i * 256 + 128 * n + 32 * j; + __global float *y = yy + i * QK_K + 128 * n + 32 * j; const __global uint8_t *q = x[i].qs + 32 * n; const __global uint8_t *hm = x[i].hmask; @@ -248,7 +258,7 @@ __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __globa const int is = 2 * il; const int n = 4; - __global float *y = yy + i * 256 + 64 * il + n * ir; + __global float *y = yy + i * QK_K + 64 * il + n * ir; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); @@ -277,7 +287,7 @@ __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __globa const int ir = tid % 16; const int is = 2 * il; - __global float *y = yy + i * 256 + 64 * il + 2 * ir; + __global float *y = yy + i * QK_K + 64 * il + 2 * ir; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); @@ -309,7 +319,7 @@ __kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __globa const int il = tid - 32 * ip; const int is = 8 * ip + il / 16; - __global float *y = yy + i * 256 + 128 * ip + il; + __global float *y = yy + i * QK_K + 128 * ip + il; const float d = vload_half(0, &x[i].d); @@ -323,161 +333,383 @@ __kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __globa y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); } +__kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { -void vec_dot_q2_K(__global const struct block_q2_K* x, const int ib, const int iqs, const __global float *yy, float *result) { + const int row = get_group_id(0); - int n = iqs / 128; - int r = iqs - 128 * n; - int l = r / 8; + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; - __global const float *y = yy + 128 * n + l; - __global const uint8_t *q = x[ib].qs + 32 * n + l; - __global const uint8_t *s = x[ib].scales + 8 * n; + __global const struct block_q2_K * x = xx + ib0; - const float dall = vload_half(0, &x[ib].d); - const float dmin = vload_half(0, &x[ib].dmin); + const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...15 + const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1 - float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4)) - + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4)) - + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4)) - + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4)) - + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4)) - + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4)) - + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4)) - + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4)); + const int step = 16/K_QUANTS_PER_ITERATION; - *result = sum; -} + const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - step*im; // 0...15 or 0...7 -void vec_dot_q3_K(__global const struct block_q3_K* x, const int ib, const int iqs, const __global float *yy, float *result) { + const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2 + const int q_offset = 32*im + l0; + const int s_offset = 8*im; + const int y_offset = 128*im + l0; - const uint32_t kmask1 = 0x03030303; - const uint32_t kmask2 = 0x0f0f0f0f; + tmp[16 * ix + tid] = 0; - uint32_t aux[3]; - uint32_t utmp[4]; + uint32_t aux[4]; + const uint8_t * d = (const uint8_t *)aux; + const uint8_t * m = (const uint8_t *)(aux + 2); - int n = iqs/128; - int r = iqs - 128*n; - int l = r/8; + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { - __global const float * y = yy + 128*n + l; - __global const uint8_t * q = x[ib].qs + 32*n + l; - __global const uint8_t * hm = x[ib].hmask + l; - const int8_t * s = (const int8_t *)utmp + 8*n; + __global const float * y = yy + i * QK_K + y_offset; + __global const uint8_t * q = x[i].qs + q_offset; - aux[0] = x[ib].scales[0] | x[ib].scales[1] << 8 | x[ib].scales[2] << 16 | x[ib].scales[3] << 24; - aux[1] = x[ib].scales[4] | x[ib].scales[5] << 8 | x[ib].scales[6] << 16 | x[ib].scales[7] << 24; - aux[2] = x[ib].scales[8] | x[ib].scales[9] << 8 | x[ib].scales[10] << 16 | x[ib].scales[11] << 24; + const float dall = vload_half(0, &x[i].d); + const float dmin = vload_half(0, &x[i].dmin); - utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); - utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); - utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); - utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); + __global const uint32_t * a = (__global const uint32_t *)(x[i].scales + s_offset); + aux[0] = a[0] & 0x0f0f0f0f; + aux[1] = a[1] & 0x0f0f0f0f; + aux[2] = (a[0] >> 4) & 0x0f0f0f0f; + aux[3] = (a[1] >> 4) & 0x0f0f0f0f; - const float dall = vload_half(0, &x[ib].d); - const uint8_t m = 1 << (4*n); + float sum1 = 0, sum2 = 0; + for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { + sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3) + + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3) + + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3) + + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3) + + y[l+16] * d[1] * ((q[l+16] >> 0) & 3) + + y[l+48] * d[3] * ((q[l+16] >> 2) & 3) + + y[l+80] * d[5] * ((q[l+16] >> 4) & 3) + +y[l+112] * d[7] * ((q[l+16] >> 6) & 3); + sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6] + + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7]; - float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4)) - + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4)) - + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4)) - + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4)) - + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4)) - + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4)) - + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4)) - + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4)); + } + tmp[16 * ix + tid] += dall * sum1 - dmin * sum2; - *result = sum * dall; - -} - -void vec_dot_q4_K(__global const struct block_q4_K* x, const int ib, const int iqs, const __global float *yy, float *result) { - - const int j = iqs / 64; // j is in 0...3 - const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4 - const int is = 2*j; // is is in 0...6 in steps of 2 - - __global const float * y = yy + 64*j + ir; - __global const uint8_t * q = x[ib].qs + 32*j + ir; - - const float dall = vload_half(0, &x[ib].d); - const float dmin = vload_half(0, &x[ib].dmin); - - uint8_t sc, m; - get_scale_min_k4(is + 0, x[ib].scales, &sc, &m); - const float d1 = dall * sc; - const float m1 = dmin * m; - get_scale_min_k4(is + 1, x[ib].scales, &sc, &m); - const float d2 = dall * sc; - const float m2 = dmin * m; - - float sum = 0; - for (int k = 0; k < 4; ++k) { - sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1); - sum += y[k + 32] * (d2 * (q[k] >> 4) - m2); } - *result = sum; + // sum up partial sums and write back result + barrier(CLK_LOCAL_MEM_FENCE); + for (int s=16; s>0; s>>=1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(CLK_LOCAL_MEM_FENCE); + } + if (tid == 0) { + dst[row] = tmp[0]; + } } -void vec_dot_q5_K(__global const struct block_q5_K* x, const int ib, const int iqs, const __global float *yy, float *result) { +__kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { + const uint16_t kmask1 = 0x0303; + const uint16_t kmask2 = 0x0f0f; - const int j = iqs / 64; - const int ir = (iqs - 64*j)/2; - const int is = 2*j; + const int row = get_group_id(0); - __global const float * y = yy + 64*j + ir; - __global const uint8_t * ql = x[ib].qs + 32*j + ir; - __global const uint8_t * qh = x[ib].qh + ir; + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; - const float dall = vload_half(0, &x[ib].d); - const float dmin = vload_half(0, &x[ib].dmin); + __global const struct block_q3_K * x = xx + ib0; - uint8_t sc, m; - get_scale_min_k4(is + 0, x[ib].scales, &sc, &m); - const float d1 = dall * sc; - const float m1 = dmin * m; - get_scale_min_k4(is + 1, x[ib].scales, &sc, &m); - const float d2 = dall * sc; - const float m2 = dmin * m; + const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 + const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1 + + const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop + const int step = 16/K_QUANTS_PER_ITERATION; + const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - step*im; // 0....15 or 0...7 + + const uint8_t m = 1 << (4*im); + + const int l0 = n*in; // 0...15 or 0...14 in steps of 2 + const int q_offset = 32*im + l0; + const int y_offset = 128*im + l0; + + uint16_t utmp[4]; + const int8_t * s = (const int8_t *)utmp; + + const uint16_t s_shift = 4*im; + + tmp[16 * ix + tid] = 0; + + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + + __global const float * y = yy + i * QK_K + y_offset; + __global const uint8_t * q = x[i].qs + q_offset; + __global const uint8_t * h = x[i].hmask + l0; + + __global const uint16_t * a = (__global const uint16_t *)x[i].scales; + utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4); + utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4); + utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4); + utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4); + + const float d = vload_half(0, &x[i].d); + + float sum = 0; + for (int l = 0; l < n; ++l) { + sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4)) + + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4)) + + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4)) + + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4)); + sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4)) + + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4)) + + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4)) + + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4)); + } + tmp[16 * ix + tid] += d * sum; - uint8_t hm = 1 << is; - float sum = 0; - for (int k = 0; k < 4; ++k) { - sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1); } - hm <<= 1; - for (int k = 0; k < 4; ++k) { - sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2); - } - *result = sum; + // sum up partial sums and write back result + barrier(CLK_LOCAL_MEM_FENCE); + for (int s=16; s>0; s>>=1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(CLK_LOCAL_MEM_FENCE); + } + if (tid == 0) { + dst[row] = tmp[0]; + } } -void vec_dot_q6_K(__global const struct block_q6_K* x, const int ib, const int iqs, const __global float *yy, float *result) { +__kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { + //to rename it later, just to test now + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; - const int ip = iqs / 128; // 0 or 1 - const int il = (iqs - 128*ip)/8; // 0...15 - const int is = 8*ip; + const int row = get_group_id(0); + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; - __global const float * y = yy + 128*ip + il; + const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15 + const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; - const float d = vload_half(0, &x[ib].d); + const int step = 8/K_QUANTS_PER_ITERATION; - __global const uint8_t * ql = x[ib].ql + 64*ip + il; - __global const uint8_t * qh = x[ib].qh + 32*ip + il; - __global const int8_t * sc = x[ib].scales + is; + const int il = tid/step; // 0...3 + const int ir = tid - step*il;// 0...3 + const int n = 2*K_QUANTS_PER_ITERATION; - *result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32) - + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32) - + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32) - + y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32) - + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32) - + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32) - + y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32) - + y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32); + const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 + const int in = il%2; + const int l0 = n*(2*ir + in); + const int q_offset = 32*im + l0; + const int y_offset = 64*im + l0; + + uint16_t aux[4]; + const uint8_t * sc = (const uint8_t *)aux; + + __global const struct block_q4_K * x = xx + ib0; + + tmp[16 * ix + tid] = 0; + + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + + __global const uint8_t * q1 = x[i].qs + q_offset; + __global const uint8_t * q2 = q1 + 64; + __global const float * y1 = yy + i*QK_K + y_offset; + __global const float * y2 = y1 + 128; + + const float dall = vload_half(0, &x[i].d); + const float dmin = vload_half(0, &x[i].dmin); + + __global const uint16_t * a = (__global const uint16_t *)x[i].scales; + aux[0] = a[im+0] & kmask1; + aux[1] = a[im+2] & kmask1; + aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); + aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); + + float4 s = (float4)(0.f); + float smin = 0; + for (int l = 0; l < n; ++l) { + s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4); + s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4); + smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; + } + tmp[16 * ix + tid] += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin; + + } + + // sum up partial sums and write back result + barrier(CLK_LOCAL_MEM_FENCE); + for (int s=16; s>0; s>>=1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(CLK_LOCAL_MEM_FENCE); + } + if (tid == 0) { + dst[row] = tmp[0]; + } +} + +__kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { + + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + + const int row = get_group_id(0); + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + const int tid = get_local_id(0)/2; // 0...15 + const int ix = get_local_id(0)%2; + + const int il = tid/4; // 0...3 + const int ir = tid - 4*il;// 0...3 + const int n = 2; + + const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 + const int in = il%2; + + const int l0 = n*(2*ir + in); + const int q_offset = 32*im + l0; + const int y_offset = 64*im + l0; + + const uint8_t hm1 = 1 << (2*im); + const uint8_t hm2 = hm1 << 4; + + uint16_t aux[4]; + const uint8_t * sc = (const uint8_t *)aux; + + __global const struct block_q5_K * x = xx + ib0; + + tmp[16 * ix + tid] = 0; + + for (int i = ix; i < num_blocks_per_row; i += 2) { + + __global const uint8_t * ql1 = x[i].qs + q_offset; + __global const uint8_t * ql2 = ql1 + 64; + __global const uint8_t * qh = x[i].qh + l0; + __global const float * y1 = yy + i*QK_K + y_offset; + __global const float * y2 = y1 + 128; + + const float dall = vload_half(0, &x[i].d); + const float dmin = vload_half(0, &x[i].dmin); + + __global const uint16_t * a = (__global const uint16_t *)x[i].scales; + aux[0] = a[im+0] & kmask1; + aux[1] = a[im+2] & kmask1; + aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); + aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); + + float4 sum = (float4)(0.f); + float smin = 0; + for (int l = 0; l < n; ++l) { + sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0)) + + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0)); + sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0)) + + y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0)); + sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0)) + + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0)); + sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0)) + + y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0)); + smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3] + + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7]; + } + tmp[16 * ix + tid] += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin; + + } + + // sum up partial sums and write back result + barrier(CLK_LOCAL_MEM_FENCE); + for (int s=16; s>0; s>>=1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(CLK_LOCAL_MEM_FENCE); + } + if (tid == 0) { + dst[row] = tmp[0]; + } +} + +__kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx, __local float* tmp, __global const float * yy, __global float * dst, const int ncols) { + + const int row = get_group_id(0); + + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + __global const struct block_q6_K * x = xx + ib0; + + const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 + const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0, 1 + + const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 + + const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const int in = tid - step*im; // 0...15 or 0...7 + +#if K_QUANTS_PER_ITERATION == 1 + const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 + const int is = 0; +#else + const int l0 = 4 * in; // 0, 4, 8, ..., 28 + const int is = in / 4; +#endif + const int ql_offset = 64*im + l0; + const int qh_offset = 32*im + l0; + const int s_offset = 8*im + is; + const int y_offset = 128*im + l0; + + tmp[16 * ix + tid] = 0; // partial sum for thread in warp + + for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + + __global const float * y = yy + i * QK_K + y_offset; + __global const uint8_t * ql = x[i].ql + ql_offset; + __global const uint8_t * qh = x[i].qh + qh_offset; + __global const int8_t * s = x[i].scales + s_offset; + + const float d = vload_half(0, &x[i].d); + +#if K_QUANTS_PER_ITERATION == 1 + float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32) + + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32) + + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32) + + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32) + + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32) + + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32) + + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32) + +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32); + tmp[16 * ix + tid] += sum; +#else + float sum = 0; + for (int l = 0; l < 4; ++l) { + sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32) + + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32) + + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32) + + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32); + } + tmp[16 * ix + tid] += sum; +#endif + + } + + // sum up partial sums and write back result + barrier(CLK_LOCAL_MEM_FENCE); + for (int s=16; s>0; s>>=1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(CLK_LOCAL_MEM_FENCE); + } + if (tid == 0) { + dst[row] = tmp[0]; + } } ); @@ -549,44 +781,6 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float } ); -std::string dequant_mul_mat_vec_k_template = MULTILINE_QUOTE( -__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { - const int block_size = get_local_size(0); - const int row = get_group_id(0); - const int tid = get_local_id(0); - - const int iter_stride = 256; - const int vals_per_iter = iter_stride / block_size; - const int num_blocks_per_row = ncols / 256; - const int ib0 = row*num_blocks_per_row; - - tmp[tid] = 0; - - for (int i = 0; i < ncols; i += iter_stride) { - const int col = i + vals_per_iter*tid; - const int ib = ib0 + col/256; // x block index - const int iqs = col%256; // x quant index - const int iybs = col - col%256; // y block start index - - // dequantize - float v; - DOT_KERNEL(x, ib, iqs, y + iybs, &v); - tmp[tid] += v; - } - - // sum up partial sums and write back result - barrier(CLK_LOCAL_MEM_FENCE); - for (int s=block_size/2; s>0; s>>=1) { - if (tid < s) { - tmp[tid] += tmp[tid + s]; - } - barrier(CLK_LOCAL_MEM_FENCE); - } - if (tid == 0) { - dst[row] = tmp[0]; - } -} -); std::string mul_template = MULTILINE_QUOTE( __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) { @@ -649,18 +843,6 @@ std::array mul_str_values = { "mul_f32", "float" }; -std::array dmmv_k_str_keys = { - "KERNEL_NAME", "X_TYPE", "DOT_KERNEL" -}; - -std::array dmmv_k_str_values = { - "dequantize_mul_mat_vec_q2_K", "struct block_q2_K", "vec_dot_q2_K", - "dequantize_mul_mat_vec_q3_K", "struct block_q3_K", "vec_dot_q3_K", - "dequantize_mul_mat_vec_q4_K", "struct block_q4_K", "vec_dot_q4_K", - "dequantize_mul_mat_vec_q5_K", "struct block_q5_K", "vec_dot_q5_K", - "dequantize_mul_mat_vec_q6_K", "struct block_q6_K", "vec_dot_q6_K", -}; - std::string& replace(std::string& s, const std::string& from, const std::string& to) { size_t pos = 0; while ((pos = s.find(from, pos)) != std::string::npos) { @@ -673,6 +855,7 @@ std::string& replace(std::string& s, const std::string& from, const std::string& std::string generate_kernels() { std::stringstream src; src << program_source << '\n'; + src << k_quants_source << '\n'; for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) { std::string dequant_kernel = dequant_template; std::string dmmv_kernel = dequant_mul_mat_vec_template; @@ -690,13 +873,6 @@ std::string generate_kernels() { } src << mul_kernel << '\n'; } - for (size_t i = 0; i < dmmv_k_str_values.size(); i += dmmv_k_str_keys.size()) { - std::string dmmv_k_kernel = dequant_mul_mat_vec_k_template; - for (size_t j = 0; j < dmmv_k_str_keys.size(); j++) { - replace(dmmv_k_kernel, dmmv_k_str_keys[j], dmmv_k_str_values[i + j]); - } - src << dmmv_k_kernel << '\n'; - } return src.str(); } @@ -729,10 +905,11 @@ static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, co exit(1); } - const char* compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math " - "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1"; + std::string compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math " + "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1 " + "-DQK_K=256 -DK_QUANTS_PER_ITERATION=" + std::to_string(K_QUANTS_PER_ITERATION); - err = clBuildProgram(p, 0, NULL, compile_opts, NULL, NULL); + err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL); if(err < 0) { clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); From b8c8dda75fdf5fdea49c80af36818e7c30fe0ddf Mon Sep 17 00:00:00 2001 From: Howard Su Date: Thu, 29 Jun 2023 21:15:15 +0800 Subject: [PATCH 102/135] Use unsigned for random seed (#2006) * Use unsigned for random seed. Keep -1 as the value to use a time based seed. Co-authored-by: Georgi Gerganov --- examples/common.cpp | 2 +- examples/common.h | 2 +- examples/embedding/embedding.cpp | 4 ++-- examples/main/README.md | 2 +- examples/main/main.cpp | 4 ++-- examples/perplexity/perplexity.cpp | 4 ++-- examples/server/README.md | 2 +- .../train-text-from-scratch.cpp | 6 +++--- llama.cpp | 8 ++++---- llama.h | 14 ++++++++------ 10 files changed, 25 insertions(+), 23 deletions(-) diff --git a/examples/common.cpp b/examples/common.cpp index 5addd10a1..3278a0643 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -110,7 +110,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - params.seed = std::stoi(argv[i]); + params.seed = std::stoul(argv[i]); } else if (arg == "-t" || arg == "--threads") { if (++i >= argc) { invalid_param = true; diff --git a/examples/common.h b/examples/common.h index 9d213d6d0..66e567291 100644 --- a/examples/common.h +++ b/examples/common.h @@ -22,7 +22,7 @@ int32_t get_num_physical_cores(); struct gpt_params { - int32_t seed = -1; // RNG seed + uint32_t seed = -1; // RNG seed int32_t n_threads = get_num_physical_cores(); int32_t n_predict = -1; // new tokens to predict int32_t n_ctx = 512; // context size diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 3cd5bb794..2b7eb39c5 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -24,11 +24,11 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); - if (params.seed < 0) { + if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } - fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); + fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { diff --git a/examples/main/README.md b/examples/main/README.md index 9ba1eb384..375386130 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -242,7 +242,7 @@ Example usage: `--logit-bias 29905-inf` ### RNG Seed -- `-s SEED, --seed SEED`: Set the random number generator (RNG) seed (default: -1, < 0 = random seed). +- `-s SEED, --seed SEED`: Set the random number generator (RNG) seed (default: -1, -1 = random seed). The RNG seed is used to initialize the random number generator that influences the text generation process. By setting a specific seed value, you can obtain consistent and reproducible results across multiple runs with the same input and settings. This can be helpful for testing, debugging, or comparing the effects of different options on the generated text to see when they diverge. If the seed is set to a value less than 0, a random seed will be used, which will result in different outputs on each run. diff --git a/examples/main/main.cpp b/examples/main/main.cpp index bcdc98d61..3a171925b 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -94,11 +94,11 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); - if (params.seed < 0) { + if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } - fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); + fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index f8a6cb516..dd54ed3c4 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -136,11 +136,11 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); - if (params.seed < 0) { + if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } - fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); + fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { diff --git a/examples/server/README.md b/examples/server/README.md index fa95c0044..ba4b2fec9 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -152,7 +152,7 @@ node . `mirostat_eta`: Set the Mirostat learning rate, parameter eta (default: 0.1). - `seed`: Set the random number generator (RNG) seed (default: -1, < 0 = random seed). + `seed`: Set the random number generator (RNG) seed (default: -1, -1 = random seed). `ignore_eos`: Ignore end of stream token and continue generating (default: false). diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index a05881d16..05bfa8016 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -2768,7 +2768,7 @@ void train_print_usage(int /*argc*/, char ** argv, const struct train_params * p fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out); - fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); + fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd); fprintf(stderr, " --mult N Mult size used for new models, influences feedforward size. (default %d)\n", params->n_mult); @@ -3034,10 +3034,10 @@ int main(int argc, char ** argv) { return 1; } - if (params.seed < 0) { + if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } - printf("%s: seed: %d\n", __func__, params.seed); + printf("%s: seed: %u\n", __func__, params.seed); srand(params.seed); struct llama_context_params llama_params = llama_context_default_params(); diff --git a/llama.cpp b/llama.cpp index ef80b4e8b..049f73e44 100644 --- a/llama.cpp +++ b/llama.cpp @@ -777,7 +777,7 @@ static bool kv_cache_init( struct llama_context_params llama_context_default_params() { struct llama_context_params result = { - /*.seed =*/ -1, + /*.seed =*/ LLAMA_DEFAULT_SEED, /*.n_ctx =*/ 512, /*.n_batch =*/ 512, /*.gpu_layers =*/ 0, @@ -2541,7 +2541,7 @@ struct llama_context * llama_new_context_with_model( llama_context * ctx = new llama_context(*model, model->vocab); - if (params.seed < 0) { + if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } @@ -2974,8 +2974,8 @@ int llama_get_kv_cache_token_count(const struct llama_context * ctx) { #define LLAMA_MAX_RNG_STATE (64*1024) -void llama_set_rng_seed(struct llama_context * ctx, int seed) { - if (seed < 0) { +void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) { + if (seed == LLAMA_DEFAULT_SEED) { seed = time(NULL); } ctx->rng.seed(seed); diff --git a/llama.h b/llama.h index c2f2e5331..5bb1964bd 100644 --- a/llama.h +++ b/llama.h @@ -46,6 +46,8 @@ #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN #define LLAMA_SESSION_VERSION 1 +#define LLAMA_DEFAULT_SEED 0xFFFFFFFF + #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) // Defined when llama.cpp is compiled with support for offloading model layers to GPU. #define LLAMA_SUPPORTS_GPU_OFFLOAD @@ -81,11 +83,11 @@ extern "C" { typedef void (*llama_progress_callback)(float progress, void *ctx); struct llama_context_params { - int seed; // RNG seed, -1 for random - int n_ctx; // text context - int n_batch; // prompt processing batch size - int n_gpu_layers; // number of layers to store in VRAM - int main_gpu; // the GPU that is used for scratch and small tensors + uint32_t seed; // RNG seed, -1 for random + int32_t n_ctx; // text context + int32_t n_batch; // prompt processing batch size + int32_t n_gpu_layers; // number of layers to store in VRAM + int32_t main_gpu; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs // called with a progress value between 0 and 1, pass NULL to disable llama_progress_callback progress_callback; @@ -196,7 +198,7 @@ extern "C" { LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx); // Sets the current rng seed. - LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed); + LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed); // Returns the maximum size in bytes of the state (rng, logits, embedding // and kv_cache) - will often be smaller after compacting tokens From b1ca8f36a9cdbcee5f5c425df717611a1040a897 Mon Sep 17 00:00:00 2001 From: Qingyou Meng Date: Sat, 1 Jul 2023 23:42:43 +0800 Subject: [PATCH 103/135] ggml : disable GGML_TASK_INIT and GGML_TASK_FINALIZE by default (#1995) Will not be scheduled unless explicitly enabled. --- ggml.c | 61 +++++++++++++++++++++++++++++++++++++++++++++++++--------- ggml.h | 3 +++ 2 files changed, 55 insertions(+), 9 deletions(-) diff --git a/ggml.c b/ggml.c index 684caaa37..75cc44baa 100644 --- a/ggml.c +++ b/ggml.c @@ -3846,6 +3846,40 @@ static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); +// WARN: +// Mis-confguration can lead to problem that's hard to reason about: +// * At best it crash or talks nosense. +// * At worst it talks slightly difference but hard to perceive. +// +// An op has to enable INIT or FINALIZE when any of it's branch needs that pass. +// Take care about compile options (e.g., GGML_USE_xxx). +static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 }; +static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 }; +static void ggml_setup_op_has_task_pass(void) { + { // INIT + bool * I = GGML_OP_HAS_INIT; + + I[GGML_OP_ACC ] = true; + I[GGML_OP_MUL_MAT ] = true; + I[GGML_OP_OUT_PROD ] = true; + I[GGML_OP_SET ] = true; + I[GGML_OP_GET_ROWS_BACK ] = true; + I[GGML_OP_DIAG_MASK_INF ] = true; + I[GGML_OP_DIAG_MASK_ZERO ] = true; + I[GGML_OP_CONV_1D_S1_PH ] = true; + I[GGML_OP_CONV_1D_S2_PH ] = true; + I[GGML_OP_CONV_2D_SK_P0 ] = true; + I[GGML_OP_FLASH_ATTN_BACK ] = true; + I[GGML_OP_CROSS_ENTROPY_LOSS ] = true; + } + + { // FINALIZE + bool * F = GGML_OP_HAS_FINALIZE; + + F[GGML_OP_CROSS_ENTROPY_LOSS ] = true; + } +} + // // ggml context // @@ -4267,6 +4301,8 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { ggml_cl_init(); #endif + ggml_setup_op_has_task_pass(); + is_first_call = false; } @@ -16791,9 +16827,11 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { if (node_n != -1) { /* FINALIZE */ struct ggml_tensor * node = state->shared->cgraph->nodes[node_n]; - params.nth = node->n_tasks; - ggml_compute_forward(¶ms, node); - ggml_graph_compute_perf_stats_node(node, state->shared); + if (GGML_OP_HAS_FINALIZE[node->op]) { + params.nth = node->n_tasks; + ggml_compute_forward(¶ms, node); + ggml_graph_compute_perf_stats_node(node, state->shared); + } } // distribute new work or execute it direct if 1T @@ -16805,10 +16843,13 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { state->shared->perf_node_start_cycles = ggml_perf_cycles(); state->shared->perf_node_start_time_us = ggml_perf_time_us(); + params.nth = node->n_tasks; + /* INIT */ - params.type = GGML_TASK_INIT; - params.nth = node->n_tasks; - ggml_compute_forward(¶ms, node); + if (GGML_OP_HAS_INIT[node->op]) { + params.type = GGML_TASK_INIT; + ggml_compute_forward(¶ms, node); + } if (node->n_tasks == 1) { // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1, @@ -16816,9 +16857,11 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { params.type = GGML_TASK_COMPUTE; ggml_compute_forward(¶ms, node); - params.type = GGML_TASK_FINALIZE; - ggml_compute_forward(¶ms, node); - ggml_graph_compute_perf_stats_node(node, state->shared); + if (GGML_OP_HAS_FINALIZE[node->op]) { + params.type = GGML_TASK_FINALIZE; + ggml_compute_forward(¶ms, node); + ggml_graph_compute_perf_stats_node(node, state->shared); + } } else { break; } diff --git a/ggml.h b/ggml.h index 459913222..11b51f8bd 100644 --- a/ggml.h +++ b/ggml.h @@ -444,6 +444,9 @@ extern "C" { // compute types + + // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled. + // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995. enum ggml_task_type { GGML_TASK_INIT = 0, GGML_TASK_COMPUTE, From 04606a159947566b27810508433e6ca5dbc684ba Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 1 Jul 2023 18:45:44 +0300 Subject: [PATCH 104/135] train : fix compile warning --- examples/train-text-from-scratch/train-text-from-scratch.cpp | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index 05bfa8016..c50eeb343 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -2671,7 +2671,8 @@ struct train_params { const char * fn_checkpoint_out; const char * fn_model_out; - int seed; + uint32_t seed; + int n_ctx; int n_embd; int n_mult; From 79f634a19d1c32a6cfb1befc21551ee684fced6b Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 1 Jul 2023 18:46:00 +0300 Subject: [PATCH 105/135] embd-input : fix returning ptr to temporary --- examples/embd-input/embd-input-lib.cpp | 9 ++++++--- examples/embd-input/embd-input.h | 4 +--- 2 files changed, 7 insertions(+), 6 deletions(-) diff --git a/examples/embd-input/embd-input-lib.cpp b/examples/embd-input/embd-input-lib.cpp index 37de52ad6..570e273fc 100644 --- a/examples/embd-input/embd-input-lib.cpp +++ b/examples/embd-input/embd-input-lib.cpp @@ -210,9 +210,12 @@ llama_token sampling_id(struct MyModel* mymodel) { const char * sampling(struct MyModel * mymodel) { llama_context * ctx = mymodel->ctx; int id = sampling_id(mymodel); - std::string ret; - if (id == llama_token_eos()) ret = ""; - else ret = llama_token_to_str(ctx, id); + static std::string ret; + if (id == llama_token_eos()) { + ret = ""; + } else { + ret = llama_token_to_str(ctx, id); + } eval_id(mymodel, id); return ret.c_str(); } diff --git a/examples/embd-input/embd-input.h b/examples/embd-input/embd-input.h index 4fefabd42..efb5ba5e2 100644 --- a/examples/embd-input/embd-input.h +++ b/examples/embd-input/embd-input.h @@ -5,7 +5,6 @@ #include "llama.h" #include "build-info.h" - extern "C" { typedef struct MyModel { @@ -14,14 +13,13 @@ typedef struct MyModel { int n_past = 0; } MyModel; - struct MyModel* create_mymodel(int argc, char ** argv); bool eval_float(void* model, float* input, int N); bool eval_tokens(void* model, std::vector tokens); bool eval_id(struct MyModel* mymodel, int id); bool eval_string(struct MyModel* mymodel, const char* str); -const char* sampling(struct MyModel* mymodel); +const char * sampling(struct MyModel* mymodel); llama_token sampling_id(struct MyModel* mymodel); void free_mymodel(struct MyModel* mymodel); From cb44dbc7de287b3d17772cfb1aa49d55e082ce5b Mon Sep 17 00:00:00 2001 From: Rand Xie Date: Sun, 2 Jul 2023 00:02:58 +0800 Subject: [PATCH 106/135] llama : catch llama_load_session_file_internal exceptions (#2022) * convert checks in llama_load_session_file to throw and handle them * make llama_load_session_file_internal static * address feedbacks to avoid using exceptions --- llama.cpp | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) diff --git a/llama.cpp b/llama.cpp index 049f73e44..3a7a0d5da 100644 --- a/llama.cpp +++ b/llama.cpp @@ -3219,7 +3219,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { return nread; } -bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { +static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { llama_file file(path_session, "rb"); // sanity checks @@ -3269,8 +3269,15 @@ bool llama_load_session_file(struct llama_context * ctx, const char * path_sessi llama_set_state_data(ctx, state_data.data()); } +} - return true; +bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { + try { + return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); + } catch (const std::exception & err) { + fprintf(stderr, "error loading session file: %s\n", err.what()); + return false; + } } bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { From 463f2f4c4f8dd5ca9594b7d65849f346f0effe05 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 1 Jul 2023 19:05:09 +0300 Subject: [PATCH 107/135] llama : fix return value of llama_load_session_file_internal (#2022) --- llama.cpp | 2 ++ 1 file changed, 2 insertions(+) diff --git a/llama.cpp b/llama.cpp index 3a7a0d5da..69c2ab01b 100644 --- a/llama.cpp +++ b/llama.cpp @@ -3269,6 +3269,8 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c llama_set_state_data(ctx, state_data.data()); } + + return true; } bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { From 471aab6e4cb89d8ef6d043f1bc93acb6eb78ab67 Mon Sep 17 00:00:00 2001 From: Judd Date: Sun, 2 Jul 2023 01:00:25 +0800 Subject: [PATCH 108/135] convert : add support of baichuan-7b (#2055) Co-authored-by: Judd --- README.md | 1 + convert.py | 41 ++++++++++++++++++++++++++++++++++++----- 2 files changed, 37 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index ee56988c7..e890dc9c2 100644 --- a/README.md +++ b/README.md @@ -85,6 +85,7 @@ as the main playground for developing new features for the [ggml](https://github - [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy) - [X] [Pygmalion 7B / Metharme 7B](#using-pygmalion-7b--metharme-7b) - [X] [WizardLM](https://github.com/nlpxucan/WizardLM) +- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) **Bindings:** diff --git a/convert.py b/convert.py index e340d2273..142692776 100644 --- a/convert.py +++ b/convert.py @@ -136,7 +136,7 @@ def find_n_mult(n_ff: int, n_embd: int) -> int: calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult if calc_ff == n_ff: return n_mult - return 1 + raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).") @dataclass class Params: @@ -321,6 +321,10 @@ class Tensor(metaclass=ABCMeta): @abstractmethod def permute(self, n_head: int) -> 'Tensor': ... @abstractmethod + def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ... + @abstractmethod + def part(self, n_part: int) -> 'UnquantizedTensor': ... + @abstractmethod def to_ggml(self) -> 'GGMLCompatibleTensor': ... @@ -345,6 +349,14 @@ class UnquantizedTensor(Tensor): def to_ggml(self) -> 'UnquantizedTensor': return self + def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': + r = self.ndarray.shape[0] // 3 + return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head)) + + def part(self, n_part: int) -> 'UnquantizedTensor': + r = self.ndarray.shape[0] // 3 + return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...]) + def permute(self, n_head: int) -> 'UnquantizedTensor': return UnquantizedTensor(permute(self.ndarray, n_head)) @@ -642,6 +654,19 @@ def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor: return lazy_tensor.load().permute(n_head) return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) +def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor: + def load() -> Tensor: + return lazy_tensor.load().permute_part(n_part, n_head) + s = lazy_tensor.shape.copy() + s[0] = s[0] // 3 + return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) + +def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor: + def load() -> Tensor: + return lazy_tensor.load().part(n_part) + s = lazy_tensor.shape.copy() + s[0] = s[0] // 3 + return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description) def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel: out: LazyModel = {} @@ -650,11 +675,17 @@ def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel: out["output.weight"] = model["lm_head.weight"] for i in itertools.count(): - if f"model.layers.{i}.self_attn.q_proj.weight" not in model: + if f"model.layers.{i}.self_attn.q_proj.weight" in model: + out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head) + out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head) + out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] + elif f"model.layers.{i}.self_attn.W_pack.weight" in model: + out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head) + out[f"layers.{i}.attention.wk.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head) + out[f"layers.{i}.attention.wv.weight"] = part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 2) + else: break - out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head) - out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head) - out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] + out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"] out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"] From 2f8cd979ecd1fa582852e7136e92ff8990b98fd8 Mon Sep 17 00:00:00 2001 From: Aaron Miller Date: Sat, 1 Jul 2023 11:14:59 -0700 Subject: [PATCH 109/135] metal : release buffers when freeing metal context (#2062) --- ggml-metal.m | 4 +++- llama.cpp | 8 +++++++- 2 files changed, 10 insertions(+), 2 deletions(-) diff --git a/ggml-metal.m b/ggml-metal.m index 7551231b9..fd69c41fe 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -202,7 +202,9 @@ struct ggml_metal_context * ggml_metal_init(void) { void ggml_metal_free(struct ggml_metal_context * ctx) { fprintf(stderr, "%s: deallocating\n", __func__); - + for (int i = 0; i < ctx->n_buffers; ++i) { + [ctx->buffers[i].metal release]; + } free(ctx); } diff --git a/llama.cpp b/llama.cpp index 69c2ab01b..561accf88 100644 --- a/llama.cpp +++ b/llama.cpp @@ -253,7 +253,13 @@ struct llama_model { struct llama_context { llama_context(const llama_model & model, const llama_vocab & vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {} - +#ifdef GGML_USE_METAL + ~llama_context() { + if (ctx_metal) { + ggml_metal_free(ctx_metal); + } + } +#endif std::mt19937 rng; bool has_evaluated_once = false; From b2132270678c473f7cd9ba871b03d694126bc33a Mon Sep 17 00:00:00 2001 From: Daniel Drake Date: Sat, 1 Jul 2023 20:31:44 +0200 Subject: [PATCH 110/135] cmake : don't force -mcpu=native on aarch64 (#2063) It's currently not possible to cross-compile llama.cpp for aarch64 because CMakeLists.txt forces -mcpu=native for that target. -mcpu=native doesn't make sense if your build host is not the target architecture, and clang rejects it for that reason, aborting the build. This can be easily reproduced using the current Android NDK to build for aarch64 on an x86_64 host. If there is not a specific CPU-tuning target for aarch64 then -mcpu should be omitted completely. I think that makes sense, there is not enough variance in the aarch64 instruction set to warrant a fixed -mcpu optimization at this point. And if someone is building natively and wishes to enable any possible optimizations for the host device, then there is already the LLAMA_NATIVE option available. Fixes #495. --- CMakeLists.txt | 5 ----- 1 file changed, 5 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index ffda74a70..34a897327 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -386,11 +386,6 @@ if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES if (MSVC) # TODO: arm msvc? else() - if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") - # Apple M1, M2, etc. - # Raspberry Pi 3, 4, Zero 2 (64-bit) - add_compile_options(-mcpu=native) - endif() if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6") # Raspberry Pi 1, Zero add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access) From befb3a35627432473f143c90994557d78ff5bc67 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sat, 1 Jul 2023 21:47:26 +0200 Subject: [PATCH 111/135] Test-based VRAM scratch size + context adjustment (#2056) --- llama.cpp | 38 +++++++++++++++++++++++++++++++++++--- 1 file changed, 35 insertions(+), 3 deletions(-) diff --git a/llama.cpp b/llama.cpp index 561accf88..a869bbac8 100644 --- a/llama.cpp +++ b/llama.cpp @@ -66,6 +66,7 @@ enum e_model { MODEL_65B, }; +static const size_t kB = 1024; static const size_t MB = 1024*1024; // computed for n_ctx == 2048 @@ -129,6 +130,34 @@ static const std::map & MEM_REQ_EVAL() return k_sizes; } +// amount of VRAM needed per batch size to hold temporary results +// the values for 3b and 65b are not derived from testing but instead chosen conservatively +static const std::map & VRAM_REQ_SCRATCH_BASE() +{ + static std::map k_sizes = { + { MODEL_3B, 512ull * kB }, + { MODEL_7B, 512ull * kB }, + { MODEL_13B, 640ull * kB }, + { MODEL_30B, 768ull * kB }, + { MODEL_65B, 1536ull * kB }, + }; + return k_sizes; +} + +// amount of VRAM needed per batch size and context to hold temporary results +// the values for 3b and 65b are not derived from testing but instead chosen conservatively +static const std::map & VRAM_REQ_SCRATCH_PER_CONTEXT() +{ + static std::map k_sizes = { + { MODEL_3B, 128ull }, + { MODEL_7B, 128ull }, + { MODEL_13B, 160ull }, + { MODEL_30B, 208ull }, + { MODEL_65B, 416ull }, + }; + return k_sizes; +} + // default hparams (LLaMA 7B) struct llama_hparams { uint32_t n_vocab = 32000; @@ -1118,11 +1147,14 @@ static void llama_model_load_internal( fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__); ggml_cuda_set_scratch_size(0); // disable scratch } else { - vram_scratch = n_batch * MB; + const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type); + const size_t vram_scratch_per_context = VRAM_REQ_SCRATCH_PER_CONTEXT().at(model.type); + vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context); ggml_cuda_set_scratch_size(vram_scratch); if (n_gpu_layers > 0) { - fprintf(stderr, "%s: allocating batch_size x 1 MB = %zd MB VRAM for the scratch buffer\n", - __func__, vram_scratch / MB); + fprintf(stderr, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n", + __func__, vram_scratch_base / kB, vram_scratch_per_context, + (vram_scratch + MB - 1) / MB); // round up } } #endif // GGML_USE_CUBLAS From 0bc2cdfc875fa7877d8e01c8bb17066f99c08f21 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sat, 1 Jul 2023 21:49:44 +0200 Subject: [PATCH 112/135] Better CUDA synchronization logic (#2057) --- ggml-cuda.cu | 63 ++++++++++++++++++++++++++++++++++++++-------------- ggml-cuda.h | 4 ---- 2 files changed, 46 insertions(+), 21 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 4e0d3dbde..50df20edd 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -214,6 +214,11 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); #endif +struct ggml_tensor_extra_gpu { + void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors + cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs +}; + static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; @@ -1970,7 +1975,6 @@ inline void ggml_cuda_op_add( } else { GGML_ASSERT(false); } - CUDA_CHECK(cudaGetLastError()); (void) src1; (void) dst; @@ -2002,7 +2006,6 @@ inline void ggml_cuda_op_mul( // compute mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main); - CUDA_CHECK(cudaGetLastError()); } (void) dst; @@ -2023,7 +2026,6 @@ inline void ggml_cuda_op_silu( // compute silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main); - CUDA_CHECK(cudaGetLastError()); (void) src1; (void) dst; @@ -2046,7 +2048,6 @@ inline void ggml_cuda_op_rms_norm( // compute rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main); - CUDA_CHECK(cudaGetLastError()); (void) src1; (void) dst; @@ -2125,7 +2126,6 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec( GGML_ASSERT(false); break; } - CUDA_CHECK(cudaGetLastError()); #ifdef GGML_CUDA_DMMV_F16 if (src1_convert_f16) { @@ -2202,7 +2202,6 @@ inline void ggml_cuda_op_rope( // compute rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main); - CUDA_CHECK(cudaGetLastError()); (void) dst; (void) src0_ddq_i; @@ -2226,7 +2225,6 @@ inline void ggml_cuda_op_diag_mask_inf( // compute diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main); - CUDA_CHECK(cudaGetLastError()); (void) dst; (void) src0_ddq_i; @@ -2248,7 +2246,6 @@ inline void ggml_cuda_op_soft_max( // compute soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main); - CUDA_CHECK(cudaGetLastError()); (void) src1; (void) dst; @@ -2344,10 +2341,11 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0}; size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0}; - // if multiple GPUs are used they need to wait for the main GPU to finish + // if multiple devices are used they need to wait for the main device + // here an event is recorded that signifies that the main device has finished calculating the input data if (split && g_device_count > 1) { CUDA_CHECK(cudaSetDevice(g_main_device)); - CUDA_CHECK(cudaDeviceSynchronize()); + CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device], g_cudaStreams_main[g_main_device])); } for (int id = 0; id < g_device_count; ++id) { @@ -2373,6 +2371,12 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm int64_t row_diff = row_high - row_low; cudaSetDevice(id); + cudaStream_t cudaStream_main = g_cudaStreams_main[id]; + + // wait for main GPU data if necessary + if (split && id != g_main_device) { + CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, src0_extra->events[g_main_device])); + } if (src0_on_device && src0_is_contiguous) { if (src0_is_f32) { @@ -2448,8 +2452,6 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm } const int64_t i11 = i13*ne12 + i12; - cudaStream_t cudaStream_main = g_cudaStreams_main[id]; - // for split tensors the data begins at i0 == i0_offset_low char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs; float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride; @@ -2509,6 +2511,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm // do the computation op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main); + CUDA_CHECK(cudaGetLastError()); // copy dst to host or other device if necessary if (!dst_on_device) { @@ -2538,6 +2541,11 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main)); } } + + // signify to main device that other device is done + if (split && g_device_count > 1 && id != g_main_device) { + CUDA_CHECK(cudaEventRecord(src0_extra->events[id], cudaStream_main)); + } } } } @@ -2549,7 +2557,6 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm } CUDA_CHECK(cudaSetDevice(id)); - CUDA_CHECK(cudaDeviceSynchronize()); if (src0_asq[id] > 0) { ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]); @@ -2564,6 +2571,21 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]); } } + + // main device waits for all other devices to be finished + if (split && g_device_count > 1) { + CUDA_CHECK(cudaSetDevice(g_main_device)); + for (int id = 0; id < g_device_count; ++id) { + if (id != g_main_device) { + CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id])); + } + } + } + + if (dst->backend == GGML_BACKEND_CPU) { + CUDA_CHECK(cudaSetDevice(g_main_device)); + CUDA_CHECK(cudaDeviceSynchronize()); + } } void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -2803,6 +2825,10 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice); extra->data_device[id] = buf; + + if (backend == GGML_BACKEND_GPU_SPLIT) { + CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id], cudaEventDisableTiming)); + } } tensor->extra = extra; @@ -2816,12 +2842,15 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; for (int id = 0; id < g_device_count; ++id) { - if (extra->data_device[id] == nullptr) { - continue; + if (extra->data_device[id] != nullptr) { + CUDA_CHECK(cudaSetDevice(id)); + CUDA_CHECK(cudaFree(extra->data_device[id])); } - CUDA_CHECK(cudaSetDevice(id)); - CUDA_CHECK(cudaFree(extra->data_device[id])); + if (extra->events[id] != nullptr) { + CUDA_CHECK(cudaSetDevice(id)); + CUDA_CHECK(cudaEventDestroy(extra->events[id])); + } } delete extra; diff --git a/ggml-cuda.h b/ggml-cuda.h index 7a65a3558..3c1e8deb6 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -8,10 +8,6 @@ extern "C" { #define GGML_CUDA_MAX_DEVICES 16 -struct ggml_tensor_extra_gpu { - void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors -}; - void ggml_init_cublas(void); void ggml_cuda_set_tensor_split(const float * tensor_split); From 46088f72318981341a2d646f12f6eee6aec06d65 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 2 Jul 2023 09:46:46 +0300 Subject: [PATCH 113/135] ggml : fix build with OpenBLAS (close #2066) --- ggml.c | 31 ++++++++++++++++--------------- 1 file changed, 16 insertions(+), 15 deletions(-) diff --git a/ggml.c b/ggml.c index 75cc44baa..afeb72ff0 100644 --- a/ggml.c +++ b/ggml.c @@ -3855,28 +3855,29 @@ static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size // Take care about compile options (e.g., GGML_USE_xxx). static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 }; static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 }; + static void ggml_setup_op_has_task_pass(void) { { // INIT - bool * I = GGML_OP_HAS_INIT; + bool * p = GGML_OP_HAS_INIT; - I[GGML_OP_ACC ] = true; - I[GGML_OP_MUL_MAT ] = true; - I[GGML_OP_OUT_PROD ] = true; - I[GGML_OP_SET ] = true; - I[GGML_OP_GET_ROWS_BACK ] = true; - I[GGML_OP_DIAG_MASK_INF ] = true; - I[GGML_OP_DIAG_MASK_ZERO ] = true; - I[GGML_OP_CONV_1D_S1_PH ] = true; - I[GGML_OP_CONV_1D_S2_PH ] = true; - I[GGML_OP_CONV_2D_SK_P0 ] = true; - I[GGML_OP_FLASH_ATTN_BACK ] = true; - I[GGML_OP_CROSS_ENTROPY_LOSS ] = true; + p[GGML_OP_ACC ] = true; + p[GGML_OP_MUL_MAT ] = true; + p[GGML_OP_OUT_PROD ] = true; + p[GGML_OP_SET ] = true; + p[GGML_OP_GET_ROWS_BACK ] = true; + p[GGML_OP_DIAG_MASK_INF ] = true; + p[GGML_OP_DIAG_MASK_ZERO ] = true; + p[GGML_OP_CONV_1D_S1_PH ] = true; + p[GGML_OP_CONV_1D_S2_PH ] = true; + p[GGML_OP_CONV_2D_SK_P0 ] = true; + p[GGML_OP_FLASH_ATTN_BACK ] = true; + p[GGML_OP_CROSS_ENTROPY_LOSS ] = true; } { // FINALIZE - bool * F = GGML_OP_HAS_FINALIZE; + bool * p = GGML_OP_HAS_FINALIZE; - F[GGML_OP_CROSS_ENTROPY_LOSS ] = true; + p[GGML_OP_CROSS_ENTROPY_LOSS ] = true; } } From d7d2e6a0f0c74f7a570dae384dfff371ac744d2a Mon Sep 17 00:00:00 2001 From: WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com> Date: Mon, 3 Jul 2023 05:38:44 +0800 Subject: [PATCH 114/135] server: add option to output probabilities for completion (#1962) * server: add option to output probabilities for completion * server: fix issue when handling probability output for incomplete tokens for multibyte character generation * server: fix llama_sample_top_k order * examples/common.h: put all bool variables in gpt_params together --- examples/common.h | 3 +- examples/server/server.cpp | 150 +++++++++++++++++++++++++++++-------- 2 files changed, 122 insertions(+), 31 deletions(-) diff --git a/examples/common.h b/examples/common.h index 66e567291..96f2228f8 100644 --- a/examples/common.h +++ b/examples/common.h @@ -31,7 +31,7 @@ struct gpt_params { int32_t n_gpu_layers = 0; // number of layers to store in VRAM int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs - bool low_vram = 0; // if true, reduce VRAM usage at the cost of performance + int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. // sampling parameters std::unordered_map logit_bias; // logit bias for specific tokens @@ -59,6 +59,7 @@ struct gpt_params { std::string lora_adapter = ""; // lora adapter path std::string lora_base = ""; // base model path for the lora adapter + bool low_vram = false; // if true, reduce VRAM usage at the cost of performance bool memory_f16 = true; // use f16 instead of f32 for memory kv bool random_prompt = false; // do not randomize prompt if none provided bool use_color = false; // use color to distinguish generations and inputs diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 998d55eac..e4ddbe986 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -26,6 +26,17 @@ struct server_params { int32_t write_timeout = 600; }; +// completion token output with probabilities +struct completion_token_output { + struct token_prob { + llama_token tok; + float prob; + }; + + std::vector probs; + llama_token tok; +}; + static size_t common_part(const std::vector & a, const std::vector & b) { size_t i; for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {} @@ -86,6 +97,40 @@ static void server_log(const char * level, const char * function, int line, fflush(stdout); } +// format incomplete utf-8 multibyte character for output +static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { + std::string out = token == -1 ? "" : llama_token_to_str(ctx, token); + // if first bit is 1, meaning it's a partial character + if (out.size() > 0 && (out[0] & 0x80) == 0x80) { + std::stringstream ss; + ss<< std::hex << (out[0] & 0xff); + std::string res ( ss.str() ); + out = "byte: \\x" + res; + } + return out; +} + +// convert a vector of completion_token_output to json +static json probs_vector_to_json(const llama_context * ctx, const std::vector probs) { + json out = json::array(); + for (const auto & prob : probs) { + json probs_for_token = json::array(); + for (const auto & p : prob.probs) { + std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); + probs_for_token.push_back(json { + { "tok_str", tok_str }, + { "prob", p.prob }, + }); + } + std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); + out.push_back(json { + {"content", tok_str}, + {"probs", probs_for_token}, + }); + } + return out; +} + static bool server_verbose = false; #if SERVER_VERBOSE != 1 @@ -107,6 +152,7 @@ struct llama_server_context { bool stream = false; bool has_next_token = false; std::string generated_text; + std::vector generated_token_probs; size_t num_tokens_predicted = 0; size_t n_past = 0; @@ -142,6 +188,7 @@ struct llama_server_context { num_tokens_predicted = 0; generated_text = ""; generated_text.reserve(params.n_ctx); + generated_token_probs.clear(); truncated = false; stopped_eos = false; stopped_word = false; @@ -221,8 +268,9 @@ struct llama_server_context { llama_set_rng_seed(ctx, params.seed); } - llama_token nextToken() { - llama_token result = -1; + completion_token_output nextToken() { + completion_token_output result; + result.tok = -1; if (embd.size() >= (size_t)params.n_ctx) { // Reset context @@ -261,7 +309,8 @@ struct llama_server_context { if (params.n_predict == 0) { has_next_token = false; - return llama_token_eos(); + result.tok = llama_token_eos(); + return result; } // out of user input, sample next token @@ -278,7 +327,7 @@ struct llama_server_context { const float mirostat_tau = params.mirostat_tau; const float mirostat_eta = params.mirostat_eta; const bool penalize_nl = params.penalize_nl; - llama_token id = 0; + const int32_t n_probs = params.n_probs; { auto * logits = llama_get_logits(ctx); @@ -312,35 +361,42 @@ struct llama_server_context { if (temp <= 0) { // Greedy sampling - id = llama_sample_token_greedy(ctx, &candidates_p); + result.tok = llama_sample_token_greedy(ctx, &candidates_p); + if (n_probs > 0) { + llama_sample_softmax(ctx, &candidates_p); + } } else { if (mirostat == 1) { static float mirostat_mu = 2.0f * mirostat_tau; const int mirostat_m = 100; llama_sample_temperature(ctx, &candidates_p, temp); - id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); + result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); } else if (mirostat == 2) { static float mirostat_mu = 2.0f * mirostat_tau; llama_sample_temperature(ctx, &candidates_p, temp); - id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); + result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); } else { // Temperature sampling - llama_sample_top_k(ctx, &candidates_p, top_k, 1); - llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); - llama_sample_typical(ctx, &candidates_p, typical_p, 1); - llama_sample_top_p(ctx, &candidates_p, top_p, 1); + size_t min_keep = std::max(1, n_probs); + llama_sample_top_k(ctx, &candidates_p, top_k, min_keep); + llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep); + llama_sample_typical(ctx, &candidates_p, typical_p, min_keep); + llama_sample_top_p(ctx, &candidates_p, top_p, min_keep); llama_sample_temperature(ctx, &candidates_p, temp); - id = llama_sample_token(ctx, &candidates_p); + result.tok = llama_sample_token(ctx, &candidates_p); } } + + for (size_t i = 0; i < std::min(candidates_p.size, (size_t) n_probs); ++i) { + result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p}); + } last_n_tokens.erase(last_n_tokens.begin()); - last_n_tokens.push_back(id); + last_n_tokens.push_back(result.tok); num_tokens_predicted++; } // add it to the context - embd.push_back(id); - result = id; + embd.push_back(result.tok); // decrement remaining sampling budget --n_remain; @@ -382,12 +438,16 @@ struct llama_server_context { return stop_pos; } - std::string doCompletion() { - const llama_token token = nextToken(); + completion_token_output doCompletion() { + const completion_token_output token_with_probs = nextToken(); - const std::string token_text = token == -1 ? "" : llama_token_to_str(ctx, token); + const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok); generated_text += token_text; + if (params.n_probs > 0) { + generated_token_probs.push_back(token_with_probs); + } + if (multibyte_pending > 0) { multibyte_pending -= token_text.size(); } else if (token_text.size() == 1) { @@ -416,8 +476,8 @@ struct llama_server_context { } LOG_VERBOSE("next token", { - { "token", token }, - { "token_text", llama_token_to_str(ctx, token) }, + { "token", token_with_probs.tok }, + { "token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok) }, { "has_next_token", has_next_token }, { "n_remain", n_remain }, { "num_tokens_predicted", num_tokens_predicted }, @@ -427,7 +487,7 @@ struct llama_server_context { { "stopping_word", stopping_word }, }); - return token_text; + return token_with_probs; } std::vector getEmbedding() { @@ -669,6 +729,7 @@ static json format_generation_settings(llama_server_context & llama) { { "ignore_eos", ignore_eos }, { "stream", llama.stream }, { "logit_bias", llama.params.logit_bias }, + { "n_probs", llama.params.n_probs }, }; } @@ -678,8 +739,9 @@ static json format_embedding_response(llama_server_context & llama) { }; } -static json format_final_response(llama_server_context & llama, const std::string & content) { - return json { +static json format_final_response(llama_server_context & llama, const std::string & content, const std::vector & probs) { + + json res = json { { "content", content }, { "stop", true }, { "model", llama.params.model_alias }, @@ -692,13 +754,25 @@ static json format_final_response(llama_server_context & llama, const std::strin { "stopped_limit", llama.stopped_limit }, { "stopping_word", llama.stopping_word }, }; + + if (llama.params.n_probs > 0) { + res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); + } + + return res; } -static json format_partial_response(const std::string & content) { - return json { +static json format_partial_response(llama_server_context & llama, const std::string & content, const std::vector & probs) { + json res = json { { "content", content }, { "stop", false }, }; + + if (llama.params.n_probs > 0) { + res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); + } + + return res; } static json format_tokenizer_response(const std::vector & tokens) { @@ -728,6 +802,7 @@ static void parse_options_completion(const json & body, llama_server_context & l llama.params.n_keep = body.value("n_keep", default_params.n_keep); llama.params.seed = body.value("seed", default_params.seed); llama.params.prompt = body.value("prompt", default_params.prompt); + llama.params.n_probs = body.value("n_probs", default_params.n_probs); llama.params.logit_bias.clear(); if (body.value("ignore_eos", false)) { @@ -830,7 +905,8 @@ int main(int argc, char ** argv) { size_t stop_pos = std::string::npos; while (llama.has_next_token) { - const std::string token_text = llama.doCompletion(); + const completion_token_output token_with_probs = llama.doCompletion(); + const std::string token_text = llama_token_to_str(llama.ctx, token_with_probs.tok); stop_pos = llama.findStoppingStrings(llama.generated_text, token_text.size(), STOP_FULL); @@ -844,7 +920,7 @@ int main(int argc, char ** argv) { llama.generated_text.end()); } - const json data = format_final_response(llama, llama.generated_text); + const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs); llama_print_timings(llama.ctx); @@ -853,9 +929,11 @@ int main(int argc, char ** argv) { } else { const auto chunked_content_provider = [&](size_t, DataSink & sink) { size_t sent_count = 0; + size_t sent_token_probs_index = 0; while (llama.has_next_token) { - const std::string token_text = llama.doCompletion(); + const completion_token_output token_with_probs = llama.doCompletion(); + const std::string token_text = llama_token_to_str(llama.ctx, token_with_probs.tok); if (llama.multibyte_pending > 0) { continue; } @@ -878,10 +956,22 @@ int main(int argc, char ** argv) { const std::string to_send = llama.generated_text.substr(pos, stop_pos); sent_count += to_send.size(); + std::vector probs_output = {}; + + if (llama.params.n_probs > 0) { + const std::vector to_send_toks = llama_tokenize(llama.ctx, to_send, false); + size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size()); + size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size()); + if (probs_pos < probs_stop_pos) { + probs_output = std::vector(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos); + } + sent_token_probs_index = probs_stop_pos; + } + const json data = llama.has_next_token - ? format_partial_response(to_send) + ? format_partial_response(llama, to_send, probs_output) // Generation is done, send extra information. - : format_final_response(llama, to_send); + : format_final_response(llama, to_send, llama.generated_token_probs); const std::string str = "data: " + From 55dbb915cc2a95048f56e667b09dfad38d840421 Mon Sep 17 00:00:00 2001 From: Howard Su Date: Mon, 3 Jul 2023 19:58:58 +0800 Subject: [PATCH 115/135] [llama] No need to check file version when loading vocab score (#2079) --- llama.cpp | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/llama.cpp b/llama.cpp index a869bbac8..f48a6ca79 100644 --- a/llama.cpp +++ b/llama.cpp @@ -481,9 +481,7 @@ struct llama_file_loader { std::string word = file.read_string(len); float score = 0.0f; - if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) { - file.read_raw(&score, sizeof(score)); - } + file.read_raw(&score, sizeof(score)); vocab.token_to_id[word] = i; From cc45a7feb8412e84ff292207621412fffc0d3d51 Mon Sep 17 00:00:00 2001 From: Howard Su Date: Tue, 4 Jul 2023 02:43:55 +0800 Subject: [PATCH 116/135] Fix crash of test-tokenizer-0 under Debug build (#2064) * Fix crash of test-tokenizer-0 under Debug build * Change per comment --- ggml-cuda.cu | 2 +- llama.cpp | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 50df20edd..0b12a9e76 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -2835,7 +2835,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { } void ggml_cuda_free_data(struct ggml_tensor * tensor) { - if (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) { + if (!tensor || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) { return; } diff --git a/llama.cpp b/llama.cpp index f48a6ca79..7419b03b6 100644 --- a/llama.cpp +++ b/llama.cpp @@ -194,8 +194,8 @@ struct llama_layer { }; struct llama_kv_cache { - struct ggml_tensor * k; - struct ggml_tensor * v; + struct ggml_tensor * k = NULL; + struct ggml_tensor * v = NULL; struct ggml_context * ctx = NULL; From 1cf14ccef12e19c5a5b0b17ab456242d1f8c7fdd Mon Sep 17 00:00:00 2001 From: Henri Vasserman Date: Tue, 4 Jul 2023 00:05:23 +0300 Subject: [PATCH 117/135] fix server crashes (#2076) --- examples/server/server.cpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index e4ddbe986..3bf985957 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -906,7 +906,7 @@ int main(int argc, char ** argv) { while (llama.has_next_token) { const completion_token_output token_with_probs = llama.doCompletion(); - const std::string token_text = llama_token_to_str(llama.ctx, token_with_probs.tok); + const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok); stop_pos = llama.findStoppingStrings(llama.generated_text, token_text.size(), STOP_FULL); @@ -933,7 +933,7 @@ int main(int argc, char ** argv) { while (llama.has_next_token) { const completion_token_output token_with_probs = llama.doCompletion(); - const std::string token_text = llama_token_to_str(llama.ctx, token_with_probs.tok); + const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok); if (llama.multibyte_pending > 0) { continue; } From 14a2cc71f62e45803ae70890ffbdeb0a172e6210 Mon Sep 17 00:00:00 2001 From: Govlzkoy Date: Tue, 4 Jul 2023 07:50:00 +0800 Subject: [PATCH 118/135] [ggml] fix index for ne03 value in ggml_cl_mul_f32 (#2088) --- ggml-opencl.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index fed4ffb0c..fa0bdbefb 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -1376,7 +1376,7 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; const int64_t ne0 = ne00 * ne01 * ne02 * ne03; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; From 698efad5fbbf326f01288649b123eff5f79b417e Mon Sep 17 00:00:00 2001 From: Erik Scholz Date: Tue, 4 Jul 2023 01:50:12 +0200 Subject: [PATCH 119/135] CI: make the brew update temporarily optional. (#2092) until they decide to fix the brew installation in the macos runners. see the open issues. eg https://github.com/actions/runner-images/pull/7710 --- .github/workflows/build.yml | 2 ++ 1 file changed, 2 insertions(+) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index b87ea76bc..aec43bd92 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -111,6 +111,7 @@ jobs: - name: Dependencies id: depends + continue-on-error: true run: | brew update @@ -129,6 +130,7 @@ jobs: - name: Dependencies id: depends + continue-on-error: true run: | brew update From 23c7c6fc9182b041f006b86ea1e7f99911ecf344 Mon Sep 17 00:00:00 2001 From: ZhouYuChen Date: Tue, 4 Jul 2023 20:15:16 +0800 Subject: [PATCH 120/135] Update Makefile: clean simple (#2097) --- Makefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Makefile b/Makefile index 03f38bdba..b289d97ed 100644 --- a/Makefile +++ b/Makefile @@ -272,7 +272,7 @@ libllama.so: llama.o ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) clean: - rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot train-text-from-scratch embd-input-test build-info.h + rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch embd-input-test build-info.h # # Examples From acc111caf93fc6681450924df9f99679c384c59e Mon Sep 17 00:00:00 2001 From: Henri Vasserman Date: Tue, 4 Jul 2023 15:38:04 +0300 Subject: [PATCH 121/135] Allow old Make to build server. (#2098) Also make server build by default. Tested with Make 3.82 --- Makefile | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/Makefile b/Makefile index b289d97ed..8966a3590 100644 --- a/Makefile +++ b/Makefile @@ -1,11 +1,5 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple libembdinput.so embd-input-test - -ifdef LLAMA_BUILD_SERVER - BUILD_TARGETS += server - LLAMA_SERVER_VERBOSE ?= 1 -server: private CXXFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE) -endif +BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple server libembdinput.so embd-input-test default: $(BUILD_TARGETS) @@ -61,6 +55,10 @@ else CXXFLAGS += -DNDEBUG endif +ifdef LLAMA_SERVER_VERBOSE + CXXFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE) +endif + # warnings CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar From 7ee76e45afae7f9a7a53e93393accfb5b36684e1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Tobias=20L=C3=BCtke?= Date: Tue, 4 Jul 2023 10:05:27 -0400 Subject: [PATCH 122/135] Simple webchat for server (#1998) * expose simple web interface on root domain * embed index and add --path for choosing static dir * allow server to multithread because web browsers send a lot of garbage requests we want the server to multithread when serving 404s for favicon's etc. To avoid blowing up llama we just take a mutex when it's invoked. * let's try this with the xxd tool instead and see if msvc is happier with that * enable server in Makefiles * add /completion.js file to make it easy to use the server from js * slightly nicer css * rework state management into session, expose historyTemplate to settings --------- Co-authored-by: Georgi Gerganov --- CMakeLists.txt | 2 +- examples/server/completion.js.hpp | 193 +++ examples/server/deps.sh | 22 + examples/server/index.html.hpp | 846 ++++++++++++ examples/server/index.js.hpp | 1851 ++++++++++++++++++++++++++ examples/server/public/completion.js | 81 ++ examples/server/public/index.html | 359 +++++ examples/server/public/index.js | 1 + examples/server/server.cpp | 69 +- 9 files changed, 3416 insertions(+), 8 deletions(-) create mode 100644 examples/server/completion.js.hpp create mode 100755 examples/server/deps.sh create mode 100644 examples/server/index.html.hpp create mode 100644 examples/server/index.js.hpp create mode 100644 examples/server/public/completion.js create mode 100644 examples/server/public/index.html create mode 100644 examples/server/public/index.js diff --git a/CMakeLists.txt b/CMakeLists.txt index 34a897327..4ac0f6f4e 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -79,7 +79,7 @@ option(LLAMA_QKK_64 "llama: use super-block size of 64 option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE}) option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE}) -option(LLAMA_BUILD_SERVER "llama: build server example" OFF) +option(LLAMA_BUILD_SERVER "llama: build server example" ON) # # Build info header diff --git a/examples/server/completion.js.hpp b/examples/server/completion.js.hpp new file mode 100644 index 000000000..002830cad --- /dev/null +++ b/examples/server/completion.js.hpp @@ -0,0 +1,193 @@ +unsigned char completion_js[] = { + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44, + 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x3a, 0x20, 0x74, 0x72, + 0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, + 0x69, 0x63, 0x74, 0x3a, 0x20, 0x35, 0x30, 0x30, 0x2c, 0x0a, 0x20, 0x20, + 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3a, + 0x20, 0x30, 0x2e, 0x32, 0x2c, 0x0a, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70, + 0x3a, 0x20, 0x5b, 0x22, 0x3c, 0x2f, 0x73, 0x3e, 0x22, 0x5d, 0x0a, 0x7d, + 0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x54, 0x68, + 0x69, 0x73, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x73, 0x20, 0x74, 0x68, + 0x65, 0x20, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, + 0x20, 0x75, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x61, 0x20, 0x6c, 0x6c, 0x61, + 0x6d, 0x61, 0x20, 0x64, 0x69, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x61, 0x72, + 0x79, 0x2e, 0x0a, 0x20, 0x2a, 0x20, 0x40, 0x70, 0x61, 0x72, 0x61, 0x6d, + 0x20, 0x7b, 0x6f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x7d, 0x20, 0x70, 0x61, + 0x72, 0x61, 0x6d, 0x73, 0x20, 0x2d, 0x20, 0x54, 0x68, 0x65, 0x20, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x65, 0x74, 0x65, 0x72, 0x73, 0x20, 0x66, 0x6f, + 0x72, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, + 0x2e, 0x0a, 0x20, 0x2a, 0x20, 0x40, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x20, + 0x7b, 0x6f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x7d, 0x20, 0x63, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x2d, 0x20, 0x61, 0x6e, + 0x20, 0x69, 0x6e, 0x73, 0x74, 0x61, 0x6e, 0x63, 0x65, 0x20, 0x6f, 0x66, + 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x6f, + 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x69, 0x66, 0x20, 0x79, 0x6f, 0x75, 0x20, + 0x6e, 0x65, 0x65, 0x64, 0x20, 0x6f, 0x6e, 0x65, 0x2c, 0x20, 0x6f, 0x72, + 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x2e, 0x0a, 0x20, 0x2a, 0x20, 0x40, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x20, 0x7b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x7d, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, + 0x20, 0x2d, 0x20, 0x54, 0x68, 0x65, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, + 0x61, 0x63, 0x6b, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x74, 0x6f, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x20, 0x77, 0x68, 0x65, + 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x6e, 0x65, + 0x2e, 0x0a, 0x20, 0x2a, 0x20, 0x40, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x73, 0x20, 0x7b, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x7d, 0x20, 0x74, + 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, + 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x61, 0x73, 0x20, 0x61, 0x20, 0x73, + 0x74, 0x72, 0x69, 0x6e, 0x67, 0x2e, 0x20, 0x49, 0x64, 0x65, 0x61, 0x6c, + 0x6c, 0x79, 0x20, 0x69, 0x67, 0x6e, 0x6f, 0x72, 0x65, 0x64, 0x2c, 0x20, + 0x61, 0x6e, 0x64, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x67, 0x65, 0x74, 0x20, + 0x61, 0x74, 0x20, 0x69, 0x74, 0x20, 0x76, 0x69, 0x61, 0x20, 0x74, 0x68, + 0x65, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x2e, 0x0a, + 0x20, 0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, + 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, + 0x6e, 0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, + 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, + 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x63, 0x6f, + 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x29, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, + 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, 0x6f, + 0x72, 0x74, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, + 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, + 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, + 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, + 0x61, 0x75, 0x6c, 0x74, 0x73, 0x2c, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, + 0x72, 0x61, 0x6d, 0x73, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x2f, + 0x2f, 0x20, 0x77, 0x65, 0x20, 0x75, 0x73, 0x65, 0x20, 0x66, 0x65, 0x74, + 0x63, 0x68, 0x20, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x6c, 0x79, 0x20, + 0x68, 0x65, 0x72, 0x65, 0x20, 0x62, 0x65, 0x63, 0x61, 0x73, 0x75, 0x65, + 0x20, 0x74, 0x68, 0x65, 0x20, 0x62, 0x75, 0x69, 0x6c, 0x74, 0x20, 0x69, + 0x6e, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, + 0x53, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20, + 0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, + 0x50, 0x4f, 0x53, 0x54, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, + 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, + 0x22, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, + 0x22, 0x2c, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, + 0x68, 0x6f, 0x64, 0x3a, 0x20, 0x27, 0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, + 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, + 0x79, 0x28, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, + 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, + 0x70, 0x2d, 0x61, 0x6c, 0x69, 0x76, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x27, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, + 0x2d, 0x54, 0x79, 0x70, 0x65, 0x27, 0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, + 0x6c, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, + 0x6e, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x41, + 0x63, 0x63, 0x65, 0x70, 0x74, 0x27, 0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, + 0x74, 0x2f, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, + 0x61, 0x6d, 0x27, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x2c, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x3a, 0x20, 0x63, + 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x73, 0x69, + 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, + 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x61, + 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, + 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e, 0x67, 0x65, 0x74, 0x52, + 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, + 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54, 0x65, 0x78, 0x74, 0x44, + 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x0a, 0x20, + 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, + 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72, + 0x79, 0x20, 0x7b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, + 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, + 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, + 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, + 0x73, 0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, + 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, + 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, + 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, + 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, + 0x2f, 0x20, 0x73, 0x73, 0x65, 0x20, 0x61, 0x6e, 0x73, 0x77, 0x65, 0x72, + 0x73, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x66, 0x6f, 0x72, + 0x6d, 0x20, 0x6d, 0x75, 0x6c, 0x74, 0x69, 0x70, 0x6c, 0x65, 0x20, 0x6c, + 0x69, 0x6e, 0x65, 0x73, 0x20, 0x6f, 0x66, 0x3a, 0x20, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x5c, 0x6e, 0x20, 0x77, 0x69, 0x74, 0x68, 0x20, 0x64, 0x61, + 0x74, 0x61, 0x20, 0x61, 0x6c, 0x77, 0x61, 0x79, 0x73, 0x20, 0x70, 0x72, + 0x65, 0x73, 0x65, 0x6e, 0x74, 0x20, 0x61, 0x73, 0x20, 0x61, 0x20, 0x6b, + 0x65, 0x79, 0x2e, 0x20, 0x69, 0x6e, 0x20, 0x6f, 0x75, 0x72, 0x20, 0x63, + 0x61, 0x73, 0x65, 0x20, 0x77, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x2f, 0x2f, 0x20, 0x6d, 0x61, 0x69, 0x6e, 0x6c, 0x79, 0x20, 0x63, + 0x61, 0x72, 0x65, 0x20, 0x61, 0x62, 0x6f, 0x75, 0x74, 0x20, 0x74, 0x68, + 0x65, 0x20, 0x64, 0x61, 0x74, 0x61, 0x3a, 0x20, 0x6b, 0x65, 0x79, 0x20, + 0x68, 0x65, 0x72, 0x65, 0x2c, 0x20, 0x77, 0x68, 0x69, 0x63, 0x68, 0x20, + 0x77, 0x65, 0x20, 0x65, 0x78, 0x70, 0x65, 0x63, 0x74, 0x20, 0x61, 0x73, + 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, + 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, + 0x6f, 0x64, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x70, 0x61, 0x72, 0x73, 0x65, 0x20, 0x61, + 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, + 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74, 0x68, + 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e, 0x28, + 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29, 0x24, + 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, + 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, + 0x74, 0x63, 0x68, 0x20, 0x6f, 0x66, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, + 0x6d, 0x61, 0x74, 0x63, 0x68, 0x41, 0x6c, 0x6c, 0x28, 0x72, 0x65, 0x67, + 0x65, 0x78, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61, + 0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61, + 0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, + 0x20, 0x73, 0x69, 0x6e, 0x63, 0x65, 0x20, 0x77, 0x65, 0x20, 0x6b, 0x6e, + 0x6f, 0x77, 0x20, 0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6c, + 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x2c, 0x20, 0x6c, 0x65, + 0x74, 0x27, 0x73, 0x20, 0x6a, 0x75, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, + 0x6f, 0x64, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6a, 0x73, 0x6f, 0x6e, + 0x20, 0x69, 0x6e, 0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, + 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, + 0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, + 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72, + 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, + 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x61, 0x63, + 0x6b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, + 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, + 0x20, 0x3d, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, + 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x29, 0x20, 0x21, 0x3d, 0x20, 0x66, + 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, + 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20, + 0x73, 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66, + 0x72, 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20, + 0x77, 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61, + 0x6b, 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, + 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65, + 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, + 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65, 0x72, + 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x20, 0x65, + 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x65, 0x29, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, + 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, + 0x6c, 0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, + 0x72, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, + 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, + 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a +}; +unsigned int completion_js_len = 2275; diff --git a/examples/server/deps.sh b/examples/server/deps.sh new file mode 100755 index 000000000..cf995162a --- /dev/null +++ b/examples/server/deps.sh @@ -0,0 +1,22 @@ +#!/bin/bash +# Download and update deps for binary + +# get the directory of this script file +DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )" +PUBLIC=$DIR/public +OUTPUT=$DIR/templats.hpp + +echo "// Generated file, do not edit" > $OUTPUT +echo "" > $OUTPUT + +echo "download js bundle files" +curl https://npm.reversehttp.com/@preact/signals-core,@preact/signals,htm/preact,preact,preact/hooks > $PUBLIC/index.js +echo >> $PUBLIC/index.js # add newline + +FILES=$(ls $PUBLIC) + +for FILE in $FILES; do + func=$(echo $FILE | tr '.' '_') + echo "generate $FILE.hpp ($func)" + xxd -n $func -i $PUBLIC/$FILE > $DIR/$FILE.hpp +done diff --git a/examples/server/index.html.hpp b/examples/server/index.html.hpp new file mode 100644 index 000000000..832e9a3bb --- /dev/null +++ b/examples/server/index.html.hpp @@ -0,0 +1,846 @@ +unsigned char index_html[] = { + 0x3c, 0x68, 0x74, 0x6d, 0x6c, 0x3e, 0x0a, 0x0a, 0x3c, 0x68, 0x65, 0x61, + 0x64, 0x3e, 0x0a, 0x20, 0x20, 0x3c, 0x6d, 0x65, 0x74, 0x61, 0x20, 0x63, + 0x68, 0x61, 0x72, 0x73, 0x65, 0x74, 0x3d, 0x22, 0x55, 0x54, 0x46, 0x2d, + 0x38, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x3c, 0x6d, 0x65, 0x74, 0x61, 0x20, + 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x76, 0x69, 0x65, 0x77, 0x70, 0x6f, + 0x72, 0x74, 0x22, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3d, + 0x22, 0x77, 0x69, 0x64, 0x74, 0x68, 0x3d, 0x64, 0x65, 0x76, 0x69, 0x63, + 0x65, 0x2d, 0x77, 0x69, 0x64, 0x74, 0x68, 0x2c, 0x20, 0x69, 0x6e, 0x69, + 0x74, 0x69, 0x61, 0x6c, 0x2d, 0x73, 0x63, 0x61, 0x6c, 0x65, 0x3d, 0x31, + 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x69, 0x6d, 0x75, 0x6d, 0x2d, 0x73, 0x63, + 0x61, 0x6c, 0x65, 0x3d, 0x31, 0x22, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, + 0x3c, 0x74, 0x69, 0x74, 0x6c, 0x65, 0x3e, 0x6c, 0x6c, 0x61, 0x6d, 0x61, + 0x2e, 0x63, 0x70, 0x70, 0x20, 0x2d, 0x20, 0x63, 0x68, 0x61, 0x74, 0x3c, + 0x2f, 0x74, 0x69, 0x74, 0x6c, 0x65, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x3c, + 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x62, 0x6f, 0x64, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, + 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x66, 0x66, 0x66, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6c, 0x6f, 0x72, + 0x3a, 0x20, 0x23, 0x30, 0x30, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, 0x66, 0x61, 0x6d, 0x69, 0x6c, + 0x79, 0x3a, 0x20, 0x73, 0x79, 0x73, 0x74, 0x65, 0x6d, 0x2d, 0x75, 0x69, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, + 0x2d, 0x73, 0x69, 0x7a, 0x65, 0x3a, 0x20, 0x39, 0x30, 0x25, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x23, + 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, + 0x3a, 0x20, 0x30, 0x65, 0x6d, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, + 0x79, 0x3a, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x64, 0x69, 0x72, 0x65, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x63, 0x6f, 0x6c, 0x75, 0x6d, + 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6a, 0x75, 0x73, + 0x74, 0x69, 0x66, 0x79, 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, + 0x3a, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x2d, 0x62, 0x65, 0x74, 0x77, + 0x65, 0x65, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, + 0x65, 0x69, 0x67, 0x68, 0x74, 0x3a, 0x20, 0x31, 0x30, 0x30, 0x25, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2c, 0x20, 0x66, 0x6f, 0x6f, 0x74, + 0x65, 0x72, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, + 0x65, 0x78, 0x74, 0x2d, 0x61, 0x6c, 0x69, 0x67, 0x6e, 0x3a, 0x20, 0x63, + 0x65, 0x6e, 0x74, 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x69, 0x6e, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, + 0x6e, 0x3a, 0x20, 0x33, 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x66, + 0x6c, 0x65, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, + 0x6c, 0x65, 0x78, 0x2d, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x3a, 0x20, 0x63, 0x6f, 0x6c, 0x75, 0x6d, 0x6e, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x6a, 0x75, 0x73, 0x74, 0x69, 0x66, 0x79, + 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3a, 0x20, 0x73, 0x70, + 0x61, 0x63, 0x65, 0x2d, 0x62, 0x65, 0x74, 0x77, 0x65, 0x65, 0x6e, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x61, 0x70, 0x3a, 0x20, + 0x31, 0x65, 0x6d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x67, 0x72, 0x6f, 0x77, 0x3a, 0x20, 0x31, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x76, 0x65, 0x72, + 0x66, 0x6c, 0x6f, 0x77, 0x2d, 0x79, 0x3a, 0x20, 0x61, 0x75, 0x74, 0x6f, + 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x72, + 0x64, 0x65, 0x72, 0x3a, 0x20, 0x31, 0x70, 0x78, 0x20, 0x73, 0x6f, 0x6c, + 0x69, 0x64, 0x20, 0x23, 0x63, 0x63, 0x63, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x62, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x2d, 0x72, 0x61, + 0x64, 0x69, 0x75, 0x73, 0x3a, 0x20, 0x35, 0x70, 0x78, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, + 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x64, 0x79, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x78, + 0x2d, 0x77, 0x69, 0x64, 0x74, 0x68, 0x3a, 0x20, 0x36, 0x30, 0x30, 0x70, + 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x69, 0x6e, + 0x2d, 0x77, 0x69, 0x64, 0x74, 0x68, 0x3a, 0x20, 0x33, 0x30, 0x30, 0x70, + 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x69, 0x6e, + 0x65, 0x2d, 0x68, 0x65, 0x69, 0x67, 0x68, 0x74, 0x3a, 0x20, 0x31, 0x2e, + 0x32, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, + 0x67, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, + 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x70, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x76, + 0x65, 0x72, 0x66, 0x6c, 0x6f, 0x77, 0x2d, 0x77, 0x72, 0x61, 0x70, 0x3a, + 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2d, 0x77, 0x6f, 0x72, 0x64, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x77, 0x6f, 0x72, 0x64, 0x2d, + 0x77, 0x72, 0x61, 0x70, 0x3a, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2d, + 0x77, 0x6f, 0x72, 0x64, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x68, 0x79, 0x70, 0x68, 0x65, 0x6e, 0x73, 0x3a, 0x20, 0x61, 0x75, 0x74, + 0x6f, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, + 0x67, 0x69, 0x6e, 0x2d, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x35, + 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, + 0x72, 0x67, 0x69, 0x6e, 0x2d, 0x62, 0x6f, 0x74, 0x74, 0x6f, 0x6d, 0x3a, + 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x23, 0x77, 0x72, 0x69, 0x74, + 0x65, 0x20, 0x66, 0x6f, 0x72, 0x6d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, 0x20, 0x31, + 0x65, 0x6d, 0x20, 0x30, 0x20, 0x30, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, + 0x20, 0x66, 0x6c, 0x65, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x63, 0x6f, 0x6c, 0x75, 0x6d, 0x6e, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x61, 0x70, 0x3a, 0x20, + 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x61, 0x6c, 0x69, 0x67, 0x6e, 0x2d, 0x69, 0x74, 0x65, 0x6d, 0x73, + 0x3a, 0x20, 0x73, 0x74, 0x72, 0x65, 0x74, 0x63, 0x68, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, + 0x69, 0x67, 0x68, 0x74, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x66, 0x6c, + 0x65, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6c, + 0x65, 0x78, 0x2d, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x3a, 0x20, 0x72, 0x6f, 0x77, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x67, 0x61, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6a, 0x75, 0x73, 0x74, 0x69, + 0x66, 0x79, 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3a, 0x20, + 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x65, 0x6e, 0x64, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x69, 0x65, + 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x62, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x3a, 0x20, 0x6e, 0x6f, + 0x6e, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, + 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, 0x20, + 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, + 0x6e, 0x67, 0x3a, 0x20, 0x35, 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x67, 0x72, 0x6f, 0x77, + 0x3a, 0x20, 0x31, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x77, + 0x69, 0x64, 0x74, 0x68, 0x3a, 0x20, 0x31, 0x30, 0x30, 0x25, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x70, + 0x72, 0x65, 0x20, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, + 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, + 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x32, 0x32, 0x32, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6c, 0x6f, + 0x72, 0x3a, 0x20, 0x23, 0x64, 0x64, 0x64, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x64, 0x65, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, + 0x2d, 0x66, 0x61, 0x6d, 0x69, 0x6c, 0x79, 0x3a, 0x20, 0x6d, 0x6f, 0x6e, + 0x6f, 0x73, 0x70, 0x61, 0x63, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x30, + 0x2e, 0x31, 0x65, 0x6d, 0x20, 0x30, 0x2e, 0x33, 0x65, 0x6d, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x72, 0x64, 0x65, 0x72, + 0x2d, 0x72, 0x61, 0x64, 0x69, 0x75, 0x73, 0x3a, 0x20, 0x33, 0x70, 0x78, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x6c, 0x61, + 0x62, 0x65, 0x6c, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, + 0x6d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, + 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x62, 0x6c, 0x6f, 0x63, + 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x3c, + 0x2f, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x3c, + 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, + 0x22, 0x6d, 0x6f, 0x64, 0x75, 0x6c, 0x65, 0x22, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x2c, 0x20, 0x68, + 0x2c, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x20, 0x65, 0x66, + 0x66, 0x65, 0x63, 0x74, 0x2c, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, + 0x65, 0x64, 0x2c, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x2c, 0x20, + 0x75, 0x73, 0x65, 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x20, 0x75, + 0x73, 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, 0x2c, 0x20, 0x75, 0x73, + 0x65, 0x52, 0x65, 0x66, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x66, + 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x2e, + 0x6a, 0x73, 0x27, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, + 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, + 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x7d, 0x20, 0x66, + 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, + 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x3b, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, + 0x6c, 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x72, + 0x6f, 0x6d, 0x70, 0x74, 0x3a, 0x20, 0x22, 0x54, 0x68, 0x69, 0x73, 0x20, + 0x69, 0x73, 0x20, 0x61, 0x20, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x73, + 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x62, 0x65, 0x74, 0x77, 0x65, 0x65, + 0x6e, 0x20, 0x75, 0x73, 0x65, 0x72, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x6c, + 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x61, 0x20, 0x66, 0x72, 0x69, 0x65, + 0x6e, 0x64, 0x6c, 0x79, 0x20, 0x63, 0x68, 0x61, 0x74, 0x62, 0x6f, 0x74, + 0x2e, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x64, 0x20, 0x69, 0x6e, + 0x20, 0x6d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x2e, 0x22, 0x2c, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x70, 0x72, 0x6f, 0x6d, + 0x70, 0x74, 0x7d, 0x7d, 0x5c, 0x6e, 0x5c, 0x6e, 0x7b, 0x7b, 0x68, 0x69, + 0x73, 0x74, 0x6f, 0x72, 0x79, 0x7d, 0x7d, 0x5c, 0x6e, 0x7b, 0x7b, 0x63, + 0x68, 0x61, 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x6e, + 0x61, 0x6d, 0x65, 0x7d, 0x7d, 0x3a, 0x20, 0x7b, 0x7b, 0x6d, 0x65, 0x73, + 0x73, 0x61, 0x67, 0x65, 0x7d, 0x7d, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, + 0x74, 0x3a, 0x20, 0x5b, 0x5d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x74, 0x79, 0x70, 0x65, 0x3a, 0x20, 0x22, 0x63, 0x68, 0x61, 0x74, + 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x68, 0x61, + 0x72, 0x3a, 0x20, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x22, 0x2c, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x3a, 0x20, + 0x22, 0x55, 0x73, 0x65, 0x72, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, + 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x74, 0x72, + 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x29, 0x20, 0x3d, 0x3e, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, + 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x63, 0x68, 0x61, 0x74, 0x53, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64, + 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64, 0x28, + 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, + 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, + 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, + 0x68, 0x20, 0x3e, 0x20, 0x30, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, + 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, + 0x69, 0x63, 0x74, 0x3a, 0x20, 0x34, 0x30, 0x30, 0x2c, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, + 0x75, 0x72, 0x65, 0x3a, 0x20, 0x30, 0x2e, 0x37, 0x2c, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, + 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x3a, 0x20, 0x32, 0x35, 0x36, 0x2c, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, + 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x3a, 0x20, 0x31, 0x2e, + 0x31, 0x38, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f, + 0x70, 0x5f, 0x6b, 0x3a, 0x20, 0x34, 0x30, 0x2c, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x5f, 0x70, 0x3a, 0x20, 0x30, 0x2e, + 0x35, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x73, 0x69, + 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x67, 0x65, 0x6e, + 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x3d, 0x20, 0x63, 0x6f, + 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64, 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, + 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x3d, 0x20, 0x6e, 0x75, 0x6c, + 0x6c, 0x20, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, + 0x73, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x20, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x73, 0x74, + 0x72, 0x2c, 0x20, 0x65, 0x78, 0x74, 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, + 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x73, 0x65, 0x74, + 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, 0x73, + 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x78, 0x74, + 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, + 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, + 0x2e, 0x2e, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x2c, 0x20, + 0x2e, 0x2e, 0x2e, 0x65, 0x78, 0x74, 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, + 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x53, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x28, + 0x73, 0x74, 0x72, 0x29, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, + 0x41, 0x6c, 0x6c, 0x28, 0x2f, 0x5c, 0x7b, 0x5c, 0x7b, 0x28, 0x2e, 0x2a, + 0x3f, 0x29, 0x5c, 0x7d, 0x5c, 0x7d, 0x2f, 0x67, 0x2c, 0x20, 0x28, 0x5f, + 0x2c, 0x20, 0x6b, 0x65, 0x79, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x73, 0x65, 0x74, 0x74, 0x69, + 0x6e, 0x67, 0x73, 0x5b, 0x6b, 0x65, 0x79, 0x5d, 0x29, 0x29, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, + 0x2f, 0x20, 0x73, 0x65, 0x6e, 0x64, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, + 0x67, 0x65, 0x20, 0x74, 0x6f, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, + 0x68, 0x61, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, + 0x28, 0x6d, 0x73, 0x67, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, + 0x28, 0x27, 0x61, 0x6c, 0x72, 0x65, 0x61, 0x64, 0x79, 0x20, 0x72, 0x75, + 0x6e, 0x6e, 0x69, 0x6e, 0x67, 0x2e, 0x2e, 0x2e, 0x27, 0x29, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, + 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, + 0x20, 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43, 0x6f, + 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, + 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, + 0x5b, 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, + 0x72, 0x69, 0x70, 0x74, 0x2c, 0x20, 0x5b, 0x22, 0x7b, 0x7b, 0x75, 0x73, + 0x65, 0x72, 0x7d, 0x7d, 0x22, 0x2c, 0x20, 0x6d, 0x73, 0x67, 0x5d, 0x5d, + 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64, 0x20, 0x3d, + 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x73, 0x65, + 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, + 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2c, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x73, 0x73, + 0x61, 0x67, 0x65, 0x3a, 0x20, 0x6d, 0x73, 0x67, 0x2c, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, + 0x79, 0x3a, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, + 0x69, 0x70, 0x74, 0x2e, 0x66, 0x6c, 0x61, 0x74, 0x4d, 0x61, 0x70, 0x28, + 0x28, 0x5b, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x6d, 0x65, 0x73, 0x73, + 0x61, 0x67, 0x65, 0x5d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, + 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x68, 0x69, 0x73, 0x74, + 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2c, + 0x20, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x6d, 0x65, 0x73, 0x73, + 0x61, 0x67, 0x65, 0x7d, 0x29, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, 0x28, + 0x22, 0x5c, 0x6e, 0x22, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x6c, 0x65, 0x74, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, + 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, 0x27, 0x27, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x20, 0x3d, 0x20, 0x73, + 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, + 0x20, 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x3a, 0x20, 0x70, 0x61, + 0x79, 0x6c, 0x6f, 0x61, 0x64, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x5b, 0x22, 0x3c, + 0x2f, 0x73, 0x3e, 0x22, 0x2c, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x28, 0x22, 0x7b, 0x7b, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x7d, + 0x3a, 0x22, 0x29, 0x2c, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x28, 0x22, 0x7b, 0x7b, 0x75, 0x73, 0x65, 0x72, 0x7d, 0x7d, 0x3a, + 0x22, 0x29, 0x5d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, 0x77, 0x61, 0x69, + 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, + 0x65, 0x74, 0x65, 0x28, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x61, 0x72, + 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, + 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x28, + 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x6d, + 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x75, 0x72, + 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, + 0x2b, 0x3d, 0x20, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, + 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x2f, 0x2f, 0x20, 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x6c, + 0x65, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x20, 0x77, 0x68, 0x69, 0x74, 0x65, + 0x73, 0x70, 0x61, 0x63, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, + 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, + 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x2e, 0x72, 0x65, + 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x5c, 0x73, 0x2b, 0x2f, + 0x2c, 0x20, 0x22, 0x22, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, + 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, 0x2e, 0x2e, 0x2e, + 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x2c, 0x20, 0x5b, 0x22, 0x7b, + 0x7b, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x7d, 0x22, 0x2c, 0x20, 0x63, 0x75, + 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, + 0x5d, 0x5d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x69, 0x66, 0x20, 0x28, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, + 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, + 0x6c, 0x6f, 0x67, 0x28, 0x22, 0x2d, 0x2d, 0x3e, 0x22, 0x2c, 0x20, 0x64, + 0x61, 0x74, 0x61, 0x2c, 0x20, 0x27, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, + 0x6e, 0x73, 0x65, 0x20, 0x77, 0x61, 0x73, 0x3a, 0x27, 0x2c, 0x20, 0x63, + 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x2c, 0x20, 0x27, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, + 0x70, 0x74, 0x20, 0x73, 0x74, 0x61, 0x74, 0x65, 0x3a, 0x27, 0x2c, 0x20, + 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, + 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, + 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, + 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x20, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x49, 0x6e, 0x70, + 0x75, 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, + 0x67, 0x65, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x53, 0x69, 0x67, 0x6e, + 0x61, 0x6c, 0x28, 0x22, 0x22, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x74, 0x6f, 0x70, + 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x2e, 0x70, 0x72, + 0x65, 0x76, 0x65, 0x6e, 0x74, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, + 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, + 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x20, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x65, 0x74, 0x20, + 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x28, + 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, 0x5d, 0x29, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x75, 0x62, 0x6d, 0x69, + 0x74, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, + 0x70, 0x28, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x68, 0x61, 0x74, 0x28, 0x6d, 0x65, 0x73, 0x73, 0x61, + 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, + 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x22, + 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x65, 0x6e, 0x74, 0x65, 0x72, 0x53, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x73, + 0x20, 0x3d, 0x20, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, + 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x69, 0x66, 0x20, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x68, + 0x69, 0x63, 0x68, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x31, 0x33, 0x20, 0x26, + 0x26, 0x20, 0x21, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x68, 0x69, + 0x66, 0x74, 0x4b, 0x65, 0x79, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x75, 0x62, 0x6d, 0x69, + 0x74, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x72, + 0x6d, 0x20, 0x6f, 0x6e, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x3d, 0x24, + 0x7b, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x7d, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x74, 0x79, + 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x72, 0x6f, + 0x77, 0x73, 0x3d, 0x32, 0x20, 0x6f, 0x6e, 0x6b, 0x65, 0x79, 0x70, 0x72, + 0x65, 0x73, 0x73, 0x3d, 0x24, 0x7b, 0x65, 0x6e, 0x74, 0x65, 0x72, 0x53, + 0x75, 0x62, 0x6d, 0x69, 0x74, 0x73, 0x7d, 0x20, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, + 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, + 0x7b, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x6d, 0x65, 0x73, 0x73, + 0x61, 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, + 0x65, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x7d, 0x20, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x68, 0x6f, 0x6c, + 0x64, 0x65, 0x72, 0x3d, 0x22, 0x53, 0x61, 0x79, 0x20, 0x73, 0x6f, 0x6d, + 0x65, 0x74, 0x68, 0x69, 0x6e, 0x67, 0x2e, 0x2e, 0x2e, 0x22, 0x2f, 0x3e, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x20, 0x63, 0x6c, + 0x61, 0x73, 0x73, 0x3d, 0x22, 0x72, 0x69, 0x67, 0x68, 0x74, 0x22, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, + 0x22, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x22, 0x20, 0x64, 0x69, 0x73, + 0x61, 0x62, 0x6c, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x21, 0x67, 0x65, 0x6e, + 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x7d, 0x20, 0x3e, 0x53, 0x65, 0x6e, 0x64, 0x3c, 0x2f, 0x62, 0x75, + 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, + 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, 0x73, 0x74, + 0x6f, 0x70, 0x7d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, + 0x3d, 0x24, 0x7b, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, + 0x67, 0x7d, 0x3e, 0x53, 0x74, 0x6f, 0x70, 0x3c, 0x2f, 0x62, 0x75, 0x74, + 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x6f, + 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, 0x72, 0x65, 0x73, + 0x65, 0x74, 0x7d, 0x3e, 0x52, 0x65, 0x73, 0x65, 0x74, 0x3c, 0x2f, 0x62, + 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, + 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x43, 0x68, 0x61, 0x74, 0x4c, 0x6f, 0x67, + 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, 0x3d, + 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, + 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, + 0x69, 0x70, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, + 0x65, 0x72, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x52, 0x65, 0x66, 0x28, + 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x75, 0x73, 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, 0x28, 0x28, + 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, + 0x20, 0x74, 0x6f, 0x20, 0x62, 0x6f, 0x74, 0x74, 0x6f, 0x6d, 0x20, 0x28, + 0x69, 0x66, 0x20, 0x6e, 0x65, 0x65, 0x64, 0x65, 0x64, 0x29, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, + 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, + 0x72, 0x65, 0x6e, 0x74, 0x20, 0x26, 0x26, 0x20, 0x63, 0x6f, 0x6e, 0x74, + 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, + 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x48, 0x65, 0x69, 0x67, + 0x68, 0x74, 0x20, 0x3c, 0x3d, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, + 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, + 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x54, 0x6f, 0x70, 0x20, 0x2b, 0x20, + 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, + 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x6f, 0x66, 0x66, 0x73, 0x65, 0x74, + 0x48, 0x65, 0x69, 0x67, 0x68, 0x74, 0x20, 0x2b, 0x20, 0x33, 0x30, 0x30, + 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, + 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, + 0x6c, 0x6c, 0x54, 0x6f, 0x28, 0x30, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, + 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, + 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x48, 0x65, 0x69, 0x67, + 0x68, 0x74, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x2c, 0x20, 0x5b, + 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x5d, 0x29, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x63, 0x68, 0x61, 0x74, 0x4c, 0x69, 0x6e, 0x65, 0x20, 0x3d, 0x20, 0x28, + 0x5b, 0x75, 0x73, 0x65, 0x72, 0x2c, 0x20, 0x6d, 0x73, 0x67, 0x5d, 0x29, + 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, + 0x6c, 0x60, 0x3c, 0x70, 0x20, 0x6b, 0x65, 0x79, 0x3d, 0x24, 0x7b, 0x6d, + 0x73, 0x67, 0x7d, 0x3e, 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, + 0x24, 0x7b, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x75, + 0x73, 0x65, 0x72, 0x29, 0x7d, 0x3a, 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, + 0x6e, 0x67, 0x3e, 0x20, 0x3c, 0x24, 0x7b, 0x4d, 0x61, 0x72, 0x6b, 0x64, + 0x6f, 0x77, 0x6e, 0x7d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x3d, 0x24, 0x7b, + 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x6d, 0x73, 0x67, + 0x29, 0x7d, 0x20, 0x2f, 0x3e, 0x3c, 0x2f, 0x70, 0x3e, 0x60, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, + 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x64, 0x3d, + 0x22, 0x63, 0x68, 0x61, 0x74, 0x22, 0x20, 0x72, 0x65, 0x66, 0x3d, 0x24, + 0x7b, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x7d, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, + 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x2e, 0x66, 0x6c, + 0x61, 0x74, 0x4d, 0x61, 0x70, 0x28, 0x63, 0x68, 0x61, 0x74, 0x4c, 0x69, + 0x6e, 0x65, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x2f, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x3e, 0x60, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x43, 0x6f, 0x6e, 0x66, + 0x69, 0x67, 0x46, 0x6f, 0x72, 0x6d, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, + 0x6f, 0x70, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x20, + 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x73, 0x65, + 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, + 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, + 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, + 0x65, 0x5d, 0x3a, 0x20, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, + 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, + 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x70, 0x61, 0x72, + 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, + 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, 0x6c, 0x2e, 0x74, + 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, + 0x20, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, + 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, + 0x20, 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, + 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, 0x6c, + 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, + 0x5d, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x73, 0x65, 0x46, 0x6c, 0x6f, 0x61, + 0x74, 0x28, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, + 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x66, 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, + 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, + 0x22, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x22, 0x3e, 0x50, 0x72, 0x6f, + 0x6d, 0x70, 0x74, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, + 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, + 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, + 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, + 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x7d, 0x22, 0x20, 0x72, 0x6f, + 0x77, 0x73, 0x3d, 0x34, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, + 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, + 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, + 0x75, 0x73, 0x65, 0x72, 0x22, 0x3e, 0x55, 0x73, 0x65, 0x72, 0x20, 0x6e, + 0x61, 0x6d, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, + 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, + 0x65, 0x3d, 0x22, 0x75, 0x73, 0x65, 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, + 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x75, 0x73, 0x65, 0x72, + 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, + 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, + 0x6f, 0x6e, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, + 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x62, + 0x6f, 0x74, 0x22, 0x3e, 0x42, 0x6f, 0x74, 0x20, 0x6e, 0x61, 0x6d, 0x65, + 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, + 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, + 0x63, 0x68, 0x61, 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, + 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x22, 0x20, + 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, + 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, + 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x22, 0x3e, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, + 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, + 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, + 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, + 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, + 0x77, 0x73, 0x3d, 0x34, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, + 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, + 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, + 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x3e, 0x43, 0x68, + 0x61, 0x74, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x20, 0x74, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, + 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, + 0x72, 0x65, 0x61, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, + 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, + 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x2e, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, + 0x77, 0x73, 0x3d, 0x31, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, + 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, + 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, + 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, + 0x3e, 0x54, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, + 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, + 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, + 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x20, + 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x30, 0x2e, 0x30, 0x22, 0x20, 0x6d, 0x61, + 0x78, 0x3d, 0x22, 0x31, 0x2e, 0x30, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, + 0x3d, 0x22, 0x30, 0x2e, 0x30, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, + 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, + 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, + 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, + 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, + 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, + 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, + 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, + 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x7d, 0x3c, 0x2f, + 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, + 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x6e, 0x50, + 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x22, 0x3e, 0x50, 0x72, 0x65, 0x64, + 0x69, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x3c, 0x2f, 0x6c, 0x61, 0x62, + 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, + 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, + 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x6e, 0x50, 0x72, 0x65, 0x64, 0x69, + 0x63, 0x74, 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x31, 0x22, 0x20, + 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x32, 0x30, 0x34, 0x38, 0x22, 0x20, 0x73, + 0x74, 0x65, 0x70, 0x3d, 0x22, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, + 0x3d, 0x22, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x22, + 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, + 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, + 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x7d, 0x22, 0x20, 0x6f, + 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, + 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, + 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, + 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, + 0x69, 0x63, 0x74, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, + 0x6f, 0x72, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, + 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x3e, 0x50, 0x65, 0x6e, 0x61, + 0x6c, 0x69, 0x7a, 0x65, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x20, + 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63, 0x65, 0x3c, 0x2f, 0x6c, 0x61, + 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, + 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, + 0x65, 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, + 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x20, 0x6d, + 0x69, 0x6e, 0x3d, 0x22, 0x30, 0x2e, 0x30, 0x22, 0x20, 0x6d, 0x61, 0x78, + 0x3d, 0x22, 0x32, 0x2e, 0x30, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3d, + 0x22, 0x30, 0x2e, 0x30, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, + 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, + 0x6c, 0x74, 0x79, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, + 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, + 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, + 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, + 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x7d, + 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, + 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, + 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, + 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, + 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, + 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x22, 0x3e, 0x43, 0x6f, 0x6e, + 0x73, 0x69, 0x64, 0x65, 0x72, 0x20, 0x4e, 0x20, 0x74, 0x6f, 0x6b, 0x65, + 0x6e, 0x73, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, + 0x69, 0x7a, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, + 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69, 0x64, + 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, + 0x74, 0x5f, 0x6e, 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x30, 0x2e, + 0x30, 0x22, 0x20, 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x32, 0x30, 0x34, 0x38, + 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, + 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x22, 0x20, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, + 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, + 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x7d, 0x22, + 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, + 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, + 0x6c, 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, + 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, + 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x7d, 0x3c, 0x2f, + 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, + 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x4d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x20, 0x3d, 0x20, 0x28, + 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x64, 0x20, + 0x3d, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x74, 0x65, 0x78, + 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, + 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x23, 0x7b, 0x31, 0x2c, 0x36, 0x7d, 0x20, + 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f, 0x67, 0x69, 0x6d, 0x2c, 0x20, 0x27, + 0x3c, 0x68, 0x33, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x68, 0x33, 0x3e, 0x27, + 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, + 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x2a, 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, + 0x29, 0x5c, 0x2a, 0x5c, 0x2a, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x73, + 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x73, 0x74, + 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5f, 0x5f, + 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5f, 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, + 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x31, 0x3c, 0x2f, + 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, + 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x2f, 0x67, 0x2c, + 0x20, 0x27, 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x65, 0x6d, + 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, + 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5f, 0x28, 0x2e, 0x2a, 0x3f, 0x29, + 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, + 0x3c, 0x2f, 0x65, 0x6d, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x60, + 0x60, 0x2e, 0x2a, 0x3f, 0x5c, 0x6e, 0x28, 0x5b, 0x5c, 0x73, 0x5c, 0x53, + 0x5d, 0x2a, 0x3f, 0x29, 0x60, 0x60, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, + 0x3c, 0x70, 0x72, 0x65, 0x3e, 0x3c, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x24, + 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x3c, 0x2f, 0x70, 0x72, + 0x65, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, + 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x28, 0x2e, 0x2a, 0x3f, + 0x29, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x63, 0x6f, 0x64, 0x65, + 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x27, 0x29, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, + 0x65, 0x28, 0x2f, 0x5c, 0x6e, 0x2f, 0x67, 0x69, 0x6d, 0x2c, 0x20, 0x27, + 0x3c, 0x62, 0x72, 0x20, 0x2f, 0x3e, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, + 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, + 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x20, 0x64, 0x61, 0x6e, 0x67, 0x65, 0x72, + 0x6f, 0x75, 0x73, 0x6c, 0x79, 0x53, 0x65, 0x74, 0x49, 0x6e, 0x6e, 0x65, + 0x72, 0x48, 0x54, 0x4d, 0x4c, 0x3d, 0x24, 0x7b, 0x7b, 0x20, 0x5f, 0x5f, + 0x68, 0x74, 0x6d, 0x6c, 0x3a, 0x20, 0x6d, 0x64, 0x20, 0x7d, 0x7d, 0x20, + 0x2f, 0x3e, 0x60, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x41, 0x70, + 0x70, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x64, 0x69, 0x76, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x63, 0x6f, + 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x22, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x68, 0x65, 0x61, 0x64, 0x65, + 0x72, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x68, 0x31, 0x3e, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, + 0x70, 0x70, 0x3c, 0x2f, 0x68, 0x31, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, + 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x6d, 0x61, 0x69, 0x6e, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x63, 0x6f, 0x6e, + 0x74, 0x65, 0x6e, 0x74, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, 0x7b, 0x63, 0x68, 0x61, 0x74, + 0x53, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x20, 0x3f, 0x20, 0x43, 0x68, 0x61, 0x74, 0x4c, 0x6f, 0x67, 0x20, + 0x3a, 0x20, 0x43, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x46, 0x6f, 0x72, 0x6d, + 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x2f, 0x6d, 0x61, 0x69, 0x6e, 0x3e, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x6f, 0x74, 0x65, + 0x72, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x77, 0x72, 0x69, 0x74, 0x65, 0x22, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x24, 0x7b, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x49, 0x6e, + 0x70, 0x75, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, + 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x70, 0x3e, 0x50, 0x6f, 0x77, + 0x65, 0x72, 0x65, 0x64, 0x20, 0x62, 0x79, 0x20, 0x3c, 0x61, 0x20, 0x68, + 0x72, 0x65, 0x66, 0x3d, 0x22, 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a, 0x2f, + 0x2f, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, + 0x67, 0x67, 0x65, 0x72, 0x67, 0x61, 0x6e, 0x6f, 0x76, 0x2f, 0x6c, 0x6c, + 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x22, 0x3e, 0x6c, 0x6c, 0x61, + 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x3c, 0x2f, 0x61, 0x3e, 0x20, 0x61, + 0x6e, 0x64, 0x20, 0x3c, 0x61, 0x20, 0x68, 0x72, 0x65, 0x66, 0x3d, 0x22, + 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a, 0x2f, 0x2f, 0x67, 0x67, 0x6d, 0x6c, + 0x2e, 0x61, 0x69, 0x22, 0x3e, 0x67, 0x67, 0x6d, 0x6c, 0x2e, 0x61, 0x69, + 0x3c, 0x2f, 0x61, 0x3e, 0x3c, 0x2f, 0x70, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, 0x6f, 0x74, 0x65, + 0x72, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, + 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x28, 0x68, 0x28, 0x41, 0x70, 0x70, + 0x29, 0x2c, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, + 0x62, 0x6f, 0x64, 0x79, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x3c, 0x2f, 0x73, + 0x63, 0x72, 0x69, 0x70, 0x74, 0x3e, 0x0a, 0x3c, 0x2f, 0x68, 0x65, 0x61, + 0x64, 0x3e, 0x0a, 0x0a, 0x3c, 0x62, 0x6f, 0x64, 0x79, 0x3e, 0x0a, 0x3c, + 0x2f, 0x62, 0x6f, 0x64, 0x79, 0x3e, 0x0a, 0x0a, 0x3c, 0x2f, 0x68, 0x74, + 0x6d, 0x6c, 0x3e, 0x0a +}; +unsigned int index_html_len = 10108; diff --git a/examples/server/index.js.hpp b/examples/server/index.js.hpp new file mode 100644 index 000000000..a3b5be6d8 --- /dev/null +++ b/examples/server/index.js.hpp @@ -0,0 +1,1851 @@ +unsigned char index_js[] = { + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x74, 0x28, 0x29, + 0x7b, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, + 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x43, 0x79, 0x63, 0x6c, 0x65, 0x20, + 0x64, 0x65, 0x74, 0x65, 0x63, 0x74, 0x65, 0x64, 0x22, 0x29, 0x7d, 0x66, + 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6e, 0x28, 0x29, 0x7b, + 0x69, 0x66, 0x28, 0x6f, 0x3e, 0x31, 0x29, 0x7b, 0x6f, 0x2d, 0x2d, 0x3b, + 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x7d, 0x6c, 0x65, 0x74, 0x20, 0x74, + 0x2c, 0x6e, 0x3d, 0x21, 0x31, 0x3b, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x28, + 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x5f, 0x29, 0x7b, + 0x6c, 0x65, 0x74, 0x20, 0x69, 0x3d, 0x5f, 0x3b, 0x5f, 0x3d, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x3b, 0x72, 0x2b, 0x2b, 0x3b, 0x77, 0x68, 0x69, + 0x6c, 0x65, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, + 0x69, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x5f, 0x3d, 0x69, + 0x2e, 0x6f, 0x3b, 0x69, 0x2e, 0x6f, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, + 0x30, 0x3b, 0x69, 0x2e, 0x66, 0x26, 0x3d, 0x2d, 0x33, 0x3b, 0x69, 0x66, + 0x28, 0x21, 0x28, 0x38, 0x26, 0x69, 0x2e, 0x66, 0x29, 0x26, 0x26, 0x63, + 0x28, 0x69, 0x29, 0x29, 0x74, 0x72, 0x79, 0x7b, 0x69, 0x2e, 0x63, 0x28, + 0x29, 0x7d, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x65, 0x29, 0x7b, 0x69, + 0x66, 0x28, 0x21, 0x6e, 0x29, 0x7b, 0x74, 0x3d, 0x65, 0x3b, 0x6e, 0x3d, + 0x21, 0x30, 0x7d, 0x7d, 0x69, 0x3d, 0x5f, 0x7d, 0x7d, 0x72, 0x3d, 0x30, + 0x3b, 0x6f, 0x2d, 0x2d, 0x3b, 0x69, 0x66, 0x28, 0x6e, 0x29, 0x74, 0x68, + 0x72, 0x6f, 0x77, 0x20, 0x74, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x20, 0x65, 0x28, 0x74, 0x29, 0x7b, 0x69, 0x66, 0x28, 0x6f, + 0x3e, 0x30, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x28, + 0x29, 0x3b, 0x6f, 0x2b, 0x2b, 0x3b, 0x74, 0x72, 0x79, 0x7b, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x28, 0x29, 0x7d, 0x66, 0x69, 0x6e, + 0x61, 0x6c, 0x6c, 0x79, 0x7b, 0x6e, 0x28, 0x29, 0x7d, 0x7d, 0x6c, 0x65, + 0x74, 0x20, 0x69, 0x2c, 0x5f, 0x2c, 0x6f, 0x3d, 0x30, 0x2c, 0x72, 0x3d, + 0x30, 0x2c, 0x75, 0x3d, 0x30, 0x3b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x20, 0x6c, 0x28, 0x74, 0x29, 0x7b, 0x69, 0x66, 0x28, 0x76, + 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x69, 0x29, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x3b, 0x6c, 0x65, 0x74, 0x20, 0x6e, 0x3d, 0x74, + 0x2e, 0x6e, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, + 0x3d, 0x3d, 0x3d, 0x6e, 0x7c, 0x7c, 0x6e, 0x2e, 0x74, 0x21, 0x3d, 0x3d, + 0x69, 0x29, 0x7b, 0x6e, 0x3d, 0x7b, 0x69, 0x3a, 0x30, 0x2c, 0x53, 0x3a, + 0x74, 0x2c, 0x70, 0x3a, 0x69, 0x2e, 0x73, 0x2c, 0x6e, 0x3a, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x2c, 0x74, 0x3a, 0x69, 0x2c, 0x65, 0x3a, 0x76, + 0x6f, 0x69, 0x64, 0x20, 0x30, 0x2c, 0x78, 0x3a, 0x76, 0x6f, 0x69, 0x64, + 0x20, 0x30, 0x2c, 0x72, 0x3a, 0x6e, 0x7d, 0x3b, 0x69, 0x66, 0x28, 0x76, + 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x69, 0x2e, 0x73, 0x29, + 0x69, 0x2e, 0x73, 0x2e, 0x6e, 0x3d, 0x6e, 0x3b, 0x69, 0x2e, 0x73, 0x3d, + 0x6e, 0x3b, 0x74, 0x2e, 0x6e, 0x3d, 0x6e, 0x3b, 0x69, 0x66, 0x28, 0x33, + 0x32, 0x26, 0x69, 0x2e, 0x66, 0x29, 0x74, 0x2e, 0x53, 0x28, 0x6e, 0x29, + 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x7d, 0x65, 0x6c, + 0x73, 0x65, 0x20, 0x69, 0x66, 0x28, 0x2d, 0x31, 0x3d, 0x3d, 0x3d, 0x6e, + 0x2e, 0x69, 0x29, 0x7b, 0x6e, 0x2e, 0x69, 0x3d, 0x30, 0x3b, 0x69, 0x66, + 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x6e, 0x2e, + 0x6e, 0x29, 0x7b, 0x6e, 0x2e, 0x6e, 0x2e, 0x70, 0x3d, 0x6e, 0x2e, 0x70, + 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, + 0x3d, 0x6e, 0x2e, 0x70, 0x29, 0x6e, 0x2e, 0x70, 0x2e, 0x6e, 0x3d, 0x6e, + 0x2e, 0x6e, 0x3b, 0x6e, 0x2e, 0x70, 0x3d, 0x69, 0x2e, 0x73, 0x3b, 0x6e, + 0x2e, 0x6e, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, 0x69, 0x2e, + 0x73, 0x2e, 0x6e, 0x3d, 0x6e, 0x3b, 0x69, 0x2e, 0x73, 0x3d, 0x6e, 0x7d, + 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x7d, 0x7d, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x66, 0x28, 0x74, 0x29, 0x7b, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x3d, 0x74, 0x3b, 0x74, 0x68, 0x69, + 0x73, 0x2e, 0x69, 0x3d, 0x30, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x6e, + 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x74, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x7d, 0x66, 0x2e, + 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x68, 0x3d, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x30, 0x7d, 0x3b, 0x66, 0x2e, 0x70, + 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x53, 0x3d, 0x66, + 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x69, + 0x66, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x74, 0x21, 0x3d, 0x3d, 0x74, + 0x26, 0x26, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x74, + 0x2e, 0x65, 0x29, 0x7b, 0x74, 0x2e, 0x78, 0x3d, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x74, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, + 0x21, 0x3d, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x74, 0x29, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x74, 0x2e, 0x65, 0x3d, 0x74, 0x3b, 0x74, 0x68, 0x69, + 0x73, 0x2e, 0x74, 0x3d, 0x74, 0x7d, 0x7d, 0x3b, 0x66, 0x2e, 0x70, 0x72, + 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x55, 0x3d, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x69, 0x66, + 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x74, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x6e, 0x3d, 0x74, 0x2e, 0x65, 0x2c, 0x65, 0x3d, 0x74, 0x2e, 0x78, 0x3b, + 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, + 0x6e, 0x29, 0x7b, 0x6e, 0x2e, 0x78, 0x3d, 0x65, 0x3b, 0x74, 0x2e, 0x65, + 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x7d, 0x69, 0x66, 0x28, 0x76, + 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x65, 0x29, 0x7b, 0x65, + 0x2e, 0x65, 0x3d, 0x6e, 0x3b, 0x74, 0x2e, 0x78, 0x3d, 0x76, 0x6f, 0x69, + 0x64, 0x20, 0x30, 0x7d, 0x69, 0x66, 0x28, 0x74, 0x3d, 0x3d, 0x3d, 0x74, + 0x68, 0x69, 0x73, 0x2e, 0x74, 0x29, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x74, + 0x3d, 0x65, 0x7d, 0x7d, 0x3b, 0x66, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, + 0x74, 0x79, 0x70, 0x65, 0x2e, 0x73, 0x75, 0x62, 0x73, 0x63, 0x72, 0x69, + 0x62, 0x65, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, + 0x74, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6e, 0x3d, 0x74, + 0x68, 0x69, 0x73, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x62, + 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, + 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x3d, 0x6e, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x69, 0x3d, 0x33, 0x32, 0x26, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x66, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x26, + 0x3d, 0x2d, 0x33, 0x33, 0x3b, 0x74, 0x72, 0x79, 0x7b, 0x74, 0x28, 0x65, + 0x29, 0x7d, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x7b, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x66, 0x7c, 0x3d, 0x69, 0x7d, 0x7d, 0x29, 0x29, 0x7d, + 0x3b, 0x66, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x4f, 0x66, 0x3d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x7d, 0x3b, 0x66, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, + 0x70, 0x65, 0x2e, 0x74, 0x6f, 0x53, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x3d, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2b, 0x22, 0x22, 0x7d, 0x3b, 0x66, 0x2e, 0x70, + 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x74, 0x6f, 0x4a, + 0x53, 0x4f, 0x4e, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x28, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x3b, 0x66, 0x2e, + 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x70, 0x65, + 0x65, 0x6b, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, + 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, + 0x73, 0x2e, 0x76, 0x7d, 0x3b, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x2e, + 0x64, 0x65, 0x66, 0x69, 0x6e, 0x65, 0x50, 0x72, 0x6f, 0x70, 0x65, 0x72, + 0x74, 0x79, 0x28, 0x66, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, + 0x70, 0x65, 0x2c, 0x22, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x22, 0x2c, 0x7b, + 0x67, 0x65, 0x74, 0x28, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x74, 0x3d, 0x6c, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, 0x3b, 0x69, 0x66, + 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x74, 0x29, + 0x74, 0x2e, 0x69, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x3b, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, + 0x7d, 0x2c, 0x73, 0x65, 0x74, 0x28, 0x65, 0x29, 0x7b, 0x69, 0x66, 0x28, + 0x69, 0x20, 0x69, 0x6e, 0x73, 0x74, 0x61, 0x6e, 0x63, 0x65, 0x6f, 0x66, + 0x20, 0x70, 0x29, 0x21, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x28, 0x29, 0x7b, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, + 0x20, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x43, 0x6f, 0x6d, 0x70, + 0x75, 0x74, 0x65, 0x64, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, + 0x68, 0x61, 0x76, 0x65, 0x20, 0x73, 0x69, 0x64, 0x65, 0x2d, 0x65, 0x66, + 0x66, 0x65, 0x63, 0x74, 0x73, 0x22, 0x29, 0x7d, 0x28, 0x29, 0x3b, 0x69, + 0x66, 0x28, 0x65, 0x21, 0x3d, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, + 0x29, 0x7b, 0x69, 0x66, 0x28, 0x72, 0x3e, 0x31, 0x30, 0x30, 0x29, 0x74, + 0x28, 0x29, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x3d, 0x65, 0x3b, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x2b, 0x2b, 0x3b, 0x75, 0x2b, 0x2b, + 0x3b, 0x6f, 0x2b, 0x2b, 0x3b, 0x74, 0x72, 0x79, 0x7b, 0x66, 0x6f, 0x72, + 0x28, 0x6c, 0x65, 0x74, 0x20, 0x74, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x74, 0x3b, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x74, + 0x3b, 0x74, 0x3d, 0x74, 0x2e, 0x78, 0x29, 0x74, 0x2e, 0x74, 0x2e, 0x4e, + 0x28, 0x29, 0x7d, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x7b, 0x6e, + 0x28, 0x29, 0x7d, 0x7d, 0x7d, 0x7d, 0x29, 0x3b, 0x66, 0x75, 0x6e, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x73, 0x28, 0x74, 0x29, 0x7b, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x66, 0x28, 0x74, + 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x63, + 0x28, 0x74, 0x29, 0x7b, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, 0x74, 0x20, + 0x6e, 0x3d, 0x74, 0x2e, 0x73, 0x3b, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, + 0x21, 0x3d, 0x3d, 0x6e, 0x3b, 0x6e, 0x3d, 0x6e, 0x2e, 0x6e, 0x29, 0x69, + 0x66, 0x28, 0x6e, 0x2e, 0x53, 0x2e, 0x69, 0x21, 0x3d, 0x3d, 0x6e, 0x2e, + 0x69, 0x7c, 0x7c, 0x21, 0x6e, 0x2e, 0x53, 0x2e, 0x68, 0x28, 0x29, 0x7c, + 0x7c, 0x6e, 0x2e, 0x53, 0x2e, 0x69, 0x21, 0x3d, 0x3d, 0x6e, 0x2e, 0x69, + 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x30, 0x3b, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x21, 0x31, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x20, 0x68, 0x28, 0x74, 0x29, 0x7b, 0x66, 0x6f, 0x72, + 0x28, 0x6c, 0x65, 0x74, 0x20, 0x6e, 0x3d, 0x74, 0x2e, 0x73, 0x3b, 0x76, + 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x6e, 0x3b, 0x6e, 0x3d, + 0x6e, 0x2e, 0x6e, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, + 0x3d, 0x6e, 0x2e, 0x53, 0x2e, 0x6e, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x65, 0x29, 0x6e, 0x2e, 0x72, + 0x3d, 0x65, 0x3b, 0x6e, 0x2e, 0x53, 0x2e, 0x6e, 0x3d, 0x6e, 0x3b, 0x6e, + 0x2e, 0x69, 0x3d, 0x2d, 0x31, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, + 0x64, 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x6e, 0x2e, 0x6e, 0x29, 0x7b, 0x74, + 0x2e, 0x73, 0x3d, 0x6e, 0x3b, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x7d, 0x7d, + 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x61, 0x28, + 0x74, 0x29, 0x7b, 0x6c, 0x65, 0x74, 0x20, 0x6e, 0x2c, 0x65, 0x3d, 0x74, + 0x2e, 0x73, 0x3b, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x28, 0x76, 0x6f, 0x69, + 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x65, 0x29, 0x7b, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x74, 0x3d, 0x65, 0x2e, 0x70, 0x3b, 0x69, 0x66, 0x28, + 0x2d, 0x31, 0x3d, 0x3d, 0x3d, 0x65, 0x2e, 0x69, 0x29, 0x7b, 0x65, 0x2e, + 0x53, 0x2e, 0x55, 0x28, 0x65, 0x29, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x74, 0x29, 0x74, 0x2e, 0x6e, + 0x3d, 0x65, 0x2e, 0x6e, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, 0x64, + 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x65, 0x2e, 0x6e, 0x29, 0x65, 0x2e, 0x6e, + 0x2e, 0x70, 0x3d, 0x74, 0x7d, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x6e, 0x3d, + 0x65, 0x3b, 0x65, 0x2e, 0x53, 0x2e, 0x6e, 0x3d, 0x65, 0x2e, 0x72, 0x3b, + 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, + 0x65, 0x2e, 0x72, 0x29, 0x65, 0x2e, 0x72, 0x3d, 0x76, 0x6f, 0x69, 0x64, + 0x20, 0x30, 0x3b, 0x65, 0x3d, 0x74, 0x7d, 0x74, 0x2e, 0x73, 0x3d, 0x6e, + 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x70, 0x28, + 0x74, 0x29, 0x7b, 0x66, 0x2e, 0x63, 0x61, 0x6c, 0x6c, 0x28, 0x74, 0x68, + 0x69, 0x73, 0x2c, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x29, 0x3b, 0x74, + 0x68, 0x69, 0x73, 0x2e, 0x78, 0x3d, 0x74, 0x3b, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x73, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x67, 0x3d, 0x75, 0x2d, 0x31, 0x3b, 0x74, 0x68, 0x69, + 0x73, 0x2e, 0x66, 0x3d, 0x34, 0x7d, 0x28, 0x70, 0x2e, 0x70, 0x72, 0x6f, + 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x6e, 0x65, 0x77, 0x20, 0x66, + 0x29, 0x2e, 0x68, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x28, 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x26, 0x3d, 0x2d, + 0x33, 0x3b, 0x69, 0x66, 0x28, 0x31, 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x66, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x31, 0x3b, 0x69, + 0x66, 0x28, 0x33, 0x32, 0x3d, 0x3d, 0x28, 0x33, 0x36, 0x26, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x66, 0x29, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x21, 0x30, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x26, 0x3d, 0x2d, + 0x35, 0x3b, 0x69, 0x66, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x67, 0x3d, + 0x3d, 0x3d, 0x75, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x30, + 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x67, 0x3d, 0x75, 0x3b, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x66, 0x7c, 0x3d, 0x31, 0x3b, 0x69, 0x66, 0x28, 0x74, + 0x68, 0x69, 0x73, 0x2e, 0x69, 0x3e, 0x30, 0x26, 0x26, 0x21, 0x63, 0x28, + 0x74, 0x68, 0x69, 0x73, 0x29, 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x66, 0x26, 0x3d, 0x2d, 0x32, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x21, 0x30, 0x7d, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x3d, 0x69, + 0x3b, 0x74, 0x72, 0x79, 0x7b, 0x68, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, + 0x3b, 0x69, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x3b, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x74, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x78, 0x28, 0x29, + 0x3b, 0x69, 0x66, 0x28, 0x31, 0x36, 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x66, 0x7c, 0x7c, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x21, 0x3d, 0x3d, + 0x74, 0x7c, 0x7c, 0x30, 0x3d, 0x3d, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x69, 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x3d, 0x74, 0x3b, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x26, 0x3d, 0x2d, 0x31, 0x37, 0x3b, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x2b, 0x2b, 0x7d, 0x7d, 0x63, 0x61, + 0x74, 0x63, 0x68, 0x28, 0x74, 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x76, 0x3d, 0x74, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x7c, 0x3d, + 0x31, 0x36, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x2b, 0x2b, 0x7d, + 0x69, 0x3d, 0x74, 0x3b, 0x61, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, 0x3b, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x26, 0x3d, 0x2d, 0x32, 0x3b, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x30, 0x7d, 0x3b, 0x70, 0x2e, 0x70, + 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x53, 0x3d, 0x66, + 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x69, + 0x66, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x74, + 0x68, 0x69, 0x73, 0x2e, 0x74, 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x66, 0x7c, 0x3d, 0x33, 0x36, 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, + 0x74, 0x20, 0x74, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x73, 0x3b, 0x76, + 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x74, 0x3b, 0x74, 0x3d, + 0x74, 0x2e, 0x6e, 0x29, 0x74, 0x2e, 0x53, 0x2e, 0x53, 0x28, 0x74, 0x29, + 0x7d, 0x66, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, + 0x2e, 0x53, 0x2e, 0x63, 0x61, 0x6c, 0x6c, 0x28, 0x74, 0x68, 0x69, 0x73, + 0x2c, 0x74, 0x29, 0x7d, 0x3b, 0x70, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, + 0x74, 0x79, 0x70, 0x65, 0x2e, 0x55, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x69, 0x66, 0x28, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x74, 0x29, 0x7b, 0x66, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, + 0x70, 0x65, 0x2e, 0x55, 0x2e, 0x63, 0x61, 0x6c, 0x6c, 0x28, 0x74, 0x68, + 0x69, 0x73, 0x2c, 0x74, 0x29, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, + 0x64, 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x74, + 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x26, 0x3d, 0x2d, 0x33, + 0x33, 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, 0x74, 0x20, 0x74, 0x3d, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x73, 0x3b, 0x76, 0x6f, 0x69, 0x64, 0x20, + 0x30, 0x21, 0x3d, 0x3d, 0x74, 0x3b, 0x74, 0x3d, 0x74, 0x2e, 0x6e, 0x29, + 0x74, 0x2e, 0x53, 0x2e, 0x55, 0x28, 0x74, 0x29, 0x7d, 0x7d, 0x7d, 0x3b, + 0x70, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, + 0x4e, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, + 0x7b, 0x69, 0x66, 0x28, 0x21, 0x28, 0x32, 0x26, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x66, 0x29, 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x7c, + 0x3d, 0x36, 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, 0x74, 0x20, 0x74, + 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x74, 0x3b, 0x76, 0x6f, 0x69, 0x64, + 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x74, 0x3b, 0x74, 0x3d, 0x74, 0x2e, 0x78, + 0x29, 0x74, 0x2e, 0x74, 0x2e, 0x4e, 0x28, 0x29, 0x7d, 0x7d, 0x3b, 0x70, + 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x70, + 0x65, 0x65, 0x6b, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x28, 0x29, 0x7b, 0x69, 0x66, 0x28, 0x21, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x68, 0x28, 0x29, 0x29, 0x74, 0x28, 0x29, 0x3b, 0x69, 0x66, 0x28, 0x31, + 0x36, 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x29, 0x74, 0x68, 0x72, + 0x6f, 0x77, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x3b, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x7d, + 0x3b, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x2e, 0x64, 0x65, 0x66, 0x69, + 0x6e, 0x65, 0x50, 0x72, 0x6f, 0x70, 0x65, 0x72, 0x74, 0x79, 0x28, 0x70, + 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2c, 0x22, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x22, 0x2c, 0x7b, 0x67, 0x65, 0x74, 0x28, + 0x29, 0x7b, 0x69, 0x66, 0x28, 0x31, 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x66, 0x29, 0x74, 0x28, 0x29, 0x3b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x6e, 0x3d, 0x6c, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, 0x3b, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x68, 0x28, 0x29, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x6e, 0x29, 0x6e, 0x2e, 0x69, + 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x69, 0x3b, 0x69, 0x66, 0x28, 0x31, + 0x36, 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x29, 0x74, 0x68, 0x72, + 0x6f, 0x77, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x3b, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x7d, + 0x7d, 0x29, 0x3b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x64, 0x28, 0x74, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, + 0x6e, 0x65, 0x77, 0x20, 0x70, 0x28, 0x74, 0x29, 0x7d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x76, 0x28, 0x74, 0x29, 0x7b, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x3d, 0x74, 0x2e, 0x75, 0x3b, 0x74, + 0x2e, 0x75, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, 0x69, 0x66, + 0x28, 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, + 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x65, 0x29, 0x7b, 0x6f, + 0x2b, 0x2b, 0x3b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x5f, 0x3d, 0x69, + 0x3b, 0x69, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, 0x74, 0x72, + 0x79, 0x7b, 0x65, 0x28, 0x29, 0x7d, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, + 0x6e, 0x29, 0x7b, 0x74, 0x2e, 0x66, 0x26, 0x3d, 0x2d, 0x32, 0x3b, 0x74, + 0x2e, 0x66, 0x7c, 0x3d, 0x38, 0x3b, 0x79, 0x28, 0x74, 0x29, 0x3b, 0x74, + 0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x7d, 0x66, 0x69, 0x6e, 0x61, 0x6c, + 0x6c, 0x79, 0x7b, 0x69, 0x3d, 0x5f, 0x3b, 0x6e, 0x28, 0x29, 0x7d, 0x7d, + 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x79, 0x28, + 0x74, 0x29, 0x7b, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, 0x74, 0x20, 0x6e, + 0x3d, 0x74, 0x2e, 0x73, 0x3b, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, + 0x3d, 0x3d, 0x6e, 0x3b, 0x6e, 0x3d, 0x6e, 0x2e, 0x6e, 0x29, 0x6e, 0x2e, + 0x53, 0x2e, 0x55, 0x28, 0x6e, 0x29, 0x3b, 0x74, 0x2e, 0x78, 0x3d, 0x76, + 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, 0x74, 0x2e, 0x73, 0x3d, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x3b, 0x76, 0x28, 0x74, 0x29, 0x7d, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6d, 0x28, 0x74, 0x29, 0x7b, + 0x69, 0x66, 0x28, 0x69, 0x21, 0x3d, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x29, + 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, + 0x72, 0x6f, 0x72, 0x28, 0x22, 0x4f, 0x75, 0x74, 0x2d, 0x6f, 0x66, 0x2d, + 0x6f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x65, 0x66, 0x66, 0x65, 0x63, 0x74, + 0x22, 0x29, 0x3b, 0x61, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, 0x3b, 0x69, + 0x3d, 0x74, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x26, 0x3d, 0x2d, + 0x32, 0x3b, 0x69, 0x66, 0x28, 0x38, 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x66, 0x29, 0x79, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, 0x3b, 0x6e, 0x28, + 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x67, + 0x28, 0x74, 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x78, 0x3d, 0x74, + 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x75, 0x3d, 0x76, 0x6f, 0x69, 0x64, + 0x20, 0x30, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x73, 0x3d, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x6f, 0x3d, + 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x66, 0x3d, 0x33, 0x32, 0x7d, 0x67, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, + 0x74, 0x79, 0x70, 0x65, 0x2e, 0x63, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x74, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x53, 0x28, 0x29, 0x3b, 0x74, + 0x72, 0x79, 0x7b, 0x69, 0x66, 0x28, 0x38, 0x26, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x66, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x3b, 0x69, 0x66, + 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x78, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x3b, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6e, 0x3d, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x78, 0x28, 0x29, 0x3b, 0x69, 0x66, 0x28, 0x22, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, + 0x6f, 0x66, 0x20, 0x6e, 0x29, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x75, 0x3d, + 0x6e, 0x7d, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x7b, 0x74, 0x28, + 0x29, 0x7d, 0x7d, 0x3b, 0x67, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, + 0x79, 0x70, 0x65, 0x2e, 0x53, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x69, 0x66, 0x28, 0x31, 0x26, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x66, 0x29, 0x74, 0x28, 0x29, 0x3b, 0x74, 0x68, 0x69, + 0x73, 0x2e, 0x66, 0x7c, 0x3d, 0x31, 0x3b, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x66, 0x26, 0x3d, 0x2d, 0x39, 0x3b, 0x76, 0x28, 0x74, 0x68, 0x69, 0x73, + 0x29, 0x3b, 0x68, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, 0x3b, 0x6f, 0x2b, + 0x2b, 0x3b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6e, 0x3d, 0x69, 0x3b, + 0x69, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x6d, 0x2e, 0x62, 0x69, 0x6e, 0x64, 0x28, 0x74, 0x68, 0x69, + 0x73, 0x2c, 0x6e, 0x29, 0x7d, 0x3b, 0x67, 0x2e, 0x70, 0x72, 0x6f, 0x74, + 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x4e, 0x3d, 0x66, 0x75, 0x6e, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x69, 0x66, 0x28, 0x21, 0x28, + 0x32, 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x29, 0x29, 0x7b, 0x74, + 0x68, 0x69, 0x73, 0x2e, 0x66, 0x7c, 0x3d, 0x32, 0x3b, 0x74, 0x68, 0x69, + 0x73, 0x2e, 0x6f, 0x3d, 0x5f, 0x3b, 0x5f, 0x3d, 0x74, 0x68, 0x69, 0x73, + 0x7d, 0x7d, 0x3b, 0x67, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, + 0x70, 0x65, 0x2e, 0x64, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x28, 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x66, 0x7c, 0x3d, + 0x38, 0x3b, 0x69, 0x66, 0x28, 0x21, 0x28, 0x31, 0x26, 0x74, 0x68, 0x69, + 0x73, 0x2e, 0x66, 0x29, 0x29, 0x79, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, + 0x7d, 0x3b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x62, + 0x28, 0x74, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6e, 0x3d, + 0x6e, 0x65, 0x77, 0x20, 0x67, 0x28, 0x74, 0x29, 0x3b, 0x74, 0x72, 0x79, + 0x7b, 0x6e, 0x2e, 0x63, 0x28, 0x29, 0x7d, 0x63, 0x61, 0x74, 0x63, 0x68, + 0x28, 0x74, 0x29, 0x7b, 0x6e, 0x2e, 0x64, 0x28, 0x29, 0x3b, 0x74, 0x68, + 0x72, 0x6f, 0x77, 0x20, 0x74, 0x7d, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x6e, 0x2e, 0x64, 0x2e, 0x62, 0x69, 0x6e, 0x64, 0x28, 0x6e, 0x29, + 0x7d, 0x76, 0x61, 0x72, 0x20, 0x6b, 0x2c, 0x53, 0x2c, 0x78, 0x2c, 0x77, + 0x2c, 0x43, 0x2c, 0x45, 0x2c, 0x55, 0x2c, 0x48, 0x2c, 0x4e, 0x2c, 0x50, + 0x3d, 0x7b, 0x7d, 0x2c, 0x44, 0x3d, 0x5b, 0x5d, 0x2c, 0x24, 0x3d, 0x2f, + 0x61, 0x63, 0x69, 0x74, 0x7c, 0x65, 0x78, 0x28, 0x3f, 0x3a, 0x73, 0x7c, + 0x67, 0x7c, 0x6e, 0x7c, 0x70, 0x7c, 0x24, 0x29, 0x7c, 0x72, 0x70, 0x68, + 0x7c, 0x67, 0x72, 0x69, 0x64, 0x7c, 0x6f, 0x77, 0x73, 0x7c, 0x6d, 0x6e, + 0x63, 0x7c, 0x6e, 0x74, 0x77, 0x7c, 0x69, 0x6e, 0x65, 0x5b, 0x63, 0x68, + 0x5d, 0x7c, 0x7a, 0x6f, 0x6f, 0x7c, 0x5e, 0x6f, 0x72, 0x64, 0x7c, 0x69, + 0x74, 0x65, 0x72, 0x61, 0x2f, 0x69, 0x2c, 0x54, 0x3d, 0x41, 0x72, 0x72, + 0x61, 0x79, 0x2e, 0x69, 0x73, 0x41, 0x72, 0x72, 0x61, 0x79, 0x3b, 0x66, + 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x56, 0x28, 0x74, 0x2c, + 0x6e, 0x29, 0x7b, 0x66, 0x6f, 0x72, 0x28, 0x76, 0x61, 0x72, 0x20, 0x65, + 0x20, 0x69, 0x6e, 0x20, 0x6e, 0x29, 0x74, 0x5b, 0x65, 0x5d, 0x3d, 0x6e, + 0x5b, 0x65, 0x5d, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, + 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x41, 0x28, + 0x74, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x6e, 0x3d, 0x74, 0x2e, 0x70, + 0x61, 0x72, 0x65, 0x6e, 0x74, 0x4e, 0x6f, 0x64, 0x65, 0x3b, 0x6e, 0x26, + 0x26, 0x6e, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x43, 0x68, 0x69, + 0x6c, 0x64, 0x28, 0x74, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x20, 0x46, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x7b, + 0x76, 0x61, 0x72, 0x20, 0x69, 0x2c, 0x5f, 0x2c, 0x6f, 0x2c, 0x72, 0x3d, + 0x7b, 0x7d, 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x6f, 0x20, 0x69, 0x6e, 0x20, + 0x6e, 0x29, 0x22, 0x6b, 0x65, 0x79, 0x22, 0x3d, 0x3d, 0x6f, 0x3f, 0x69, + 0x3d, 0x6e, 0x5b, 0x6f, 0x5d, 0x3a, 0x22, 0x72, 0x65, 0x66, 0x22, 0x3d, + 0x3d, 0x6f, 0x3f, 0x5f, 0x3d, 0x6e, 0x5b, 0x6f, 0x5d, 0x3a, 0x72, 0x5b, + 0x6f, 0x5d, 0x3d, 0x6e, 0x5b, 0x6f, 0x5d, 0x3b, 0x69, 0x66, 0x28, 0x61, + 0x72, 0x67, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x2e, 0x6c, 0x65, 0x6e, + 0x67, 0x74, 0x68, 0x3e, 0x32, 0x26, 0x26, 0x28, 0x72, 0x2e, 0x63, 0x68, + 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x3d, 0x61, 0x72, 0x67, 0x75, 0x6d, + 0x65, 0x6e, 0x74, 0x73, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3e, + 0x33, 0x3f, 0x6b, 0x2e, 0x63, 0x61, 0x6c, 0x6c, 0x28, 0x61, 0x72, 0x67, + 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x2c, 0x32, 0x29, 0x3a, 0x65, 0x29, + 0x2c, 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, + 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x74, 0x26, 0x26, 0x6e, + 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x74, 0x2e, 0x64, 0x65, 0x66, 0x61, 0x75, + 0x6c, 0x74, 0x50, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x66, 0x6f, 0x72, 0x28, + 0x6f, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x2e, 0x64, 0x65, 0x66, 0x61, 0x75, + 0x6c, 0x74, 0x50, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x76, 0x6f, 0x69, 0x64, + 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x72, 0x5b, 0x6f, 0x5d, 0x26, 0x26, 0x28, + 0x72, 0x5b, 0x6f, 0x5d, 0x3d, 0x74, 0x2e, 0x64, 0x65, 0x66, 0x61, 0x75, + 0x6c, 0x74, 0x50, 0x72, 0x6f, 0x70, 0x73, 0x5b, 0x6f, 0x5d, 0x29, 0x3b, + 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x4d, 0x28, 0x74, 0x2c, 0x72, + 0x2c, 0x69, 0x2c, 0x5f, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x7d, 0x66, + 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x4d, 0x28, 0x74, 0x2c, + 0x6e, 0x2c, 0x65, 0x2c, 0x69, 0x2c, 0x5f, 0x29, 0x7b, 0x76, 0x61, 0x72, + 0x20, 0x6f, 0x3d, 0x7b, 0x74, 0x79, 0x70, 0x65, 0x3a, 0x74, 0x2c, 0x70, + 0x72, 0x6f, 0x70, 0x73, 0x3a, 0x6e, 0x2c, 0x6b, 0x65, 0x79, 0x3a, 0x65, + 0x2c, 0x72, 0x65, 0x66, 0x3a, 0x69, 0x2c, 0x5f, 0x5f, 0x6b, 0x3a, 0x6e, + 0x75, 0x6c, 0x6c, 0x2c, 0x5f, 0x5f, 0x3a, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, + 0x5f, 0x5f, 0x62, 0x3a, 0x30, 0x2c, 0x5f, 0x5f, 0x65, 0x3a, 0x6e, 0x75, + 0x6c, 0x6c, 0x2c, 0x5f, 0x5f, 0x64, 0x3a, 0x76, 0x6f, 0x69, 0x64, 0x20, + 0x30, 0x2c, 0x5f, 0x5f, 0x63, 0x3a, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x5f, + 0x5f, 0x68, 0x3a, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x72, 0x75, 0x63, 0x74, 0x6f, 0x72, 0x3a, 0x76, 0x6f, 0x69, 0x64, + 0x20, 0x30, 0x2c, 0x5f, 0x5f, 0x76, 0x3a, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, + 0x3d, 0x5f, 0x3f, 0x2b, 0x2b, 0x78, 0x3a, 0x5f, 0x7d, 0x3b, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x5f, + 0x26, 0x26, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x53, 0x2e, 0x76, 0x6e, + 0x6f, 0x64, 0x65, 0x26, 0x26, 0x53, 0x2e, 0x76, 0x6e, 0x6f, 0x64, 0x65, + 0x28, 0x6f, 0x29, 0x2c, 0x6f, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x20, 0x57, 0x28, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x7b, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x3a, 0x6e, 0x75, + 0x6c, 0x6c, 0x7d, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x4f, 0x28, 0x74, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x74, 0x2e, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x7d, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x4c, 0x28, 0x74, + 0x2c, 0x6e, 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, 0x72, 0x6f, + 0x70, 0x73, 0x3d, 0x74, 0x2c, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x63, 0x6f, + 0x6e, 0x74, 0x65, 0x78, 0x74, 0x3d, 0x6e, 0x7d, 0x66, 0x75, 0x6e, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x52, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, + 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x6e, 0x29, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x2e, 0x5f, 0x5f, 0x3f, 0x52, + 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x2e, 0x5f, + 0x5f, 0x6b, 0x2e, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x4f, 0x66, 0x28, 0x74, + 0x29, 0x2b, 0x31, 0x29, 0x3a, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x66, 0x6f, + 0x72, 0x28, 0x76, 0x61, 0x72, 0x20, 0x65, 0x3b, 0x6e, 0x3c, 0x74, 0x2e, + 0x5f, 0x5f, 0x6b, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x6e, + 0x2b, 0x2b, 0x29, 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, + 0x28, 0x65, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x6b, 0x5b, 0x6e, 0x5d, 0x29, + 0x26, 0x26, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x65, 0x2e, 0x5f, 0x5f, + 0x65, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x65, 0x2e, 0x5f, + 0x5f, 0x65, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x22, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, + 0x65, 0x6f, 0x66, 0x20, 0x74, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x3f, 0x52, + 0x28, 0x74, 0x29, 0x3a, 0x6e, 0x75, 0x6c, 0x6c, 0x7d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x49, 0x28, 0x74, 0x29, 0x7b, 0x76, + 0x61, 0x72, 0x20, 0x6e, 0x2c, 0x65, 0x3b, 0x69, 0x66, 0x28, 0x6e, 0x75, + 0x6c, 0x6c, 0x21, 0x3d, 0x28, 0x74, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x29, + 0x26, 0x26, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, + 0x63, 0x29, 0x7b, 0x66, 0x6f, 0x72, 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x65, + 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x63, 0x2e, 0x62, 0x61, 0x73, 0x65, 0x3d, + 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x6e, 0x3d, 0x30, 0x3b, 0x6e, 0x3c, 0x74, + 0x2e, 0x5f, 0x5f, 0x6b, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, + 0x6e, 0x2b, 0x2b, 0x29, 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x21, + 0x3d, 0x28, 0x65, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x6b, 0x5b, 0x6e, 0x5d, + 0x29, 0x26, 0x26, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x65, 0x2e, 0x5f, + 0x5f, 0x65, 0x29, 0x7b, 0x74, 0x2e, 0x5f, 0x5f, 0x65, 0x3d, 0x74, 0x2e, + 0x5f, 0x5f, 0x63, 0x2e, 0x62, 0x61, 0x73, 0x65, 0x3d, 0x65, 0x2e, 0x5f, + 0x5f, 0x65, 0x3b, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x7d, 0x72, 0x65, 0x74, + 0x75, 0x72, 0x6e, 0x20, 0x49, 0x28, 0x74, 0x29, 0x7d, 0x7d, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6a, 0x28, 0x74, 0x29, 0x7b, + 0x28, 0x21, 0x74, 0x2e, 0x5f, 0x5f, 0x64, 0x26, 0x26, 0x28, 0x74, 0x2e, + 0x5f, 0x5f, 0x64, 0x3d, 0x21, 0x30, 0x29, 0x26, 0x26, 0x43, 0x2e, 0x70, + 0x75, 0x73, 0x68, 0x28, 0x74, 0x29, 0x26, 0x26, 0x21, 0x71, 0x2e, 0x5f, + 0x5f, 0x72, 0x2b, 0x2b, 0x7c, 0x7c, 0x45, 0x21, 0x3d, 0x3d, 0x53, 0x2e, + 0x64, 0x65, 0x62, 0x6f, 0x75, 0x6e, 0x63, 0x65, 0x52, 0x65, 0x6e, 0x64, + 0x65, 0x72, 0x69, 0x6e, 0x67, 0x29, 0x26, 0x26, 0x28, 0x28, 0x45, 0x3d, + 0x53, 0x2e, 0x64, 0x65, 0x62, 0x6f, 0x75, 0x6e, 0x63, 0x65, 0x52, 0x65, + 0x6e, 0x64, 0x65, 0x72, 0x69, 0x6e, 0x67, 0x29, 0x7c, 0x7c, 0x55, 0x29, + 0x28, 0x71, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x71, 0x28, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x74, 0x2c, 0x6e, + 0x2c, 0x65, 0x2c, 0x69, 0x2c, 0x5f, 0x2c, 0x6f, 0x2c, 0x72, 0x2c, 0x75, + 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x43, 0x2e, 0x73, 0x6f, 0x72, 0x74, 0x28, + 0x48, 0x29, 0x3b, 0x74, 0x3d, 0x43, 0x2e, 0x73, 0x68, 0x69, 0x66, 0x74, + 0x28, 0x29, 0x3b, 0x29, 0x74, 0x2e, 0x5f, 0x5f, 0x64, 0x26, 0x26, 0x28, + 0x6e, 0x3d, 0x43, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x2c, 0x69, + 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x2c, 0x5f, 0x3d, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x2c, 0x72, 0x3d, 0x28, 0x6f, 0x3d, 0x28, 0x65, + 0x3d, 0x74, 0x29, 0x2e, 0x5f, 0x5f, 0x76, 0x29, 0x2e, 0x5f, 0x5f, 0x65, + 0x2c, 0x28, 0x75, 0x3d, 0x65, 0x2e, 0x5f, 0x5f, 0x50, 0x29, 0x26, 0x26, + 0x28, 0x69, 0x3d, 0x5b, 0x5d, 0x2c, 0x28, 0x5f, 0x3d, 0x56, 0x28, 0x7b, + 0x7d, 0x2c, 0x6f, 0x29, 0x29, 0x2e, 0x5f, 0x5f, 0x76, 0x3d, 0x6f, 0x2e, + 0x5f, 0x5f, 0x76, 0x2b, 0x31, 0x2c, 0x6e, 0x74, 0x28, 0x75, 0x2c, 0x6f, + 0x2c, 0x5f, 0x2c, 0x65, 0x2e, 0x5f, 0x5f, 0x6e, 0x2c, 0x76, 0x6f, 0x69, + 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x75, 0x2e, 0x6f, 0x77, 0x6e, 0x65, + 0x72, 0x53, 0x56, 0x47, 0x45, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x2c, + 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x6f, 0x2e, 0x5f, 0x5f, 0x68, 0x3f, + 0x5b, 0x72, 0x5d, 0x3a, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x69, 0x2c, 0x6e, + 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x72, 0x3f, 0x52, 0x28, 0x6f, 0x29, 0x3a, + 0x72, 0x2c, 0x6f, 0x2e, 0x5f, 0x5f, 0x68, 0x29, 0x2c, 0x65, 0x74, 0x28, + 0x69, 0x2c, 0x6f, 0x29, 0x2c, 0x6f, 0x2e, 0x5f, 0x5f, 0x65, 0x21, 0x3d, + 0x72, 0x26, 0x26, 0x49, 0x28, 0x6f, 0x29, 0x29, 0x2c, 0x43, 0x2e, 0x6c, + 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3e, 0x6e, 0x26, 0x26, 0x43, 0x2e, 0x73, + 0x6f, 0x72, 0x74, 0x28, 0x48, 0x29, 0x29, 0x3b, 0x71, 0x2e, 0x5f, 0x5f, + 0x72, 0x3d, 0x30, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x42, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x2c, 0x69, 0x2c, 0x5f, + 0x2c, 0x6f, 0x2c, 0x72, 0x2c, 0x75, 0x2c, 0x6c, 0x2c, 0x66, 0x29, 0x7b, + 0x76, 0x61, 0x72, 0x20, 0x73, 0x2c, 0x63, 0x2c, 0x68, 0x2c, 0x61, 0x2c, + 0x70, 0x2c, 0x64, 0x2c, 0x76, 0x2c, 0x79, 0x3d, 0x69, 0x26, 0x26, 0x69, + 0x2e, 0x5f, 0x5f, 0x6b, 0x7c, 0x7c, 0x44, 0x2c, 0x6d, 0x3d, 0x79, 0x2e, + 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x65, + 0x2e, 0x5f, 0x5f, 0x6b, 0x3d, 0x5b, 0x5d, 0x2c, 0x73, 0x3d, 0x30, 0x3b, + 0x73, 0x3c, 0x6e, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x73, + 0x2b, 0x2b, 0x29, 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, + 0x28, 0x61, 0x3d, 0x65, 0x2e, 0x5f, 0x5f, 0x6b, 0x5b, 0x73, 0x5d, 0x3d, + 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x28, 0x61, 0x3d, 0x6e, 0x5b, 0x73, + 0x5d, 0x29, 0x7c, 0x7c, 0x22, 0x62, 0x6f, 0x6f, 0x6c, 0x65, 0x61, 0x6e, + 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x61, 0x7c, + 0x7c, 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, + 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x61, 0x3f, 0x6e, 0x75, + 0x6c, 0x6c, 0x3a, 0x22, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x22, 0x3d, + 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x61, 0x7c, 0x7c, 0x22, + 0x6e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, + 0x65, 0x6f, 0x66, 0x20, 0x61, 0x7c, 0x7c, 0x22, 0x62, 0x69, 0x67, 0x69, + 0x6e, 0x74, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, + 0x61, 0x3f, 0x4d, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x61, 0x2c, 0x6e, + 0x75, 0x6c, 0x6c, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x61, 0x29, 0x3a, + 0x54, 0x28, 0x61, 0x29, 0x3f, 0x4d, 0x28, 0x4f, 0x2c, 0x7b, 0x63, 0x68, + 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x3a, 0x61, 0x7d, 0x2c, 0x6e, 0x75, + 0x6c, 0x6c, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, + 0x29, 0x3a, 0x61, 0x2e, 0x5f, 0x5f, 0x62, 0x3e, 0x30, 0x3f, 0x4d, 0x28, + 0x61, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x2c, 0x61, 0x2e, 0x70, 0x72, 0x6f, + 0x70, 0x73, 0x2c, 0x61, 0x2e, 0x6b, 0x65, 0x79, 0x2c, 0x61, 0x2e, 0x72, + 0x65, 0x66, 0x3f, 0x61, 0x2e, 0x72, 0x65, 0x66, 0x3a, 0x6e, 0x75, 0x6c, + 0x6c, 0x2c, 0x61, 0x2e, 0x5f, 0x5f, 0x76, 0x29, 0x3a, 0x61, 0x29, 0x29, + 0x7b, 0x69, 0x66, 0x28, 0x61, 0x2e, 0x5f, 0x5f, 0x3d, 0x65, 0x2c, 0x61, + 0x2e, 0x5f, 0x5f, 0x62, 0x3d, 0x65, 0x2e, 0x5f, 0x5f, 0x62, 0x2b, 0x31, + 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x3d, 0x28, 0x68, 0x3d, 0x79, + 0x5b, 0x73, 0x5d, 0x29, 0x7c, 0x7c, 0x68, 0x26, 0x26, 0x61, 0x2e, 0x6b, + 0x65, 0x79, 0x3d, 0x3d, 0x68, 0x2e, 0x6b, 0x65, 0x79, 0x26, 0x26, 0x61, + 0x2e, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x3d, 0x3d, 0x68, 0x2e, 0x74, 0x79, + 0x70, 0x65, 0x29, 0x79, 0x5b, 0x73, 0x5d, 0x3d, 0x76, 0x6f, 0x69, 0x64, + 0x20, 0x30, 0x3b, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x66, 0x6f, 0x72, 0x28, + 0x63, 0x3d, 0x30, 0x3b, 0x63, 0x3c, 0x6d, 0x3b, 0x63, 0x2b, 0x2b, 0x29, + 0x7b, 0x69, 0x66, 0x28, 0x28, 0x68, 0x3d, 0x79, 0x5b, 0x63, 0x5d, 0x29, + 0x26, 0x26, 0x61, 0x2e, 0x6b, 0x65, 0x79, 0x3d, 0x3d, 0x68, 0x2e, 0x6b, + 0x65, 0x79, 0x26, 0x26, 0x61, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x3d, + 0x3d, 0x68, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x29, 0x7b, 0x79, 0x5b, 0x63, + 0x5d, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, 0x62, 0x72, 0x65, + 0x61, 0x6b, 0x7d, 0x68, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x7d, 0x6e, 0x74, + 0x28, 0x74, 0x2c, 0x61, 0x2c, 0x68, 0x3d, 0x68, 0x7c, 0x7c, 0x50, 0x2c, + 0x5f, 0x2c, 0x6f, 0x2c, 0x72, 0x2c, 0x75, 0x2c, 0x6c, 0x2c, 0x66, 0x29, + 0x2c, 0x70, 0x3d, 0x61, 0x2e, 0x5f, 0x5f, 0x65, 0x2c, 0x28, 0x63, 0x3d, + 0x61, 0x2e, 0x72, 0x65, 0x66, 0x29, 0x26, 0x26, 0x68, 0x2e, 0x72, 0x65, + 0x66, 0x21, 0x3d, 0x63, 0x26, 0x26, 0x28, 0x76, 0x7c, 0x7c, 0x28, 0x76, + 0x3d, 0x5b, 0x5d, 0x29, 0x2c, 0x68, 0x2e, 0x72, 0x65, 0x66, 0x26, 0x26, + 0x76, 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x68, 0x2e, 0x72, 0x65, 0x66, + 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x61, 0x29, 0x2c, 0x76, 0x2e, 0x70, + 0x75, 0x73, 0x68, 0x28, 0x63, 0x2c, 0x61, 0x2e, 0x5f, 0x5f, 0x63, 0x7c, + 0x7c, 0x70, 0x2c, 0x61, 0x29, 0x29, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x21, + 0x3d, 0x70, 0x3f, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x64, 0x26, + 0x26, 0x28, 0x64, 0x3d, 0x70, 0x29, 0x2c, 0x22, 0x66, 0x75, 0x6e, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, + 0x66, 0x20, 0x61, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x26, 0x26, 0x61, 0x2e, + 0x5f, 0x5f, 0x6b, 0x3d, 0x3d, 0x3d, 0x68, 0x2e, 0x5f, 0x5f, 0x6b, 0x3f, + 0x61, 0x2e, 0x5f, 0x5f, 0x64, 0x3d, 0x6c, 0x3d, 0x47, 0x28, 0x61, 0x2c, + 0x6c, 0x2c, 0x74, 0x29, 0x3a, 0x6c, 0x3d, 0x4a, 0x28, 0x74, 0x2c, 0x61, + 0x2c, 0x68, 0x2c, 0x79, 0x2c, 0x70, 0x2c, 0x6c, 0x29, 0x2c, 0x22, 0x66, + 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, 0x74, 0x79, + 0x70, 0x65, 0x6f, 0x66, 0x20, 0x65, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x26, + 0x26, 0x28, 0x65, 0x2e, 0x5f, 0x5f, 0x64, 0x3d, 0x6c, 0x29, 0x29, 0x3a, + 0x6c, 0x26, 0x26, 0x68, 0x2e, 0x5f, 0x5f, 0x65, 0x3d, 0x3d, 0x6c, 0x26, + 0x26, 0x6c, 0x2e, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x4e, 0x6f, 0x64, + 0x65, 0x21, 0x3d, 0x74, 0x26, 0x26, 0x28, 0x6c, 0x3d, 0x52, 0x28, 0x68, + 0x29, 0x29, 0x7d, 0x66, 0x6f, 0x72, 0x28, 0x65, 0x2e, 0x5f, 0x5f, 0x65, + 0x3d, 0x64, 0x2c, 0x73, 0x3d, 0x6d, 0x3b, 0x73, 0x2d, 0x2d, 0x3b, 0x29, + 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x79, 0x5b, 0x73, 0x5d, 0x26, 0x26, + 0x28, 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, + 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x65, 0x2e, 0x74, 0x79, + 0x70, 0x65, 0x26, 0x26, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x79, 0x5b, + 0x73, 0x5d, 0x2e, 0x5f, 0x5f, 0x65, 0x26, 0x26, 0x79, 0x5b, 0x73, 0x5d, + 0x2e, 0x5f, 0x5f, 0x65, 0x3d, 0x3d, 0x65, 0x2e, 0x5f, 0x5f, 0x64, 0x26, + 0x26, 0x28, 0x65, 0x2e, 0x5f, 0x5f, 0x64, 0x3d, 0x4b, 0x28, 0x69, 0x29, + 0x2e, 0x6e, 0x65, 0x78, 0x74, 0x53, 0x69, 0x62, 0x6c, 0x69, 0x6e, 0x67, + 0x29, 0x2c, 0x6f, 0x74, 0x28, 0x79, 0x5b, 0x73, 0x5d, 0x2c, 0x79, 0x5b, + 0x73, 0x5d, 0x29, 0x29, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x29, 0x66, 0x6f, + 0x72, 0x28, 0x73, 0x3d, 0x30, 0x3b, 0x73, 0x3c, 0x76, 0x2e, 0x6c, 0x65, + 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x73, 0x2b, 0x2b, 0x29, 0x5f, 0x74, 0x28, + 0x76, 0x5b, 0x73, 0x5d, 0x2c, 0x76, 0x5b, 0x2b, 0x2b, 0x73, 0x5d, 0x2c, + 0x76, 0x5b, 0x2b, 0x2b, 0x73, 0x5d, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x47, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, + 0x29, 0x7b, 0x66, 0x6f, 0x72, 0x28, 0x76, 0x61, 0x72, 0x20, 0x69, 0x2c, + 0x5f, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x6b, 0x2c, 0x6f, 0x3d, 0x30, 0x3b, + 0x5f, 0x26, 0x26, 0x6f, 0x3c, 0x5f, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, + 0x68, 0x3b, 0x6f, 0x2b, 0x2b, 0x29, 0x28, 0x69, 0x3d, 0x5f, 0x5b, 0x6f, + 0x5d, 0x29, 0x26, 0x26, 0x28, 0x69, 0x2e, 0x5f, 0x5f, 0x3d, 0x74, 0x2c, + 0x6e, 0x3d, 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, + 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x69, 0x2e, 0x74, + 0x79, 0x70, 0x65, 0x3f, 0x47, 0x28, 0x69, 0x2c, 0x6e, 0x2c, 0x65, 0x29, + 0x3a, 0x4a, 0x28, 0x65, 0x2c, 0x69, 0x2c, 0x69, 0x2c, 0x5f, 0x2c, 0x69, + 0x2e, 0x5f, 0x5f, 0x65, 0x2c, 0x6e, 0x29, 0x29, 0x3b, 0x72, 0x65, 0x74, + 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x20, 0x7a, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x3d, 0x6e, 0x7c, 0x7c, 0x5b, 0x5d, + 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x74, 0x7c, 0x7c, 0x22, 0x62, + 0x6f, 0x6f, 0x6c, 0x65, 0x61, 0x6e, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, + 0x65, 0x6f, 0x66, 0x20, 0x74, 0x7c, 0x7c, 0x28, 0x54, 0x28, 0x74, 0x29, + 0x3f, 0x74, 0x2e, 0x73, 0x6f, 0x6d, 0x65, 0x28, 0x28, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x7a, 0x28, 0x74, + 0x2c, 0x6e, 0x29, 0x7d, 0x29, 0x29, 0x3a, 0x6e, 0x2e, 0x70, 0x75, 0x73, + 0x68, 0x28, 0x74, 0x29, 0x29, 0x2c, 0x6e, 0x7d, 0x66, 0x75, 0x6e, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x4a, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, + 0x2c, 0x69, 0x2c, 0x5f, 0x2c, 0x6f, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, + 0x72, 0x2c, 0x75, 0x2c, 0x6c, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, + 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, 0x64, 0x29, + 0x72, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, 0x64, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, + 0x64, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, 0x65, 0x6c, 0x73, + 0x65, 0x20, 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x65, + 0x7c, 0x7c, 0x5f, 0x21, 0x3d, 0x6f, 0x7c, 0x7c, 0x6e, 0x75, 0x6c, 0x6c, + 0x3d, 0x3d, 0x5f, 0x2e, 0x70, 0x61, 0x72, 0x65, 0x6e, 0x74, 0x4e, 0x6f, + 0x64, 0x65, 0x29, 0x74, 0x3a, 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, + 0x3d, 0x3d, 0x6f, 0x7c, 0x7c, 0x6f, 0x2e, 0x70, 0x61, 0x72, 0x65, 0x6e, + 0x74, 0x4e, 0x6f, 0x64, 0x65, 0x21, 0x3d, 0x3d, 0x74, 0x29, 0x74, 0x2e, + 0x61, 0x70, 0x70, 0x65, 0x6e, 0x64, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x28, + 0x5f, 0x29, 0x2c, 0x72, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x65, 0x6c, + 0x73, 0x65, 0x7b, 0x66, 0x6f, 0x72, 0x28, 0x75, 0x3d, 0x6f, 0x2c, 0x6c, + 0x3d, 0x30, 0x3b, 0x28, 0x75, 0x3d, 0x75, 0x2e, 0x6e, 0x65, 0x78, 0x74, + 0x53, 0x69, 0x62, 0x6c, 0x69, 0x6e, 0x67, 0x29, 0x26, 0x26, 0x6c, 0x3c, + 0x69, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x6c, 0x2b, 0x3d, + 0x31, 0x29, 0x69, 0x66, 0x28, 0x75, 0x3d, 0x3d, 0x5f, 0x29, 0x62, 0x72, + 0x65, 0x61, 0x6b, 0x20, 0x74, 0x3b, 0x74, 0x2e, 0x69, 0x6e, 0x73, 0x65, + 0x72, 0x74, 0x42, 0x65, 0x66, 0x6f, 0x72, 0x65, 0x28, 0x5f, 0x2c, 0x6f, + 0x29, 0x2c, 0x72, 0x3d, 0x6f, 0x7d, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x72, 0x3f, + 0x72, 0x3a, 0x5f, 0x2e, 0x6e, 0x65, 0x78, 0x74, 0x53, 0x69, 0x62, 0x6c, + 0x69, 0x6e, 0x67, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x4b, 0x28, 0x74, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x6e, 0x2c, + 0x65, 0x2c, 0x69, 0x3b, 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, + 0x3d, 0x74, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x7c, 0x7c, 0x22, 0x73, 0x74, + 0x72, 0x69, 0x6e, 0x67, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, + 0x66, 0x20, 0x74, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x29, 0x72, 0x65, 0x74, + 0x75, 0x72, 0x6e, 0x20, 0x74, 0x2e, 0x5f, 0x5f, 0x65, 0x3b, 0x69, 0x66, + 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x6b, 0x29, 0x66, 0x6f, 0x72, 0x28, 0x6e, + 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x6b, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, + 0x68, 0x2d, 0x31, 0x3b, 0x6e, 0x3e, 0x3d, 0x30, 0x3b, 0x6e, 0x2d, 0x2d, + 0x29, 0x69, 0x66, 0x28, 0x28, 0x65, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x6b, + 0x5b, 0x6e, 0x5d, 0x29, 0x26, 0x26, 0x28, 0x69, 0x3d, 0x4b, 0x28, 0x65, + 0x29, 0x29, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x69, 0x3b, + 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x7d, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x51, 0x28, 0x74, + 0x2c, 0x6e, 0x2c, 0x65, 0x2c, 0x69, 0x2c, 0x5f, 0x29, 0x7b, 0x76, 0x61, + 0x72, 0x20, 0x6f, 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x6f, 0x20, 0x69, 0x6e, + 0x20, 0x65, 0x29, 0x22, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, + 0x22, 0x3d, 0x3d, 0x3d, 0x6f, 0x7c, 0x7c, 0x22, 0x6b, 0x65, 0x79, 0x22, + 0x3d, 0x3d, 0x3d, 0x6f, 0x7c, 0x7c, 0x6f, 0x20, 0x69, 0x6e, 0x20, 0x6e, + 0x7c, 0x7c, 0x59, 0x28, 0x74, 0x2c, 0x6f, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, + 0x2c, 0x65, 0x5b, 0x6f, 0x5d, 0x2c, 0x69, 0x29, 0x3b, 0x66, 0x6f, 0x72, + 0x28, 0x6f, 0x20, 0x69, 0x6e, 0x20, 0x6e, 0x29, 0x5f, 0x26, 0x26, 0x22, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x21, 0x3d, 0x74, + 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x6e, 0x5b, 0x6f, 0x5d, 0x7c, 0x7c, + 0x22, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x22, 0x3d, 0x3d, + 0x3d, 0x6f, 0x7c, 0x7c, 0x22, 0x6b, 0x65, 0x79, 0x22, 0x3d, 0x3d, 0x3d, + 0x6f, 0x7c, 0x7c, 0x22, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x22, 0x3d, 0x3d, + 0x3d, 0x6f, 0x7c, 0x7c, 0x22, 0x63, 0x68, 0x65, 0x63, 0x6b, 0x65, 0x64, + 0x22, 0x3d, 0x3d, 0x3d, 0x6f, 0x7c, 0x7c, 0x65, 0x5b, 0x6f, 0x5d, 0x3d, + 0x3d, 0x3d, 0x6e, 0x5b, 0x6f, 0x5d, 0x7c, 0x7c, 0x59, 0x28, 0x74, 0x2c, + 0x6f, 0x2c, 0x6e, 0x5b, 0x6f, 0x5d, 0x2c, 0x65, 0x5b, 0x6f, 0x5d, 0x2c, + 0x69, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x58, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x7b, 0x22, 0x2d, 0x22, + 0x3d, 0x3d, 0x3d, 0x6e, 0x5b, 0x30, 0x5d, 0x3f, 0x74, 0x2e, 0x73, 0x65, + 0x74, 0x50, 0x72, 0x6f, 0x70, 0x65, 0x72, 0x74, 0x79, 0x28, 0x6e, 0x2c, + 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x65, 0x3f, 0x22, 0x22, 0x3a, 0x65, + 0x29, 0x3a, 0x74, 0x5b, 0x6e, 0x5d, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, + 0x3d, 0x65, 0x3f, 0x22, 0x22, 0x3a, 0x22, 0x6e, 0x75, 0x6d, 0x62, 0x65, + 0x72, 0x22, 0x21, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x65, + 0x7c, 0x7c, 0x24, 0x2e, 0x74, 0x65, 0x73, 0x74, 0x28, 0x6e, 0x29, 0x3f, + 0x65, 0x3a, 0x65, 0x2b, 0x22, 0x70, 0x78, 0x22, 0x7d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x59, 0x28, 0x74, 0x2c, 0x6e, 0x2c, + 0x65, 0x2c, 0x69, 0x2c, 0x5f, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x6f, + 0x3b, 0x74, 0x3a, 0x69, 0x66, 0x28, 0x22, 0x73, 0x74, 0x79, 0x6c, 0x65, + 0x22, 0x3d, 0x3d, 0x3d, 0x6e, 0x29, 0x69, 0x66, 0x28, 0x22, 0x73, 0x74, + 0x72, 0x69, 0x6e, 0x67, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, + 0x66, 0x20, 0x65, 0x29, 0x74, 0x2e, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x2e, + 0x63, 0x73, 0x73, 0x54, 0x65, 0x78, 0x74, 0x3d, 0x65, 0x3b, 0x65, 0x6c, + 0x73, 0x65, 0x7b, 0x69, 0x66, 0x28, 0x22, 0x73, 0x74, 0x72, 0x69, 0x6e, + 0x67, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x69, + 0x26, 0x26, 0x28, 0x74, 0x2e, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x2e, 0x63, + 0x73, 0x73, 0x54, 0x65, 0x78, 0x74, 0x3d, 0x69, 0x3d, 0x22, 0x22, 0x29, + 0x2c, 0x69, 0x29, 0x66, 0x6f, 0x72, 0x28, 0x6e, 0x20, 0x69, 0x6e, 0x20, + 0x69, 0x29, 0x65, 0x26, 0x26, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x65, 0x7c, + 0x7c, 0x58, 0x28, 0x74, 0x2e, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x2c, 0x6e, + 0x2c, 0x22, 0x22, 0x29, 0x3b, 0x69, 0x66, 0x28, 0x65, 0x29, 0x66, 0x6f, + 0x72, 0x28, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x65, 0x29, 0x69, 0x26, 0x26, + 0x65, 0x5b, 0x6e, 0x5d, 0x3d, 0x3d, 0x3d, 0x69, 0x5b, 0x6e, 0x5d, 0x7c, + 0x7c, 0x58, 0x28, 0x74, 0x2e, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x2c, 0x6e, + 0x2c, 0x65, 0x5b, 0x6e, 0x5d, 0x29, 0x7d, 0x65, 0x6c, 0x73, 0x65, 0x20, + 0x69, 0x66, 0x28, 0x22, 0x6f, 0x22, 0x3d, 0x3d, 0x3d, 0x6e, 0x5b, 0x30, + 0x5d, 0x26, 0x26, 0x22, 0x6e, 0x22, 0x3d, 0x3d, 0x3d, 0x6e, 0x5b, 0x31, + 0x5d, 0x29, 0x6f, 0x3d, 0x6e, 0x21, 0x3d, 0x3d, 0x28, 0x6e, 0x3d, 0x6e, + 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x43, 0x61, + 0x70, 0x74, 0x75, 0x72, 0x65, 0x24, 0x2f, 0x2c, 0x22, 0x22, 0x29, 0x29, + 0x2c, 0x6e, 0x3d, 0x6e, 0x2e, 0x74, 0x6f, 0x4c, 0x6f, 0x77, 0x65, 0x72, + 0x43, 0x61, 0x73, 0x65, 0x28, 0x29, 0x69, 0x6e, 0x20, 0x74, 0x3f, 0x6e, + 0x2e, 0x74, 0x6f, 0x4c, 0x6f, 0x77, 0x65, 0x72, 0x43, 0x61, 0x73, 0x65, + 0x28, 0x29, 0x2e, 0x73, 0x6c, 0x69, 0x63, 0x65, 0x28, 0x32, 0x29, 0x3a, + 0x6e, 0x2e, 0x73, 0x6c, 0x69, 0x63, 0x65, 0x28, 0x32, 0x29, 0x2c, 0x74, + 0x2e, 0x6c, 0x7c, 0x7c, 0x28, 0x74, 0x2e, 0x6c, 0x3d, 0x7b, 0x7d, 0x29, + 0x2c, 0x74, 0x2e, 0x6c, 0x5b, 0x6e, 0x2b, 0x6f, 0x5d, 0x3d, 0x65, 0x2c, + 0x65, 0x3f, 0x69, 0x7c, 0x7c, 0x74, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76, + 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, + 0x6e, 0x2c, 0x6f, 0x3f, 0x74, 0x74, 0x3a, 0x5a, 0x2c, 0x6f, 0x29, 0x3a, + 0x74, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x45, 0x76, 0x65, 0x6e, + 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, 0x6e, 0x2c, + 0x6f, 0x3f, 0x74, 0x74, 0x3a, 0x5a, 0x2c, 0x6f, 0x29, 0x3b, 0x65, 0x6c, + 0x73, 0x65, 0x20, 0x69, 0x66, 0x28, 0x22, 0x64, 0x61, 0x6e, 0x67, 0x65, + 0x72, 0x6f, 0x75, 0x73, 0x6c, 0x79, 0x53, 0x65, 0x74, 0x49, 0x6e, 0x6e, + 0x65, 0x72, 0x48, 0x54, 0x4d, 0x4c, 0x22, 0x21, 0x3d, 0x3d, 0x6e, 0x29, + 0x7b, 0x69, 0x66, 0x28, 0x5f, 0x29, 0x6e, 0x3d, 0x6e, 0x2e, 0x72, 0x65, + 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x78, 0x6c, 0x69, 0x6e, 0x6b, + 0x28, 0x48, 0x7c, 0x3a, 0x68, 0x29, 0x2f, 0x2c, 0x22, 0x68, 0x22, 0x29, + 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x73, 0x4e, + 0x61, 0x6d, 0x65, 0x24, 0x2f, 0x2c, 0x22, 0x73, 0x22, 0x29, 0x3b, 0x65, + 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x28, 0x22, 0x77, 0x69, 0x64, 0x74, + 0x68, 0x22, 0x21, 0x3d, 0x3d, 0x6e, 0x26, 0x26, 0x22, 0x68, 0x65, 0x69, + 0x67, 0x68, 0x74, 0x22, 0x21, 0x3d, 0x3d, 0x6e, 0x26, 0x26, 0x22, 0x68, + 0x72, 0x65, 0x66, 0x22, 0x21, 0x3d, 0x3d, 0x6e, 0x26, 0x26, 0x22, 0x6c, + 0x69, 0x73, 0x74, 0x22, 0x21, 0x3d, 0x3d, 0x6e, 0x26, 0x26, 0x22, 0x66, + 0x6f, 0x72, 0x6d, 0x22, 0x21, 0x3d, 0x3d, 0x6e, 0x26, 0x26, 0x22, 0x74, + 0x61, 0x62, 0x49, 0x6e, 0x64, 0x65, 0x78, 0x22, 0x21, 0x3d, 0x3d, 0x6e, + 0x26, 0x26, 0x22, 0x64, 0x6f, 0x77, 0x6e, 0x6c, 0x6f, 0x61, 0x64, 0x22, + 0x21, 0x3d, 0x3d, 0x6e, 0x26, 0x26, 0x22, 0x72, 0x6f, 0x77, 0x53, 0x70, + 0x61, 0x6e, 0x22, 0x21, 0x3d, 0x3d, 0x6e, 0x26, 0x26, 0x22, 0x63, 0x6f, + 0x6c, 0x53, 0x70, 0x61, 0x6e, 0x22, 0x21, 0x3d, 0x3d, 0x6e, 0x26, 0x26, + 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x29, 0x74, 0x72, 0x79, 0x7b, 0x74, + 0x5b, 0x6e, 0x5d, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x65, 0x3f, + 0x22, 0x22, 0x3a, 0x65, 0x3b, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x74, + 0x7d, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x74, 0x29, 0x7b, 0x7d, 0x22, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, 0x74, + 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x65, 0x7c, 0x7c, 0x28, 0x6e, 0x75, + 0x6c, 0x6c, 0x3d, 0x3d, 0x65, 0x7c, 0x7c, 0x21, 0x31, 0x3d, 0x3d, 0x3d, + 0x65, 0x26, 0x26, 0x22, 0x2d, 0x22, 0x21, 0x3d, 0x3d, 0x6e, 0x5b, 0x34, + 0x5d, 0x3f, 0x74, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x41, 0x74, + 0x74, 0x72, 0x69, 0x62, 0x75, 0x74, 0x65, 0x28, 0x6e, 0x29, 0x3a, 0x74, + 0x2e, 0x73, 0x65, 0x74, 0x41, 0x74, 0x74, 0x72, 0x69, 0x62, 0x75, 0x74, + 0x65, 0x28, 0x6e, 0x2c, 0x65, 0x29, 0x29, 0x7d, 0x7d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x5a, 0x28, 0x74, 0x29, 0x7b, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x6c, + 0x5b, 0x74, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x2b, 0x21, 0x31, 0x5d, 0x28, + 0x53, 0x2e, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x3f, 0x53, 0x2e, 0x65, 0x76, + 0x65, 0x6e, 0x74, 0x28, 0x74, 0x29, 0x3a, 0x74, 0x29, 0x7d, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x74, 0x74, 0x28, 0x74, 0x29, + 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x6c, 0x5b, 0x74, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x2b, 0x21, 0x30, + 0x5d, 0x28, 0x53, 0x2e, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x3f, 0x53, 0x2e, + 0x65, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x74, 0x29, 0x3a, 0x74, 0x29, 0x7d, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6e, 0x74, 0x28, + 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x2c, 0x69, 0x2c, 0x5f, 0x2c, 0x6f, 0x2c, + 0x72, 0x2c, 0x75, 0x2c, 0x6c, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x66, + 0x2c, 0x73, 0x2c, 0x63, 0x2c, 0x68, 0x2c, 0x61, 0x2c, 0x70, 0x2c, 0x64, + 0x2c, 0x76, 0x2c, 0x79, 0x2c, 0x6d, 0x2c, 0x67, 0x2c, 0x62, 0x2c, 0x6b, + 0x2c, 0x78, 0x2c, 0x77, 0x2c, 0x43, 0x3d, 0x6e, 0x2e, 0x74, 0x79, 0x70, + 0x65, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, + 0x3d, 0x3d, 0x6e, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x72, 0x75, 0x63, + 0x74, 0x6f, 0x72, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, + 0x75, 0x6c, 0x6c, 0x3b, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x65, 0x2e, + 0x5f, 0x5f, 0x68, 0x26, 0x26, 0x28, 0x6c, 0x3d, 0x65, 0x2e, 0x5f, 0x5f, + 0x68, 0x2c, 0x75, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, 0x65, 0x3d, 0x65, 0x2e, + 0x5f, 0x5f, 0x65, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, 0x68, 0x3d, 0x6e, 0x75, + 0x6c, 0x6c, 0x2c, 0x6f, 0x3d, 0x5b, 0x75, 0x5d, 0x29, 0x2c, 0x28, 0x66, + 0x3d, 0x53, 0x2e, 0x5f, 0x5f, 0x62, 0x29, 0x26, 0x26, 0x66, 0x28, 0x6e, + 0x29, 0x3b, 0x74, 0x72, 0x79, 0x7b, 0x74, 0x3a, 0x69, 0x66, 0x28, 0x22, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, 0x74, + 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x43, 0x29, 0x7b, 0x69, 0x66, 0x28, + 0x76, 0x3d, 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2c, 0x79, 0x3d, + 0x28, 0x66, 0x3d, 0x43, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, + 0x54, 0x79, 0x70, 0x65, 0x29, 0x26, 0x26, 0x69, 0x5b, 0x66, 0x2e, 0x5f, + 0x5f, 0x63, 0x5d, 0x2c, 0x6d, 0x3d, 0x66, 0x3f, 0x79, 0x3f, 0x79, 0x2e, + 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, + 0x66, 0x2e, 0x5f, 0x5f, 0x3a, 0x69, 0x2c, 0x65, 0x2e, 0x5f, 0x5f, 0x63, + 0x3f, 0x64, 0x3d, 0x28, 0x73, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, 0x63, 0x3d, + 0x65, 0x2e, 0x5f, 0x5f, 0x63, 0x29, 0x2e, 0x5f, 0x5f, 0x3d, 0x73, 0x2e, + 0x5f, 0x5f, 0x45, 0x3a, 0x28, 0x22, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, + 0x79, 0x70, 0x65, 0x22, 0x69, 0x6e, 0x20, 0x43, 0x26, 0x26, 0x43, 0x2e, + 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x72, 0x65, + 0x6e, 0x64, 0x65, 0x72, 0x3f, 0x6e, 0x2e, 0x5f, 0x5f, 0x63, 0x3d, 0x73, + 0x3d, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x28, 0x76, 0x2c, 0x6d, 0x29, 0x3a, + 0x28, 0x6e, 0x2e, 0x5f, 0x5f, 0x63, 0x3d, 0x73, 0x3d, 0x6e, 0x65, 0x77, + 0x20, 0x4c, 0x28, 0x76, 0x2c, 0x6d, 0x29, 0x2c, 0x73, 0x2e, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x6f, 0x72, 0x3d, 0x43, 0x2c, + 0x73, 0x2e, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x3d, 0x72, 0x74, 0x29, + 0x2c, 0x79, 0x26, 0x26, 0x79, 0x2e, 0x73, 0x75, 0x62, 0x28, 0x73, 0x29, + 0x2c, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x3d, 0x76, 0x2c, 0x73, + 0x2e, 0x73, 0x74, 0x61, 0x74, 0x65, 0x7c, 0x7c, 0x28, 0x73, 0x2e, 0x73, + 0x74, 0x61, 0x74, 0x65, 0x3d, 0x7b, 0x7d, 0x29, 0x2c, 0x73, 0x2e, 0x63, + 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x3d, 0x6d, 0x2c, 0x73, 0x2e, 0x5f, + 0x5f, 0x6e, 0x3d, 0x69, 0x2c, 0x63, 0x3d, 0x73, 0x2e, 0x5f, 0x5f, 0x64, + 0x3d, 0x21, 0x30, 0x2c, 0x73, 0x2e, 0x5f, 0x5f, 0x68, 0x3d, 0x5b, 0x5d, + 0x2c, 0x73, 0x2e, 0x5f, 0x73, 0x62, 0x3d, 0x5b, 0x5d, 0x29, 0x2c, 0x6e, + 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x26, 0x26, + 0x28, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x3d, 0x73, 0x2e, 0x73, 0x74, 0x61, + 0x74, 0x65, 0x29, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x43, 0x2e, + 0x67, 0x65, 0x74, 0x44, 0x65, 0x72, 0x69, 0x76, 0x65, 0x64, 0x53, 0x74, + 0x61, 0x74, 0x65, 0x46, 0x72, 0x6f, 0x6d, 0x50, 0x72, 0x6f, 0x70, 0x73, + 0x26, 0x26, 0x28, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x3d, 0x3d, 0x73, 0x2e, + 0x73, 0x74, 0x61, 0x74, 0x65, 0x26, 0x26, 0x28, 0x73, 0x2e, 0x5f, 0x5f, + 0x73, 0x3d, 0x56, 0x28, 0x7b, 0x7d, 0x2c, 0x73, 0x2e, 0x5f, 0x5f, 0x73, + 0x29, 0x29, 0x2c, 0x56, 0x28, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x2c, 0x43, + 0x2e, 0x67, 0x65, 0x74, 0x44, 0x65, 0x72, 0x69, 0x76, 0x65, 0x64, 0x53, + 0x74, 0x61, 0x74, 0x65, 0x46, 0x72, 0x6f, 0x6d, 0x50, 0x72, 0x6f, 0x70, + 0x73, 0x28, 0x76, 0x2c, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x29, 0x29, 0x29, + 0x2c, 0x68, 0x3d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2c, 0x61, + 0x3d, 0x73, 0x2e, 0x73, 0x74, 0x61, 0x74, 0x65, 0x2c, 0x73, 0x2e, 0x5f, + 0x5f, 0x76, 0x3d, 0x6e, 0x2c, 0x63, 0x29, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, + 0x3d, 0x43, 0x2e, 0x67, 0x65, 0x74, 0x44, 0x65, 0x72, 0x69, 0x76, 0x65, + 0x64, 0x53, 0x74, 0x61, 0x74, 0x65, 0x46, 0x72, 0x6f, 0x6d, 0x50, 0x72, + 0x6f, 0x70, 0x73, 0x26, 0x26, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x73, + 0x2e, 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x57, 0x69, + 0x6c, 0x6c, 0x4d, 0x6f, 0x75, 0x6e, 0x74, 0x26, 0x26, 0x73, 0x2e, 0x63, + 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x57, 0x69, 0x6c, 0x6c, + 0x4d, 0x6f, 0x75, 0x6e, 0x74, 0x28, 0x29, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, + 0x21, 0x3d, 0x73, 0x2e, 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, + 0x74, 0x44, 0x69, 0x64, 0x4d, 0x6f, 0x75, 0x6e, 0x74, 0x26, 0x26, 0x73, + 0x2e, 0x5f, 0x5f, 0x68, 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x73, 0x2e, + 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x44, 0x69, 0x64, + 0x4d, 0x6f, 0x75, 0x6e, 0x74, 0x29, 0x3b, 0x65, 0x6c, 0x73, 0x65, 0x7b, + 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x43, 0x2e, 0x67, + 0x65, 0x74, 0x44, 0x65, 0x72, 0x69, 0x76, 0x65, 0x64, 0x53, 0x74, 0x61, + 0x74, 0x65, 0x46, 0x72, 0x6f, 0x6d, 0x50, 0x72, 0x6f, 0x70, 0x73, 0x26, + 0x26, 0x76, 0x21, 0x3d, 0x3d, 0x68, 0x26, 0x26, 0x6e, 0x75, 0x6c, 0x6c, + 0x21, 0x3d, 0x73, 0x2e, 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, + 0x74, 0x57, 0x69, 0x6c, 0x6c, 0x52, 0x65, 0x63, 0x65, 0x69, 0x76, 0x65, + 0x50, 0x72, 0x6f, 0x70, 0x73, 0x26, 0x26, 0x73, 0x2e, 0x63, 0x6f, 0x6d, + 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x57, 0x69, 0x6c, 0x6c, 0x52, 0x65, + 0x63, 0x65, 0x69, 0x76, 0x65, 0x50, 0x72, 0x6f, 0x70, 0x73, 0x28, 0x76, + 0x2c, 0x6d, 0x29, 0x2c, 0x21, 0x73, 0x2e, 0x5f, 0x5f, 0x65, 0x26, 0x26, + 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x73, 0x2e, 0x73, 0x68, 0x6f, 0x75, + 0x6c, 0x64, 0x43, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x55, + 0x70, 0x64, 0x61, 0x74, 0x65, 0x26, 0x26, 0x21, 0x31, 0x3d, 0x3d, 0x3d, + 0x73, 0x2e, 0x73, 0x68, 0x6f, 0x75, 0x6c, 0x64, 0x43, 0x6f, 0x6d, 0x70, + 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, + 0x76, 0x2c, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x2c, 0x6d, 0x29, 0x7c, 0x7c, + 0x6e, 0x2e, 0x5f, 0x5f, 0x76, 0x3d, 0x3d, 0x3d, 0x65, 0x2e, 0x5f, 0x5f, + 0x76, 0x29, 0x7b, 0x66, 0x6f, 0x72, 0x28, 0x6e, 0x2e, 0x5f, 0x5f, 0x76, + 0x21, 0x3d, 0x3d, 0x65, 0x2e, 0x5f, 0x5f, 0x76, 0x26, 0x26, 0x28, 0x73, + 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x3d, 0x76, 0x2c, 0x73, 0x2e, 0x73, + 0x74, 0x61, 0x74, 0x65, 0x3d, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x2c, 0x73, + 0x2e, 0x5f, 0x5f, 0x64, 0x3d, 0x21, 0x31, 0x29, 0x2c, 0x73, 0x2e, 0x5f, + 0x5f, 0x65, 0x3d, 0x21, 0x31, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, 0x65, 0x3d, + 0x65, 0x2e, 0x5f, 0x5f, 0x65, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, 0x6b, 0x3d, + 0x65, 0x2e, 0x5f, 0x5f, 0x6b, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, 0x6b, 0x2e, + 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68, 0x28, 0x28, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x74, 0x26, 0x26, + 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x3d, 0x6e, 0x29, 0x7d, 0x29, 0x29, 0x2c, + 0x67, 0x3d, 0x30, 0x3b, 0x67, 0x3c, 0x73, 0x2e, 0x5f, 0x73, 0x62, 0x2e, + 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x67, 0x2b, 0x2b, 0x29, 0x73, + 0x2e, 0x5f, 0x5f, 0x68, 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x73, 0x2e, + 0x5f, 0x73, 0x62, 0x5b, 0x67, 0x5d, 0x29, 0x3b, 0x73, 0x2e, 0x5f, 0x73, + 0x62, 0x3d, 0x5b, 0x5d, 0x2c, 0x73, 0x2e, 0x5f, 0x5f, 0x68, 0x2e, 0x6c, + 0x65, 0x6e, 0x67, 0x74, 0x68, 0x26, 0x26, 0x72, 0x2e, 0x70, 0x75, 0x73, + 0x68, 0x28, 0x73, 0x29, 0x3b, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x74, + 0x7d, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x73, 0x2e, 0x63, 0x6f, 0x6d, + 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x57, 0x69, 0x6c, 0x6c, 0x55, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x26, 0x26, 0x73, 0x2e, 0x63, 0x6f, 0x6d, 0x70, + 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x57, 0x69, 0x6c, 0x6c, 0x55, 0x70, 0x64, + 0x61, 0x74, 0x65, 0x28, 0x76, 0x2c, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x2c, + 0x6d, 0x29, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x73, 0x2e, 0x63, + 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x44, 0x69, 0x64, 0x55, + 0x70, 0x64, 0x61, 0x74, 0x65, 0x26, 0x26, 0x73, 0x2e, 0x5f, 0x5f, 0x68, + 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x73, 0x2e, 0x63, 0x6f, 0x6d, 0x70, + 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x44, 0x69, 0x64, 0x55, 0x70, 0x64, 0x61, + 0x74, 0x65, 0x28, 0x68, 0x2c, 0x61, 0x2c, 0x70, 0x29, 0x7d, 0x29, 0x29, + 0x7d, 0x69, 0x66, 0x28, 0x73, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, + 0x74, 0x3d, 0x6d, 0x2c, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x3d, + 0x76, 0x2c, 0x73, 0x2e, 0x5f, 0x5f, 0x50, 0x3d, 0x74, 0x2c, 0x62, 0x3d, + 0x53, 0x2e, 0x5f, 0x5f, 0x72, 0x2c, 0x6b, 0x3d, 0x30, 0x2c, 0x22, 0x70, + 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x22, 0x69, 0x6e, 0x20, + 0x43, 0x26, 0x26, 0x43, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, + 0x70, 0x65, 0x2e, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x29, 0x7b, 0x66, + 0x6f, 0x72, 0x28, 0x73, 0x2e, 0x73, 0x74, 0x61, 0x74, 0x65, 0x3d, 0x73, + 0x2e, 0x5f, 0x5f, 0x73, 0x2c, 0x73, 0x2e, 0x5f, 0x5f, 0x64, 0x3d, 0x21, + 0x31, 0x2c, 0x62, 0x26, 0x26, 0x62, 0x28, 0x6e, 0x29, 0x2c, 0x66, 0x3d, + 0x73, 0x2e, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x28, 0x73, 0x2e, 0x70, + 0x72, 0x6f, 0x70, 0x73, 0x2c, 0x73, 0x2e, 0x73, 0x74, 0x61, 0x74, 0x65, + 0x2c, 0x73, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x29, 0x2c, + 0x78, 0x3d, 0x30, 0x3b, 0x78, 0x3c, 0x73, 0x2e, 0x5f, 0x73, 0x62, 0x2e, + 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x78, 0x2b, 0x2b, 0x29, 0x73, + 0x2e, 0x5f, 0x5f, 0x68, 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x73, 0x2e, + 0x5f, 0x73, 0x62, 0x5b, 0x78, 0x5d, 0x29, 0x3b, 0x73, 0x2e, 0x5f, 0x73, + 0x62, 0x3d, 0x5b, 0x5d, 0x7d, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x64, 0x6f, + 0x7b, 0x73, 0x2e, 0x5f, 0x5f, 0x64, 0x3d, 0x21, 0x31, 0x2c, 0x62, 0x26, + 0x26, 0x62, 0x28, 0x6e, 0x29, 0x2c, 0x66, 0x3d, 0x73, 0x2e, 0x72, 0x65, + 0x6e, 0x64, 0x65, 0x72, 0x28, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, + 0x2c, 0x73, 0x2e, 0x73, 0x74, 0x61, 0x74, 0x65, 0x2c, 0x73, 0x2e, 0x63, + 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x29, 0x2c, 0x73, 0x2e, 0x73, 0x74, + 0x61, 0x74, 0x65, 0x3d, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x7d, 0x77, 0x68, + 0x69, 0x6c, 0x65, 0x28, 0x73, 0x2e, 0x5f, 0x5f, 0x64, 0x26, 0x26, 0x2b, + 0x2b, 0x6b, 0x3c, 0x32, 0x35, 0x29, 0x3b, 0x73, 0x2e, 0x73, 0x74, 0x61, + 0x74, 0x65, 0x3d, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x2c, 0x6e, 0x75, 0x6c, + 0x6c, 0x21, 0x3d, 0x73, 0x2e, 0x67, 0x65, 0x74, 0x43, 0x68, 0x69, 0x6c, + 0x64, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x26, 0x26, 0x28, 0x69, + 0x3d, 0x56, 0x28, 0x56, 0x28, 0x7b, 0x7d, 0x2c, 0x69, 0x29, 0x2c, 0x73, + 0x2e, 0x67, 0x65, 0x74, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x43, 0x6f, 0x6e, + 0x74, 0x65, 0x78, 0x74, 0x28, 0x29, 0x29, 0x29, 0x2c, 0x63, 0x7c, 0x7c, + 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x73, 0x2e, 0x67, 0x65, 0x74, 0x53, + 0x6e, 0x61, 0x70, 0x73, 0x68, 0x6f, 0x74, 0x42, 0x65, 0x66, 0x6f, 0x72, + 0x65, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x7c, 0x7c, 0x28, 0x70, 0x3d, + 0x73, 0x2e, 0x67, 0x65, 0x74, 0x53, 0x6e, 0x61, 0x70, 0x73, 0x68, 0x6f, + 0x74, 0x42, 0x65, 0x66, 0x6f, 0x72, 0x65, 0x55, 0x70, 0x64, 0x61, 0x74, + 0x65, 0x28, 0x68, 0x2c, 0x61, 0x29, 0x29, 0x2c, 0x42, 0x28, 0x74, 0x2c, + 0x54, 0x28, 0x77, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x66, 0x26, + 0x26, 0x66, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x3d, 0x3d, 0x4f, 0x26, + 0x26, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, 0x66, 0x2e, 0x6b, 0x65, 0x79, + 0x3f, 0x66, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x63, 0x68, 0x69, + 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x3a, 0x66, 0x29, 0x3f, 0x77, 0x3a, 0x5b, + 0x77, 0x5d, 0x2c, 0x6e, 0x2c, 0x65, 0x2c, 0x69, 0x2c, 0x5f, 0x2c, 0x6f, + 0x2c, 0x72, 0x2c, 0x75, 0x2c, 0x6c, 0x29, 0x2c, 0x73, 0x2e, 0x62, 0x61, + 0x73, 0x65, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, 0x65, 0x2c, 0x6e, 0x2e, 0x5f, + 0x5f, 0x68, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x73, 0x2e, 0x5f, 0x5f, + 0x68, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x26, 0x26, 0x72, 0x2e, + 0x70, 0x75, 0x73, 0x68, 0x28, 0x73, 0x29, 0x2c, 0x64, 0x26, 0x26, 0x28, + 0x73, 0x2e, 0x5f, 0x5f, 0x45, 0x3d, 0x73, 0x2e, 0x5f, 0x5f, 0x3d, 0x6e, + 0x75, 0x6c, 0x6c, 0x29, 0x2c, 0x73, 0x2e, 0x5f, 0x5f, 0x65, 0x3d, 0x21, + 0x31, 0x7d, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, + 0x3d, 0x6f, 0x26, 0x26, 0x6e, 0x2e, 0x5f, 0x5f, 0x76, 0x3d, 0x3d, 0x3d, + 0x65, 0x2e, 0x5f, 0x5f, 0x76, 0x3f, 0x28, 0x6e, 0x2e, 0x5f, 0x5f, 0x6b, + 0x3d, 0x65, 0x2e, 0x5f, 0x5f, 0x6b, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, 0x65, + 0x3d, 0x65, 0x2e, 0x5f, 0x5f, 0x65, 0x29, 0x3a, 0x6e, 0x2e, 0x5f, 0x5f, + 0x65, 0x3d, 0x69, 0x74, 0x28, 0x65, 0x2e, 0x5f, 0x5f, 0x65, 0x2c, 0x6e, + 0x2c, 0x65, 0x2c, 0x69, 0x2c, 0x5f, 0x2c, 0x6f, 0x2c, 0x72, 0x2c, 0x6c, + 0x29, 0x3b, 0x28, 0x66, 0x3d, 0x53, 0x2e, 0x64, 0x69, 0x66, 0x66, 0x65, + 0x64, 0x29, 0x26, 0x26, 0x66, 0x28, 0x6e, 0x29, 0x7d, 0x63, 0x61, 0x74, + 0x63, 0x68, 0x28, 0x74, 0x29, 0x7b, 0x6e, 0x2e, 0x5f, 0x5f, 0x76, 0x3d, + 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x28, 0x6c, 0x7c, 0x7c, 0x6e, 0x75, 0x6c, + 0x6c, 0x21, 0x3d, 0x6f, 0x29, 0x26, 0x26, 0x28, 0x6e, 0x2e, 0x5f, 0x5f, + 0x65, 0x3d, 0x75, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, 0x68, 0x3d, 0x21, 0x21, + 0x6c, 0x2c, 0x6f, 0x5b, 0x6f, 0x2e, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x4f, + 0x66, 0x28, 0x75, 0x29, 0x5d, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x2c, + 0x53, 0x2e, 0x5f, 0x5f, 0x65, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, + 0x7d, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x65, + 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x53, 0x2e, 0x5f, 0x5f, 0x63, + 0x26, 0x26, 0x53, 0x2e, 0x5f, 0x5f, 0x63, 0x28, 0x6e, 0x2c, 0x74, 0x29, + 0x2c, 0x74, 0x2e, 0x73, 0x6f, 0x6d, 0x65, 0x28, 0x28, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x6e, 0x29, 0x7b, 0x74, 0x72, 0x79, + 0x7b, 0x74, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, 0x68, 0x2c, 0x6e, 0x2e, 0x5f, + 0x5f, 0x68, 0x3d, 0x5b, 0x5d, 0x2c, 0x74, 0x2e, 0x73, 0x6f, 0x6d, 0x65, + 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, + 0x29, 0x7b, 0x74, 0x2e, 0x63, 0x61, 0x6c, 0x6c, 0x28, 0x6e, 0x29, 0x7d, + 0x29, 0x29, 0x7d, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x74, 0x29, 0x7b, + 0x53, 0x2e, 0x5f, 0x5f, 0x65, 0x28, 0x74, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, + 0x76, 0x29, 0x7d, 0x7d, 0x29, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, + 0x2c, 0x69, 0x2c, 0x5f, 0x2c, 0x6f, 0x2c, 0x72, 0x2c, 0x75, 0x29, 0x7b, + 0x76, 0x61, 0x72, 0x20, 0x6c, 0x2c, 0x66, 0x2c, 0x73, 0x2c, 0x63, 0x3d, + 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2c, 0x68, 0x3d, 0x6e, 0x2e, + 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2c, 0x61, 0x3d, 0x6e, 0x2e, 0x74, 0x79, + 0x70, 0x65, 0x2c, 0x70, 0x3d, 0x30, 0x3b, 0x69, 0x66, 0x28, 0x22, 0x73, + 0x76, 0x67, 0x22, 0x3d, 0x3d, 0x3d, 0x61, 0x26, 0x26, 0x28, 0x5f, 0x3d, + 0x21, 0x30, 0x29, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x6f, 0x29, + 0x66, 0x6f, 0x72, 0x28, 0x3b, 0x70, 0x3c, 0x6f, 0x2e, 0x6c, 0x65, 0x6e, + 0x67, 0x74, 0x68, 0x3b, 0x70, 0x2b, 0x2b, 0x29, 0x69, 0x66, 0x28, 0x28, + 0x6c, 0x3d, 0x6f, 0x5b, 0x70, 0x5d, 0x29, 0x26, 0x26, 0x22, 0x73, 0x65, + 0x74, 0x41, 0x74, 0x74, 0x72, 0x69, 0x62, 0x75, 0x74, 0x65, 0x22, 0x69, + 0x6e, 0x20, 0x6c, 0x3d, 0x3d, 0x21, 0x21, 0x61, 0x26, 0x26, 0x28, 0x61, + 0x3f, 0x6c, 0x2e, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x4e, 0x61, 0x6d, 0x65, + 0x3d, 0x3d, 0x3d, 0x61, 0x3a, 0x33, 0x3d, 0x3d, 0x3d, 0x6c, 0x2e, 0x6e, + 0x6f, 0x64, 0x65, 0x54, 0x79, 0x70, 0x65, 0x29, 0x29, 0x7b, 0x74, 0x3d, + 0x6c, 0x2c, 0x6f, 0x5b, 0x70, 0x5d, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, + 0x62, 0x72, 0x65, 0x61, 0x6b, 0x7d, 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, + 0x6c, 0x3d, 0x3d, 0x74, 0x29, 0x7b, 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, + 0x6c, 0x3d, 0x3d, 0x3d, 0x61, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x63, 0x72, + 0x65, 0x61, 0x74, 0x65, 0x54, 0x65, 0x78, 0x74, 0x4e, 0x6f, 0x64, 0x65, + 0x28, 0x68, 0x29, 0x3b, 0x74, 0x3d, 0x5f, 0x3f, 0x64, 0x6f, 0x63, 0x75, + 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x63, 0x72, 0x65, 0x61, 0x74, 0x65, 0x45, + 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x4e, 0x53, 0x28, 0x22, 0x68, 0x74, + 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e, 0x77, 0x33, 0x2e, + 0x6f, 0x72, 0x67, 0x2f, 0x32, 0x30, 0x30, 0x30, 0x2f, 0x73, 0x76, 0x67, + 0x22, 0x2c, 0x61, 0x29, 0x3a, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, + 0x74, 0x2e, 0x63, 0x72, 0x65, 0x61, 0x74, 0x65, 0x45, 0x6c, 0x65, 0x6d, + 0x65, 0x6e, 0x74, 0x28, 0x61, 0x2c, 0x68, 0x2e, 0x69, 0x73, 0x26, 0x26, + 0x68, 0x29, 0x2c, 0x6f, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x75, 0x3d, + 0x21, 0x31, 0x7d, 0x69, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, + 0x3d, 0x61, 0x29, 0x63, 0x3d, 0x3d, 0x3d, 0x68, 0x7c, 0x7c, 0x75, 0x26, + 0x26, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x3d, 0x3d, 0x3d, 0x68, 0x7c, + 0x7c, 0x28, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x3d, 0x68, 0x29, 0x3b, + 0x65, 0x6c, 0x73, 0x65, 0x7b, 0x69, 0x66, 0x28, 0x6f, 0x3d, 0x6f, 0x26, + 0x26, 0x6b, 0x2e, 0x63, 0x61, 0x6c, 0x6c, 0x28, 0x74, 0x2e, 0x63, 0x68, + 0x69, 0x6c, 0x64, 0x4e, 0x6f, 0x64, 0x65, 0x73, 0x29, 0x2c, 0x66, 0x3d, + 0x28, 0x63, 0x3d, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x7c, 0x7c, + 0x50, 0x29, 0x2e, 0x64, 0x61, 0x6e, 0x67, 0x65, 0x72, 0x6f, 0x75, 0x73, + 0x6c, 0x79, 0x53, 0x65, 0x74, 0x49, 0x6e, 0x6e, 0x65, 0x72, 0x48, 0x54, + 0x4d, 0x4c, 0x2c, 0x73, 0x3d, 0x68, 0x2e, 0x64, 0x61, 0x6e, 0x67, 0x65, + 0x72, 0x6f, 0x75, 0x73, 0x6c, 0x79, 0x53, 0x65, 0x74, 0x49, 0x6e, 0x6e, + 0x65, 0x72, 0x48, 0x54, 0x4d, 0x4c, 0x2c, 0x21, 0x75, 0x29, 0x7b, 0x69, + 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x6f, 0x29, 0x66, 0x6f, + 0x72, 0x28, 0x63, 0x3d, 0x7b, 0x7d, 0x2c, 0x70, 0x3d, 0x30, 0x3b, 0x70, + 0x3c, 0x74, 0x2e, 0x61, 0x74, 0x74, 0x72, 0x69, 0x62, 0x75, 0x74, 0x65, + 0x73, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x70, 0x2b, 0x2b, + 0x29, 0x63, 0x5b, 0x74, 0x2e, 0x61, 0x74, 0x74, 0x72, 0x69, 0x62, 0x75, + 0x74, 0x65, 0x73, 0x5b, 0x70, 0x5d, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x5d, + 0x3d, 0x74, 0x2e, 0x61, 0x74, 0x74, 0x72, 0x69, 0x62, 0x75, 0x74, 0x65, + 0x73, 0x5b, 0x70, 0x5d, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3b, 0x28, + 0x73, 0x7c, 0x7c, 0x66, 0x29, 0x26, 0x26, 0x28, 0x73, 0x26, 0x26, 0x28, + 0x66, 0x26, 0x26, 0x73, 0x2e, 0x5f, 0x5f, 0x68, 0x74, 0x6d, 0x6c, 0x3d, + 0x3d, 0x66, 0x2e, 0x5f, 0x5f, 0x68, 0x74, 0x6d, 0x6c, 0x7c, 0x7c, 0x73, + 0x2e, 0x5f, 0x5f, 0x68, 0x74, 0x6d, 0x6c, 0x3d, 0x3d, 0x3d, 0x74, 0x2e, + 0x69, 0x6e, 0x6e, 0x65, 0x72, 0x48, 0x54, 0x4d, 0x4c, 0x29, 0x7c, 0x7c, + 0x28, 0x74, 0x2e, 0x69, 0x6e, 0x6e, 0x65, 0x72, 0x48, 0x54, 0x4d, 0x4c, + 0x3d, 0x73, 0x26, 0x26, 0x73, 0x2e, 0x5f, 0x5f, 0x68, 0x74, 0x6d, 0x6c, + 0x7c, 0x7c, 0x22, 0x22, 0x29, 0x29, 0x7d, 0x69, 0x66, 0x28, 0x51, 0x28, + 0x74, 0x2c, 0x68, 0x2c, 0x63, 0x2c, 0x5f, 0x2c, 0x75, 0x29, 0x2c, 0x73, + 0x29, 0x6e, 0x2e, 0x5f, 0x5f, 0x6b, 0x3d, 0x5b, 0x5d, 0x3b, 0x65, 0x6c, + 0x73, 0x65, 0x20, 0x69, 0x66, 0x28, 0x42, 0x28, 0x74, 0x2c, 0x54, 0x28, + 0x70, 0x3d, 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x63, 0x68, + 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x29, 0x3f, 0x70, 0x3a, 0x5b, 0x70, + 0x5d, 0x2c, 0x6e, 0x2c, 0x65, 0x2c, 0x69, 0x2c, 0x5f, 0x26, 0x26, 0x22, + 0x66, 0x6f, 0x72, 0x65, 0x69, 0x67, 0x6e, 0x4f, 0x62, 0x6a, 0x65, 0x63, + 0x74, 0x22, 0x21, 0x3d, 0x3d, 0x61, 0x2c, 0x6f, 0x2c, 0x72, 0x2c, 0x6f, + 0x3f, 0x6f, 0x5b, 0x30, 0x5d, 0x3a, 0x65, 0x2e, 0x5f, 0x5f, 0x6b, 0x26, + 0x26, 0x52, 0x28, 0x65, 0x2c, 0x30, 0x29, 0x2c, 0x75, 0x29, 0x2c, 0x6e, + 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x6f, 0x29, 0x66, 0x6f, 0x72, 0x28, 0x70, + 0x3d, 0x6f, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x70, 0x2d, + 0x2d, 0x3b, 0x29, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x6f, 0x5b, 0x70, + 0x5d, 0x26, 0x26, 0x41, 0x28, 0x6f, 0x5b, 0x70, 0x5d, 0x29, 0x3b, 0x75, + 0x7c, 0x7c, 0x28, 0x22, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x22, 0x69, 0x6e, + 0x20, 0x68, 0x26, 0x26, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, + 0x3d, 0x28, 0x70, 0x3d, 0x68, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, + 0x26, 0x26, 0x28, 0x70, 0x21, 0x3d, 0x3d, 0x74, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x7c, 0x7c, 0x22, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x65, 0x73, + 0x73, 0x22, 0x3d, 0x3d, 0x3d, 0x61, 0x26, 0x26, 0x21, 0x70, 0x7c, 0x7c, + 0x22, 0x6f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, 0x3d, 0x61, + 0x26, 0x26, 0x70, 0x21, 0x3d, 0x3d, 0x63, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x29, 0x26, 0x26, 0x59, 0x28, 0x74, 0x2c, 0x22, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x22, 0x2c, 0x70, 0x2c, 0x63, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x2c, 0x21, 0x31, 0x29, 0x2c, 0x22, 0x63, 0x68, 0x65, 0x63, 0x6b, + 0x65, 0x64, 0x22, 0x69, 0x6e, 0x20, 0x68, 0x26, 0x26, 0x76, 0x6f, 0x69, + 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x28, 0x70, 0x3d, 0x68, 0x2e, 0x63, + 0x68, 0x65, 0x63, 0x6b, 0x65, 0x64, 0x29, 0x26, 0x26, 0x70, 0x21, 0x3d, + 0x3d, 0x74, 0x2e, 0x63, 0x68, 0x65, 0x63, 0x6b, 0x65, 0x64, 0x26, 0x26, + 0x59, 0x28, 0x74, 0x2c, 0x22, 0x63, 0x68, 0x65, 0x63, 0x6b, 0x65, 0x64, + 0x22, 0x2c, 0x70, 0x2c, 0x63, 0x2e, 0x63, 0x68, 0x65, 0x63, 0x6b, 0x65, + 0x64, 0x2c, 0x21, 0x31, 0x29, 0x29, 0x7d, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x74, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x5f, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x7b, 0x74, + 0x72, 0x79, 0x7b, 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x74, 0x3f, + 0x74, 0x28, 0x6e, 0x29, 0x3a, 0x74, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, + 0x6e, 0x74, 0x3d, 0x6e, 0x7d, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x74, + 0x29, 0x7b, 0x53, 0x2e, 0x5f, 0x5f, 0x65, 0x28, 0x74, 0x2c, 0x65, 0x29, + 0x7d, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x6f, + 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x7b, 0x76, 0x61, 0x72, + 0x20, 0x69, 0x2c, 0x5f, 0x3b, 0x69, 0x66, 0x28, 0x53, 0x2e, 0x75, 0x6e, + 0x6d, 0x6f, 0x75, 0x6e, 0x74, 0x26, 0x26, 0x53, 0x2e, 0x75, 0x6e, 0x6d, + 0x6f, 0x75, 0x6e, 0x74, 0x28, 0x74, 0x29, 0x2c, 0x28, 0x69, 0x3d, 0x74, + 0x2e, 0x72, 0x65, 0x66, 0x29, 0x26, 0x26, 0x28, 0x69, 0x2e, 0x63, 0x75, + 0x72, 0x72, 0x65, 0x6e, 0x74, 0x26, 0x26, 0x69, 0x2e, 0x63, 0x75, 0x72, + 0x72, 0x65, 0x6e, 0x74, 0x21, 0x3d, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x65, + 0x7c, 0x7c, 0x5f, 0x74, 0x28, 0x69, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, + 0x6e, 0x29, 0x29, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x28, 0x69, + 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x63, 0x29, 0x29, 0x7b, 0x69, 0x66, 0x28, + 0x69, 0x2e, 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x57, + 0x69, 0x6c, 0x6c, 0x55, 0x6e, 0x6d, 0x6f, 0x75, 0x6e, 0x74, 0x29, 0x74, + 0x72, 0x79, 0x7b, 0x69, 0x2e, 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, + 0x6e, 0x74, 0x57, 0x69, 0x6c, 0x6c, 0x55, 0x6e, 0x6d, 0x6f, 0x75, 0x6e, + 0x74, 0x28, 0x29, 0x7d, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x74, 0x29, + 0x7b, 0x53, 0x2e, 0x5f, 0x5f, 0x65, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7d, + 0x69, 0x2e, 0x62, 0x61, 0x73, 0x65, 0x3d, 0x69, 0x2e, 0x5f, 0x5f, 0x50, + 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x63, 0x3d, + 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x7d, 0x69, 0x66, 0x28, 0x69, 0x3d, + 0x74, 0x2e, 0x5f, 0x5f, 0x6b, 0x29, 0x66, 0x6f, 0x72, 0x28, 0x5f, 0x3d, + 0x30, 0x3b, 0x5f, 0x3c, 0x69, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, + 0x3b, 0x5f, 0x2b, 0x2b, 0x29, 0x69, 0x5b, 0x5f, 0x5d, 0x26, 0x26, 0x6f, + 0x74, 0x28, 0x69, 0x5b, 0x5f, 0x5d, 0x2c, 0x6e, 0x2c, 0x65, 0x7c, 0x7c, + 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x21, 0x3d, + 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x74, 0x2e, 0x74, 0x79, 0x70, + 0x65, 0x29, 0x3b, 0x65, 0x7c, 0x7c, 0x6e, 0x75, 0x6c, 0x6c, 0x3d, 0x3d, + 0x74, 0x2e, 0x5f, 0x5f, 0x65, 0x7c, 0x7c, 0x41, 0x28, 0x74, 0x2e, 0x5f, + 0x5f, 0x65, 0x29, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x3d, 0x74, 0x2e, 0x5f, + 0x5f, 0x65, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x64, 0x3d, 0x76, 0x6f, 0x69, + 0x64, 0x20, 0x30, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x72, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x7b, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x6f, 0x72, 0x28, 0x74, + 0x2c, 0x65, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x75, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x7b, 0x76, + 0x61, 0x72, 0x20, 0x69, 0x2c, 0x5f, 0x2c, 0x6f, 0x3b, 0x53, 0x2e, 0x5f, + 0x5f, 0x26, 0x26, 0x53, 0x2e, 0x5f, 0x5f, 0x28, 0x74, 0x2c, 0x6e, 0x29, + 0x2c, 0x5f, 0x3d, 0x28, 0x69, 0x3d, 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, + 0x20, 0x65, 0x29, 0x3f, 0x6e, 0x75, 0x6c, 0x6c, 0x3a, 0x65, 0x26, 0x26, + 0x65, 0x2e, 0x5f, 0x5f, 0x6b, 0x7c, 0x7c, 0x6e, 0x2e, 0x5f, 0x5f, 0x6b, + 0x2c, 0x6f, 0x3d, 0x5b, 0x5d, 0x2c, 0x6e, 0x74, 0x28, 0x6e, 0x2c, 0x74, + 0x3d, 0x28, 0x21, 0x69, 0x26, 0x26, 0x65, 0x7c, 0x7c, 0x6e, 0x29, 0x2e, + 0x5f, 0x5f, 0x6b, 0x3d, 0x46, 0x28, 0x4f, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, + 0x2c, 0x5b, 0x74, 0x5d, 0x29, 0x2c, 0x5f, 0x7c, 0x7c, 0x50, 0x2c, 0x50, + 0x2c, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x6e, 0x2e, + 0x6f, 0x77, 0x6e, 0x65, 0x72, 0x53, 0x56, 0x47, 0x45, 0x6c, 0x65, 0x6d, + 0x65, 0x6e, 0x74, 0x2c, 0x21, 0x69, 0x26, 0x26, 0x65, 0x3f, 0x5b, 0x65, + 0x5d, 0x3a, 0x5f, 0x3f, 0x6e, 0x75, 0x6c, 0x6c, 0x3a, 0x6e, 0x2e, 0x66, + 0x69, 0x72, 0x73, 0x74, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x3f, 0x6b, 0x2e, + 0x63, 0x61, 0x6c, 0x6c, 0x28, 0x6e, 0x2e, 0x63, 0x68, 0x69, 0x6c, 0x64, + 0x4e, 0x6f, 0x64, 0x65, 0x73, 0x29, 0x3a, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, + 0x6f, 0x2c, 0x21, 0x69, 0x26, 0x26, 0x65, 0x3f, 0x65, 0x3a, 0x5f, 0x3f, + 0x5f, 0x2e, 0x5f, 0x5f, 0x65, 0x3a, 0x6e, 0x2e, 0x66, 0x69, 0x72, 0x73, + 0x74, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x2c, 0x69, 0x29, 0x2c, 0x65, 0x74, + 0x28, 0x6f, 0x2c, 0x74, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x20, 0x6c, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x75, + 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x6c, 0x74, 0x29, 0x7d, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x66, 0x74, 0x28, 0x74, 0x2c, + 0x6e, 0x2c, 0x65, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x69, 0x2c, 0x5f, + 0x2c, 0x6f, 0x2c, 0x72, 0x2c, 0x75, 0x3d, 0x56, 0x28, 0x7b, 0x7d, 0x2c, + 0x74, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x3b, 0x66, 0x6f, 0x72, + 0x28, 0x6f, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x2e, 0x74, 0x79, 0x70, 0x65, + 0x26, 0x26, 0x74, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x64, 0x65, 0x66, + 0x61, 0x75, 0x6c, 0x74, 0x50, 0x72, 0x6f, 0x70, 0x73, 0x26, 0x26, 0x28, + 0x72, 0x3d, 0x74, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x64, 0x65, 0x66, + 0x61, 0x75, 0x6c, 0x74, 0x50, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x2c, 0x6e, + 0x29, 0x22, 0x6b, 0x65, 0x79, 0x22, 0x3d, 0x3d, 0x6f, 0x3f, 0x69, 0x3d, + 0x6e, 0x5b, 0x6f, 0x5d, 0x3a, 0x22, 0x72, 0x65, 0x66, 0x22, 0x3d, 0x3d, + 0x6f, 0x3f, 0x5f, 0x3d, 0x6e, 0x5b, 0x6f, 0x5d, 0x3a, 0x75, 0x5b, 0x6f, + 0x5d, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x6e, + 0x5b, 0x6f, 0x5d, 0x26, 0x26, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, + 0x3d, 0x3d, 0x72, 0x3f, 0x72, 0x5b, 0x6f, 0x5d, 0x3a, 0x6e, 0x5b, 0x6f, + 0x5d, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x72, 0x67, + 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, + 0x68, 0x3e, 0x32, 0x26, 0x26, 0x28, 0x75, 0x2e, 0x63, 0x68, 0x69, 0x6c, + 0x64, 0x72, 0x65, 0x6e, 0x3d, 0x61, 0x72, 0x67, 0x75, 0x6d, 0x65, 0x6e, + 0x74, 0x73, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3e, 0x33, 0x3f, + 0x6b, 0x2e, 0x63, 0x61, 0x6c, 0x6c, 0x28, 0x61, 0x72, 0x67, 0x75, 0x6d, + 0x65, 0x6e, 0x74, 0x73, 0x2c, 0x32, 0x29, 0x3a, 0x65, 0x29, 0x2c, 0x4d, + 0x28, 0x74, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x2c, 0x75, 0x2c, 0x69, 0x7c, + 0x7c, 0x74, 0x2e, 0x6b, 0x65, 0x79, 0x2c, 0x5f, 0x7c, 0x7c, 0x74, 0x2e, + 0x72, 0x65, 0x66, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x7d, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x73, 0x74, 0x28, 0x74, 0x2c, + 0x6e, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x65, 0x3d, 0x7b, 0x5f, 0x5f, + 0x63, 0x3a, 0x6e, 0x3d, 0x22, 0x5f, 0x5f, 0x63, 0x43, 0x22, 0x2b, 0x4e, + 0x2b, 0x2b, 0x2c, 0x5f, 0x5f, 0x3a, 0x74, 0x2c, 0x43, 0x6f, 0x6e, 0x73, + 0x75, 0x6d, 0x65, 0x72, 0x3a, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x74, 0x2e, 0x63, 0x68, 0x69, 0x6c, 0x64, 0x72, 0x65, 0x6e, + 0x28, 0x6e, 0x29, 0x7d, 0x2c, 0x50, 0x72, 0x6f, 0x76, 0x69, 0x64, 0x65, + 0x72, 0x3a, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, + 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x65, 0x2c, 0x69, 0x3b, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x67, 0x65, + 0x74, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x78, + 0x74, 0x7c, 0x7c, 0x28, 0x65, 0x3d, 0x5b, 0x5d, 0x2c, 0x28, 0x69, 0x3d, + 0x7b, 0x7d, 0x29, 0x5b, 0x6e, 0x5d, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2c, + 0x74, 0x68, 0x69, 0x73, 0x2e, 0x67, 0x65, 0x74, 0x43, 0x68, 0x69, 0x6c, + 0x64, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x3d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x69, 0x7d, 0x2c, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x73, + 0x68, 0x6f, 0x75, 0x6c, 0x64, 0x43, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, + 0x6e, 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x3d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x74, 0x68, 0x69, + 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x21, 0x3d, 0x3d, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x26, + 0x26, 0x65, 0x2e, 0x73, 0x6f, 0x6d, 0x65, 0x28, 0x28, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x74, 0x2e, 0x5f, + 0x5f, 0x65, 0x3d, 0x21, 0x30, 0x2c, 0x6a, 0x28, 0x74, 0x29, 0x7d, 0x29, + 0x29, 0x7d, 0x2c, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x73, 0x75, 0x62, 0x3d, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, + 0x65, 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x74, 0x29, 0x3b, 0x76, 0x61, + 0x72, 0x20, 0x6e, 0x3d, 0x74, 0x2e, 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, + 0x65, 0x6e, 0x74, 0x57, 0x69, 0x6c, 0x6c, 0x55, 0x6e, 0x6d, 0x6f, 0x75, + 0x6e, 0x74, 0x3b, 0x74, 0x2e, 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, + 0x6e, 0x74, 0x57, 0x69, 0x6c, 0x6c, 0x55, 0x6e, 0x6d, 0x6f, 0x75, 0x6e, + 0x74, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, + 0x7b, 0x65, 0x2e, 0x73, 0x70, 0x6c, 0x69, 0x63, 0x65, 0x28, 0x65, 0x2e, + 0x69, 0x6e, 0x64, 0x65, 0x78, 0x4f, 0x66, 0x28, 0x74, 0x29, 0x2c, 0x31, + 0x29, 0x2c, 0x6e, 0x26, 0x26, 0x6e, 0x2e, 0x63, 0x61, 0x6c, 0x6c, 0x28, + 0x74, 0x29, 0x7d, 0x7d, 0x29, 0x2c, 0x74, 0x2e, 0x63, 0x68, 0x69, 0x6c, + 0x64, 0x72, 0x65, 0x6e, 0x7d, 0x7d, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x65, 0x2e, 0x50, 0x72, 0x6f, 0x76, 0x69, 0x64, 0x65, 0x72, + 0x2e, 0x5f, 0x5f, 0x3d, 0x65, 0x2e, 0x43, 0x6f, 0x6e, 0x73, 0x75, 0x6d, + 0x65, 0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x54, 0x79, + 0x70, 0x65, 0x3d, 0x65, 0x7d, 0x6b, 0x3d, 0x44, 0x2e, 0x73, 0x6c, 0x69, + 0x63, 0x65, 0x2c, 0x53, 0x3d, 0x7b, 0x5f, 0x5f, 0x65, 0x3a, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, + 0x2c, 0x69, 0x29, 0x7b, 0x66, 0x6f, 0x72, 0x28, 0x76, 0x61, 0x72, 0x20, + 0x5f, 0x2c, 0x6f, 0x2c, 0x72, 0x3b, 0x6e, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, + 0x3b, 0x29, 0x69, 0x66, 0x28, 0x28, 0x5f, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, + 0x63, 0x29, 0x26, 0x26, 0x21, 0x5f, 0x2e, 0x5f, 0x5f, 0x29, 0x74, 0x72, + 0x79, 0x7b, 0x69, 0x66, 0x28, 0x28, 0x6f, 0x3d, 0x5f, 0x2e, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x6f, 0x72, 0x29, 0x26, 0x26, + 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x6f, 0x2e, 0x67, 0x65, 0x74, 0x44, + 0x65, 0x72, 0x69, 0x76, 0x65, 0x64, 0x53, 0x74, 0x61, 0x74, 0x65, 0x46, + 0x72, 0x6f, 0x6d, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x26, 0x26, 0x28, 0x5f, + 0x2e, 0x73, 0x65, 0x74, 0x53, 0x74, 0x61, 0x74, 0x65, 0x28, 0x6f, 0x2e, + 0x67, 0x65, 0x74, 0x44, 0x65, 0x72, 0x69, 0x76, 0x65, 0x64, 0x53, 0x74, + 0x61, 0x74, 0x65, 0x46, 0x72, 0x6f, 0x6d, 0x45, 0x72, 0x72, 0x6f, 0x72, + 0x28, 0x74, 0x29, 0x29, 0x2c, 0x72, 0x3d, 0x5f, 0x2e, 0x5f, 0x5f, 0x64, + 0x29, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x5f, 0x2e, 0x63, 0x6f, + 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x44, 0x69, 0x64, 0x43, 0x61, + 0x74, 0x63, 0x68, 0x26, 0x26, 0x28, 0x5f, 0x2e, 0x63, 0x6f, 0x6d, 0x70, + 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x44, 0x69, 0x64, 0x43, 0x61, 0x74, 0x63, + 0x68, 0x28, 0x74, 0x2c, 0x69, 0x7c, 0x7c, 0x7b, 0x7d, 0x29, 0x2c, 0x72, + 0x3d, 0x5f, 0x2e, 0x5f, 0x5f, 0x64, 0x29, 0x2c, 0x72, 0x29, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x5f, 0x2e, 0x5f, 0x5f, 0x45, 0x3d, 0x5f, + 0x7d, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x6e, 0x29, 0x7b, 0x74, 0x3d, + 0x6e, 0x7d, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x74, 0x7d, 0x7d, 0x2c, + 0x78, 0x3d, 0x30, 0x2c, 0x77, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x74, 0x26, 0x26, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x74, 0x2e, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x6f, 0x72, 0x7d, 0x2c, 0x4c, 0x2e, + 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x73, 0x65, + 0x74, 0x53, 0x74, 0x61, 0x74, 0x65, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x76, 0x61, 0x72, + 0x20, 0x65, 0x3b, 0x65, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x74, + 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x26, 0x26, 0x74, 0x68, 0x69, + 0x73, 0x2e, 0x5f, 0x5f, 0x73, 0x21, 0x3d, 0x3d, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x73, 0x74, 0x61, 0x74, 0x65, 0x3f, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x5f, 0x5f, 0x73, 0x3a, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x5f, 0x73, + 0x3d, 0x56, 0x28, 0x7b, 0x7d, 0x2c, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x73, + 0x74, 0x61, 0x74, 0x65, 0x29, 0x2c, 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, + 0x20, 0x74, 0x26, 0x26, 0x28, 0x74, 0x3d, 0x74, 0x28, 0x56, 0x28, 0x7b, + 0x7d, 0x2c, 0x65, 0x29, 0x2c, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, 0x72, + 0x6f, 0x70, 0x73, 0x29, 0x29, 0x2c, 0x74, 0x26, 0x26, 0x56, 0x28, 0x65, + 0x2c, 0x74, 0x29, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x74, 0x26, + 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x5f, 0x76, 0x26, 0x26, 0x28, + 0x6e, 0x26, 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x73, 0x62, 0x2e, + 0x70, 0x75, 0x73, 0x68, 0x28, 0x6e, 0x29, 0x2c, 0x6a, 0x28, 0x74, 0x68, + 0x69, 0x73, 0x29, 0x29, 0x7d, 0x2c, 0x4c, 0x2e, 0x70, 0x72, 0x6f, 0x74, + 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x66, 0x6f, 0x72, 0x63, 0x65, 0x55, + 0x70, 0x64, 0x61, 0x74, 0x65, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, + 0x5f, 0x76, 0x26, 0x26, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x5f, + 0x65, 0x3d, 0x21, 0x30, 0x2c, 0x74, 0x26, 0x26, 0x74, 0x68, 0x69, 0x73, + 0x2e, 0x5f, 0x5f, 0x68, 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x74, 0x29, + 0x2c, 0x6a, 0x28, 0x74, 0x68, 0x69, 0x73, 0x29, 0x29, 0x7d, 0x2c, 0x4c, + 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x72, + 0x65, 0x6e, 0x64, 0x65, 0x72, 0x3d, 0x4f, 0x2c, 0x43, 0x3d, 0x5b, 0x5d, + 0x2c, 0x55, 0x3d, 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x50, 0x72, + 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x3f, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, + 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, + 0x74, 0x68, 0x65, 0x6e, 0x2e, 0x62, 0x69, 0x6e, 0x64, 0x28, 0x50, 0x72, + 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, + 0x65, 0x28, 0x29, 0x29, 0x3a, 0x73, 0x65, 0x74, 0x54, 0x69, 0x6d, 0x65, + 0x6f, 0x75, 0x74, 0x2c, 0x48, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x74, 0x2e, 0x5f, 0x5f, 0x76, 0x2e, 0x5f, 0x5f, 0x62, + 0x2d, 0x6e, 0x2e, 0x5f, 0x5f, 0x76, 0x2e, 0x5f, 0x5f, 0x62, 0x7d, 0x2c, + 0x71, 0x2e, 0x5f, 0x5f, 0x72, 0x3d, 0x30, 0x2c, 0x4e, 0x3d, 0x30, 0x3b, + 0x76, 0x61, 0x72, 0x20, 0x63, 0x74, 0x2c, 0x68, 0x74, 0x2c, 0x61, 0x74, + 0x2c, 0x70, 0x74, 0x2c, 0x64, 0x74, 0x3d, 0x30, 0x2c, 0x76, 0x74, 0x3d, + 0x5b, 0x5d, 0x2c, 0x79, 0x74, 0x3d, 0x5b, 0x5d, 0x2c, 0x6d, 0x74, 0x3d, + 0x53, 0x2e, 0x5f, 0x5f, 0x62, 0x2c, 0x67, 0x74, 0x3d, 0x53, 0x2e, 0x5f, + 0x5f, 0x72, 0x2c, 0x62, 0x74, 0x3d, 0x53, 0x2e, 0x64, 0x69, 0x66, 0x66, + 0x65, 0x64, 0x2c, 0x6b, 0x74, 0x3d, 0x53, 0x2e, 0x5f, 0x5f, 0x63, 0x2c, + 0x53, 0x74, 0x3d, 0x53, 0x2e, 0x75, 0x6e, 0x6d, 0x6f, 0x75, 0x6e, 0x74, + 0x3b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x78, 0x74, + 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x53, 0x2e, 0x5f, 0x5f, 0x68, 0x26, + 0x26, 0x53, 0x2e, 0x5f, 0x5f, 0x68, 0x28, 0x68, 0x74, 0x2c, 0x74, 0x2c, + 0x64, 0x74, 0x7c, 0x7c, 0x6e, 0x29, 0x2c, 0x64, 0x74, 0x3d, 0x30, 0x3b, + 0x76, 0x61, 0x72, 0x20, 0x65, 0x3d, 0x68, 0x74, 0x2e, 0x5f, 0x5f, 0x48, + 0x7c, 0x7c, 0x28, 0x68, 0x74, 0x2e, 0x5f, 0x5f, 0x48, 0x3d, 0x7b, 0x5f, + 0x5f, 0x3a, 0x5b, 0x5d, 0x2c, 0x5f, 0x5f, 0x68, 0x3a, 0x5b, 0x5d, 0x7d, + 0x29, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x3e, 0x3d, + 0x65, 0x2e, 0x5f, 0x5f, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x26, + 0x26, 0x65, 0x2e, 0x5f, 0x5f, 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x7b, + 0x5f, 0x5f, 0x56, 0x3a, 0x79, 0x74, 0x7d, 0x29, 0x2c, 0x65, 0x2e, 0x5f, + 0x5f, 0x5b, 0x74, 0x5d, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x20, 0x77, 0x74, 0x28, 0x74, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x64, 0x74, 0x3d, 0x31, 0x2c, 0x43, 0x74, 0x28, 0x49, + 0x74, 0x2c, 0x74, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x20, 0x43, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x7b, + 0x76, 0x61, 0x72, 0x20, 0x69, 0x3d, 0x78, 0x74, 0x28, 0x63, 0x74, 0x2b, + 0x2b, 0x2c, 0x32, 0x29, 0x3b, 0x69, 0x66, 0x28, 0x69, 0x2e, 0x74, 0x3d, + 0x74, 0x2c, 0x21, 0x69, 0x2e, 0x5f, 0x5f, 0x63, 0x26, 0x26, 0x28, 0x69, + 0x2e, 0x5f, 0x5f, 0x3d, 0x5b, 0x65, 0x3f, 0x65, 0x28, 0x6e, 0x29, 0x3a, + 0x49, 0x74, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x2c, 0x6e, 0x29, + 0x2c, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, + 0x7b, 0x76, 0x61, 0x72, 0x20, 0x6e, 0x3d, 0x69, 0x2e, 0x5f, 0x5f, 0x4e, + 0x3f, 0x69, 0x2e, 0x5f, 0x5f, 0x4e, 0x5b, 0x30, 0x5d, 0x3a, 0x69, 0x2e, + 0x5f, 0x5f, 0x5b, 0x30, 0x5d, 0x2c, 0x65, 0x3d, 0x69, 0x2e, 0x74, 0x28, + 0x6e, 0x2c, 0x74, 0x29, 0x3b, 0x6e, 0x21, 0x3d, 0x3d, 0x65, 0x26, 0x26, + 0x28, 0x69, 0x2e, 0x5f, 0x5f, 0x4e, 0x3d, 0x5b, 0x65, 0x2c, 0x69, 0x2e, + 0x5f, 0x5f, 0x5b, 0x31, 0x5d, 0x5d, 0x2c, 0x69, 0x2e, 0x5f, 0x5f, 0x63, + 0x2e, 0x73, 0x65, 0x74, 0x53, 0x74, 0x61, 0x74, 0x65, 0x28, 0x7b, 0x7d, + 0x29, 0x29, 0x7d, 0x5d, 0x2c, 0x69, 0x2e, 0x5f, 0x5f, 0x63, 0x3d, 0x68, + 0x74, 0x2c, 0x21, 0x68, 0x74, 0x2e, 0x75, 0x29, 0x29, 0x7b, 0x76, 0x61, + 0x72, 0x20, 0x5f, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x7b, 0x69, 0x66, 0x28, 0x21, + 0x69, 0x2e, 0x5f, 0x5f, 0x63, 0x2e, 0x5f, 0x5f, 0x48, 0x29, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x21, 0x30, 0x3b, 0x76, 0x61, 0x72, 0x20, 0x5f, + 0x3d, 0x69, 0x2e, 0x5f, 0x5f, 0x63, 0x2e, 0x5f, 0x5f, 0x48, 0x2e, 0x5f, + 0x5f, 0x2e, 0x66, 0x69, 0x6c, 0x74, 0x65, 0x72, 0x28, 0x28, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x2e, 0x5f, 0x5f, 0x63, 0x7d, 0x29, + 0x29, 0x3b, 0x69, 0x66, 0x28, 0x5f, 0x2e, 0x65, 0x76, 0x65, 0x72, 0x79, + 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, + 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x74, 0x2e, 0x5f, + 0x5f, 0x4e, 0x7d, 0x29, 0x29, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x21, 0x6f, 0x7c, 0x7c, 0x6f, 0x2e, 0x63, 0x61, 0x6c, 0x6c, 0x28, 0x74, + 0x68, 0x69, 0x73, 0x2c, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x3b, 0x76, + 0x61, 0x72, 0x20, 0x72, 0x3d, 0x21, 0x31, 0x3b, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x5f, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68, + 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, + 0x29, 0x7b, 0x69, 0x66, 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x4e, 0x29, 0x7b, + 0x76, 0x61, 0x72, 0x20, 0x6e, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x5b, 0x30, + 0x5d, 0x3b, 0x74, 0x2e, 0x5f, 0x5f, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x4e, + 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x4e, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, + 0x30, 0x2c, 0x6e, 0x21, 0x3d, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x5b, 0x30, + 0x5d, 0x26, 0x26, 0x28, 0x72, 0x3d, 0x21, 0x30, 0x29, 0x7d, 0x7d, 0x29, + 0x29, 0x2c, 0x21, 0x28, 0x21, 0x72, 0x26, 0x26, 0x69, 0x2e, 0x5f, 0x5f, + 0x63, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x3d, 0x3d, 0x3d, 0x74, 0x29, + 0x26, 0x26, 0x28, 0x21, 0x6f, 0x7c, 0x7c, 0x6f, 0x2e, 0x63, 0x61, 0x6c, + 0x6c, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2c, 0x74, 0x2c, 0x6e, 0x2c, 0x65, + 0x29, 0x29, 0x7d, 0x3b, 0x68, 0x74, 0x2e, 0x75, 0x3d, 0x21, 0x30, 0x3b, + 0x76, 0x61, 0x72, 0x20, 0x6f, 0x3d, 0x68, 0x74, 0x2e, 0x73, 0x68, 0x6f, + 0x75, 0x6c, 0x64, 0x43, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, + 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x2c, 0x72, 0x3d, 0x68, 0x74, 0x2e, + 0x63, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x57, 0x69, 0x6c, + 0x6c, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x3b, 0x68, 0x74, 0x2e, 0x63, + 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x57, 0x69, 0x6c, 0x6c, + 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x7b, 0x69, + 0x66, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x5f, 0x65, 0x29, 0x7b, + 0x76, 0x61, 0x72, 0x20, 0x69, 0x3d, 0x6f, 0x3b, 0x6f, 0x3d, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x2c, 0x5f, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, + 0x29, 0x2c, 0x6f, 0x3d, 0x69, 0x7d, 0x72, 0x26, 0x26, 0x72, 0x2e, 0x63, + 0x61, 0x6c, 0x6c, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2c, 0x74, 0x2c, 0x6e, + 0x2c, 0x65, 0x29, 0x7d, 0x2c, 0x68, 0x74, 0x2e, 0x73, 0x68, 0x6f, 0x75, + 0x6c, 0x64, 0x43, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x55, + 0x70, 0x64, 0x61, 0x74, 0x65, 0x3d, 0x5f, 0x7d, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x69, 0x2e, 0x5f, 0x5f, 0x4e, 0x7c, 0x7c, 0x69, 0x2e, + 0x5f, 0x5f, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x45, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, + 0x65, 0x3d, 0x78, 0x74, 0x28, 0x63, 0x74, 0x2b, 0x2b, 0x2c, 0x33, 0x29, + 0x3b, 0x21, 0x53, 0x2e, 0x5f, 0x5f, 0x73, 0x26, 0x26, 0x52, 0x74, 0x28, + 0x65, 0x2e, 0x5f, 0x5f, 0x48, 0x2c, 0x6e, 0x29, 0x26, 0x26, 0x28, 0x65, + 0x2e, 0x5f, 0x5f, 0x3d, 0x74, 0x2c, 0x65, 0x2e, 0x69, 0x3d, 0x6e, 0x2c, + 0x68, 0x74, 0x2e, 0x5f, 0x5f, 0x48, 0x2e, 0x5f, 0x5f, 0x68, 0x2e, 0x70, + 0x75, 0x73, 0x68, 0x28, 0x65, 0x29, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x55, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x29, + 0x7b, 0x76, 0x61, 0x72, 0x20, 0x65, 0x3d, 0x78, 0x74, 0x28, 0x63, 0x74, + 0x2b, 0x2b, 0x2c, 0x34, 0x29, 0x3b, 0x21, 0x53, 0x2e, 0x5f, 0x5f, 0x73, + 0x26, 0x26, 0x52, 0x74, 0x28, 0x65, 0x2e, 0x5f, 0x5f, 0x48, 0x2c, 0x6e, + 0x29, 0x26, 0x26, 0x28, 0x65, 0x2e, 0x5f, 0x5f, 0x3d, 0x74, 0x2c, 0x65, + 0x2e, 0x69, 0x3d, 0x6e, 0x2c, 0x68, 0x74, 0x2e, 0x5f, 0x5f, 0x68, 0x2e, + 0x70, 0x75, 0x73, 0x68, 0x28, 0x65, 0x29, 0x29, 0x7d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x48, 0x74, 0x28, 0x74, 0x29, 0x7b, + 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x64, 0x74, 0x3d, 0x35, 0x2c, + 0x50, 0x74, 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x28, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x7b, 0x63, 0x75, + 0x72, 0x72, 0x65, 0x6e, 0x74, 0x3a, 0x74, 0x7d, 0x7d, 0x29, 0x2c, 0x5b, + 0x5d, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x4e, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x29, 0x7b, 0x64, 0x74, + 0x3d, 0x36, 0x2c, 0x55, 0x74, 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, + 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x74, 0x3f, 0x28, 0x74, 0x28, + 0x6e, 0x28, 0x29, 0x29, 0x2c, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x28, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, + 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x7d, 0x29, 0x3a, 0x74, 0x3f, 0x28, + 0x74, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x3d, 0x6e, 0x28, + 0x29, 0x2c, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, + 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x2e, 0x63, 0x75, + 0x72, 0x72, 0x65, 0x6e, 0x74, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x7d, 0x29, + 0x3a, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x7d, 0x29, 0x2c, 0x6e, 0x75, + 0x6c, 0x6c, 0x3d, 0x3d, 0x65, 0x3f, 0x65, 0x3a, 0x65, 0x2e, 0x63, 0x6f, + 0x6e, 0x63, 0x61, 0x74, 0x28, 0x74, 0x29, 0x29, 0x7d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x50, 0x74, 0x28, 0x74, 0x2c, 0x6e, + 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x65, 0x3d, 0x78, 0x74, 0x28, 0x63, + 0x74, 0x2b, 0x2b, 0x2c, 0x37, 0x29, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x52, 0x74, 0x28, 0x65, 0x2e, 0x5f, 0x5f, 0x48, 0x2c, 0x6e, + 0x29, 0x3f, 0x28, 0x65, 0x2e, 0x5f, 0x5f, 0x56, 0x3d, 0x74, 0x28, 0x29, + 0x2c, 0x65, 0x2e, 0x69, 0x3d, 0x6e, 0x2c, 0x65, 0x2e, 0x5f, 0x5f, 0x68, + 0x3d, 0x74, 0x2c, 0x65, 0x2e, 0x5f, 0x5f, 0x56, 0x29, 0x3a, 0x65, 0x2e, + 0x5f, 0x5f, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x44, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x64, 0x74, 0x3d, 0x38, 0x2c, 0x50, 0x74, 0x28, 0x28, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x7d, 0x29, 0x2c, 0x6e, 0x29, + 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x24, 0x74, + 0x28, 0x74, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x6e, 0x3d, 0x68, 0x74, + 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x5b, 0x74, 0x2e, 0x5f, + 0x5f, 0x63, 0x5d, 0x2c, 0x65, 0x3d, 0x78, 0x74, 0x28, 0x63, 0x74, 0x2b, + 0x2b, 0x2c, 0x39, 0x29, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, + 0x65, 0x2e, 0x63, 0x3d, 0x74, 0x2c, 0x6e, 0x3f, 0x28, 0x6e, 0x75, 0x6c, + 0x6c, 0x3d, 0x3d, 0x65, 0x2e, 0x5f, 0x5f, 0x26, 0x26, 0x28, 0x65, 0x2e, + 0x5f, 0x5f, 0x3d, 0x21, 0x30, 0x2c, 0x6e, 0x2e, 0x73, 0x75, 0x62, 0x28, + 0x68, 0x74, 0x29, 0x29, 0x2c, 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x3a, 0x74, 0x2e, 0x5f, 0x5f, + 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x54, 0x74, + 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x53, 0x2e, 0x75, 0x73, 0x65, 0x44, + 0x65, 0x62, 0x75, 0x67, 0x56, 0x61, 0x6c, 0x75, 0x65, 0x26, 0x26, 0x53, + 0x2e, 0x75, 0x73, 0x65, 0x44, 0x65, 0x62, 0x75, 0x67, 0x56, 0x61, 0x6c, + 0x75, 0x65, 0x28, 0x6e, 0x3f, 0x6e, 0x28, 0x74, 0x29, 0x3a, 0x74, 0x29, + 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x56, 0x74, + 0x28, 0x74, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x6e, 0x3d, 0x78, 0x74, + 0x28, 0x63, 0x74, 0x2b, 0x2b, 0x2c, 0x31, 0x30, 0x29, 0x2c, 0x65, 0x3d, + 0x77, 0x74, 0x28, 0x29, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, + 0x6e, 0x2e, 0x5f, 0x5f, 0x3d, 0x74, 0x2c, 0x68, 0x74, 0x2e, 0x63, 0x6f, + 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x44, 0x69, 0x64, 0x43, 0x61, + 0x74, 0x63, 0x68, 0x7c, 0x7c, 0x28, 0x68, 0x74, 0x2e, 0x63, 0x6f, 0x6d, + 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x44, 0x69, 0x64, 0x43, 0x61, 0x74, + 0x63, 0x68, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, + 0x74, 0x2c, 0x69, 0x29, 0x7b, 0x6e, 0x2e, 0x5f, 0x5f, 0x26, 0x26, 0x6e, + 0x2e, 0x5f, 0x5f, 0x28, 0x74, 0x2c, 0x69, 0x29, 0x2c, 0x65, 0x5b, 0x31, + 0x5d, 0x28, 0x74, 0x29, 0x7d, 0x29, 0x2c, 0x5b, 0x65, 0x5b, 0x30, 0x5d, + 0x2c, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, + 0x65, 0x5b, 0x31, 0x5d, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x29, + 0x7d, 0x5d, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x41, 0x74, 0x28, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x74, 0x3d, 0x78, + 0x74, 0x28, 0x63, 0x74, 0x2b, 0x2b, 0x2c, 0x31, 0x31, 0x29, 0x3b, 0x69, + 0x66, 0x28, 0x21, 0x74, 0x2e, 0x5f, 0x5f, 0x29, 0x7b, 0x66, 0x6f, 0x72, + 0x28, 0x76, 0x61, 0x72, 0x20, 0x6e, 0x3d, 0x68, 0x74, 0x2e, 0x5f, 0x5f, + 0x76, 0x3b, 0x6e, 0x75, 0x6c, 0x6c, 0x21, 0x3d, 0x3d, 0x6e, 0x26, 0x26, + 0x21, 0x6e, 0x2e, 0x5f, 0x5f, 0x6d, 0x26, 0x26, 0x6e, 0x75, 0x6c, 0x6c, + 0x21, 0x3d, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, 0x3b, 0x29, 0x6e, 0x3d, 0x6e, + 0x2e, 0x5f, 0x5f, 0x3b, 0x76, 0x61, 0x72, 0x20, 0x65, 0x3d, 0x6e, 0x2e, + 0x5f, 0x5f, 0x6d, 0x7c, 0x7c, 0x28, 0x6e, 0x2e, 0x5f, 0x5f, 0x6d, 0x3d, + 0x5b, 0x30, 0x2c, 0x30, 0x5d, 0x29, 0x3b, 0x74, 0x2e, 0x5f, 0x5f, 0x3d, + 0x22, 0x50, 0x22, 0x2b, 0x65, 0x5b, 0x30, 0x5d, 0x2b, 0x22, 0x2d, 0x22, + 0x2b, 0x65, 0x5b, 0x31, 0x5d, 0x2b, 0x2b, 0x7d, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x74, 0x2e, 0x5f, 0x5f, 0x7d, 0x66, 0x75, 0x6e, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x46, 0x74, 0x28, 0x29, 0x7b, 0x66, 0x6f, + 0x72, 0x28, 0x76, 0x61, 0x72, 0x20, 0x74, 0x3b, 0x74, 0x3d, 0x76, 0x74, + 0x2e, 0x73, 0x68, 0x69, 0x66, 0x74, 0x28, 0x29, 0x3b, 0x29, 0x69, 0x66, + 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x50, 0x26, 0x26, 0x74, 0x2e, 0x5f, 0x5f, + 0x48, 0x29, 0x74, 0x72, 0x79, 0x7b, 0x74, 0x2e, 0x5f, 0x5f, 0x48, 0x2e, + 0x5f, 0x5f, 0x68, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68, 0x28, + 0x4f, 0x74, 0x29, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x48, 0x2e, 0x5f, 0x5f, + 0x68, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68, 0x28, 0x4c, 0x74, + 0x29, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x48, 0x2e, 0x5f, 0x5f, 0x68, 0x3d, + 0x5b, 0x5d, 0x7d, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x75, 0x29, 0x7b, + 0x74, 0x2e, 0x5f, 0x5f, 0x48, 0x2e, 0x5f, 0x5f, 0x68, 0x3d, 0x5b, 0x5d, + 0x2c, 0x53, 0x2e, 0x5f, 0x5f, 0x65, 0x28, 0x75, 0x2c, 0x74, 0x2e, 0x5f, + 0x5f, 0x76, 0x29, 0x7d, 0x7d, 0x53, 0x2e, 0x5f, 0x5f, 0x62, 0x3d, 0x66, + 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x68, + 0x74, 0x3d, 0x6e, 0x75, 0x6c, 0x6c, 0x2c, 0x6d, 0x74, 0x26, 0x26, 0x6d, + 0x74, 0x28, 0x74, 0x29, 0x7d, 0x2c, 0x53, 0x2e, 0x5f, 0x5f, 0x72, 0x3d, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, + 0x67, 0x74, 0x26, 0x26, 0x67, 0x74, 0x28, 0x74, 0x29, 0x2c, 0x63, 0x74, + 0x3d, 0x30, 0x3b, 0x76, 0x61, 0x72, 0x20, 0x6e, 0x3d, 0x28, 0x68, 0x74, + 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x63, 0x29, 0x2e, 0x5f, 0x5f, 0x48, 0x3b, + 0x6e, 0x26, 0x26, 0x28, 0x61, 0x74, 0x3d, 0x3d, 0x3d, 0x68, 0x74, 0x3f, + 0x28, 0x6e, 0x2e, 0x5f, 0x5f, 0x68, 0x3d, 0x5b, 0x5d, 0x2c, 0x68, 0x74, + 0x2e, 0x5f, 0x5f, 0x68, 0x3d, 0x5b, 0x5d, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, + 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68, 0x28, 0x28, 0x66, 0x75, + 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x74, 0x2e, + 0x5f, 0x5f, 0x4e, 0x26, 0x26, 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x3d, 0x74, + 0x2e, 0x5f, 0x5f, 0x4e, 0x29, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x56, 0x3d, + 0x79, 0x74, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x4e, 0x3d, 0x74, 0x2e, 0x69, + 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x7d, 0x29, 0x29, 0x29, 0x3a, + 0x28, 0x6e, 0x2e, 0x5f, 0x5f, 0x68, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, + 0x63, 0x68, 0x28, 0x4f, 0x74, 0x29, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, 0x68, + 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68, 0x28, 0x4c, 0x74, 0x29, + 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, 0x68, 0x3d, 0x5b, 0x5d, 0x2c, 0x63, 0x74, + 0x3d, 0x30, 0x29, 0x29, 0x2c, 0x61, 0x74, 0x3d, 0x68, 0x74, 0x7d, 0x2c, + 0x53, 0x2e, 0x64, 0x69, 0x66, 0x66, 0x65, 0x64, 0x3d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x62, 0x74, 0x26, + 0x26, 0x62, 0x74, 0x28, 0x74, 0x29, 0x3b, 0x76, 0x61, 0x72, 0x20, 0x6e, + 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x63, 0x3b, 0x6e, 0x26, 0x26, 0x6e, 0x2e, + 0x5f, 0x5f, 0x48, 0x26, 0x26, 0x28, 0x6e, 0x2e, 0x5f, 0x5f, 0x48, 0x2e, + 0x5f, 0x5f, 0x68, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x26, 0x26, + 0x28, 0x31, 0x21, 0x3d, 0x3d, 0x76, 0x74, 0x2e, 0x70, 0x75, 0x73, 0x68, + 0x28, 0x6e, 0x29, 0x26, 0x26, 0x70, 0x74, 0x3d, 0x3d, 0x3d, 0x53, 0x2e, + 0x72, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x41, 0x6e, 0x69, 0x6d, 0x61, + 0x74, 0x69, 0x6f, 0x6e, 0x46, 0x72, 0x61, 0x6d, 0x65, 0x7c, 0x7c, 0x28, + 0x28, 0x70, 0x74, 0x3d, 0x53, 0x2e, 0x72, 0x65, 0x71, 0x75, 0x65, 0x73, + 0x74, 0x41, 0x6e, 0x69, 0x6d, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x46, 0x72, + 0x61, 0x6d, 0x65, 0x29, 0x7c, 0x7c, 0x57, 0x74, 0x29, 0x28, 0x46, 0x74, + 0x29, 0x29, 0x2c, 0x6e, 0x2e, 0x5f, 0x5f, 0x48, 0x2e, 0x5f, 0x5f, 0x2e, + 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68, 0x28, 0x28, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x74, 0x2e, 0x69, + 0x26, 0x26, 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x48, 0x3d, 0x74, 0x2e, 0x69, + 0x29, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x56, 0x21, 0x3d, 0x3d, 0x79, 0x74, + 0x26, 0x26, 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, + 0x56, 0x29, 0x2c, 0x74, 0x2e, 0x69, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, + 0x30, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x56, 0x3d, 0x79, 0x74, 0x7d, 0x29, + 0x29, 0x29, 0x2c, 0x61, 0x74, 0x3d, 0x68, 0x74, 0x3d, 0x6e, 0x75, 0x6c, + 0x6c, 0x7d, 0x2c, 0x53, 0x2e, 0x5f, 0x5f, 0x63, 0x3d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x6e, + 0x2e, 0x73, 0x6f, 0x6d, 0x65, 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x74, 0x72, 0x79, 0x7b, 0x74, + 0x2e, 0x5f, 0x5f, 0x68, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68, + 0x28, 0x4f, 0x74, 0x29, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x68, 0x3d, 0x74, + 0x2e, 0x5f, 0x5f, 0x68, 0x2e, 0x66, 0x69, 0x6c, 0x74, 0x65, 0x72, 0x28, + 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, + 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x74, 0x2e, 0x5f, 0x5f, + 0x7c, 0x7c, 0x4c, 0x74, 0x28, 0x74, 0x29, 0x7d, 0x29, 0x29, 0x7d, 0x63, + 0x61, 0x74, 0x63, 0x68, 0x28, 0x73, 0x29, 0x7b, 0x6e, 0x2e, 0x73, 0x6f, + 0x6d, 0x65, 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x28, 0x74, 0x29, 0x7b, 0x74, 0x2e, 0x5f, 0x5f, 0x68, 0x26, 0x26, 0x28, + 0x74, 0x2e, 0x5f, 0x5f, 0x68, 0x3d, 0x5b, 0x5d, 0x29, 0x7d, 0x29, 0x29, + 0x2c, 0x6e, 0x3d, 0x5b, 0x5d, 0x2c, 0x53, 0x2e, 0x5f, 0x5f, 0x65, 0x28, + 0x73, 0x2c, 0x74, 0x2e, 0x5f, 0x5f, 0x76, 0x29, 0x7d, 0x7d, 0x29, 0x29, + 0x2c, 0x6b, 0x74, 0x26, 0x26, 0x6b, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x29, + 0x7d, 0x2c, 0x53, 0x2e, 0x75, 0x6e, 0x6d, 0x6f, 0x75, 0x6e, 0x74, 0x3d, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, + 0x53, 0x74, 0x26, 0x26, 0x53, 0x74, 0x28, 0x74, 0x29, 0x3b, 0x76, 0x61, + 0x72, 0x20, 0x6e, 0x2c, 0x65, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x63, 0x3b, + 0x65, 0x26, 0x26, 0x65, 0x2e, 0x5f, 0x5f, 0x48, 0x26, 0x26, 0x28, 0x65, + 0x2e, 0x5f, 0x5f, 0x48, 0x2e, 0x5f, 0x5f, 0x2e, 0x66, 0x6f, 0x72, 0x45, + 0x61, 0x63, 0x68, 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x74, 0x72, 0x79, 0x7b, 0x4f, 0x74, 0x28, + 0x74, 0x29, 0x7d, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x74, 0x29, 0x7b, + 0x6e, 0x3d, 0x74, 0x7d, 0x7d, 0x29, 0x29, 0x2c, 0x65, 0x2e, 0x5f, 0x5f, + 0x48, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x2c, 0x6e, 0x26, 0x26, + 0x53, 0x2e, 0x5f, 0x5f, 0x65, 0x28, 0x6e, 0x2c, 0x65, 0x2e, 0x5f, 0x5f, + 0x76, 0x29, 0x29, 0x7d, 0x3b, 0x76, 0x61, 0x72, 0x20, 0x4d, 0x74, 0x3d, + 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, + 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65, + 0x73, 0x74, 0x41, 0x6e, 0x69, 0x6d, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x46, + 0x72, 0x61, 0x6d, 0x65, 0x3b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x20, 0x57, 0x74, 0x28, 0x74, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, + 0x6e, 0x2c, 0x65, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x28, 0x29, 0x7b, 0x63, 0x6c, 0x65, 0x61, 0x72, 0x54, 0x69, 0x6d, 0x65, + 0x6f, 0x75, 0x74, 0x28, 0x69, 0x29, 0x2c, 0x4d, 0x74, 0x26, 0x26, 0x63, + 0x61, 0x6e, 0x63, 0x65, 0x6c, 0x41, 0x6e, 0x69, 0x6d, 0x61, 0x74, 0x69, + 0x6f, 0x6e, 0x46, 0x72, 0x61, 0x6d, 0x65, 0x28, 0x6e, 0x29, 0x2c, 0x73, + 0x65, 0x74, 0x54, 0x69, 0x6d, 0x65, 0x6f, 0x75, 0x74, 0x28, 0x74, 0x29, + 0x7d, 0x2c, 0x69, 0x3d, 0x73, 0x65, 0x74, 0x54, 0x69, 0x6d, 0x65, 0x6f, + 0x75, 0x74, 0x28, 0x65, 0x2c, 0x31, 0x30, 0x30, 0x29, 0x3b, 0x4d, 0x74, + 0x26, 0x26, 0x28, 0x6e, 0x3d, 0x72, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, + 0x41, 0x6e, 0x69, 0x6d, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x46, 0x72, 0x61, + 0x6d, 0x65, 0x28, 0x65, 0x29, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x20, 0x4f, 0x74, 0x28, 0x74, 0x29, 0x7b, 0x76, 0x61, + 0x72, 0x20, 0x6e, 0x3d, 0x68, 0x74, 0x2c, 0x65, 0x3d, 0x74, 0x2e, 0x5f, + 0x5f, 0x63, 0x3b, 0x22, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x65, 0x26, + 0x26, 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x63, 0x3d, 0x76, 0x6f, 0x69, 0x64, + 0x20, 0x30, 0x2c, 0x65, 0x28, 0x29, 0x29, 0x2c, 0x68, 0x74, 0x3d, 0x6e, + 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x4c, 0x74, + 0x28, 0x74, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x6e, 0x3d, 0x68, 0x74, + 0x3b, 0x74, 0x2e, 0x5f, 0x5f, 0x63, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x28, + 0x29, 0x2c, 0x68, 0x74, 0x3d, 0x6e, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x20, 0x52, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, + 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x74, 0x7c, 0x7c, 0x74, 0x2e, + 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x21, 0x3d, 0x3d, 0x6e, 0x2e, 0x6c, + 0x65, 0x6e, 0x67, 0x74, 0x68, 0x7c, 0x7c, 0x6e, 0x2e, 0x73, 0x6f, 0x6d, + 0x65, 0x28, 0x28, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, + 0x6e, 0x2c, 0x65, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, + 0x6e, 0x21, 0x3d, 0x3d, 0x74, 0x5b, 0x65, 0x5d, 0x7d, 0x29, 0x29, 0x7d, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x49, 0x74, 0x28, + 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x22, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x3d, 0x3d, 0x74, + 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x6e, 0x3f, 0x6e, 0x28, 0x74, 0x29, + 0x3a, 0x6e, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x6a, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x53, 0x5b, 0x74, 0x5d, + 0x3d, 0x6e, 0x2e, 0x62, 0x69, 0x6e, 0x64, 0x28, 0x6e, 0x75, 0x6c, 0x6c, + 0x2c, 0x53, 0x5b, 0x74, 0x5d, 0x7c, 0x7c, 0x28, 0x28, 0x29, 0x3d, 0x3e, + 0x7b, 0x7d, 0x29, 0x29, 0x7d, 0x6c, 0x65, 0x74, 0x20, 0x71, 0x74, 0x2c, + 0x42, 0x74, 0x3b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x47, 0x74, 0x28, 0x74, 0x29, 0x7b, 0x69, 0x66, 0x28, 0x42, 0x74, 0x29, + 0x42, 0x74, 0x28, 0x29, 0x3b, 0x42, 0x74, 0x3d, 0x74, 0x26, 0x26, 0x74, + 0x2e, 0x53, 0x28, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x20, 0x7a, 0x74, 0x28, 0x7b, 0x64, 0x61, 0x74, 0x61, 0x3a, 0x74, + 0x7d, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6e, 0x3d, 0x4b, + 0x74, 0x28, 0x74, 0x29, 0x3b, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x3d, 0x74, 0x3b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x3d, 0x50, + 0x74, 0x28, 0x28, 0x29, 0x3d, 0x3e, 0x7b, 0x6c, 0x65, 0x74, 0x20, 0x74, + 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x5f, 0x76, 0x3b, 0x77, 0x68, + 0x69, 0x6c, 0x65, 0x28, 0x74, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x29, 0x69, + 0x66, 0x28, 0x74, 0x2e, 0x5f, 0x5f, 0x63, 0x29, 0x7b, 0x74, 0x2e, 0x5f, + 0x5f, 0x63, 0x2e, 0x5f, 0x5f, 0x24, 0x66, 0x7c, 0x3d, 0x34, 0x3b, 0x62, + 0x72, 0x65, 0x61, 0x6b, 0x7d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x5f, + 0x24, 0x75, 0x2e, 0x63, 0x3d, 0x28, 0x29, 0x3d, 0x3e, 0x7b, 0x74, 0x68, + 0x69, 0x73, 0x2e, 0x62, 0x61, 0x73, 0x65, 0x2e, 0x64, 0x61, 0x74, 0x61, + 0x3d, 0x65, 0x2e, 0x70, 0x65, 0x65, 0x6b, 0x28, 0x29, 0x7d, 0x3b, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x64, 0x28, 0x28, 0x29, 0x3d, 0x3e, + 0x7b, 0x6c, 0x65, 0x74, 0x20, 0x74, 0x3d, 0x6e, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3b, 0x72, 0x65, 0x74, + 0x75, 0x72, 0x6e, 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x74, 0x3f, 0x30, 0x3a, + 0x21, 0x30, 0x3d, 0x3d, 0x3d, 0x74, 0x3f, 0x22, 0x22, 0x3a, 0x74, 0x7c, + 0x7c, 0x22, 0x22, 0x7d, 0x29, 0x7d, 0x2c, 0x5b, 0x5d, 0x29, 0x3b, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x7d, 0x7a, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, + 0x4e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x5f, 0x73, 0x74, 0x22, 0x3b, 0x4f, + 0x62, 0x6a, 0x65, 0x63, 0x74, 0x2e, 0x64, 0x65, 0x66, 0x69, 0x6e, 0x65, + 0x50, 0x72, 0x6f, 0x70, 0x65, 0x72, 0x74, 0x69, 0x65, 0x73, 0x28, 0x66, + 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2c, 0x7b, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x6f, 0x72, 0x3a, + 0x7b, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x75, 0x72, 0x61, 0x62, 0x6c, + 0x65, 0x3a, 0x21, 0x30, 0x2c, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x76, + 0x6f, 0x69, 0x64, 0x20, 0x30, 0x7d, 0x2c, 0x74, 0x79, 0x70, 0x65, 0x3a, + 0x7b, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x75, 0x72, 0x61, 0x62, 0x6c, + 0x65, 0x3a, 0x21, 0x30, 0x2c, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x7a, + 0x74, 0x7d, 0x2c, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x3a, 0x7b, 0x63, 0x6f, + 0x6e, 0x66, 0x69, 0x67, 0x75, 0x72, 0x61, 0x62, 0x6c, 0x65, 0x3a, 0x21, + 0x30, 0x2c, 0x67, 0x65, 0x74, 0x28, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x7b, 0x64, 0x61, 0x74, 0x61, 0x3a, 0x74, 0x68, 0x69, 0x73, + 0x7d, 0x7d, 0x7d, 0x2c, 0x5f, 0x5f, 0x62, 0x3a, 0x7b, 0x63, 0x6f, 0x6e, + 0x66, 0x69, 0x67, 0x75, 0x72, 0x61, 0x62, 0x6c, 0x65, 0x3a, 0x21, 0x30, + 0x2c, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x31, 0x7d, 0x7d, 0x29, 0x3b, + 0x6a, 0x74, 0x28, 0x22, 0x5f, 0x5f, 0x62, 0x22, 0x2c, 0x28, 0x74, 0x2c, + 0x6e, 0x29, 0x3d, 0x3e, 0x7b, 0x69, 0x66, 0x28, 0x22, 0x73, 0x74, 0x72, + 0x69, 0x6e, 0x67, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, + 0x20, 0x6e, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x29, 0x7b, 0x6c, 0x65, 0x74, + 0x20, 0x74, 0x2c, 0x65, 0x3d, 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, + 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, 0x74, 0x20, 0x69, 0x20, 0x69, + 0x6e, 0x20, 0x65, 0x29, 0x7b, 0x69, 0x66, 0x28, 0x22, 0x63, 0x68, 0x69, + 0x6c, 0x64, 0x72, 0x65, 0x6e, 0x22, 0x3d, 0x3d, 0x3d, 0x69, 0x29, 0x63, + 0x6f, 0x6e, 0x74, 0x69, 0x6e, 0x75, 0x65, 0x3b, 0x6c, 0x65, 0x74, 0x20, + 0x5f, 0x3d, 0x65, 0x5b, 0x69, 0x5d, 0x3b, 0x69, 0x66, 0x28, 0x5f, 0x20, + 0x69, 0x6e, 0x73, 0x74, 0x61, 0x6e, 0x63, 0x65, 0x6f, 0x66, 0x20, 0x66, + 0x29, 0x7b, 0x69, 0x66, 0x28, 0x21, 0x74, 0x29, 0x6e, 0x2e, 0x5f, 0x5f, + 0x6e, 0x70, 0x3d, 0x74, 0x3d, 0x7b, 0x7d, 0x3b, 0x74, 0x5b, 0x69, 0x5d, + 0x3d, 0x5f, 0x3b, 0x65, 0x5b, 0x69, 0x5d, 0x3d, 0x5f, 0x2e, 0x70, 0x65, + 0x65, 0x6b, 0x28, 0x29, 0x7d, 0x7d, 0x7d, 0x74, 0x28, 0x6e, 0x29, 0x7d, + 0x29, 0x3b, 0x6a, 0x74, 0x28, 0x22, 0x5f, 0x5f, 0x72, 0x22, 0x2c, 0x28, + 0x74, 0x2c, 0x6e, 0x29, 0x3d, 0x3e, 0x7b, 0x47, 0x74, 0x28, 0x29, 0x3b, + 0x6c, 0x65, 0x74, 0x20, 0x65, 0x2c, 0x69, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, + 0x63, 0x3b, 0x69, 0x66, 0x28, 0x69, 0x29, 0x7b, 0x69, 0x2e, 0x5f, 0x5f, + 0x24, 0x66, 0x26, 0x3d, 0x2d, 0x32, 0x3b, 0x65, 0x3d, 0x69, 0x2e, 0x5f, + 0x5f, 0x24, 0x75, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, 0x69, 0x64, 0x20, + 0x30, 0x3d, 0x3d, 0x3d, 0x65, 0x29, 0x69, 0x2e, 0x5f, 0x5f, 0x24, 0x75, + 0x3d, 0x65, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, + 0x74, 0x29, 0x7b, 0x6c, 0x65, 0x74, 0x20, 0x6e, 0x3b, 0x62, 0x28, 0x28, + 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x29, 0x7b, 0x6e, + 0x3d, 0x74, 0x68, 0x69, 0x73, 0x7d, 0x29, 0x29, 0x3b, 0x6e, 0x2e, 0x63, + 0x3d, 0x28, 0x29, 0x3d, 0x3e, 0x7b, 0x69, 0x2e, 0x5f, 0x5f, 0x24, 0x66, + 0x7c, 0x3d, 0x31, 0x3b, 0x69, 0x2e, 0x73, 0x65, 0x74, 0x53, 0x74, 0x61, + 0x74, 0x65, 0x28, 0x7b, 0x7d, 0x29, 0x7d, 0x3b, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x6e, 0x7d, 0x28, 0x29, 0x7d, 0x71, 0x74, 0x3d, 0x69, + 0x3b, 0x47, 0x74, 0x28, 0x65, 0x29, 0x3b, 0x74, 0x28, 0x6e, 0x29, 0x7d, + 0x29, 0x3b, 0x6a, 0x74, 0x28, 0x22, 0x5f, 0x5f, 0x65, 0x22, 0x2c, 0x28, + 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x2c, 0x69, 0x29, 0x3d, 0x3e, 0x7b, 0x47, + 0x74, 0x28, 0x29, 0x3b, 0x71, 0x74, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, + 0x30, 0x3b, 0x74, 0x28, 0x6e, 0x2c, 0x65, 0x2c, 0x69, 0x29, 0x7d, 0x29, + 0x3b, 0x6a, 0x74, 0x28, 0x22, 0x64, 0x69, 0x66, 0x66, 0x65, 0x64, 0x22, + 0x2c, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x3d, 0x3e, 0x7b, 0x47, 0x74, 0x28, + 0x29, 0x3b, 0x71, 0x74, 0x3d, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, + 0x6c, 0x65, 0x74, 0x20, 0x65, 0x3b, 0x69, 0x66, 0x28, 0x22, 0x73, 0x74, + 0x72, 0x69, 0x6e, 0x67, 0x22, 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, + 0x66, 0x20, 0x6e, 0x2e, 0x74, 0x79, 0x70, 0x65, 0x26, 0x26, 0x28, 0x65, + 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, 0x65, 0x29, 0x29, 0x7b, 0x6c, 0x65, 0x74, + 0x20, 0x74, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, 0x6e, 0x70, 0x2c, 0x69, 0x3d, + 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x3b, 0x69, 0x66, 0x28, 0x74, + 0x29, 0x7b, 0x6c, 0x65, 0x74, 0x20, 0x6e, 0x3d, 0x65, 0x2e, 0x55, 0x3b, + 0x69, 0x66, 0x28, 0x6e, 0x29, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, 0x74, + 0x20, 0x65, 0x20, 0x69, 0x6e, 0x20, 0x6e, 0x29, 0x7b, 0x6c, 0x65, 0x74, + 0x20, 0x69, 0x3d, 0x6e, 0x5b, 0x65, 0x5d, 0x3b, 0x69, 0x66, 0x28, 0x76, + 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x69, 0x26, 0x26, 0x21, + 0x28, 0x65, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x29, 0x29, 0x7b, 0x69, 0x2e, + 0x64, 0x28, 0x29, 0x3b, 0x6e, 0x5b, 0x65, 0x5d, 0x3d, 0x76, 0x6f, 0x69, + 0x64, 0x20, 0x30, 0x7d, 0x7d, 0x65, 0x6c, 0x73, 0x65, 0x7b, 0x6e, 0x3d, + 0x7b, 0x7d, 0x3b, 0x65, 0x2e, 0x55, 0x3d, 0x6e, 0x7d, 0x66, 0x6f, 0x72, + 0x28, 0x6c, 0x65, 0x74, 0x20, 0x5f, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x29, + 0x7b, 0x6c, 0x65, 0x74, 0x20, 0x6f, 0x3d, 0x6e, 0x5b, 0x5f, 0x5d, 0x2c, + 0x72, 0x3d, 0x74, 0x5b, 0x5f, 0x5d, 0x3b, 0x69, 0x66, 0x28, 0x76, 0x6f, + 0x69, 0x64, 0x20, 0x30, 0x3d, 0x3d, 0x3d, 0x6f, 0x29, 0x7b, 0x6f, 0x3d, + 0x4a, 0x74, 0x28, 0x65, 0x2c, 0x5f, 0x2c, 0x72, 0x2c, 0x69, 0x29, 0x3b, + 0x6e, 0x5b, 0x5f, 0x5d, 0x3d, 0x6f, 0x7d, 0x65, 0x6c, 0x73, 0x65, 0x20, + 0x6f, 0x2e, 0x6f, 0x28, 0x72, 0x2c, 0x69, 0x29, 0x7d, 0x7d, 0x7d, 0x74, + 0x28, 0x6e, 0x29, 0x7d, 0x29, 0x3b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, + 0x6f, 0x6e, 0x20, 0x4a, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x2c, 0x65, 0x2c, + 0x69, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x5f, 0x3d, 0x6e, + 0x20, 0x69, 0x6e, 0x20, 0x74, 0x26, 0x26, 0x76, 0x6f, 0x69, 0x64, 0x20, + 0x30, 0x3d, 0x3d, 0x3d, 0x74, 0x2e, 0x6f, 0x77, 0x6e, 0x65, 0x72, 0x53, + 0x56, 0x47, 0x45, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x2c, 0x6f, 0x3d, + 0x73, 0x28, 0x65, 0x29, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x7b, + 0x6f, 0x3a, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x3d, 0x3e, 0x7b, 0x6f, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x74, 0x3b, 0x69, 0x3d, 0x6e, 0x7d, + 0x2c, 0x64, 0x3a, 0x62, 0x28, 0x28, 0x29, 0x3d, 0x3e, 0x7b, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x20, 0x65, 0x3d, 0x6f, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3b, 0x69, 0x66, 0x28, 0x69, + 0x5b, 0x6e, 0x5d, 0x21, 0x3d, 0x3d, 0x65, 0x29, 0x7b, 0x69, 0x5b, 0x6e, + 0x5d, 0x3d, 0x65, 0x3b, 0x69, 0x66, 0x28, 0x5f, 0x29, 0x74, 0x5b, 0x6e, + 0x5d, 0x3d, 0x65, 0x3b, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x28, + 0x65, 0x29, 0x74, 0x2e, 0x73, 0x65, 0x74, 0x41, 0x74, 0x74, 0x72, 0x69, + 0x62, 0x75, 0x74, 0x65, 0x28, 0x6e, 0x2c, 0x65, 0x29, 0x3b, 0x65, 0x6c, + 0x73, 0x65, 0x20, 0x74, 0x2e, 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x41, + 0x74, 0x74, 0x72, 0x69, 0x62, 0x75, 0x74, 0x65, 0x28, 0x6e, 0x29, 0x7d, + 0x7d, 0x29, 0x7d, 0x7d, 0x6a, 0x74, 0x28, 0x22, 0x75, 0x6e, 0x6d, 0x6f, + 0x75, 0x6e, 0x74, 0x22, 0x2c, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x3d, 0x3e, + 0x7b, 0x69, 0x66, 0x28, 0x22, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x22, + 0x3d, 0x3d, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x6e, 0x2e, 0x74, + 0x79, 0x70, 0x65, 0x29, 0x7b, 0x6c, 0x65, 0x74, 0x20, 0x74, 0x3d, 0x6e, + 0x2e, 0x5f, 0x5f, 0x65, 0x3b, 0x69, 0x66, 0x28, 0x74, 0x29, 0x7b, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6e, 0x3d, 0x74, 0x2e, 0x55, 0x3b, 0x69, + 0x66, 0x28, 0x6e, 0x29, 0x7b, 0x74, 0x2e, 0x55, 0x3d, 0x76, 0x6f, 0x69, + 0x64, 0x20, 0x30, 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, 0x74, 0x20, + 0x74, 0x20, 0x69, 0x6e, 0x20, 0x6e, 0x29, 0x7b, 0x6c, 0x65, 0x74, 0x20, + 0x65, 0x3d, 0x6e, 0x5b, 0x74, 0x5d, 0x3b, 0x69, 0x66, 0x28, 0x65, 0x29, + 0x65, 0x2e, 0x64, 0x28, 0x29, 0x7d, 0x7d, 0x7d, 0x7d, 0x65, 0x6c, 0x73, + 0x65, 0x7b, 0x6c, 0x65, 0x74, 0x20, 0x74, 0x3d, 0x6e, 0x2e, 0x5f, 0x5f, + 0x63, 0x3b, 0x69, 0x66, 0x28, 0x74, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x6e, 0x3d, 0x74, 0x2e, 0x5f, 0x5f, 0x24, 0x75, 0x3b, 0x69, + 0x66, 0x28, 0x6e, 0x29, 0x7b, 0x74, 0x2e, 0x5f, 0x5f, 0x24, 0x75, 0x3d, + 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x3b, 0x6e, 0x2e, 0x64, 0x28, 0x29, + 0x7d, 0x7d, 0x7d, 0x74, 0x28, 0x6e, 0x29, 0x7d, 0x29, 0x3b, 0x6a, 0x74, + 0x28, 0x22, 0x5f, 0x5f, 0x68, 0x22, 0x2c, 0x28, 0x74, 0x2c, 0x6e, 0x2c, + 0x65, 0x2c, 0x69, 0x29, 0x3d, 0x3e, 0x7b, 0x69, 0x66, 0x28, 0x69, 0x3c, + 0x33, 0x29, 0x6e, 0x2e, 0x5f, 0x5f, 0x24, 0x66, 0x7c, 0x3d, 0x32, 0x3b, + 0x74, 0x28, 0x6e, 0x2c, 0x65, 0x2c, 0x69, 0x29, 0x7d, 0x29, 0x3b, 0x4c, + 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x74, 0x79, 0x70, 0x65, 0x2e, 0x73, + 0x68, 0x6f, 0x75, 0x6c, 0x64, 0x43, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, + 0x6e, 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x3d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x2c, 0x6e, 0x29, 0x7b, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, + 0x5f, 0x5f, 0x24, 0x75, 0x3b, 0x69, 0x66, 0x28, 0x21, 0x28, 0x65, 0x26, + 0x26, 0x76, 0x6f, 0x69, 0x64, 0x20, 0x30, 0x21, 0x3d, 0x3d, 0x65, 0x2e, + 0x73, 0x7c, 0x7c, 0x34, 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x5f, + 0x24, 0x66, 0x29, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x30, + 0x3b, 0x69, 0x66, 0x28, 0x33, 0x26, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, + 0x5f, 0x24, 0x66, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x30, + 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, 0x74, 0x20, 0x69, 0x20, 0x69, + 0x6e, 0x20, 0x6e, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x30, + 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, 0x74, 0x20, 0x69, 0x20, 0x69, + 0x6e, 0x20, 0x74, 0x29, 0x69, 0x66, 0x28, 0x22, 0x5f, 0x5f, 0x73, 0x6f, + 0x75, 0x72, 0x63, 0x65, 0x22, 0x21, 0x3d, 0x3d, 0x69, 0x26, 0x26, 0x74, + 0x5b, 0x69, 0x5d, 0x21, 0x3d, 0x3d, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, + 0x72, 0x6f, 0x70, 0x73, 0x5b, 0x69, 0x5d, 0x29, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x21, 0x30, 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x6c, 0x65, 0x74, + 0x20, 0x69, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x70, + 0x72, 0x6f, 0x70, 0x73, 0x29, 0x69, 0x66, 0x28, 0x21, 0x28, 0x69, 0x20, + 0x69, 0x6e, 0x20, 0x74, 0x29, 0x29, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, + 0x21, 0x30, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x21, 0x31, 0x7d, + 0x3b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x4b, 0x74, + 0x28, 0x74, 0x29, 0x7b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x50, + 0x74, 0x28, 0x28, 0x29, 0x3d, 0x3e, 0x73, 0x28, 0x74, 0x29, 0x2c, 0x5b, + 0x5d, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x51, 0x74, 0x28, 0x74, 0x29, 0x7b, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x6e, 0x3d, 0x48, 0x74, 0x28, 0x74, 0x29, 0x3b, 0x6e, 0x2e, 0x63, 0x75, + 0x72, 0x72, 0x65, 0x6e, 0x74, 0x3d, 0x74, 0x3b, 0x71, 0x74, 0x2e, 0x5f, + 0x5f, 0x24, 0x66, 0x7c, 0x3d, 0x34, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x50, 0x74, 0x28, 0x28, 0x29, 0x3d, 0x3e, 0x64, 0x28, 0x28, + 0x29, 0x3d, 0x3e, 0x6e, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, + 0x28, 0x29, 0x29, 0x2c, 0x5b, 0x5d, 0x29, 0x7d, 0x66, 0x75, 0x6e, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x58, 0x74, 0x28, 0x74, 0x29, 0x7b, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6e, 0x3d, 0x48, 0x74, 0x28, 0x74, 0x29, + 0x3b, 0x6e, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x3d, 0x74, + 0x3b, 0x45, 0x74, 0x28, 0x28, 0x29, 0x3d, 0x3e, 0x62, 0x28, 0x28, 0x29, + 0x3d, 0x3e, 0x6e, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x28, + 0x29, 0x29, 0x2c, 0x5b, 0x5d, 0x29, 0x7d, 0x76, 0x61, 0x72, 0x20, 0x59, + 0x74, 0x3d, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, + 0x2c, 0x6e, 0x2c, 0x65, 0x2c, 0x69, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, + 0x5f, 0x3b, 0x6e, 0x5b, 0x30, 0x5d, 0x3d, 0x30, 0x3b, 0x66, 0x6f, 0x72, + 0x28, 0x76, 0x61, 0x72, 0x20, 0x6f, 0x3d, 0x31, 0x3b, 0x6f, 0x3c, 0x6e, + 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x6f, 0x2b, 0x2b, 0x29, + 0x7b, 0x76, 0x61, 0x72, 0x20, 0x72, 0x3d, 0x6e, 0x5b, 0x6f, 0x2b, 0x2b, + 0x5d, 0x2c, 0x75, 0x3d, 0x6e, 0x5b, 0x6f, 0x5d, 0x3f, 0x28, 0x6e, 0x5b, + 0x30, 0x5d, 0x7c, 0x3d, 0x72, 0x3f, 0x31, 0x3a, 0x32, 0x2c, 0x65, 0x5b, + 0x6e, 0x5b, 0x6f, 0x2b, 0x2b, 0x5d, 0x5d, 0x29, 0x3a, 0x6e, 0x5b, 0x2b, + 0x2b, 0x6f, 0x5d, 0x3b, 0x33, 0x3d, 0x3d, 0x3d, 0x72, 0x3f, 0x69, 0x5b, + 0x30, 0x5d, 0x3d, 0x75, 0x3a, 0x34, 0x3d, 0x3d, 0x3d, 0x72, 0x3f, 0x69, + 0x5b, 0x31, 0x5d, 0x3d, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x2e, 0x61, + 0x73, 0x73, 0x69, 0x67, 0x6e, 0x28, 0x69, 0x5b, 0x31, 0x5d, 0x7c, 0x7c, + 0x7b, 0x7d, 0x2c, 0x75, 0x29, 0x3a, 0x35, 0x3d, 0x3d, 0x3d, 0x72, 0x3f, + 0x28, 0x69, 0x5b, 0x31, 0x5d, 0x3d, 0x69, 0x5b, 0x31, 0x5d, 0x7c, 0x7c, + 0x7b, 0x7d, 0x29, 0x5b, 0x6e, 0x5b, 0x2b, 0x2b, 0x6f, 0x5d, 0x5d, 0x3d, + 0x75, 0x3a, 0x36, 0x3d, 0x3d, 0x3d, 0x72, 0x3f, 0x69, 0x5b, 0x31, 0x5d, + 0x5b, 0x6e, 0x5b, 0x2b, 0x2b, 0x6f, 0x5d, 0x5d, 0x2b, 0x3d, 0x75, 0x2b, + 0x22, 0x22, 0x3a, 0x72, 0x3f, 0x28, 0x5f, 0x3d, 0x74, 0x2e, 0x61, 0x70, + 0x70, 0x6c, 0x79, 0x28, 0x75, 0x2c, 0x59, 0x74, 0x28, 0x74, 0x2c, 0x75, + 0x2c, 0x65, 0x2c, 0x5b, 0x22, 0x22, 0x2c, 0x6e, 0x75, 0x6c, 0x6c, 0x5d, + 0x29, 0x29, 0x2c, 0x69, 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x5f, 0x29, + 0x2c, 0x75, 0x5b, 0x30, 0x5d, 0x3f, 0x6e, 0x5b, 0x30, 0x5d, 0x7c, 0x3d, + 0x32, 0x3a, 0x28, 0x6e, 0x5b, 0x6f, 0x2d, 0x32, 0x5d, 0x3d, 0x30, 0x2c, + 0x6e, 0x5b, 0x6f, 0x5d, 0x3d, 0x5f, 0x29, 0x29, 0x3a, 0x69, 0x2e, 0x70, + 0x75, 0x73, 0x68, 0x28, 0x75, 0x29, 0x7d, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x69, 0x7d, 0x2c, 0x5a, 0x74, 0x3d, 0x6e, 0x65, 0x77, 0x20, + 0x4d, 0x61, 0x70, 0x3b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x74, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x76, 0x61, 0x72, 0x20, 0x6e, + 0x3d, 0x5a, 0x74, 0x2e, 0x67, 0x65, 0x74, 0x28, 0x74, 0x68, 0x69, 0x73, + 0x29, 0x3b, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x7c, 0x7c, + 0x28, 0x6e, 0x3d, 0x6e, 0x65, 0x77, 0x20, 0x4d, 0x61, 0x70, 0x2c, 0x5a, + 0x74, 0x2e, 0x73, 0x65, 0x74, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2c, 0x6e, + 0x29, 0x29, 0x2c, 0x28, 0x6e, 0x3d, 0x59, 0x74, 0x28, 0x74, 0x68, 0x69, + 0x73, 0x2c, 0x6e, 0x2e, 0x67, 0x65, 0x74, 0x28, 0x74, 0x29, 0x7c, 0x7c, + 0x28, 0x6e, 0x2e, 0x73, 0x65, 0x74, 0x28, 0x74, 0x2c, 0x6e, 0x3d, 0x66, + 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x66, + 0x6f, 0x72, 0x28, 0x76, 0x61, 0x72, 0x20, 0x6e, 0x2c, 0x65, 0x2c, 0x69, + 0x3d, 0x31, 0x2c, 0x5f, 0x3d, 0x22, 0x22, 0x2c, 0x6f, 0x3d, 0x22, 0x22, + 0x2c, 0x72, 0x3d, 0x5b, 0x30, 0x5d, 0x2c, 0x75, 0x3d, 0x66, 0x75, 0x6e, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x28, 0x74, 0x29, 0x7b, 0x31, 0x3d, 0x3d, + 0x3d, 0x69, 0x26, 0x26, 0x28, 0x74, 0x7c, 0x7c, 0x28, 0x5f, 0x3d, 0x5f, + 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x5c, + 0x73, 0x2a, 0x5c, 0x6e, 0x5c, 0x73, 0x2a, 0x7c, 0x5c, 0x73, 0x2a, 0x5c, + 0x6e, 0x5c, 0x73, 0x2a, 0x24, 0x2f, 0x67, 0x2c, 0x22, 0x22, 0x29, 0x29, + 0x29, 0x3f, 0x72, 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x30, 0x2c, 0x74, + 0x2c, 0x5f, 0x29, 0x3a, 0x33, 0x3d, 0x3d, 0x3d, 0x69, 0x26, 0x26, 0x28, + 0x74, 0x7c, 0x7c, 0x5f, 0x29, 0x3f, 0x28, 0x72, 0x2e, 0x70, 0x75, 0x73, + 0x68, 0x28, 0x33, 0x2c, 0x74, 0x2c, 0x5f, 0x29, 0x2c, 0x69, 0x3d, 0x32, + 0x29, 0x3a, 0x32, 0x3d, 0x3d, 0x3d, 0x69, 0x26, 0x26, 0x22, 0x2e, 0x2e, + 0x2e, 0x22, 0x3d, 0x3d, 0x3d, 0x5f, 0x26, 0x26, 0x74, 0x3f, 0x72, 0x2e, + 0x70, 0x75, 0x73, 0x68, 0x28, 0x34, 0x2c, 0x74, 0x2c, 0x30, 0x29, 0x3a, + 0x32, 0x3d, 0x3d, 0x3d, 0x69, 0x26, 0x26, 0x5f, 0x26, 0x26, 0x21, 0x74, + 0x3f, 0x72, 0x2e, 0x70, 0x75, 0x73, 0x68, 0x28, 0x35, 0x2c, 0x30, 0x2c, + 0x21, 0x30, 0x2c, 0x5f, 0x29, 0x3a, 0x69, 0x3e, 0x3d, 0x35, 0x26, 0x26, + 0x28, 0x28, 0x5f, 0x7c, 0x7c, 0x21, 0x74, 0x26, 0x26, 0x35, 0x3d, 0x3d, + 0x3d, 0x69, 0x29, 0x26, 0x26, 0x28, 0x72, 0x2e, 0x70, 0x75, 0x73, 0x68, + 0x28, 0x69, 0x2c, 0x30, 0x2c, 0x5f, 0x2c, 0x65, 0x29, 0x2c, 0x69, 0x3d, + 0x36, 0x29, 0x2c, 0x74, 0x26, 0x26, 0x28, 0x72, 0x2e, 0x70, 0x75, 0x73, + 0x68, 0x28, 0x69, 0x2c, 0x74, 0x2c, 0x30, 0x2c, 0x65, 0x29, 0x2c, 0x69, + 0x3d, 0x36, 0x29, 0x29, 0x2c, 0x5f, 0x3d, 0x22, 0x22, 0x7d, 0x2c, 0x6c, + 0x3d, 0x30, 0x3b, 0x6c, 0x3c, 0x74, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, + 0x68, 0x3b, 0x6c, 0x2b, 0x2b, 0x29, 0x7b, 0x6c, 0x26, 0x26, 0x28, 0x31, + 0x3d, 0x3d, 0x3d, 0x69, 0x26, 0x26, 0x75, 0x28, 0x29, 0x2c, 0x75, 0x28, + 0x6c, 0x29, 0x29, 0x3b, 0x66, 0x6f, 0x72, 0x28, 0x76, 0x61, 0x72, 0x20, + 0x66, 0x3d, 0x30, 0x3b, 0x66, 0x3c, 0x74, 0x5b, 0x6c, 0x5d, 0x2e, 0x6c, + 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3b, 0x66, 0x2b, 0x2b, 0x29, 0x6e, 0x3d, + 0x74, 0x5b, 0x6c, 0x5d, 0x5b, 0x66, 0x5d, 0x2c, 0x31, 0x3d, 0x3d, 0x3d, + 0x69, 0x3f, 0x22, 0x3c, 0x22, 0x3d, 0x3d, 0x3d, 0x6e, 0x3f, 0x28, 0x75, + 0x28, 0x29, 0x2c, 0x72, 0x3d, 0x5b, 0x72, 0x5d, 0x2c, 0x69, 0x3d, 0x33, + 0x29, 0x3a, 0x5f, 0x2b, 0x3d, 0x6e, 0x3a, 0x34, 0x3d, 0x3d, 0x3d, 0x69, + 0x3f, 0x22, 0x2d, 0x2d, 0x22, 0x3d, 0x3d, 0x3d, 0x5f, 0x26, 0x26, 0x22, + 0x3e, 0x22, 0x3d, 0x3d, 0x3d, 0x6e, 0x3f, 0x28, 0x69, 0x3d, 0x31, 0x2c, + 0x5f, 0x3d, 0x22, 0x22, 0x29, 0x3a, 0x5f, 0x3d, 0x6e, 0x2b, 0x5f, 0x5b, + 0x30, 0x5d, 0x3a, 0x6f, 0x3f, 0x6e, 0x3d, 0x3d, 0x3d, 0x6f, 0x3f, 0x6f, + 0x3d, 0x22, 0x22, 0x3a, 0x5f, 0x2b, 0x3d, 0x6e, 0x3a, 0x27, 0x22, 0x27, + 0x3d, 0x3d, 0x3d, 0x6e, 0x7c, 0x7c, 0x22, 0x27, 0x22, 0x3d, 0x3d, 0x3d, + 0x6e, 0x3f, 0x6f, 0x3d, 0x6e, 0x3a, 0x22, 0x3e, 0x22, 0x3d, 0x3d, 0x3d, + 0x6e, 0x3f, 0x28, 0x75, 0x28, 0x29, 0x2c, 0x69, 0x3d, 0x31, 0x29, 0x3a, + 0x69, 0x26, 0x26, 0x28, 0x22, 0x3d, 0x22, 0x3d, 0x3d, 0x3d, 0x6e, 0x3f, + 0x28, 0x69, 0x3d, 0x35, 0x2c, 0x65, 0x3d, 0x5f, 0x2c, 0x5f, 0x3d, 0x22, + 0x22, 0x29, 0x3a, 0x22, 0x2f, 0x22, 0x3d, 0x3d, 0x3d, 0x6e, 0x26, 0x26, + 0x28, 0x69, 0x3c, 0x35, 0x7c, 0x7c, 0x22, 0x3e, 0x22, 0x3d, 0x3d, 0x3d, + 0x74, 0x5b, 0x6c, 0x5d, 0x5b, 0x66, 0x2b, 0x31, 0x5d, 0x29, 0x3f, 0x28, + 0x75, 0x28, 0x29, 0x2c, 0x33, 0x3d, 0x3d, 0x3d, 0x69, 0x26, 0x26, 0x28, + 0x72, 0x3d, 0x72, 0x5b, 0x30, 0x5d, 0x29, 0x2c, 0x69, 0x3d, 0x72, 0x2c, + 0x28, 0x72, 0x3d, 0x72, 0x5b, 0x30, 0x5d, 0x29, 0x2e, 0x70, 0x75, 0x73, + 0x68, 0x28, 0x32, 0x2c, 0x30, 0x2c, 0x69, 0x29, 0x2c, 0x69, 0x3d, 0x30, + 0x29, 0x3a, 0x22, 0x20, 0x22, 0x3d, 0x3d, 0x3d, 0x6e, 0x7c, 0x7c, 0x22, + 0x5c, 0x74, 0x22, 0x3d, 0x3d, 0x3d, 0x6e, 0x7c, 0x7c, 0x22, 0x5c, 0x6e, + 0x22, 0x3d, 0x3d, 0x3d, 0x6e, 0x7c, 0x7c, 0x22, 0x5c, 0x72, 0x22, 0x3d, + 0x3d, 0x3d, 0x6e, 0x3f, 0x28, 0x75, 0x28, 0x29, 0x2c, 0x69, 0x3d, 0x32, + 0x29, 0x3a, 0x5f, 0x2b, 0x3d, 0x6e, 0x29, 0x2c, 0x33, 0x3d, 0x3d, 0x3d, + 0x69, 0x26, 0x26, 0x22, 0x21, 0x2d, 0x2d, 0x22, 0x3d, 0x3d, 0x3d, 0x5f, + 0x26, 0x26, 0x28, 0x69, 0x3d, 0x34, 0x2c, 0x72, 0x3d, 0x72, 0x5b, 0x30, + 0x5d, 0x29, 0x7d, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x75, 0x28, + 0x29, 0x2c, 0x72, 0x7d, 0x28, 0x74, 0x29, 0x29, 0x2c, 0x6e, 0x29, 0x2c, + 0x61, 0x72, 0x67, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x2c, 0x5b, 0x5d, + 0x29, 0x29, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x3e, 0x31, 0x3f, + 0x6e, 0x3a, 0x6e, 0x5b, 0x30, 0x5d, 0x7d, 0x76, 0x61, 0x72, 0x20, 0x6e, + 0x6e, 0x3d, 0x74, 0x6e, 0x2e, 0x62, 0x69, 0x6e, 0x64, 0x28, 0x46, 0x29, + 0x3b, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x7b, 0x4c, 0x20, 0x61, 0x73, + 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6f, 0x6e, 0x65, 0x6e, 0x74, 0x2c, 0x4f, + 0x20, 0x61, 0x73, 0x20, 0x46, 0x72, 0x61, 0x67, 0x6d, 0x65, 0x6e, 0x74, + 0x2c, 0x66, 0x20, 0x61, 0x73, 0x20, 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, + 0x2c, 0x65, 0x20, 0x61, 0x73, 0x20, 0x62, 0x61, 0x74, 0x63, 0x68, 0x2c, + 0x66, 0x74, 0x20, 0x61, 0x73, 0x20, 0x63, 0x6c, 0x6f, 0x6e, 0x65, 0x45, + 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x2c, 0x64, 0x20, 0x61, 0x73, 0x20, + 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64, 0x2c, 0x73, 0x74, 0x20, + 0x61, 0x73, 0x20, 0x63, 0x72, 0x65, 0x61, 0x74, 0x65, 0x43, 0x6f, 0x6e, + 0x74, 0x65, 0x78, 0x74, 0x2c, 0x46, 0x20, 0x61, 0x73, 0x20, 0x63, 0x72, + 0x65, 0x61, 0x74, 0x65, 0x45, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x2c, + 0x57, 0x20, 0x61, 0x73, 0x20, 0x63, 0x72, 0x65, 0x61, 0x74, 0x65, 0x52, + 0x65, 0x66, 0x2c, 0x62, 0x20, 0x61, 0x73, 0x20, 0x65, 0x66, 0x66, 0x65, + 0x63, 0x74, 0x2c, 0x46, 0x20, 0x61, 0x73, 0x20, 0x68, 0x2c, 0x6e, 0x6e, + 0x20, 0x61, 0x73, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x2c, 0x6c, 0x74, 0x20, + 0x61, 0x73, 0x20, 0x68, 0x79, 0x64, 0x72, 0x61, 0x74, 0x65, 0x2c, 0x77, + 0x20, 0x61, 0x73, 0x20, 0x69, 0x73, 0x56, 0x61, 0x6c, 0x69, 0x64, 0x45, + 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x2c, 0x53, 0x20, 0x61, 0x73, 0x20, + 0x6f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x2c, 0x75, 0x74, 0x20, 0x61, + 0x73, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x2c, 0x73, 0x20, 0x61, + 0x73, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x7a, 0x20, 0x61, + 0x73, 0x20, 0x74, 0x6f, 0x43, 0x68, 0x69, 0x6c, 0x64, 0x41, 0x72, 0x72, + 0x61, 0x79, 0x2c, 0x44, 0x74, 0x20, 0x61, 0x73, 0x20, 0x75, 0x73, 0x65, + 0x43, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x2c, 0x51, 0x74, 0x20, + 0x61, 0x73, 0x20, 0x75, 0x73, 0x65, 0x43, 0x6f, 0x6d, 0x70, 0x75, 0x74, + 0x65, 0x64, 0x2c, 0x24, 0x74, 0x20, 0x61, 0x73, 0x20, 0x75, 0x73, 0x65, + 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x2c, 0x54, 0x74, 0x20, 0x61, + 0x73, 0x20, 0x75, 0x73, 0x65, 0x44, 0x65, 0x62, 0x75, 0x67, 0x56, 0x61, + 0x6c, 0x75, 0x65, 0x2c, 0x45, 0x74, 0x20, 0x61, 0x73, 0x20, 0x75, 0x73, + 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, 0x2c, 0x56, 0x74, 0x20, 0x61, + 0x73, 0x20, 0x75, 0x73, 0x65, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x42, 0x6f, + 0x75, 0x6e, 0x64, 0x61, 0x72, 0x79, 0x2c, 0x41, 0x74, 0x20, 0x61, 0x73, + 0x20, 0x75, 0x73, 0x65, 0x49, 0x64, 0x2c, 0x4e, 0x74, 0x20, 0x61, 0x73, + 0x20, 0x75, 0x73, 0x65, 0x49, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x69, + 0x76, 0x65, 0x48, 0x61, 0x6e, 0x64, 0x6c, 0x65, 0x2c, 0x55, 0x74, 0x20, + 0x61, 0x73, 0x20, 0x75, 0x73, 0x65, 0x4c, 0x61, 0x79, 0x6f, 0x75, 0x74, + 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, 0x2c, 0x50, 0x74, 0x20, 0x61, 0x73, + 0x20, 0x75, 0x73, 0x65, 0x4d, 0x65, 0x6d, 0x6f, 0x2c, 0x43, 0x74, 0x20, + 0x61, 0x73, 0x20, 0x75, 0x73, 0x65, 0x52, 0x65, 0x64, 0x75, 0x63, 0x65, + 0x72, 0x2c, 0x48, 0x74, 0x20, 0x61, 0x73, 0x20, 0x75, 0x73, 0x65, 0x52, + 0x65, 0x66, 0x2c, 0x4b, 0x74, 0x20, 0x61, 0x73, 0x20, 0x75, 0x73, 0x65, + 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x58, 0x74, 0x20, 0x61, 0x73, + 0x20, 0x75, 0x73, 0x65, 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x45, 0x66, + 0x66, 0x65, 0x63, 0x74, 0x2c, 0x77, 0x74, 0x20, 0x61, 0x73, 0x20, 0x75, + 0x73, 0x65, 0x53, 0x74, 0x61, 0x74, 0x65, 0x7d, 0x3b, 0x0a +}; +unsigned int index_js_len = 22174; diff --git a/examples/server/public/completion.js b/examples/server/public/completion.js new file mode 100644 index 000000000..4f5005cfb --- /dev/null +++ b/examples/server/public/completion.js @@ -0,0 +1,81 @@ +const paramDefaults = { + stream: true, + n_predict: 500, + temperature: 0.2, + stop: [""] +}; + +/** + * This function completes the input text using a llama dictionary. + * @param {object} params - The parameters for the completion request. + * @param {object} controller - an instance of AbortController if you need one, or null. + * @param {function} callback - The callback function to call when the completion is done. + * @returns {string} the completed text as a string. Ideally ignored, and you get at it via the callback. + */ +export const llamaComplete = async (params, controller, callback) => { + if (!controller) { + controller = new AbortController(); + } + const completionParams = { ...paramDefaults, ...params }; + + // we use fetch directly here becasue the built in fetchEventSource does not support POST + const response = await fetch("/completion", { + method: 'POST', + body: JSON.stringify(completionParams), + headers: { + 'Connection': 'keep-alive', + 'Content-Type': 'application/json', + 'Accept': 'text/event-stream' + }, + signal: controller.signal, + }); + + const reader = response.body.getReader(); + const decoder = new TextDecoder(); + + let content = ""; + + try { + + let cont = true; + + while (cont) { + const result = await reader.read(); + if (result.done) { + break; + } + + // sse answers in the form multiple lines of: value\n with data always present as a key. in our case we + // mainly care about the data: key here, which we expect as json + const text = decoder.decode(result.value); + + // parse all sse events and add them to result + const regex = /^(\S+):\s(.*)$/gm; + for (const match of text.matchAll(regex)) { + result[match[1]] = match[2] + } + + // since we know this is llama.cpp, let's just decode the json in data + result.data = JSON.parse(result.data); + content += result.data.content; + + // callack + if (callback) { + cont = callback(result) != false; + } + + // if we got a stop token from server, we will break here + if (result.data.stop) { + break; + } + } + } catch (e) { + console.error("llama error: ", e); + throw e; + } + finally { + controller.abort(); + } + + return content; +} diff --git a/examples/server/public/index.html b/examples/server/public/index.html new file mode 100644 index 000000000..6393e2e75 --- /dev/null +++ b/examples/server/public/index.html @@ -0,0 +1,359 @@ + + + + + + llama.cpp - chat + + + + + + + + + + diff --git a/examples/server/public/index.js b/examples/server/public/index.js new file mode 100644 index 000000000..4fa725a90 --- /dev/null +++ b/examples/server/public/index.js @@ -0,0 +1 @@ +function t(){throw new Error("Cycle detected")}function n(){if(o>1){o--;return}let t,n=!1;while(void 0!==_){let i=_;_=void 0;r++;while(void 0!==i){const _=i.o;i.o=void 0;i.f&=-3;if(!(8&i.f)&&c(i))try{i.c()}catch(e){if(!n){t=e;n=!0}}i=_}}r=0;o--;if(n)throw t}function e(t){if(o>0)return t();o++;try{return t()}finally{n()}}let i,_,o=0,r=0,u=0;function l(t){if(void 0===i)return;let n=t.n;if(void 0===n||n.t!==i){n={i:0,S:t,p:i.s,n:void 0,t:i,e:void 0,x:void 0,r:n};if(void 0!==i.s)i.s.n=n;i.s=n;t.n=n;if(32&i.f)t.S(n);return n}else if(-1===n.i){n.i=0;if(void 0!==n.n){n.n.p=n.p;if(void 0!==n.p)n.p.n=n.n;n.p=i.s;n.n=void 0;i.s.n=n;i.s=n}return n}}function f(t){this.v=t;this.i=0;this.n=void 0;this.t=void 0}f.prototype.h=function(){return!0};f.prototype.S=function(t){if(this.t!==t&&void 0===t.e){t.x=this.t;if(void 0!==this.t)this.t.e=t;this.t=t}};f.prototype.U=function(t){if(void 0!==this.t){const n=t.e,e=t.x;if(void 0!==n){n.x=e;t.e=void 0}if(void 0!==e){e.e=n;t.x=void 0}if(t===this.t)this.t=e}};f.prototype.subscribe=function(t){const n=this;return b((function(){const e=n.value,i=32&this.f;this.f&=-33;try{t(e)}finally{this.f|=i}}))};f.prototype.valueOf=function(){return this.value};f.prototype.toString=function(){return this.value+""};f.prototype.toJSON=function(){return this.value};f.prototype.peek=function(){return this.v};Object.defineProperty(f.prototype,"value",{get(){const t=l(this);if(void 0!==t)t.i=this.i;return this.v},set(e){if(i instanceof p)!function(){throw new Error("Computed cannot have side-effects")}();if(e!==this.v){if(r>100)t();this.v=e;this.i++;u++;o++;try{for(let t=this.t;void 0!==t;t=t.x)t.t.N()}finally{n()}}}});function s(t){return new f(t)}function c(t){for(let n=t.s;void 0!==n;n=n.n)if(n.S.i!==n.i||!n.S.h()||n.S.i!==n.i)return!0;return!1}function h(t){for(let n=t.s;void 0!==n;n=n.n){const e=n.S.n;if(void 0!==e)n.r=e;n.S.n=n;n.i=-1;if(void 0===n.n){t.s=n;break}}}function a(t){let n,e=t.s;while(void 0!==e){const t=e.p;if(-1===e.i){e.S.U(e);if(void 0!==t)t.n=e.n;if(void 0!==e.n)e.n.p=t}else n=e;e.S.n=e.r;if(void 0!==e.r)e.r=void 0;e=t}t.s=n}function p(t){f.call(this,void 0);this.x=t;this.s=void 0;this.g=u-1;this.f=4}(p.prototype=new f).h=function(){this.f&=-3;if(1&this.f)return!1;if(32==(36&this.f))return!0;this.f&=-5;if(this.g===u)return!0;this.g=u;this.f|=1;if(this.i>0&&!c(this)){this.f&=-2;return!0}const t=i;try{h(this);i=this;const t=this.x();if(16&this.f||this.v!==t||0===this.i){this.v=t;this.f&=-17;this.i++}}catch(t){this.v=t;this.f|=16;this.i++}i=t;a(this);this.f&=-2;return!0};p.prototype.S=function(t){if(void 0===this.t){this.f|=36;for(let t=this.s;void 0!==t;t=t.n)t.S.S(t)}f.prototype.S.call(this,t)};p.prototype.U=function(t){if(void 0!==this.t){f.prototype.U.call(this,t);if(void 0===this.t){this.f&=-33;for(let t=this.s;void 0!==t;t=t.n)t.S.U(t)}}};p.prototype.N=function(){if(!(2&this.f)){this.f|=6;for(let t=this.t;void 0!==t;t=t.x)t.t.N()}};p.prototype.peek=function(){if(!this.h())t();if(16&this.f)throw this.v;return this.v};Object.defineProperty(p.prototype,"value",{get(){if(1&this.f)t();const n=l(this);this.h();if(void 0!==n)n.i=this.i;if(16&this.f)throw this.v;return this.v}});function d(t){return new p(t)}function v(t){const e=t.u;t.u=void 0;if("function"==typeof e){o++;const _=i;i=void 0;try{e()}catch(n){t.f&=-2;t.f|=8;y(t);throw n}finally{i=_;n()}}}function y(t){for(let n=t.s;void 0!==n;n=n.n)n.S.U(n);t.x=void 0;t.s=void 0;v(t)}function m(t){if(i!==this)throw new Error("Out-of-order effect");a(this);i=t;this.f&=-2;if(8&this.f)y(this);n()}function g(t){this.x=t;this.u=void 0;this.s=void 0;this.o=void 0;this.f=32}g.prototype.c=function(){const t=this.S();try{if(8&this.f)return;if(void 0===this.x)return;const n=this.x();if("function"==typeof n)this.u=n}finally{t()}};g.prototype.S=function(){if(1&this.f)t();this.f|=1;this.f&=-9;v(this);h(this);o++;const n=i;i=this;return m.bind(this,n)};g.prototype.N=function(){if(!(2&this.f)){this.f|=2;this.o=_;_=this}};g.prototype.d=function(){this.f|=8;if(!(1&this.f))y(this)};function b(t){const n=new g(t);try{n.c()}catch(t){n.d();throw t}return n.d.bind(n)}var k,S,x,w,C,E,U,H,N,P={},D=[],$=/acit|ex(?:s|g|n|p|$)|rph|grid|ows|mnc|ntw|ine[ch]|zoo|^ord|itera/i,T=Array.isArray;function V(t,n){for(var e in n)t[e]=n[e];return t}function A(t){var n=t.parentNode;n&&n.removeChild(t)}function F(t,n,e){var i,_,o,r={};for(o in n)"key"==o?i=n[o]:"ref"==o?_=n[o]:r[o]=n[o];if(arguments.length>2&&(r.children=arguments.length>3?k.call(arguments,2):e),"function"==typeof t&&null!=t.defaultProps)for(o in t.defaultProps)void 0===r[o]&&(r[o]=t.defaultProps[o]);return M(t,r,i,_,null)}function M(t,n,e,i,_){var o={type:t,props:n,key:e,ref:i,__k:null,__:null,__b:0,__e:null,__d:void 0,__c:null,__h:null,constructor:void 0,__v:null==_?++x:_};return null==_&&null!=S.vnode&&S.vnode(o),o}function W(){return{current:null}}function O(t){return t.children}function L(t,n){this.props=t,this.context=n}function R(t,n){if(null==n)return t.__?R(t.__,t.__.__k.indexOf(t)+1):null;for(var e;nn&&C.sort(H));q.__r=0}function B(t,n,e,i,_,o,r,u,l,f){var s,c,h,a,p,d,v,y=i&&i.__k||D,m=y.length;for(e.__k=[],s=0;s0?M(a.type,a.props,a.key,a.ref?a.ref:null,a.__v):a)){if(a.__=e,a.__b=e.__b+1,null===(h=y[s])||h&&a.key==h.key&&a.type===h.type)y[s]=void 0;else for(c=0;c=0;n--)if((e=t.__k[n])&&(i=K(e)))return i;return null}function Q(t,n,e,i,_){var o;for(o in e)"children"===o||"key"===o||o in n||Y(t,o,null,e[o],i);for(o in n)_&&"function"!=typeof n[o]||"children"===o||"key"===o||"value"===o||"checked"===o||e[o]===n[o]||Y(t,o,n[o],e[o],i)}function X(t,n,e){"-"===n[0]?t.setProperty(n,null==e?"":e):t[n]=null==e?"":"number"!=typeof e||$.test(n)?e:e+"px"}function Y(t,n,e,i,_){var o;t:if("style"===n)if("string"==typeof e)t.style.cssText=e;else{if("string"==typeof i&&(t.style.cssText=i=""),i)for(n in i)e&&n in e||X(t.style,n,"");if(e)for(n in e)i&&e[n]===i[n]||X(t.style,n,e[n])}else if("o"===n[0]&&"n"===n[1])o=n!==(n=n.replace(/Capture$/,"")),n=n.toLowerCase()in t?n.toLowerCase().slice(2):n.slice(2),t.l||(t.l={}),t.l[n+o]=e,e?i||t.addEventListener(n,o?tt:Z,o):t.removeEventListener(n,o?tt:Z,o);else if("dangerouslySetInnerHTML"!==n){if(_)n=n.replace(/xlink(H|:h)/,"h").replace(/sName$/,"s");else if("width"!==n&&"height"!==n&&"href"!==n&&"list"!==n&&"form"!==n&&"tabIndex"!==n&&"download"!==n&&"rowSpan"!==n&&"colSpan"!==n&&n in t)try{t[n]=null==e?"":e;break t}catch(t){}"function"==typeof e||(null==e||!1===e&&"-"!==n[4]?t.removeAttribute(n):t.setAttribute(n,e))}}function Z(t){return this.l[t.type+!1](S.event?S.event(t):t)}function tt(t){return this.l[t.type+!0](S.event?S.event(t):t)}function nt(t,n,e,i,_,o,r,u,l){var f,s,c,h,a,p,d,v,y,m,g,b,k,x,w,C=n.type;if(void 0!==n.constructor)return null;null!=e.__h&&(l=e.__h,u=n.__e=e.__e,n.__h=null,o=[u]),(f=S.__b)&&f(n);try{t:if("function"==typeof C){if(v=n.props,y=(f=C.contextType)&&i[f.__c],m=f?y?y.props.value:f.__:i,e.__c?d=(s=n.__c=e.__c).__=s.__E:("prototype"in C&&C.prototype.render?n.__c=s=new C(v,m):(n.__c=s=new L(v,m),s.constructor=C,s.render=rt),y&&y.sub(s),s.props=v,s.state||(s.state={}),s.context=m,s.__n=i,c=s.__d=!0,s.__h=[],s._sb=[]),null==s.__s&&(s.__s=s.state),null!=C.getDerivedStateFromProps&&(s.__s==s.state&&(s.__s=V({},s.__s)),V(s.__s,C.getDerivedStateFromProps(v,s.__s))),h=s.props,a=s.state,s.__v=n,c)null==C.getDerivedStateFromProps&&null!=s.componentWillMount&&s.componentWillMount(),null!=s.componentDidMount&&s.__h.push(s.componentDidMount);else{if(null==C.getDerivedStateFromProps&&v!==h&&null!=s.componentWillReceiveProps&&s.componentWillReceiveProps(v,m),!s.__e&&null!=s.shouldComponentUpdate&&!1===s.shouldComponentUpdate(v,s.__s,m)||n.__v===e.__v){for(n.__v!==e.__v&&(s.props=v,s.state=s.__s,s.__d=!1),s.__e=!1,n.__e=e.__e,n.__k=e.__k,n.__k.forEach((function(t){t&&(t.__=n)})),g=0;g2&&(u.children=arguments.length>3?k.call(arguments,2):e),M(t.type,u,i||t.key,_||t.ref,null)}function st(t,n){var e={__c:n="__cC"+N++,__:t,Consumer:function(t,n){return t.children(n)},Provider:function(t){var e,i;return this.getChildContext||(e=[],(i={})[n]=this,this.getChildContext=function(){return i},this.shouldComponentUpdate=function(t){this.props.value!==t.value&&e.some((function(t){t.__e=!0,j(t)}))},this.sub=function(t){e.push(t);var n=t.componentWillUnmount;t.componentWillUnmount=function(){e.splice(e.indexOf(t),1),n&&n.call(t)}}),t.children}};return e.Provider.__=e.Consumer.contextType=e}k=D.slice,S={__e:function(t,n,e,i){for(var _,o,r;n=n.__;)if((_=n.__c)&&!_.__)try{if((o=_.constructor)&&null!=o.getDerivedStateFromError&&(_.setState(o.getDerivedStateFromError(t)),r=_.__d),null!=_.componentDidCatch&&(_.componentDidCatch(t,i||{}),r=_.__d),r)return _.__E=_}catch(n){t=n}throw t}},x=0,w=function(t){return null!=t&&void 0===t.constructor},L.prototype.setState=function(t,n){var e;e=null!=this.__s&&this.__s!==this.state?this.__s:this.__s=V({},this.state),"function"==typeof t&&(t=t(V({},e),this.props)),t&&V(e,t),null!=t&&this.__v&&(n&&this._sb.push(n),j(this))},L.prototype.forceUpdate=function(t){this.__v&&(this.__e=!0,t&&this.__h.push(t),j(this))},L.prototype.render=O,C=[],U="function"==typeof Promise?Promise.prototype.then.bind(Promise.resolve()):setTimeout,H=function(t,n){return t.__v.__b-n.__v.__b},q.__r=0,N=0;var ct,ht,at,pt,dt=0,vt=[],yt=[],mt=S.__b,gt=S.__r,bt=S.diffed,kt=S.__c,St=S.unmount;function xt(t,n){S.__h&&S.__h(ht,t,dt||n),dt=0;var e=ht.__H||(ht.__H={__:[],__h:[]});return t>=e.__.length&&e.__.push({__V:yt}),e.__[t]}function wt(t){return dt=1,Ct(It,t)}function Ct(t,n,e){var i=xt(ct++,2);if(i.t=t,!i.__c&&(i.__=[e?e(n):It(void 0,n),function(t){var n=i.__N?i.__N[0]:i.__[0],e=i.t(n,t);n!==e&&(i.__N=[e,i.__[1]],i.__c.setState({}))}],i.__c=ht,!ht.u)){var _=function(t,n,e){if(!i.__c.__H)return!0;var _=i.__c.__H.__.filter((function(t){return t.__c}));if(_.every((function(t){return!t.__N})))return!o||o.call(this,t,n,e);var r=!1;return _.forEach((function(t){if(t.__N){var n=t.__[0];t.__=t.__N,t.__N=void 0,n!==t.__[0]&&(r=!0)}})),!(!r&&i.__c.props===t)&&(!o||o.call(this,t,n,e))};ht.u=!0;var o=ht.shouldComponentUpdate,r=ht.componentWillUpdate;ht.componentWillUpdate=function(t,n,e){if(this.__e){var i=o;o=void 0,_(t,n,e),o=i}r&&r.call(this,t,n,e)},ht.shouldComponentUpdate=_}return i.__N||i.__}function Et(t,n){var e=xt(ct++,3);!S.__s&&Rt(e.__H,n)&&(e.__=t,e.i=n,ht.__H.__h.push(e))}function Ut(t,n){var e=xt(ct++,4);!S.__s&&Rt(e.__H,n)&&(e.__=t,e.i=n,ht.__h.push(e))}function Ht(t){return dt=5,Pt((function(){return{current:t}}),[])}function Nt(t,n,e){dt=6,Ut((function(){return"function"==typeof t?(t(n()),function(){return t(null)}):t?(t.current=n(),function(){return t.current=null}):void 0}),null==e?e:e.concat(t))}function Pt(t,n){var e=xt(ct++,7);return Rt(e.__H,n)?(e.__V=t(),e.i=n,e.__h=t,e.__V):e.__}function Dt(t,n){return dt=8,Pt((function(){return t}),n)}function $t(t){var n=ht.context[t.__c],e=xt(ct++,9);return e.c=t,n?(null==e.__&&(e.__=!0,n.sub(ht)),n.props.value):t.__}function Tt(t,n){S.useDebugValue&&S.useDebugValue(n?n(t):t)}function Vt(t){var n=xt(ct++,10),e=wt();return n.__=t,ht.componentDidCatch||(ht.componentDidCatch=function(t,i){n.__&&n.__(t,i),e[1](t)}),[e[0],function(){e[1](void 0)}]}function At(){var t=xt(ct++,11);if(!t.__){for(var n=ht.__v;null!==n&&!n.__m&&null!==n.__;)n=n.__;var e=n.__m||(n.__m=[0,0]);t.__="P"+e[0]+"-"+e[1]++}return t.__}function Ft(){for(var t;t=vt.shift();)if(t.__P&&t.__H)try{t.__H.__h.forEach(Ot),t.__H.__h.forEach(Lt),t.__H.__h=[]}catch(u){t.__H.__h=[],S.__e(u,t.__v)}}S.__b=function(t){ht=null,mt&&mt(t)},S.__r=function(t){gt&>(t),ct=0;var n=(ht=t.__c).__H;n&&(at===ht?(n.__h=[],ht.__h=[],n.__.forEach((function(t){t.__N&&(t.__=t.__N),t.__V=yt,t.__N=t.i=void 0}))):(n.__h.forEach(Ot),n.__h.forEach(Lt),n.__h=[],ct=0)),at=ht},S.diffed=function(t){bt&&bt(t);var n=t.__c;n&&n.__H&&(n.__H.__h.length&&(1!==vt.push(n)&&pt===S.requestAnimationFrame||((pt=S.requestAnimationFrame)||Wt)(Ft)),n.__H.__.forEach((function(t){t.i&&(t.__H=t.i),t.__V!==yt&&(t.__=t.__V),t.i=void 0,t.__V=yt}))),at=ht=null},S.__c=function(t,n){n.some((function(t){try{t.__h.forEach(Ot),t.__h=t.__h.filter((function(t){return!t.__||Lt(t)}))}catch(s){n.some((function(t){t.__h&&(t.__h=[])})),n=[],S.__e(s,t.__v)}})),kt&&kt(t,n)},S.unmount=function(t){St&&St(t);var n,e=t.__c;e&&e.__H&&(e.__H.__.forEach((function(t){try{Ot(t)}catch(t){n=t}})),e.__H=void 0,n&&S.__e(n,e.__v))};var Mt="function"==typeof requestAnimationFrame;function Wt(t){var n,e=function(){clearTimeout(i),Mt&&cancelAnimationFrame(n),setTimeout(t)},i=setTimeout(e,100);Mt&&(n=requestAnimationFrame(e))}function Ot(t){var n=ht,e=t.__c;"function"==typeof e&&(t.__c=void 0,e()),ht=n}function Lt(t){var n=ht;t.__c=t.__(),ht=n}function Rt(t,n){return!t||t.length!==n.length||n.some((function(n,e){return n!==t[e]}))}function It(t,n){return"function"==typeof n?n(t):n}function jt(t,n){S[t]=n.bind(null,S[t]||(()=>{}))}let qt,Bt;function Gt(t){if(Bt)Bt();Bt=t&&t.S()}function zt({data:t}){const n=Kt(t);n.value=t;const e=Pt(()=>{let t=this.__v;while(t=t.__)if(t.__c){t.__c.__$f|=4;break}this.__$u.c=()=>{this.base.data=e.peek()};return d(()=>{let t=n.value.value;return 0===t?0:!0===t?"":t||""})},[]);return e.value}zt.displayName="_st";Object.defineProperties(f.prototype,{constructor:{configurable:!0,value:void 0},type:{configurable:!0,value:zt},props:{configurable:!0,get(){return{data:this}}},__b:{configurable:!0,value:1}});jt("__b",(t,n)=>{if("string"==typeof n.type){let t,e=n.props;for(let i in e){if("children"===i)continue;let _=e[i];if(_ instanceof f){if(!t)n.__np=t={};t[i]=_;e[i]=_.peek()}}}t(n)});jt("__r",(t,n)=>{Gt();let e,i=n.__c;if(i){i.__$f&=-2;e=i.__$u;if(void 0===e)i.__$u=e=function(t){let n;b((function(){n=this}));n.c=()=>{i.__$f|=1;i.setState({})};return n}()}qt=i;Gt(e);t(n)});jt("__e",(t,n,e,i)=>{Gt();qt=void 0;t(n,e,i)});jt("diffed",(t,n)=>{Gt();qt=void 0;let e;if("string"==typeof n.type&&(e=n.__e)){let t=n.__np,i=n.props;if(t){let n=e.U;if(n)for(let e in n){let i=n[e];if(void 0!==i&&!(e in t)){i.d();n[e]=void 0}}else{n={};e.U=n}for(let _ in t){let o=n[_],r=t[_];if(void 0===o){o=Jt(e,_,r,i);n[_]=o}else o.o(r,i)}}}t(n)});function Jt(t,n,e,i){const _=n in t&&void 0===t.ownerSVGElement,o=s(e);return{o:(t,n)=>{o.value=t;i=n},d:b(()=>{const e=o.value.value;if(i[n]!==e){i[n]=e;if(_)t[n]=e;else if(e)t.setAttribute(n,e);else t.removeAttribute(n)}})}}jt("unmount",(t,n)=>{if("string"==typeof n.type){let t=n.__e;if(t){const n=t.U;if(n){t.U=void 0;for(let t in n){let e=n[t];if(e)e.d()}}}}else{let t=n.__c;if(t){const n=t.__$u;if(n){t.__$u=void 0;n.d()}}}t(n)});jt("__h",(t,n,e,i)=>{if(i<3)n.__$f|=2;t(n,e,i)});L.prototype.shouldComponentUpdate=function(t,n){const e=this.__$u;if(!(e&&void 0!==e.s||4&this.__$f))return!0;if(3&this.__$f)return!0;for(let i in n)return!0;for(let i in t)if("__source"!==i&&t[i]!==this.props[i])return!0;for(let i in this.props)if(!(i in t))return!0;return!1};function Kt(t){return Pt(()=>s(t),[])}function Qt(t){const n=Ht(t);n.current=t;qt.__$f|=4;return Pt(()=>d(()=>n.current()),[])}function Xt(t){const n=Ht(t);n.current=t;Et(()=>b(()=>n.current()),[])}var Yt=function(t,n,e,i){var _;n[0]=0;for(var o=1;o=5&&((_||!t&&5===i)&&(r.push(i,0,_,e),i=6),t&&(r.push(i,t,0,e),i=6)),_=""},l=0;l"===n?(i=1,_=""):_=n+_[0]:o?n===o?o="":_+=n:'"'===n||"'"===n?o=n:">"===n?(u(),i=1):i&&("="===n?(i=5,e=_,_=""):"/"===n&&(i<5||">"===t[l][f+1])?(u(),3===i&&(r=r[0]),i=r,(r=r[0]).push(2,0,i),i=0):" "===n||"\t"===n||"\n"===n||"\r"===n?(u(),i=2):_+=n),3===i&&"!--"===_&&(i=4,r=r[0])}return u(),r}(t)),n),arguments,[])).length>1?n:n[0]}var nn=tn.bind(F);export{L as Component,O as Fragment,f as Signal,e as batch,ft as cloneElement,d as computed,st as createContext,F as createElement,W as createRef,b as effect,F as h,nn as html,lt as hydrate,w as isValidElement,S as options,ut as render,s as signal,z as toChildArray,Dt as useCallback,Qt as useComputed,$t as useContext,Tt as useDebugValue,Et as useEffect,Vt as useErrorBoundary,At as useId,Nt as useImperativeHandle,Ut as useLayoutEffect,Pt as useMemo,Ct as useReducer,Ht as useRef,Kt as useSignal,Xt as useSignalEffect,wt as useState}; diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 3bf985957..043e49750 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -2,8 +2,6 @@ #include "llama.h" #include "build-info.h" -// single thread -#define CPPHTTPLIB_THREAD_POOL_COUNT 1 #ifndef NDEBUG // crash the server in debug mode, otherwise send an http 500 error #define CPPHTTPLIB_NO_EXCEPTIONS 1 @@ -12,6 +10,11 @@ #include "httplib.h" #include "json.hpp" +// auto generated files (update with ./deps.sh) +#include "index.html.hpp" +#include "index.js.hpp" +#include "completion.js.hpp" + #ifndef SERVER_VERBOSE #define SERVER_VERBOSE 1 #endif @@ -21,6 +24,7 @@ using json = nlohmann::json; struct server_params { std::string hostname = "127.0.0.1"; + std::string public_path = "examples/server/public"; int32_t port = 8080; int32_t read_timeout = 600; int32_t write_timeout = 600; @@ -172,6 +176,12 @@ struct llama_server_context { std::string stopping_word; int32_t multibyte_pending = 0; + std::mutex mutex; + + std::unique_lock lock() { + return std::unique_lock(mutex); + } + ~llama_server_context() { if (ctx) { llama_free(ctx); @@ -539,6 +549,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str()); fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port); + fprintf(stderr, " --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str()); fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout); fprintf(stderr, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled"); fprintf(stderr, "\n"); @@ -565,6 +576,12 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams, break; } sparams.hostname = argv[i]; + } else if (arg == "--path") { + if (++i >= argc) { + invalid_param = true; + break; + } + sparams.public_path = argv[i]; } else if (arg == "--timeout" || arg == "-to") { if (++i >= argc) { invalid_param = true; @@ -839,17 +856,24 @@ static void parse_options_completion(const json & body, llama_server_context & l LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama)); } + static void log_server_request(const Request & req, const Response & res) { LOG_INFO("request", { { "remote_addr", req.remote_addr }, { "remote_port", req.remote_port }, { "status", res.status }, + { "method", req.method }, { "path", req.path }, + { "params", req.params }, + }); + + LOG_VERBOSE("request", { { "request", req.body }, { "response", res.body }, }); } + int main(int argc, char ** argv) { // own arguments required by this example gpt_params params; @@ -884,16 +908,34 @@ int main(int argc, char ** argv) { Server svr; svr.set_default_headers({ + { "Server", "llama.cpp" }, { "Access-Control-Allow-Origin", "*" }, { "Access-Control-Allow-Headers", "content-type" } }); + // this is only called if no index.js is found in the public --path + svr.Get("/index.js", [](const Request &, Response & res) { + res.set_content(reinterpret_cast(&index_js), index_js_len, "text/javascript"); + return false; + }); + + // this is only called if no index.html is found in the public --path svr.Get("/", [](const Request &, Response & res) { - res.set_content("

    llama.cpp server works

    ", "text/html"); + res.set_content(reinterpret_cast(&index_html), index_html_len, "text/html"); + return false; + }); + + // this is only called if no index.html is found in the public --path + svr.Get("/completion.js", [](const Request &, Response & res) { + res.set_content(reinterpret_cast(&completion_js), completion_js_len, "application/javascript"); + return false; }); svr.Post("/completion", [&llama](const Request & req, Response & res) { + auto lock = llama.lock(); + llama.rewind(); + llama_reset_timings(llama.ctx); parse_options_completion(json::parse(req.body), llama); @@ -1002,6 +1044,8 @@ int main(int argc, char ** argv) { }); svr.Post("/tokenize", [&llama](const Request & req, Response & res) { + auto lock = llama.lock(); + const json body = json::parse(req.body); const std::string content = body.value("content", ""); const std::vector tokens = llama_tokenize(llama.ctx, content, false); @@ -1010,6 +1054,8 @@ int main(int argc, char ** argv) { }); svr.Post("/embedding", [&llama](const Request & req, Response & res) { + auto lock = llama.lock(); + const json body = json::parse(req.body); llama.rewind(); @@ -1040,18 +1086,27 @@ int main(int argc, char ** argv) { res.status = 500; }); + svr.set_error_handler([](const Request &, Response & res) { + res.set_content("File Not Found", "text/plain"); + res.status = 404; + }); + + // set timeouts and change hostname and port svr.set_read_timeout(sparams.read_timeout); svr.set_write_timeout(sparams.write_timeout); if (!svr.bind_to_port(sparams.hostname, sparams.port)) { - LOG_ERROR("couldn't bind to server socket", { - { "hostname", sparams.hostname }, - { "port", sparams.port }, - }); + fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port); return 1; } + // Set the base directory for serving static files + svr.set_base_dir(sparams.public_path); + + // to make it ctrl+clickable: + fprintf(stdout, "\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port); + LOG_INFO("HTTP server listening", { { "hostname", sparams.hostname }, { "port", sparams.port }, From f257fd255044decffad93dee2502875ce66ad80c Mon Sep 17 00:00:00 2001 From: jwj7140 <32943891+jwj7140@users.noreply.github.com> Date: Wed, 5 Jul 2023 03:06:12 +0900 Subject: [PATCH 123/135] Add an API example using server.cpp similar to OAI. (#2009) * add api_like_OAI.py * add evaluated token count to server * add /v1/ endpoints binding --- examples/server/README.md | 16 +++ examples/server/api_like_OAI.py | 219 ++++++++++++++++++++++++++++++++ examples/server/server.cpp | 14 +- 3 files changed, 244 insertions(+), 5 deletions(-) create mode 100755 examples/server/api_like_OAI.py diff --git a/examples/server/README.md b/examples/server/README.md index ba4b2fec9..4ed226e04 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -190,3 +190,19 @@ Run with bash: ```sh bash chat.sh ``` + +### API like OAI + +API example using Python Flask: [api_like_OAI.py](api_like_OAI.py) +This example must be used with server.cpp + +```sh +python api_like_OAI.py +``` + +After running the API server, you can use it in Python by setting the API base URL. +```python +openai.api_base = "http://:port" +``` + +Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API diff --git a/examples/server/api_like_OAI.py b/examples/server/api_like_OAI.py new file mode 100755 index 000000000..aa325a03e --- /dev/null +++ b/examples/server/api_like_OAI.py @@ -0,0 +1,219 @@ +import argparse +from flask import Flask, jsonify, request, Response +import urllib.parse +import requests +import time +import json + + +app = Flask(__name__) + +parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.") +parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n') +parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: '\\nUSER: ')", default="\\nUSER: ") +parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: '\\nASSISTANT: ')", default="\\nASSISTANT: ") +parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: '\\nASSISTANT's RULE: ')", default="\\nASSISTANT's RULE: ") +parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '')", default="") +parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080') +parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="") +parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1') +parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081) + +args = parser.parse_args() + +def is_present(json, key): + try: + buf = json[key] + except KeyError: + return False + return True + + + +#convert chat to prompt +def convert_chat(messages): + prompt = "" + args.chat_prompt.replace("\\n", "\n") + + system_n = args.system_name.replace("\\n", "\n") + user_n = args.user_name.replace("\\n", "\n") + ai_n = args.ai_name.replace("\\n", "\n") + stop = args.stop.replace("\\n", "\n") + + + for line in messages: + if (line["role"] == "system"): + prompt += f"{system_n}{line['content']}" + if (line["role"] == "user"): + prompt += f"{user_n}{line['content']}" + if (line["role"] == "assistant"): + prompt += f"{ai_n}{line['content']}{stop}" + prompt += ai_n.rstrip() + + return prompt + +def make_postData(body, chat=False, stream=False): + postData = {} + if (chat): + postData["prompt"] = convert_chat(body["messages"]) + else: + postData["prompt"] = body["prompt"] + if(is_present(body, "temperature")): postData["temperature"] = body["temperature"] + if(is_present(body, "top_k")): postData["top_k"] = body["top_k"] + if(is_present(body, "top_p")): postData["top_p"] = body["top_p"] + if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"] + if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"] + if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"] + if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"] + if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"] + if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"] + if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"] + if(is_present(body, "seed")): postData["seed"] = body["seed"] + if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()] + if (args.stop != ""): + postData["stop"] = [args.stop] + else: + postData["stop"] = [] + if(is_present(body, "stop")): postData["stop"] += body["stop"] + postData["n_keep"] = -1 + postData["stream"] = stream + + return postData + +def make_resData(data, chat=False, promptToken=[]): + resData = { + "id": "chatcmpl" if (chat) else "cmpl", + "object": "chat.completion" if (chat) else "text_completion", + "created": int(time.time()), + "truncated": data["truncated"], + "model": "LLaMA_CPP", + "usage": { + "prompt_tokens": data["tokens_evaluated"], + "completion_tokens": data["tokens_predicted"], + "total_tokens": data["tokens_evaluated"] + data["tokens_predicted"] + } + } + if (len(promptToken) != 0): + resData["promptToken"] = promptToken + if (chat): + #only one choice is supported + resData["choices"] = [{ + "index": 0, + "message": { + "role": "assistant", + "content": data["content"], + }, + "finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" + }] + else: + #only one choice is supported + resData["choices"] = [{ + "text": data["content"], + "index": 0, + "logprobs": None, + "finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" + }] + return resData + +def make_resData_stream(data, chat=False, time_now = 0, start=False): + resData = { + "id": "chatcmpl" if (chat) else "cmpl", + "object": "chat.completion.chunk" if (chat) else "text_completion.chunk", + "created": time_now, + "model": "LLaMA_CPP", + "choices": [ + { + "finish_reason": None, + "index": 0 + } + ] + } + if (chat): + if (start): + resData["choices"][0]["delta"] = { + "role": "assistant" + } + else: + resData["choices"][0]["delta"] = { + "content": data["content"] + } + if (data["stop"]): + resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" + else: + resData["choices"][0]["text"] = data["content"] + if (data["stop"]): + resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" + + return resData + + +@app.route('/chat/completions', methods=['POST']) +@app.route('/v1/chat/completions', methods=['POST']) +def chat_completions(): + if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key): + return Response(status=403) + body = request.get_json() + stream = False + tokenize = False + if(is_present(body, "stream")): stream = body["stream"] + if(is_present(body, "tokenize")): tokenize = body["tokenize"] + postData = make_postData(body, chat=True, stream=stream) + + promptToken = [] + if (tokenize): + tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json() + promptToken = tokenData["tokens"] + + if (not stream): + data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData)) + print(data.json()) + resData = make_resData(data.json(), chat=True, promptToken=promptToken) + return jsonify(resData) + else: + def generate(): + data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True) + time_now = int(time.time()) + resData = make_resData_stream({}, chat=True, time_now=time_now, start=True) + yield 'data: {}\n'.format(json.dumps(resData)) + for line in data.iter_lines(): + if line: + decoded_line = line.decode('utf-8') + resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now) + yield 'data: {}\n'.format(json.dumps(resData)) + return Response(generate(), mimetype='text/event-stream') + + +@app.route('/completions', methods=['POST']) +@app.route('/v1/completions', methods=['POST']) +def completion(): + if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key): + return Response(status=403) + body = request.get_json() + stream = False + tokenize = False + if(is_present(body, "stream")): stream = body["stream"] + if(is_present(body, "tokenize")): tokenize = body["tokenize"] + postData = make_postData(body, chat=False, stream=stream) + + promptToken = [] + if (tokenize): + tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json() + promptToken = tokenData["tokens"] + + if (not stream): + data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData)) + print(data.json()) + resData = make_resData(data.json(), chat=False, promptToken=promptToken) + return jsonify(resData) + else: + def generate(): + data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True) + time_now = int(time.time()) + for line in data.iter_lines(): + if line: + decoded_line = line.decode('utf-8') + resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now) + yield 'data: {}\n'.format(json.dumps(resData)) + return Response(generate(), mimetype='text/event-stream') + +if __name__ == '__main__': + app.run(args.host, port=args.port) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 043e49750..a835c3988 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -158,6 +158,7 @@ struct llama_server_context { std::string generated_text; std::vector generated_token_probs; + size_t num_prompt_tokens = 0; size_t num_tokens_predicted = 0; size_t n_past = 0; size_t n_remain = 0; @@ -195,6 +196,7 @@ struct llama_server_context { void rewind() { params.antiprompt.clear(); + num_prompt_tokens = 0; num_tokens_predicted = 0; generated_text = ""; generated_text.reserve(params.n_ctx); @@ -226,17 +228,18 @@ struct llama_server_context { void loadPrompt() { params.prompt.insert(0, 1, ' '); // always add a first space std::vector prompt_tokens = ::llama_tokenize(ctx, params.prompt, true); + num_prompt_tokens = prompt_tokens.size(); if (params.n_keep < 0) { - params.n_keep = (int)prompt_tokens.size(); + params.n_keep = (int)num_prompt_tokens; } params.n_keep = std::min(params.n_ctx - 4, params.n_keep); // if input prompt is too big, truncate like normal - if (prompt_tokens.size() >= (size_t)params.n_ctx) { + if (num_prompt_tokens>= (size_t)params.n_ctx) { const int n_left = (params.n_ctx - params.n_keep) / 2; std::vector new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); - const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_left - 1) / n_left; + const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left; new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin()); @@ -250,7 +253,7 @@ struct llama_server_context { truncated = true; prompt_tokens = new_tokens; } else { - const size_t ps = prompt_tokens.size(); + const size_t ps = num_prompt_tokens; std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0); std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps); } @@ -258,7 +261,7 @@ struct llama_server_context { // compare the evaluated prompt with the new prompt n_past = common_part(embd, prompt_tokens); embd = prompt_tokens; - if (n_past == prompt_tokens.size()) { + if (n_past == num_prompt_tokens) { // we have to evaluate at least 1 token to generate logits. n_past--; } @@ -763,6 +766,7 @@ static json format_final_response(llama_server_context & llama, const std::strin { "stop", true }, { "model", llama.params.model_alias }, { "tokens_predicted", llama.num_tokens_predicted }, + { "tokens_evaluated", llama.num_prompt_tokens }, { "generation_settings", format_generation_settings(llama) }, { "prompt", llama.params.prompt }, { "truncated", llama.truncated }, From ed9a54e5129a11c2a5b555e1dc65e875e3c37b4f Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 4 Jul 2023 21:54:11 +0300 Subject: [PATCH 124/135] ggml : sync latest (new ops, macros, refactoring) (#2106) - add ggml_argmax() - add ggml_tanh() - add ggml_elu() - refactor ggml_conv_1d() and variants - refactor ggml_conv_2d() and variants - add helper macros to reduce code duplication in ggml.c --- ggml.c | 1512 ++++++++++++++---------------------------- ggml.h | 118 ++-- scripts/sync-ggml.sh | 11 +- 3 files changed, 589 insertions(+), 1052 deletions(-) diff --git a/ggml.c b/ggml.c index afeb72ff0..88cbed7d5 100644 --- a/ggml.c +++ b/ggml.c @@ -220,9 +220,27 @@ inline static void* ggml_aligned_malloc(size_t size) { #define GGML_ALIGNED_FREE(ptr) free(ptr) #endif -#define UNUSED(x) (void)(x) +#define UNUSED GGML_UNUSED #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) +// +// tensor access macros +// + +#define GGML_TENSOR_UNARY_OP_LOCALS \ + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \ + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \ + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \ + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + +#define GGML_TENSOR_BINARY_OP_LOCALS \ + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \ + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \ + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \ + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \ + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \ + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + #if defined(GGML_USE_ACCELERATE) #include #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions @@ -3447,6 +3465,8 @@ inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); } inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); } inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; } +inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); } +inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; } inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } static const float GELU_COEF_A = 0.044715f; @@ -3598,6 +3618,16 @@ inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x *s = 1.f/(*s); } +inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) { + float max = -INFINITY; + int idx = 0; + for (int i = 0; i < n; ++i) { + max = MAX(max, x[i]); + if (max == x[i]) { idx = i; } + } + *s = idx; +} + // // data types // @@ -3707,12 +3737,15 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "SUM", "SUM_ROWS", "MEAN", + "ARGMAX", "REPEAT", "REPEAT_BACK", "ABS", "SGN", "NEG", "STEP", + "TANH", + "ELU", "RELU", "GELU", "GELU_QUICK", @@ -3744,9 +3777,8 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "ROPE_BACK", "ALIBI", "CLAMP", - "CONV_1D_S1_PH", - "CONV_1D_S2_PH", - "CONV_2D_SK_P0", + "CONV_1D", + "CONV_2D", "FLASH_ATTN", "FLASH_FF", @@ -3765,7 +3797,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64"); +static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -3783,12 +3815,15 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "Σx", "Σx_k", "Σx/n", + "argmax(x)", "repeat(x)", "repeat_back(x)", "abs(x)", "sgn(x)", "-x", "step(x)", + "tanh(x)", + "elu(x)", "relu(x)", "gelu(x)", "gelu_quick(x)", @@ -3820,9 +3855,8 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "rope_back(x)", "alibi(x)", "clamp(x)", - "conv_1d_s1_ph(x)", - "conv_1d_s2_ph(x)", - "conv_2d_sk_p0(x)", + "conv_1d(x)", + "conv_2d(x)", "flash_attn(x)", "flash_ff(x)", @@ -3841,7 +3875,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64"); +static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); @@ -3867,9 +3901,8 @@ static void ggml_setup_op_has_task_pass(void) { p[GGML_OP_GET_ROWS_BACK ] = true; p[GGML_OP_DIAG_MASK_INF ] = true; p[GGML_OP_DIAG_MASK_ZERO ] = true; - p[GGML_OP_CONV_1D_S1_PH ] = true; - p[GGML_OP_CONV_1D_S2_PH ] = true; - p[GGML_OP_CONV_2D_SK_P0 ] = true; + p[GGML_OP_CONV_1D ] = true; + p[GGML_OP_CONV_2D ] = true; p[GGML_OP_FLASH_ATTN_BACK ] = true; p[GGML_OP_CROSS_ENTROPY_LOSS ] = true; } @@ -5440,6 +5473,30 @@ struct ggml_tensor * ggml_mean( return result; } +// ggml_argmax + +struct ggml_tensor * ggml_argmax( + struct ggml_context * ctx, + struct ggml_tensor * a) { + GGML_ASSERT(ggml_is_matrix(a)); + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); + is_node = true; + } + + int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne); + + result->op = GGML_OP_ARGMAX; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + // ggml_repeat struct ggml_tensor * ggml_repeat( @@ -5633,6 +5690,74 @@ struct ggml_tensor * ggml_step_inplace( return ggml_step_impl(ctx, a, true); } +// ggml_tanh + +struct ggml_tensor * ggml_tanh_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_TANH; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_tanh( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_tanh_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_tanh_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_tanh_impl(ctx, a, true); +} + +// ggml_elu + +struct ggml_tensor * ggml_elu_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_ELU; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_elu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_elu_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_elu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_elu_impl(ctx, a, true); +} + // ggml_relu struct ggml_tensor * ggml_relu_impl( @@ -6874,6 +6999,8 @@ struct ggml_tensor * ggml_rope_back( int n_dims, int mode) { GGML_ASSERT(n_past >= 0); + GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet"); + bool is_node = false; if (a->grad) { @@ -6974,15 +7101,21 @@ struct ggml_tensor * ggml_clamp( return result; } -// ggml_conv_1d_s1_ph +// ggml_conv_1d -struct ggml_tensor * ggml_conv_1d_s1_ph( +static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) { + return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; +} + +GGML_API struct ggml_tensor * ggml_conv_1d( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b) { + struct ggml_tensor * b, + int s0, + int p0, + int d0) { GGML_ASSERT(ggml_is_matrix(b)); GGML_ASSERT(a->ne[1] == b->ne[1]); - GGML_ASSERT(a->ne[3] == 1); bool is_node = false; if (a->grad || b->grad) { @@ -6990,54 +7123,43 @@ struct ggml_tensor * ggml_conv_1d_s1_ph( is_node = true; } - const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + const int64_t ne[4] = { + ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0), + a->ne[2], 1, 1, + }; + struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); - result->op = GGML_OP_CONV_1D_S1_PH; + ggml_scratch_save(ctx); + struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3); + ((int32_t*)c->data)[0] = s0; + ((int32_t*)c->data)[1] = p0; + ((int32_t*)c->data)[2] = d0; + ggml_scratch_load(ctx); + + result->op = GGML_OP_CONV_1D; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src0 = a; result->src1 = b; + result->opt[0] = c; return result; } -// ggml_conv_1d_s2_ph +// ggml_conv_2d -struct ggml_tensor * ggml_conv_1d_s2_ph( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b) { - GGML_ASSERT(ggml_is_matrix(b)); - GGML_ASSERT(a->ne[1] == b->ne[1]); - GGML_ASSERT(a->ne[3] == 1); - bool is_node = false; +struct ggml_tensor* ggml_conv_2d( + struct ggml_context* ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1) { - if (a->grad || b->grad) { - GGML_ASSERT(false); // TODO: implement backward - is_node = true; - } - - const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); - - result->op = GGML_OP_CONV_1D_S2_PH; - result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; - result->src0 = a; - result->src1 = b; - - return result; -} - -// ggml_conv_2d_sk_p0 - -struct ggml_tensor * ggml_conv_2d_sk_p0( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b) { GGML_ASSERT(b->ne[3] == 1); GGML_ASSERT(a->ne[2] == b->ne[2]); - GGML_ASSERT(b->ne[0] % a->ne[0] == 0); - GGML_ASSERT(b->ne[1] % a->ne[1] == 0); bool is_node = false; if (a->grad || b->grad) { @@ -7045,15 +7167,42 @@ struct ggml_tensor * ggml_conv_2d_sk_p0( is_node = true; } - const int64_t ne[4] = { b->ne[0]/a->ne[0], b->ne[1]/a->ne[1], a->ne[3], 1, }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + const int64_t ne[4] = { + ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0), + ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1), + a->ne[3], 1, + }; + struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); - result->op = GGML_OP_CONV_2D_SK_P0; + ggml_scratch_save(ctx); + struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6); + ((int32_t*)c->data)[0] = s0; + ((int32_t*)c->data)[1] = s1; + ((int32_t*)c->data)[2] = p0; + ((int32_t*)c->data)[3] = p1; + ((int32_t*)c->data)[4] = d0; + ((int32_t*)c->data)[5] = d1; + ggml_scratch_load(ctx); + + result->op = GGML_OP_CONV_2D; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src0 = a; result->src1 = b; + result->opt[0] = c; return result; + +} + +// ggml_conv_1d_ph + +struct ggml_tensor* ggml_conv_1d_ph( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s, + int d) { + return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d); } // ggml_flash_attn @@ -7603,25 +7752,7 @@ static void ggml_compute_forward_dup_f16( return; } - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; const int ith = params->ith; // thread index const int nth = params->nth; // number of threads @@ -7892,25 +8023,7 @@ static void ggml_compute_forward_dup_f32( return; } - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; const int ith = params->ith; // thread index const int nth = params->nth; // number of threads @@ -8208,24 +8321,8 @@ static void ggml_compute_forward_add_f32( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -8294,28 +8391,12 @@ static void ggml_compute_forward_add_f16_f32( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F16); GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); @@ -8364,24 +8445,8 @@ static void ggml_compute_forward_add_f16_f16( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F16); @@ -8431,25 +8496,8 @@ static void ggml_compute_forward_add_q_f32( } const int nr = ggml_nrows(src0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -8570,19 +8618,8 @@ static void ggml_compute_forward_add1_f32( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -8636,23 +8673,12 @@ static void ggml_compute_forward_add1_f16_f32( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F16); GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); @@ -8697,23 +8723,12 @@ static void ggml_compute_forward_add1_f16_f16( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F16); - GGML_ASSERT(dst->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F16); GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); @@ -8758,19 +8773,8 @@ static void ggml_compute_forward_add1_q_f32( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; const enum ggml_type type = src0->type; dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; @@ -8902,15 +8906,8 @@ static void ggml_compute_forward_acc_f32( const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); // src0 and dst as viewed during acc const size_t nb0 = ggml_element_size(src0); @@ -8999,24 +8996,8 @@ static void ggml_compute_forward_sub_f32( } const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9106,29 +9087,7 @@ static void ggml_compute_forward_mul_f32( const int64_t nr = ggml_nrows(src0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9216,24 +9175,8 @@ static void ggml_compute_forward_div_f32( } const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9440,14 +9383,8 @@ static void ggml_compute_forward_sum_f32( assert(ggml_is_scalar(dst)); assert(src0->nb[0] == sizeof(float)); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); ggml_float sum = 0; ggml_float row_sum = 0; @@ -9496,29 +9433,13 @@ static void ggml_compute_forward_sum_rows_f32( GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(dst->nb[0] == sizeof(float)); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; + GGML_TENSOR_UNARY_OP_LOCALS; GGML_ASSERT(ne0 == 1); GGML_ASSERT(ne1 == ne01); GGML_ASSERT(ne2 == ne02); GGML_ASSERT(ne3 == ne03); - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - for (int64_t i3 = 0; i3 < ne03; i3++) { for (int64_t i2 = 0; i2 < ne02; i2++) { for (int64_t i1 = 0; i1 < ne01; i1++) { @@ -9562,19 +9483,7 @@ static void ggml_compute_forward_mean_f32( assert(src0->nb[0] == sizeof(float)); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; + GGML_TENSOR_UNARY_OP_LOCALS; assert(ne0 == 1); assert(ne1 == ne01); @@ -9586,10 +9495,6 @@ static void ggml_compute_forward_mean_f32( UNUSED(ne2); UNUSED(ne3); - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { @@ -9619,6 +9524,52 @@ static void ggml_compute_forward_mean( } } +// ggml_compute_forward_argmax + +static void ggml_compute_forward_argmax_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + assert(src0->nb[0] == sizeof(float)); + assert(dst->nb[0] == sizeof(float)); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + + const size_t nb01 = src0->nb[1]; + const size_t nb0 = dst->nb[0]; + + for (int64_t i1 = 0; i1 < ne01; i1++) { + float * src = (float *) ((char *) src0->data + i1*nb01); + int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0); + int v = 0; + ggml_vec_argmax_f32(ne00, &v, src); + dst_[0] = v; + } +} + +static void ggml_compute_forward_argmax( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_argmax_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_repeat static void ggml_compute_forward_repeat_f32( @@ -9632,25 +9583,7 @@ static void ggml_compute_forward_repeat_f32( return; } - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; // guaranteed to be an integer due to the check in ggml_can_repeat const int nr0 = (int)(ne0/ne00); @@ -9711,25 +9644,7 @@ static void ggml_compute_forward_repeat_back_f32( return; } - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; // guaranteed to be an integer due to the check in ggml_can_repeat const int nr0 = (int)(ne00/ne0); @@ -9959,6 +9874,90 @@ static void ggml_compute_forward_step( } } +// ggml_compute_forward_tanh + +static void ggml_compute_forward_tanh_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_tanh_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_tanh( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_tanh_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_elu + +static void ggml_compute_forward_elu_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_elu_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_elu( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_elu_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_relu static void ggml_compute_forward_relu_f32( @@ -10260,18 +10259,7 @@ static void ggml_compute_forward_norm_f32( const int ith = params->ith; const int nth = params->nth; - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; const float eps = 1e-5f; // TODO: make this a parameter @@ -10337,18 +10325,7 @@ static void ggml_compute_forward_rms_norm_f32( const int ith = params->ith; const int nth = params->nth; - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; const float eps = 1e-6f; // TODO: make this a parameter @@ -10413,22 +10390,7 @@ static void ggml_compute_forward_rms_norm_back_f32( const int ith = params->ith; const int nth = params->nth; - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const float eps = 1e-6f; // TODO: make this a parameter @@ -10624,41 +10586,7 @@ static void ggml_compute_forward_mul_mat_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - const int64_t ne10 = src1->ne[0]; -#endif - const int64_t ne11 = src1->ne[1]; -#ifndef NDEBUG - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int nb00 = src0->nb[0]; -#endif - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - -#ifndef NDEBUG - const int nb10 = src1->nb[0]; -#endif - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -10795,37 +10723,10 @@ static void ggml_compute_forward_mul_mat_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; + GGML_TENSOR_BINARY_OP_LOCALS; - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; //const int64_t ne = ne0*ne1*ne2*ne3; - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - const int ith = params->ith; const int nth = params->nth; @@ -10995,35 +10896,7 @@ static void ggml_compute_forward_mul_mat_q_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -11039,7 +10912,7 @@ static void ggml_compute_forward_mul_mat_q_f32( enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type; // we don't support permuted src0 or src1 - GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]); + GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); GGML_ASSERT(nb10 == sizeof(float)); // dst cannot be transposed or permuted @@ -11233,35 +11106,7 @@ static void ggml_compute_forward_out_prod_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - //const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -11496,15 +11341,8 @@ static void ggml_compute_forward_set_f32( const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); // src0 and dst as viewed during set const size_t nb0 = ggml_element_size(src0); @@ -11895,29 +11733,14 @@ static void ggml_compute_forward_diag_f32( // TODO: handle transposed/permuted matrices - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - const int ne2 = dst->ne[2]; - const int ne3 = dst->ne[3]; + GGML_TENSOR_UNARY_OP_LOCALS; + GGML_ASSERT(ne00 == ne0); GGML_ASSERT(ne00 == ne1); GGML_ASSERT(ne01 == 1); GGML_ASSERT(ne02 == ne2); GGML_ASSERT(ne03 == ne3); - const int nb00 = src0->nb[0]; - //const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - GGML_ASSERT(nb00 == sizeof(float)); GGML_ASSERT(nb0 == sizeof(float)); @@ -12494,20 +12317,7 @@ static void ggml_compute_forward_rope_f32( assert(n_past >= 0); - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -12634,20 +12444,7 @@ static void ggml_compute_forward_rope_f16( assert(n_past >= 0); - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -12800,21 +12597,7 @@ static void ggml_compute_forward_rope_back_f32( assert(n_past >= 0); - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - + GGML_TENSOR_UNARY_OP_LOCALS; //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -12913,21 +12696,7 @@ static void ggml_compute_forward_rope_back_f16( assert(n_past >= 0); - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - + GGML_TENSOR_UNARY_OP_LOCALS; //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -13025,7 +12794,7 @@ static void ggml_compute_forward_rope_back( } } -// ggml_compute_forward_conv_1d_s1_ph +// ggml_compute_forward_conv_1d static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( const struct ggml_compute_params * params, @@ -13039,36 +12808,7 @@ static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - //const int64_t ne12 = src1->ne[2]; - //const int64_t ne13 = src1->ne[3]; - - //const int64_t ne0 = dst->ne[0]; - //const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - //const int64_t ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - //const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - //const int nb12 = src1->nb[2]; - //const int nb13 = src1->nb[3]; - - //const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - //const int nb2 = dst->nb[2]; - //const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -13159,36 +12899,7 @@ static void ggml_compute_forward_conv_1d_s1_ph_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - //const int64_t ne12 = src1->ne[2]; - //const int64_t ne13 = src1->ne[3]; - - //const int64_t ne0 = dst->ne[0]; - //const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - //const int64_t ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - //const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - //const int nb12 = src1->nb[2]; - //const int nb13 = src1->nb[3]; - - //const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - //const int nb2 = dst->nb[2]; - //const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -13288,8 +12999,6 @@ static void ggml_compute_forward_conv_1d_s1_ph( } } -// ggml_compute_forward_conv_1d_s2_ph - static void ggml_compute_forward_conv_1d_s2_ph_f16_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, @@ -13302,36 +13011,7 @@ static void ggml_compute_forward_conv_1d_s2_ph_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - //const int64_t ne12 = src1->ne[2]; - //const int64_t ne13 = src1->ne[3]; - - //const int64_t ne0 = dst->ne[0]; - //const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - //const int64_t ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - //const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - //const int nb12 = src1->nb[2]; - //const int nb13 = src1->nb[3]; - - //const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - //const int nb2 = dst->nb[2]; - //const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -13422,36 +13102,7 @@ static void ggml_compute_forward_conv_1d_s2_ph_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - //const int64_t ne12 = src1->ne[2]; - //const int64_t ne13 = src1->ne[3]; - - //const int64_t ne0 = dst->ne[0]; - //const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - //const int64_t ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - //const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - //const int nb12 = src1->nb[2]; - //const int nb13 = src1->nb[3]; - - //const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - //const int nb2 = dst->nb[2]; - //const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -13551,6 +13202,28 @@ static void ggml_compute_forward_conv_1d_s2_ph( } } +// ggml_compute_forward_conv_1d + +static void ggml_compute_forward_conv_1d( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + const int32_t s0 = ((const int32_t*)(opt0->data))[0]; + const int32_t p0 = ((const int32_t*)(opt0->data))[1]; + const int32_t d0 = ((const int32_t*)(opt0->data))[2]; + GGML_ASSERT(d0 == 1); // dilation not supported + GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported + if (s0 == 1) { + ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst); + } else if (s0 == 2) { + ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst); + } else { + GGML_ASSERT(false); // only stride 1 and 2 supported + }; +} + // ggml_compute_forward_conv_2d_sk_p0 static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( @@ -13565,36 +13238,7 @@ static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - //const int ne03 = src0->ne[3]; - - const int ne10 = src1->ne[0]; - //const int ne11 = src1->ne[1]; - const int ne12 = src1->ne[2]; - //const int ne13 = src1->ne[3]; - - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - const int ne2 = dst->ne[2]; - //const int ne3 = dst->ne[3]; - //const int ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - //const int nb01 = src0->nb[1]; - //const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - //const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - //const int nb13 = src1->nb[3]; - - //const int nb0 = dst->nb[0]; - //const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - //const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -13687,6 +13331,34 @@ static void ggml_compute_forward_conv_2d_sk_p0( } } +// ggml_compute_forward_conv_2d + +static void ggml_compute_forward_conv_2d( + const struct ggml_compute_params* params, + const struct ggml_tensor* src0, + const struct ggml_tensor* src1, + const struct ggml_tensor* opt0, + struct ggml_tensor* dst) { + const int32_t s0 = ((const int32_t*)(opt0->data))[0]; + const int32_t s1 = ((const int32_t*)(opt0->data))[1]; + const int32_t p0 = ((const int32_t*)(opt0->data))[2]; + const int32_t p1 = ((const int32_t*)(opt0->data))[3]; + const int32_t d0 = ((const int32_t*)(opt0->data))[4]; + const int32_t d1 = ((const int32_t*)(opt0->data))[5]; + GGML_ASSERT(d0 == 1); // dilation not supported + GGML_ASSERT(d1 == 1); + GGML_ASSERT(p0 == 0); // padding not supported + GGML_ASSERT(p1 == 0); + + if (s0 == src0->ne[0] && s1 == src0->ne[1]) { + ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst); + } + else { + GGML_ASSERT(false); // only stride equal to kernel size is supported + }; +} + + // ggml_compute_forward_flash_attn static void ggml_compute_forward_flash_attn_f32( @@ -13699,45 +13371,14 @@ static void ggml_compute_forward_flash_attn_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t neq0 = q->ne[0]; - const int64_t neq1 = q->ne[1]; - const int64_t neq2 = q->ne[2]; - const int64_t neq3 = q->ne[3]; - - const int64_t nek0 = k->ne[0]; - const int64_t nek1 = k->ne[1]; - //const int64_t nek2 = k->ne[2]; - //const int64_t nek3 = k->ne[3]; - - //const int64_t nev0 = v->ne[0]; - const int64_t nev1 = v->ne[1]; - //const int64_t nev2 = v->ne[2]; - //const int64_t nev3 = v->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - - const int nbk0 = k->nb[0]; - const int nbk1 = k->nb[1]; - const int nbk2 = k->nb[2]; - const int nbk3 = k->nb[3]; - - const int nbq0 = q->nb[0]; - const int nbq1 = q->nb[1]; - const int nbq2 = q->nb[2]; - const int nbq3 = q->nb[3]; - - const int nbv0 = v->nb[0]; - const int nbv1 = v->nb[1]; - const int nbv2 = v->nb[2]; - const int nbv3 = v->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_LOCALS(int64_t, neq, q, ne); + GGML_TENSOR_LOCALS(size_t, nbq, q, nb); + GGML_TENSOR_LOCALS(int64_t, nek, k, ne); + GGML_TENSOR_LOCALS(size_t, nbk, k, nb); + GGML_TENSOR_LOCALS(int64_t, nev, v, ne); + GGML_TENSOR_LOCALS(size_t, nbv, v, nb); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); const int ith = params->ith; const int nth = params->nth; @@ -13908,45 +13549,14 @@ static void ggml_compute_forward_flash_attn_f16( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t neq0 = q->ne[0]; - const int64_t neq1 = q->ne[1]; - const int64_t neq2 = q->ne[2]; - const int64_t neq3 = q->ne[3]; - - const int64_t nek0 = k->ne[0]; - const int64_t nek1 = k->ne[1]; - //const int64_t nek2 = k->ne[2]; - //const int64_t nek3 = k->ne[3]; - - //const int64_t nev0 = v->ne[0]; - const int64_t nev1 = v->ne[1]; - //const int64_t nev2 = v->ne[2]; - //const int64_t nev3 = v->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - - const int nbk0 = k->nb[0]; - const int nbk1 = k->nb[1]; - const int nbk2 = k->nb[2]; - const int nbk3 = k->nb[3]; - - const int nbq0 = q->nb[0]; - const int nbq1 = q->nb[1]; - const int nbq2 = q->nb[2]; - const int nbq3 = q->nb[3]; - - const int nbv0 = v->nb[0]; - const int nbv1 = v->nb[1]; - const int nbv2 = v->nb[2]; - const int nbv3 = v->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_LOCALS(int64_t, neq, q, ne); + GGML_TENSOR_LOCALS(size_t, nbq, q, nb); + GGML_TENSOR_LOCALS(int64_t, nek, k, ne); + GGML_TENSOR_LOCALS(size_t, nbk, k, nb); + GGML_TENSOR_LOCALS(int64_t, nev, v, ne); + GGML_TENSOR_LOCALS(size_t, nbv, v, nb); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); const int ith = params->ith; const int nth = params->nth; @@ -14180,65 +13790,18 @@ static void ggml_compute_forward_flash_ff_f16( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t nea0 = a->ne[0]; - const int64_t nea1 = a->ne[1]; - const int64_t nea2 = a->ne[2]; - const int64_t nea3 = a->ne[3]; - - const int64_t neb00 = b0->ne[0]; - const int64_t neb01 = b0->ne[1]; - //const int64_t neb02 = b0->ne[2]; - //const int64_t neb03 = b0->ne[3]; - - const int64_t neb10 = b1->ne[0]; - const int64_t neb11 = b1->ne[1]; - //const int64_t neb12 = b1->ne[2]; - //const int64_t neb13 = b1->ne[3]; - - const int64_t nec00 = c0->ne[0]; - const int64_t nec01 = c0->ne[1]; - //const int64_t nec02 = c0->ne[2]; - //const int64_t nec03 = c0->ne[3]; - - const int64_t nec10 = c1->ne[0]; - const int64_t nec11 = c1->ne[1]; - //const int64_t nec12 = c1->ne[2]; - //const int64_t nec13 = c1->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - - const int nba0 = a->nb[0]; - const int nba1 = a->nb[1]; - const int nba2 = a->nb[2]; - const int nba3 = a->nb[3]; - - const int nbb00 = b0->nb[0]; - const int nbb01 = b0->nb[1]; - const int nbb02 = b0->nb[2]; - const int nbb03 = b0->nb[3]; - - const int nbb10 = b1->nb[0]; - //const int nbb11 = b1->nb[1]; - //const int nbb12 = b1->nb[2]; - //const int nbb13 = b1->nb[3]; - - const int nbc00 = c0->nb[0]; - const int nbc01 = c0->nb[1]; - const int nbc02 = c0->nb[2]; - const int nbc03 = c0->nb[3]; - - const int nbc10 = c1->nb[0]; - //const int nbc11 = c1->nb[1]; - //const int nbc12 = c1->nb[2]; - //const int nbc13 = c1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_LOCALS(int64_t, nea, a, ne); + GGML_TENSOR_LOCALS(size_t, nba, a, nb); + GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne); + GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb); + GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne); + GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb); + GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne); + GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb); + GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne); + GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); const int ith = params->ith; const int nth = params->nth; @@ -14386,55 +13949,16 @@ static void ggml_compute_forward_flash_attn_back_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t neq0 = q->ne[0]; - const int64_t neq1 = q->ne[1]; - const int64_t neq2 = q->ne[2]; - const int64_t neq3 = q->ne[3]; - - const int64_t nek0 = k->ne[0]; - const int64_t nek1 = k->ne[1]; - //const int64_t nek2 = k->ne[2]; - //const int64_t nek3 = k->ne[3]; - - const int64_t nev0 = v->ne[0]; - const int64_t nev1 = v->ne[1]; - //const int64_t nev2 = v->ne[2]; - //const int64_t nev3 = v->ne[3]; - - const int64_t ned0 = d->ne[0]; - const int64_t ned1 = d->ne[1]; - //const int64_t ned2 = d->ne[2]; - //const int64_t ned3 = d->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int nbk0 = k->nb[0]; - const int nbk1 = k->nb[1]; - const int nbk2 = k->nb[2]; - const int nbk3 = k->nb[3]; - - const int nbq0 = q->nb[0]; - const int nbq1 = q->nb[1]; - const int nbq2 = q->nb[2]; - const int nbq3 = q->nb[3]; - - const int nbv0 = v->nb[0]; - const int nbv1 = v->nb[1]; - const int nbv2 = v->nb[2]; - const int nbv3 = v->nb[3]; - - const int nbd0 = d->nb[0]; - const int nbd1 = d->nb[1]; - const int nbd2 = d->nb[2]; - const int nbd3 = d->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_LOCALS(int64_t, neq, q, ne); + GGML_TENSOR_LOCALS(size_t, nbq, q, nb); + GGML_TENSOR_LOCALS(int64_t, nek, k, ne); + GGML_TENSOR_LOCALS(size_t, nbk, k, nb); + GGML_TENSOR_LOCALS(int64_t, nev, v, ne); + GGML_TENSOR_LOCALS(size_t, nbv, v, nb); + GGML_TENSOR_LOCALS(int64_t, ned, d, ne); + GGML_TENSOR_LOCALS(size_t, nbd, d, nb); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); const int ith = params->ith; const int nth = params->nth; @@ -14792,15 +14316,8 @@ static void ggml_compute_forward_win_part_f32( return; } - const int64_t ne00 = src0->ne[0]; UNUSED(ne00); - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; UNUSED(ne03); - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; UNUSED(ne3); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); const int32_t nep0 = ((const int32_t *)(opt0->data))[0]; const int32_t nep1 = ((const int32_t *)(opt0->data))[1]; @@ -14863,14 +14380,8 @@ static void ggml_compute_forward_win_unpart_f32( return; } - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); const int32_t w = ((const int32_t *)(opt0->data))[0]; @@ -15468,6 +14979,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_mean(params, tensor->src0, tensor); } break; + case GGML_OP_ARGMAX: + { + ggml_compute_forward_argmax(params, tensor->src0, tensor); + } break; case GGML_OP_REPEAT: { ggml_compute_forward_repeat(params, tensor->src0, tensor); @@ -15492,6 +15007,14 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_step(params, tensor->src0, tensor); } break; + case GGML_OP_TANH: + { + ggml_compute_forward_tanh(params, tensor->src0, tensor); + } break; + case GGML_OP_ELU: + { + ggml_compute_forward_elu(params, tensor->src0, tensor); + } break; case GGML_OP_RELU: { ggml_compute_forward_relu(params, tensor->src0, tensor); @@ -15608,17 +15131,13 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor); } break; - case GGML_OP_CONV_1D_S1_PH: + case GGML_OP_CONV_1D: { - ggml_compute_forward_conv_1d_s1_ph(params, tensor->src0, tensor->src1, tensor); + ggml_compute_forward_conv_1d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor); } break; - case GGML_OP_CONV_1D_S2_PH: + case GGML_OP_CONV_2D: { - ggml_compute_forward_conv_1d_s2_ph(params, tensor->src0, tensor->src1, tensor); - } break; - case GGML_OP_CONV_2D_SK_P0: - { - ggml_compute_forward_conv_2d_sk_p0(params, tensor->src0, tensor->src1, tensor); + ggml_compute_forward_conv_2d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor); } break; case GGML_OP_FLASH_ATTN: { @@ -15867,6 +15386,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor } } break; case GGML_OP_MEAN: + case GGML_OP_ARGMAX: { GGML_ASSERT(false); // TODO: implement } break; @@ -15920,6 +15440,14 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // noop } } break; + case GGML_OP_TANH: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_ELU: + { + GGML_ASSERT(false); // TODO: not implemented + } break; case GGML_OP_RELU: { if (src0->grad) { @@ -15939,14 +15467,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // TODO: not implemented } break; - case GGML_OP_ALIBI: - { - GGML_ASSERT(false); // TODO: not implemented - } break; - case GGML_OP_CLAMP: - { - GGML_ASSERT(false); // TODO: not implemented - } break; case GGML_OP_SILU: { // necessary for llama @@ -16263,7 +15783,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { assert(src1->type == GGML_TYPE_I32); - assert(ggml_nelements(src1) == 3); + assert(ggml_nelements(src1) == 4); const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; @@ -16303,15 +15823,19 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // noop } } break; - case GGML_OP_CONV_1D_S1_PH: + case GGML_OP_ALIBI: { GGML_ASSERT(false); // TODO: not implemented } break; - case GGML_OP_CONV_1D_S2_PH: + case GGML_OP_CLAMP: { GGML_ASSERT(false); // TODO: not implemented } break; - case GGML_OP_CONV_2D_SK_P0: + case GGML_OP_CONV_1D: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CONV_2D: { GGML_ASSERT(false); // TODO: not implemented } break; @@ -16968,12 +16492,15 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) case GGML_OP_SUM: case GGML_OP_SUM_ROWS: case GGML_OP_MEAN: + case GGML_OP_ARGMAX: case GGML_OP_REPEAT: case GGML_OP_REPEAT_BACK: case GGML_OP_ABS: case GGML_OP_SGN: case GGML_OP_NEG: case GGML_OP_STEP: + case GGML_OP_TANH: + case GGML_OP_ELU: case GGML_OP_RELU: { node->n_tasks = 1; @@ -17087,8 +16614,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { node->n_tasks = 1; //TODO } break; - case GGML_OP_CONV_1D_S1_PH: - case GGML_OP_CONV_1D_S2_PH: + case GGML_OP_CONV_1D: { node->n_tasks = n_threads; @@ -17117,7 +16643,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) work_size = MAX(work_size, cur); } break; - case GGML_OP_CONV_2D_SK_P0: + case GGML_OP_CONV_2D: { node->n_tasks = n_threads; @@ -17479,13 +17005,6 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) { fwrite(&nb, sizeof(uint64_t), 1, fout); } - // store the pointer address - { - const uint64_t ptr = (uint64_t) tensor->data; - - fwrite(&ptr, sizeof(uint64_t), 1, fout); - } - fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout); // dump the data @@ -17519,13 +17038,6 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) { fwrite(&nb, sizeof(uint64_t), 1, fout); } - // store the pointer address - { - const uint64_t ptr = (uint64_t) tensor->data; - - fwrite(&ptr, sizeof(uint64_t), 1, fout); - } - fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout); // output the op arguments @@ -17710,8 +17222,6 @@ struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** tensor->op = (enum ggml_op) op; - uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); - memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME; tensor->data = (void *) ptr; @@ -17757,8 +17267,6 @@ struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** nb[j] = nb_cur; } - uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used - const char * ptr_name = ptr; ptr += GGML_MAX_NAME; const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t); diff --git a/ggml.h b/ggml.h index 11b51f8bd..0af96c76b 100644 --- a/ggml.h +++ b/ggml.h @@ -201,6 +201,8 @@ #define GGML_MAX_NAME 48 #define GGML_DEFAULT_N_THREADS 4 +#define GGML_UNUSED(x) (void)(x) + #define GGML_ASSERT(x) \ do { \ if (!(x)) { \ @@ -209,6 +211,30 @@ } \ } while (0) +// used to copy the number of elements and stride in bytes of tensors into local variables. +// main purpose is to reduce code duplication and improve readability. +// +// example: +// +// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); +// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); +// +#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \ + const type prefix##0 = (pointer)->array[0]; \ + GGML_UNUSED(prefix##0); +#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \ + GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \ + const type prefix##1 = (pointer)->array[1]; \ + GGML_UNUSED(prefix##1); +#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \ + GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \ + const type prefix##2 = (pointer)->array[2]; \ + GGML_UNUSED(prefix##2); +#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \ + GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \ + const type prefix##3 = (pointer)->array[3]; \ + GGML_UNUSED(prefix##3); + #ifdef __cplusplus extern "C" { #endif @@ -295,12 +321,15 @@ extern "C" { GGML_OP_SUM, GGML_OP_SUM_ROWS, GGML_OP_MEAN, + GGML_OP_ARGMAX, GGML_OP_REPEAT, GGML_OP_REPEAT_BACK, GGML_OP_ABS, GGML_OP_SGN, GGML_OP_NEG, GGML_OP_STEP, + GGML_OP_TANH, + GGML_OP_ELU, GGML_OP_RELU, GGML_OP_GELU, GGML_OP_GELU_QUICK, @@ -332,9 +361,8 @@ extern "C" { GGML_OP_ROPE_BACK, GGML_OP_ALIBI, GGML_OP_CLAMP, - GGML_OP_CONV_1D_S1_PH, - GGML_OP_CONV_1D_S2_PH, - GGML_OP_CONV_2D_SK_P0, + GGML_OP_CONV_1D, + GGML_OP_CONV_2D, GGML_OP_FLASH_ATTN, GGML_OP_FLASH_FF, @@ -690,6 +718,11 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + // argmax along rows + GGML_API struct ggml_tensor * ggml_argmax( + struct ggml_context * ctx, + struct ggml_tensor * a); + // if a is the same shape as b, and a is not parameter, return a // otherwise, return a new tensor: repeat(a) to fit in b GGML_API struct ggml_tensor * ggml_repeat( @@ -734,6 +767,22 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_tanh( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_tanh_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_elu( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_elu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_relu( struct ggml_context * ctx, struct ggml_tensor * a); @@ -1084,58 +1133,33 @@ extern "C" { float min, float max); - // TODO: implement general-purpose convolutions - // GGML_API struct ggml_tensor * ggml_conv_1d( - // struct ggml_context * ctx, - // struct ggml_tensor * a, - // struct ggml_tensor * b, - // int s0 - // int p0, - // int d0); - // - // GGML_API struct ggml_tensor * ggml_conv_2d( - // struct ggml_context * ctx, - // struct ggml_tensor * a, - // struct ggml_tensor * b, - // int s0, - // int s1, - // int p0, - // int p1, - // int d0, - // int d1); - - // padding = half - // TODO: we don't support extra parameters for now - // that's why we are hard-coding the stride, padding, and dilation - // not great .. - // example: - // a: 3 80 768 1 - // b: 3000 80 1 1 - // res: 3000 768 1 1 - // used in whisper - GGML_API struct ggml_tensor * ggml_conv_1d_s1_ph( + GGML_API struct ggml_tensor * ggml_conv_1d( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b); + struct ggml_tensor * b, + int s0, // stride + int p0, // padding + int d0); // dilation - // used in whisper - GGML_API struct ggml_tensor * ggml_conv_1d_s2_ph( + GGML_API struct ggml_tensor * ggml_conv_2d( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b); + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1); - // kernel size is a->ne[0] x a->ne[1] - // stride is equal to kernel size - // padding is zero - // example: - // a: 16 16 3 768 - // b: 1024 1024 3 1 - // res: 64 64 768 1 - // used in sam - GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0( + // conv_1d with padding = half + // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d) + GGML_API struct ggml_tensor* ggml_conv_1d_ph( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b); + struct ggml_tensor * b, + int s, + int d); GGML_API struct ggml_tensor * ggml_flash_attn( struct ggml_context * ctx, diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh index e6e39ff8f..574e5180b 100755 --- a/scripts/sync-ggml.sh +++ b/scripts/sync-ggml.sh @@ -1,6 +1,11 @@ #!/bin/bash -cp -rpv ../ggml/src/ggml.c ./ggml.c -cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu -cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h +cp -rpv ../ggml/src/ggml.c ./ggml.c +cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h +cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu +cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h +cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp +cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h +cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m +cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h From b472f3fca558b6335adbd87210ed58cfb5da37cb Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 4 Jul 2023 22:25:22 +0300 Subject: [PATCH 125/135] readme : add link web chat PR --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index e890dc9c2..6c2bb392e 100644 --- a/README.md +++ b/README.md @@ -11,6 +11,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ **Hot topics:** +- Simple web chat example: https://github.com/ggerganov/llama.cpp/pull/1998 - k-quants now support super-block size of 64: https://github.com/ggerganov/llama.cpp/pull/2001 - New roadmap: https://github.com/users/ggerganov/projects/7 - Azure CI brainstorming: https://github.com/ggerganov/llama.cpp/discussions/1985 From 7f0e9a775ecc4c6ade271c217f63d6dc93e79eaa Mon Sep 17 00:00:00 2001 From: Nigel Bosch Date: Tue, 4 Jul 2023 18:33:33 -0500 Subject: [PATCH 126/135] embd-input: Fix input embedding example unsigned int seed (#2105) --- examples/embd-input/embd-input-lib.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/embd-input/embd-input-lib.cpp b/examples/embd-input/embd-input-lib.cpp index 570e273fc..5fa4942be 100644 --- a/examples/embd-input/embd-input-lib.cpp +++ b/examples/embd-input/embd-input-lib.cpp @@ -29,7 +29,7 @@ struct MyModel* create_mymodel(int argc, char ** argv) { fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); - if (params.seed < 0) { + if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); From 9e4475f5cf639315f61ed7b8da6258bb0c7c5ca9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Wed, 5 Jul 2023 08:58:05 +0200 Subject: [PATCH 127/135] Fixed OpenCL offloading prints (#2082) --- llama.cpp | 15 ++++++++++++--- 1 file changed, 12 insertions(+), 3 deletions(-) diff --git a/llama.cpp b/llama.cpp index 7419b03b6..83e93efc1 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1156,6 +1156,7 @@ static void llama_model_load_internal( } } #endif // GGML_USE_CUBLAS + #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); @@ -1164,6 +1165,10 @@ static void llama_model_load_internal( fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__); } size_t vram_kv_cache = 0; + +#ifdef GGML_USE_CUBLAS + const int max_backend_supported_layers = hparams.n_layer + 3; + const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3; if (n_gpu_layers > (int) hparams.n_layer + 1) { if (low_vram) { fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__); @@ -1180,14 +1185,18 @@ static void llama_model_load_internal( vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2; } } - const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3; +#elif defined(GGML_USE_CLBLAST) + const int max_backend_supported_layers = hparams.n_layer + 1; + const int max_offloadable_layers = hparams.n_layer + 1; +#endif // GGML_USE_CUBLAS + fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n", - __func__, std::min(n_gpu_layers, max_offloadable_layers), hparams.n_layer + 3); + __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); fprintf(stderr, "%s: total VRAM used: %zu MB\n", __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up #else (void) n_gpu_layers; -#endif +#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) } // populate `tensors_by_name` From 051c70dcd55709c9cbbfa849af035951fe720433 Mon Sep 17 00:00:00 2001 From: Howard Su Date: Wed, 5 Jul 2023 18:31:23 +0800 Subject: [PATCH 128/135] llama: Don't double count the sampling time (#2107) --- llama.cpp | 20 +++++++++----------- 1 file changed, 9 insertions(+), 11 deletions(-) diff --git a/llama.cpp b/llama.cpp index 83e93efc1..e04fbfc0a 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1905,10 +1905,10 @@ void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * can return; } - const int64_t t_start_sample_us = ggml_time_us(); - llama_sample_softmax(ctx, candidates); + const int64_t t_start_sample_us = ggml_time_us(); + // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = candidates->size; @@ -1937,9 +1937,8 @@ void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * return; } - const int64_t t_start_sample_us = ggml_time_us(); - llama_sample_softmax(nullptr, candidates); + const int64_t t_start_sample_us = ggml_time_us(); // Compute the first and second derivatives std::vector first_derivatives(candidates->size - 1); @@ -1991,11 +1990,11 @@ void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * c return; } - const int64_t t_start_sample_us = ggml_time_us(); - // Compute the softmax of logits and calculate entropy llama_sample_softmax(nullptr, candidates); + const int64_t t_start_sample_us = ggml_time_us(); + float entropy = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { entropy += -candidates->data[i].p * logf(candidates->data[i].p); @@ -2164,13 +2163,11 @@ llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_ if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - ctx->n_sample++; } return X; } llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { - assert(ctx); int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); @@ -2185,13 +2182,14 @@ llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_tok candidates->size = 1; } + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } + // Normalize the probabilities of the remaining words llama_sample_softmax(ctx, candidates); // Sample the next word X from the remaining words - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } llama_token X = llama_sample_token(ctx, candidates); t_start_sample_us = ggml_time_us(); From 924dd22fd3ba93e097f8d19ba5cda919ca2fe2fb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Wed, 5 Jul 2023 14:19:42 +0200 Subject: [PATCH 129/135] Quantized dot products for CUDA mul mat vec (#2067) --- CMakeLists.txt | 13 +- Makefile | 13 +- README.md | 3 +- ggml-cuda.cu | 491 ++++++++++++++++++++++++++++++++++++++++--------- 4 files changed, 427 insertions(+), 93 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 4ac0f6f4e..a2404548f 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -68,8 +68,9 @@ option(LLAMA_ACCELERATE "llama: enable Accelerate framework option(LLAMA_BLAS "llama: use BLAS" OFF) set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor") option(LLAMA_CUBLAS "llama: use cuBLAS" OFF) +option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF) set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels") -set(LLAMA_CUDA_DMMV_Y "1" CACHE STRING "llama: y block size for dmmv CUDA kernels") +set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels") option(LLAMA_CUDA_DMMV_F16 "llama: use 16 bit floats for dmmv CUDA kernels" OFF) set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K") option(LLAMA_CLBLAST "llama: use CLBlast" OFF) @@ -246,8 +247,14 @@ if (LLAMA_CUBLAS) set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h) add_compile_definitions(GGML_USE_CUBLAS) + if (LLAMA_CUDA_FORCE_DMMV) + add_compile_definitions(GGML_CUDA_FORCE_DMMV) + endif() add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X}) - add_compile_definitions(GGML_CUDA_DMMV_Y=${LLAMA_CUDA_DMMV_Y}) + add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y}) + if (DEFINED LLAMA_CUDA_DMMV_Y) + add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_DMMV_Y}) # for backwards compatibility + endif() if (LLAMA_CUDA_DMMV_F16) add_compile_definitions(GGML_CUDA_DMMV_F16) endif() @@ -263,7 +270,7 @@ if (LLAMA_CUBLAS) if (LLAMA_CUDA_DMMV_F16) set(CMAKE_CUDA_ARCHITECTURES "61") # needed for f16 CUDA intrinsics else() - set(CMAKE_CUDA_ARCHITECTURES "52") # lowest CUDA 12 standard + set(CMAKE_CUDA_ARCHITECTURES "52;61") # lowest CUDA 12 standard + lowest for integer intrinsics endif() endif() message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}") diff --git a/Makefile b/Makefile index 8966a3590..71415664b 100644 --- a/Makefile +++ b/Makefile @@ -164,16 +164,21 @@ ifdef LLAMA_CUBLAS OBJS += ggml-cuda.o NVCC = nvcc NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native +ifdef LLAMA_CUDA_FORCE_DMMV + NVCCFLAGS += -DGGML_CUDA_FORCE_DMMV +endif # LLAMA_CUDA_FORCE_DMMV ifdef LLAMA_CUDA_DMMV_X NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X) else NVCCFLAGS += -DGGML_CUDA_DMMV_X=32 endif # LLAMA_CUDA_DMMV_X -ifdef LLAMA_CUDA_DMMV_Y - NVCCFLAGS += -DGGML_CUDA_DMMV_Y=$(LLAMA_CUDA_DMMV_Y) +ifdef LLAMA_CUDA_MMV_Y + NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y) +else ifdef LLAMA_CUDA_DMMV_Y + NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_DMMV_Y) # for backwards compatibility else - NVCCFLAGS += -DGGML_CUDA_DMMV_Y=1 -endif # LLAMA_CUDA_DMMV_Y + NVCCFLAGS += -DGGML_CUDA_MMV_Y=1 +endif # LLAMA_CUDA_MMV_Y ifdef LLAMA_CUDA_DMMV_F16 NVCCFLAGS += -DGGML_CUDA_DMMV_F16 endif # LLAMA_CUDA_DMMV_F16 diff --git a/README.md b/README.md index 6c2bb392e..32f17c2d1 100644 --- a/README.md +++ b/README.md @@ -345,8 +345,9 @@ Building the program with BLAS support may lead to some performance improvements | Option | Legal values | Default | Description | |-------------------------|------------------------|---------|-------------| + | LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 7.0/Turing/RTX 2000 or higher). Does not affect k-quants. | | LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. | - | LLAMA_CUDA_DMMV_Y | Positive integer | 1 | Block size in y direction for the CUDA dequantization + mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. | + | LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. | | LLAMA_CUDA_DMMV_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels. Can improve performance on relatively recent GPUs. | | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. | diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 0b12a9e76..7965ff741 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -70,9 +70,11 @@ typedef void (*ggml_cuda_op_t)( // QK = number of values after dequantization // QR = QK / number of values before dequantization +// QI = number of 32 bit integers before dequantization #define QK4_0 32 #define QR4_0 2 +#define QI4_0 4 typedef struct { half d; // delta uint8_t qs[QK4_0 / 2]; // nibbles / quants @@ -81,6 +83,7 @@ static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 #define QK4_1 32 #define QR4_1 2 +#define QI4_1 4 typedef struct { half d; // delta half m; // min @@ -90,6 +93,7 @@ static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong #define QK5_0 32 #define QR5_0 2 +#define QI5_0 4 typedef struct { half d; // delta uint8_t qh[4]; // 5-th bit of quants @@ -99,6 +103,7 @@ static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5 #define QK5_1 32 #define QR5_1 2 +#define QI5_1 4 typedef struct { half d; // delta half m; // min @@ -109,12 +114,25 @@ static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + #define QK8_0 32 #define QR8_0 1 +#define QI8_0 8 typedef struct { half d; // delta int8_t qs[QK8_0]; // quants } block_q8_0; static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding"); +#define QK8_1 32 +#define QR8_1 1 +#define QI8_1 8 +typedef struct { + half d; // delta + half s; // unquantized sum + int8_t qs[QK8_0]; // quants +} block_q8_1; +static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding"); + +typedef float (*vec_dot_q_cuda_t)(const void * vbq, const block_q8_1 * bq8_1, const int iqs); + //================================= k-quants #ifdef GGML_QKK_64 @@ -198,14 +216,15 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ #define CUDA_SCALE_BLOCK_SIZE 256 #define CUDA_ROPE_BLOCK_SIZE 256 #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32 +#define CUDA_QUANTIZE_BLOCK_SIZE 256 #define CUDA_DEQUANTIZE_BLOCK_SIZE 256 // dmmv = dequantize_mul_mat_vec #ifndef GGML_CUDA_DMMV_X #define GGML_CUDA_DMMV_X 32 #endif -#ifndef GGML_CUDA_DMMV_Y -#define GGML_CUDA_DMMV_Y 1 +#ifndef GGML_CUDA_MMV_Y +#define GGML_CUDA_MMV_Y 1 #endif #ifndef K_QUANTS_PER_ITERATION @@ -270,7 +289,6 @@ static __global__ void rms_norm_f32(const float * x, float * dst, const int ncol } // sum up partial sums - __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); @@ -714,7 +732,6 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float #endif // sum up partial sums and write back result - __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); @@ -819,7 +836,6 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float #endif // sum up partial sums and write back result - __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); @@ -923,7 +939,6 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float #endif // sum up partial sums and write back result - __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); @@ -1028,7 +1043,6 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float #endif // sum up partial sums and write back result - __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); @@ -1139,7 +1153,6 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * vx, const float #endif // sum up partial sums and write back result - __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); @@ -1158,6 +1171,41 @@ static __device__ void convert_f16(const void * vx, const int ib, const int iqs, v.y = x[ib + iqs + 1]; } +static __global__ void quantize_q8_1(const float * x, void * vy, const int k) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + + block_q8_1 * y = (block_q8_1 *) vy; + + const int ib = i / QK8_0; // block index + const int iqs = i % QK8_0; // quant index + + const float xi = x[i]; + float amax = fabsf(xi); + float sum = xi; + +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32)); + sum += __shfl_xor_sync(0xffffffff, sum, mask, 32); + } + + const float d = amax / 127; + const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); + + y[ib].qs[iqs] = q; + + if (iqs > 0) { + return; + } + + y[ib].d = d; + y[ib].s = sum; +} + template static __global__ void dequantize_block(const void * vx, float * y, const int k) { const int i = blockDim.x*blockIdx.x + 2*threadIdx.x; @@ -1179,6 +1227,182 @@ static __global__ void dequantize_block(const void * vx, float * y, const int k) y[iybs + iqs + y_offset] = v.y; } +static __device__ __forceinline__ float vec_dot_q4_0_q8_1(const void * vbq, const block_q8_1 * bq8_1, const int iqs) { +#if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics + const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq; + + int vi; + memcpy(&vi, &bq4_0->qs[sizeof(int) * (iqs + 0)], sizeof(int)); + const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]); + const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI4_0)]); + + const float d = __half2float(bq4_0->d) * __half2float(bq8_1->d); + + // subtract 8 from each quantized value + const int vi0 = __vsub4((vi >> 0) & 0x0F0F0F0F, 0x08080808); + const int vi1 = __vsub4((vi >> 4) & 0x0F0F0F0F, 0x08080808); + + // SIMD dot product of quantized values + int sumi = __dp4a(vi0, ui0, 0); + sumi = __dp4a(vi1, ui1, sumi); + + return sumi*d; +#else + return 0.0f; // only to satisfy the compiler +#endif // __CUDA_ARCH__ >= 600 +} + +static __device__ __forceinline__ float vec_dot_q4_1_q8_1(const void * vbq, const block_q8_1 * bq8_1, const int iqs) { +#if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics + const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq; + + const int vi = *((int *) &bq4_1->qs[sizeof(int) * (iqs + 0)]); + const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]); + const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI4_1)]); + + const float d = __half2float(bq4_1->d) * __half2float(bq8_1->d); + const float m = bq4_1->m; + const float s = bq8_1->s; + + const int vi0 = (vi >> 0) & 0x0F0F0F0F; + const int vi1 = (vi >> 4) & 0x0F0F0F0F; + + // SIMD dot product of quantized values + int sumi = __dp4a(vi0, ui0, 0); + sumi = __dp4a(vi1, ui1, sumi); + + return sumi*d + m*s / QI4_1; // scale sum by QI4_1 because there are QI4_1 threads working on this block +#else + return 0.0f; // only to satisfy the compiler +#endif // __CUDA_ARCH__ >= 600 +} + +static __device__ __forceinline__ float vec_dot_q5_0_q8_1(const void * vbq, const block_q8_1 * bq8_1, const int iqs) { +#if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics + const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq; + + int qs; + memcpy(&qs, &bq5_0->qs[sizeof(int) * (iqs + 0)], sizeof(int)); + const int qh0 = bq5_0->qh[iqs/2 + 0] >> 4*(iqs%2); + const int qh1 = bq5_0->qh[iqs/2 + 2] >> 4*(iqs%2); + const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]); + const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI5_0)]); + + const float d = __half2float(bq5_0->d) * __half2float(bq8_1->d); + + int vi0 = (qs >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits + vi0 |= (qh0 << 4) & 0x00000010; // 1 -> 5 + vi0 |= (qh0 << 11) & 0x00001000; // 2 -> 13 + vi0 |= (qh0 << 18) & 0x00100000; // 3 -> 21 + vi0 |= (qh0 << 25) & 0x10000000; // 4 -> 29 + vi0 = __vsub4(vi0, 0x10101010); // subtract 16 from quantized values + int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values + + int vi1 = (qs >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits + vi1 |= (qh1 << 4) & 0x00000010; // 1 -> 5 + vi1 |= (qh1 << 11) & 0x00001000; // 2 -> 13 + vi1 |= (qh1 << 18) & 0x00100000; // 3 -> 21 + vi1 |= (qh1 << 25) & 0x10000000; // 4 -> 29 + vi1 = __vsub4(vi1, 0x10101010); // subtract 16 from quantized values + sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values + + return sumi*d; +#else + return 0.0f; // only to satisfy the compiler +#endif // __CUDA_ARCH__ >= 600 +} + +static __device__ __forceinline__ float vec_dot_q5_1_q8_1(const void * vbq, const block_q8_1 * bq8_1, const int iqs) { +#if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics + const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq; + + const int qs = *((int *) &bq5_1->qs[sizeof(int) * (iqs + 0)]); + const int qh0 = bq5_1->qh[iqs/2 + 0] >> 4*(iqs%2); + const int qh1 = bq5_1->qh[iqs/2 + 2] >> 4*(iqs%2); + const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]); + const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI5_1)]); + + const float d = __half2float(bq5_1->d) * __half2float(bq8_1->d); + const float m = bq5_1->m; + const float s = bq8_1->s; + + int vi0 = (qs >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits + vi0 |= (qh0 << 4) & 0x00000010; // 1 -> 5 + vi0 |= (qh0 << 11) & 0x00001000; // 2 -> 13 + vi0 |= (qh0 << 18) & 0x00100000; // 3 -> 21 + vi0 |= (qh0 << 25) & 0x10000000; // 4 -> 29 + int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values + + int vi1 = (qs >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits + vi1 |= (qh1 << 4) & 0x00000010; // 1 -> 5 + vi1 |= (qh1 << 11) & 0x00001000; // 2 -> 13 + vi1 |= (qh1 << 18) & 0x00100000; // 3 -> 21 + vi1 |= (qh1 << 25) & 0x10000000; // 4 -> 29 + sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values + + return sumi*d + m*s / QI5_1; // scale sum by QI5_1 because there are QI5_1 threads working on this block +#else + return 0.0f; // only to satisfy the compiler +#endif // __CUDA_ARCH__ >= 600 +} + +static __device__ __forceinline__ float vec_dot_q8_0_q8_1(const void * vbq, const block_q8_1 * bq8_1, const int iqs) { +#if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics + const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq; + + int vi; + memcpy(&vi, &bq8_0->qs[sizeof(int) * (iqs + 0)], sizeof(int)); + const int ui = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]); + + const float d = __half2float(bq8_0->d) * __half2float(bq8_1->d); + + // SIMD dot product of quantized values + int sumi = __dp4a(vi, ui, 0); + + return sumi*d; +#else + return 0.0f; // only to satisfy the compiler +#endif // __CUDA_ARCH__ >= 600 +} + +template +static __global__ void mul_mat_vec_q(const void * vx, const void * vy, float * dst, const int ncols, const int nrows) { + const int row = blockIdx.y*blockDim.y + threadIdx.y; + + if (row >= nrows) { + return; + } + + const int blocks_per_row = ncols / qk; + const int blocks_per_warp = WARP_SIZE / qi; + +// partial sum for each thread + float tmp = 0.0f; + + const block_q_t * x = (const block_q_t *) vx; + const block_q8_1 * y = (const block_q8_1 *) vy; + + for (int i = 0; i < blocks_per_row; i += blocks_per_warp) { + const int ibx = row*blocks_per_row + i + threadIdx.x / qi; // x block index + + const int iby = i + threadIdx.x / qi; // y block index + + const int iqs = threadIdx.x % qi; // x block quant index when casting the quants to int + + tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs); + } + + // sum up partial sums and write back result +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + if (threadIdx.x == 0) { + dst[row] = tmp; + } +} + template static __global__ void dequantize_mul_mat_vec(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows) { // qk = quantized weights per x block @@ -1233,7 +1457,6 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const dfloat * y, } // sum up partial sums and write back result - __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); @@ -1284,7 +1507,6 @@ static __global__ void mul_mat_p021_f16_f32(const void * vx, const float * y, fl const int idst = channel*nrows_dst + row_dst; // sum up partial sums and write back result - __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); @@ -1330,7 +1552,6 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous } // sum up partial sums and write back result - __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); @@ -1440,7 +1661,6 @@ static __global__ void soft_max_f32(const float * x, float * dst, const int ncol } // sum up partial sums - __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); @@ -1494,6 +1714,11 @@ static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, con rms_norm_f32<<>>(x, dst, ncols); } +static void quantize_row_q8_1_cuda(const float * x, void * vy, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE; + quantize_q8_1<<>>(x, vy, k); +} + static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<<>>(vx, y, k); @@ -1562,45 +1787,45 @@ static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cu static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols, nrows); } static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols, nrows); } @@ -1647,6 +1872,51 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f dequantize_mul_mat_vec_q6_k<<>>(vx, y, dst, ncols, nrows); } +static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(1, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<1, 1, convert_f16><<>>(vx, y, k); @@ -1654,9 +1924,9 @@ static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, c static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); - const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y; + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec<1, 1, convert_f16> <<>>(vx, y, dst, ncols, nrows); } @@ -1822,6 +2092,7 @@ static size_t g_scratch_offset = 0; static int g_device_count = -1; static int g_main_device = 0; +static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES]; static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0}; static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr}; @@ -1839,9 +2110,12 @@ void ggml_init_cublas() { for (int id = 0; id < g_device_count; ++id) { cudaDeviceProp prop; CUDA_CHECK(cudaGetDeviceProperties(&prop, id)); - fprintf(stderr, " Device %d: %s\n", id, prop.name); + fprintf(stderr, " Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor); + g_tensor_split[id] = total_vram; total_vram += prop.totalGlobalMem; + + g_compute_capabilities[id] = 100*prop.major + 10*prop.minor; } for (int id = 0; id < g_device_count; ++id) { g_tensor_split[id] /= total_vram; @@ -2057,7 +2331,7 @@ inline void ggml_cuda_op_rms_norm( (void) i1; } -inline void ggml_cuda_op_dequantize_mul_mat_vec( +inline void ggml_cuda_op_mul_mat_vec( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, cudaStream_t & cudaStream_main){ @@ -2069,69 +2343,116 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec( const int64_t ne00 = src0->ne[0]; const int64_t nrows = i01_high - i01_low; -// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics -#ifdef GGML_CUDA_DMMV_F16 - size_t ash; - dfloat * src1_dfloat = nullptr; // dfloat == half - - bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 || - src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 || - src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16; - - if (src1_convert_f16) { - src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash); - ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00, - ne00, 1, sizeof(float), 0, 0, - ne00, 1, sizeof(half), 0, 0, cudaStream_main); - } +#ifdef GGML_CUDA_FORCE_DMMV + const bool use_mul_mat_vec_q = false; #else - dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion + int id; + CUDA_CHECK(cudaGetDevice(&id)); + + const bool mul_mat_vec_q_implemented = src0->type == GGML_TYPE_Q4_0 || + src0->type == GGML_TYPE_Q4_1 || + src0->type == GGML_TYPE_Q5_0 || + src0->type == GGML_TYPE_Q5_1 || + src0->type == GGML_TYPE_Q8_0; + + // The integer intrinsics used in mul_mat_vec_q are available with compute capability 6. + // However, they have bad performance with Pascal cards. + // Therefore, in a multi GPU setting decide at runtime which GPUs should use mul_mat_vec_q. + const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= 700 && mul_mat_vec_q_implemented; +#endif + + if (use_mul_mat_vec_q) { + size_t as; + void * src1_q8_1 = ggml_cuda_pool_malloc(ne00*sizeof(block_q8_1)/QK8_1, &as); + quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, cudaStream_main); + + switch (src0->type) { + case GGML_TYPE_Q4_0: + mul_mat_vec_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q4_1: + mul_mat_vec_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q5_0: + mul_mat_vec_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q5_1: + mul_mat_vec_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q8_0: + mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + default: + GGML_ASSERT(false); + break; + } + + ggml_cuda_pool_free(src1_q8_1, as); + } else { + // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics +#ifdef GGML_CUDA_DMMV_F16 + size_t ash; + dfloat * src1_dfloat = nullptr; // dfloat == half + + bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 || + src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 || + src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16; + + if (src1_convert_f16) { + src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash); + ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00, + ne00, 1, sizeof(float), 0, 0, + ne00, 1, sizeof(half), 0, 0, cudaStream_main); + } +#else + dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion #endif // GGML_CUDA_DMMV_F16 - switch (src0->type) { - case GGML_TYPE_Q4_0: - dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q4_1: - dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q5_0: - dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q5_1: - dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q8_0: - dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q2_K: - dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q3_K: - dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q4_K: - dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q5_K: - dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q6_K: - dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_F16: - convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - default: - GGML_ASSERT(false); - break; - } + switch (src0->type) { + case GGML_TYPE_Q4_0: + dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q4_1: + dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q5_0: + dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q5_1: + dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q8_0: + dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q2_K: + dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q3_K: + dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q4_K: + dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q5_K: + dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q6_K: + dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_F16: + convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + default: + GGML_ASSERT(false); + break; + } #ifdef GGML_CUDA_DMMV_F16 - if (src1_convert_f16) { - ggml_cuda_pool_free(src1_dfloat, ash); - } + if (src1_convert_f16) { + ggml_cuda_pool_free(src1_dfloat, ash); + } #endif // GGML_CUDA_DMMV_F16 + } (void) src1; (void) dst; @@ -2701,8 +3022,8 @@ void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_ }else if (src0->type == GGML_TYPE_F32) { ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false); } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { - if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src0->ne[1] % GGML_CUDA_DMMV_Y == 0) { - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false, false); + if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) { + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_vec, false, false); } else { ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false); } From 8567c76b5326e862be0755a8dc1dd988223fcae3 Mon Sep 17 00:00:00 2001 From: Jesse Jojo Johnson Date: Wed, 5 Jul 2023 15:13:35 +0000 Subject: [PATCH 130/135] Update server instructions for web front end (#2103) Co-authored-by: Jesse Johnson --- examples/server/README.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/examples/server/README.md b/examples/server/README.md index 4ed226e04..160614ba8 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -1,6 +1,6 @@ # llama.cpp/example/server -This example demonstrates a simple HTTP API server to interact with llama.cpp. +This example demonstrates a simple HTTP API server and a simple web front end to interact with llama.cpp. Command line options: @@ -21,6 +21,7 @@ Command line options: - `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`. - `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`. - `--port`: Set the port to listen. Default: `8080`. +- `--public`: path from which to serve static files (default examples/server/public) - `--embedding`: Enable embedding extraction, Default: disabled. ## Build @@ -59,7 +60,7 @@ server.exe -m models\7B\ggml-model.bin -c 2048 ``` The above command will start a server that by default listens on `127.0.0.1:8080`. -You can consume the endpoints with Postman or NodeJS with axios library. +You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url. ## Testing with CURL From 1b107b8550dced48dc5f41184640061354226b96 Mon Sep 17 00:00:00 2001 From: Stephan Walter Date: Wed, 5 Jul 2023 16:13:06 +0000 Subject: [PATCH 131/135] ggml : generalize `quantize_fns` for simpler FP16 handling (#1237) * Generalize quantize_fns for simpler FP16 handling * Remove call to ggml_cuda_mul_mat_get_wsize * ci : disable FMA for mac os actions --------- Co-authored-by: Georgi Gerganov --- .github/workflows/build.yml | 3 +- examples/quantize-stats/quantize-stats.cpp | 14 +- ggml.c | 588 ++++----------------- ggml.h | 31 +- llama.cpp | 10 +- pocs/vdot/q8dot.cpp | 6 +- pocs/vdot/vdot.cpp | 13 +- tests/test-quantize-fns.cpp | 30 +- tests/test-quantize-perf.cpp | 25 +- 9 files changed, 172 insertions(+), 548 deletions(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index aec43bd92..12481e8be 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -137,9 +137,10 @@ jobs: - name: Build id: cmake_build run: | + sysctl -a mkdir build cd build - cmake -DLLAMA_AVX2=OFF .. + cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF .. cmake --build . --config Release - name: Test diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 9cea472de..6aa06ec8f 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -147,7 +147,7 @@ void test_roundtrip_on_chunk( const ggml_tensor * layer, int64_t offset, int64_t chunk_size, - const quantize_fns_t & qfns, + const ggml_type_traits_t & qfns, bool use_reference, float * input_scratch, char * quantized_scratch, @@ -163,11 +163,11 @@ void test_roundtrip_on_chunk( } if (use_reference) { - qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size); + qfns.from_float_reference(input_scratch, quantized_scratch, chunk_size); } else { - qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size); + qfns.from_float(input_scratch, quantized_scratch, chunk_size); } - qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size); + qfns.to_float(quantized_scratch, output_scratch, chunk_size); update_error_stats(chunk_size, input_scratch, output_scratch, stats); } @@ -177,7 +177,7 @@ void test_roundtrip_on_chunk( void test_roundtrip_on_layer( std::string & name, bool print_layer_stats, - const quantize_fns_t & qfns, + const ggml_type_traits_t & qfns, bool use_reference, const ggml_tensor * layer, std::vector & input_scratch, @@ -388,8 +388,8 @@ int main(int argc, char ** argv) { if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) { continue; } - quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); - if (qfns.quantize_row_q && qfns.dequantize_row_q) { + ggml_type_traits_t qfns = ggml_internal_get_type_traits(type); + if (qfns.from_float && qfns.to_float) { if (params.verbose) { printf("testing %s ...\n", ggml_type_name(type)); } diff --git a/ggml.c b/ggml.c index 88cbed7d5..635c32eb5 100644 --- a/ggml.c +++ b/ggml.c @@ -481,14 +481,14 @@ ggml_fp16_t ggml_fp32_to_fp16(float x) { return GGML_FP32_TO_FP16(x); } -void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) { - for (size_t i = 0; i < n; i++) { +void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) { + for (int i = 0; i < n; i++) { y[i] = GGML_FP16_TO_FP32(x[i]); } } -void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) { - size_t i = 0; +void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) { + int i = 0; #if defined(__F16C__) for (; i + 7 < n; i += 8) { __m256 x_vec = _mm256_loadu_ps(x + i); @@ -1627,109 +1627,112 @@ static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, in } } +static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y); +static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y); static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); -static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = { +static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { + [GGML_TYPE_F32] = { + .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32, + .vec_dot_type = GGML_TYPE_F32, + }, + [GGML_TYPE_F16] = { + .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row, + .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row, + .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row, + .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16, + .vec_dot_type = GGML_TYPE_F16, + }, [GGML_TYPE_Q4_0] = { - .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0, - .quantize_row_q = quantize_row_q4_0, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference, - .quantize_row_q_dot = quantize_row_q8_0, - .vec_dot_q = ggml_vec_dot_q4_0_q8_0, + .to_float = (ggml_to_float_t) dequantize_row_q4_0, + .from_float = quantize_row_q4_0, + .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference, + .vec_dot = ggml_vec_dot_q4_0_q8_0, .vec_dot_type = GGML_TYPE_Q8_0, }, [GGML_TYPE_Q4_1] = { - .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1, - .quantize_row_q = quantize_row_q4_1, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference, - .quantize_row_q_dot = quantize_row_q8_1, - .vec_dot_q = ggml_vec_dot_q4_1_q8_1, + .to_float = (ggml_to_float_t) dequantize_row_q4_1, + .from_float = quantize_row_q4_1, + .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference, + .vec_dot = ggml_vec_dot_q4_1_q8_1, .vec_dot_type = GGML_TYPE_Q8_1, }, [GGML_TYPE_Q5_0] = { - .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0, - .quantize_row_q = quantize_row_q5_0, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference, - .quantize_row_q_dot = quantize_row_q8_0, - .vec_dot_q = ggml_vec_dot_q5_0_q8_0, + .to_float = (ggml_to_float_t) dequantize_row_q5_0, + .from_float = quantize_row_q5_0, + .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference, + .vec_dot = ggml_vec_dot_q5_0_q8_0, .vec_dot_type = GGML_TYPE_Q8_0, }, [GGML_TYPE_Q5_1] = { - .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1, - .quantize_row_q = quantize_row_q5_1, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference, - .quantize_row_q_dot = quantize_row_q8_1, - .vec_dot_q = ggml_vec_dot_q5_1_q8_1, + .to_float = (ggml_to_float_t) dequantize_row_q5_1, + .from_float = quantize_row_q5_1, + .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference, + .vec_dot = ggml_vec_dot_q5_1_q8_1, .vec_dot_type = GGML_TYPE_Q8_1, }, [GGML_TYPE_Q8_0] = { - .dequantize_row_q = dequantize_row_q8_0, - .quantize_row_q = quantize_row_q8_0, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference, - .quantize_row_q_dot = quantize_row_q8_0, - .vec_dot_q = ggml_vec_dot_q8_0_q8_0, + .to_float = dequantize_row_q8_0, + .from_float = quantize_row_q8_0, + .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference, + .vec_dot = ggml_vec_dot_q8_0_q8_0, .vec_dot_type = GGML_TYPE_Q8_0, }, [GGML_TYPE_Q8_1] = { - .dequantize_row_q = NULL, // TODO - .quantize_row_q = quantize_row_q8_1, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference, - .quantize_row_q_dot = quantize_row_q8_1, - .vec_dot_q = NULL, // TODO + .from_float = quantize_row_q8_1, + .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference, .vec_dot_type = GGML_TYPE_Q8_1, }, #ifdef GGML_USE_K_QUANTS [GGML_TYPE_Q2_K] = { - .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K, - .quantize_row_q = quantize_row_q2_K, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference, - .quantize_row_q_dot = quantize_row_q8_K, - .vec_dot_q = ggml_vec_dot_q2_K_q8_K, + .to_float = (ggml_to_float_t) dequantize_row_q2_K, + .from_float = quantize_row_q2_K, + .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference, + .vec_dot = ggml_vec_dot_q2_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, }, [GGML_TYPE_Q3_K] = { - .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K, - .quantize_row_q = quantize_row_q3_K, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference, - .quantize_row_q_dot = quantize_row_q8_K, - .vec_dot_q = ggml_vec_dot_q3_K_q8_K, + .to_float = (ggml_to_float_t) dequantize_row_q3_K, + .from_float = quantize_row_q3_K, + .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference, + .vec_dot = ggml_vec_dot_q3_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, }, [GGML_TYPE_Q4_K] = { - .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K, - .quantize_row_q = quantize_row_q4_K, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference, - .quantize_row_q_dot = quantize_row_q8_K, - .vec_dot_q = ggml_vec_dot_q4_K_q8_K, + .to_float = (ggml_to_float_t) dequantize_row_q4_K, + .from_float = quantize_row_q4_K, + .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference, + .vec_dot = ggml_vec_dot_q4_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, }, [GGML_TYPE_Q5_K] = { - .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K, - .quantize_row_q = quantize_row_q5_K, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference, - .quantize_row_q_dot = quantize_row_q8_K, - .vec_dot_q = ggml_vec_dot_q5_K_q8_K, + .to_float = (ggml_to_float_t) dequantize_row_q5_K, + .from_float = quantize_row_q5_K, + .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference, + .vec_dot = ggml_vec_dot_q5_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, }, [GGML_TYPE_Q6_K] = { - .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K, - .quantize_row_q = quantize_row_q6_K, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference, - .quantize_row_q_dot = quantize_row_q8_K, - .vec_dot_q = ggml_vec_dot_q6_K_q8_K, + .to_float = (ggml_to_float_t) dequantize_row_q6_K, + .from_float = quantize_row_q6_K, + .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference, + .vec_dot = ggml_vec_dot_q6_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, }, + [GGML_TYPE_Q8_K] = { + .from_float = quantize_row_q8_K, + } #endif }; // For internal test use -quantize_fns_t ggml_internal_get_quantize_fn(size_t i) { +ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) { GGML_ASSERT(i < GGML_TYPE_COUNT); - return quantize_fns[i]; + return type_traits[i]; } @@ -2275,7 +2278,7 @@ inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; } inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; } -inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) { +static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) { #ifdef GGML_SIMD float sumf = 0.0f; const int np = (n & ~(GGML_F32_STEP - 1)); @@ -2312,7 +2315,7 @@ inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float *s = sumf; } -inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) { +static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) { ggml_float sumf = 0.0; #if defined(GGML_SIMD) @@ -7825,8 +7828,8 @@ static void ggml_compute_forward_dup_f16( id += ne00 * (ne01 - ir1); } } - } else if (ggml_is_quantized(dst->type)) { - quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q; + } else if (type_traits[dst->type].from_float) { + ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float; float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; size_t id = 0; @@ -8078,26 +8081,8 @@ static void ggml_compute_forward_dup_f32( id += rs * (ne01 - ir1); } } - } else if (dst->type == GGML_TYPE_F16) { - size_t id = 0; - ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; - - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - id += ne00 * ir0; - for (int i01 = ir0; i01 < ir1; i01++) { - for (int i00 = 0; i00 < ne00; i00++) { - const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); - - dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); - id++; - } - } - id += ne00 * (ne01 - ir1); - } - } - } else if (ggml_is_quantized(dst->type)) { - quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q; + } else if (type_traits[dst->type].from_float) { + ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float; size_t id = 0; size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]); @@ -8503,8 +8488,8 @@ static void ggml_compute_forward_add_q_f32( const int nth = params->nth; const enum ggml_type type = src0->type; - dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; - quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q; + ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; + ggml_from_float_t const quantize_row_q = type_traits[type].from_float; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); @@ -8777,8 +8762,8 @@ static void ggml_compute_forward_add1_q_f32( GGML_TENSOR_UNARY_OP_LOCALS; const enum ggml_type type = src0->type; - dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; - quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q; + ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; + ggml_from_float_t const quantize_row_q = type_traits[type].from_float; // we don't support permuted src0 GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); @@ -10578,317 +10563,7 @@ static bool ggml_compute_forward_mul_mat_use_blas( } #endif -static void ggml_compute_forward_mul_mat_f32( - const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - struct ggml_tensor * dst) { - int64_t t0 = ggml_perf_time_us(); - UNUSED(t0); - - GGML_TENSOR_BINARY_OP_LOCALS; - - const int ith = params->ith; - const int nth = params->nth; - - assert(ne02 == ne12); - assert(ne03 == ne13); - assert(ne2 == ne12); - assert(ne3 == ne13); - - // we don't support permuted src0 or src1 - assert(nb00 == sizeof(float)); - assert(nb10 == sizeof(float)); - - // dst cannot be transposed or permuted - assert(nb0 == sizeof(float)); - assert(nb0 <= nb1); - assert(nb1 <= nb2); - assert(nb2 <= nb3); - - assert(ne0 == ne01); - assert(ne1 == ne11); - assert(ne2 == ne02); - assert(ne3 == ne03); - - // nb01 >= nb00 - src0 is not transposed - // compute by src0 rows - -#if defined(GGML_USE_CLBLAST) - if (ggml_cl_can_mul_mat(src0, src1, dst)) { - if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { - ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); - } - return; - } -#endif - -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { - if (params->ith != 0) { - return; - } - - if (params->type == GGML_TASK_INIT) { - return; - } - - if (params->type == GGML_TASK_FINALIZE) { - return; - } - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); - const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - - cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, - ne11, ne01, ne10, - 1.0f, y, ne10, - x, ne00, - 0.0f, d, ne01); - } - } - //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); - - return; - } -#endif - - if (params->type == GGML_TASK_INIT) { - return; - } - - if (params->type == GGML_TASK_FINALIZE) { - return; - } - - // parallelize by src0 rows using ggml_vec_dot_f32 - - // total rows in src0 - const int nr = ne01*ne02*ne03; - - // rows per thread - const int dr = (nr + nth - 1)/nth; - - // row range for this thread - const int ir0 = dr*ith; - const int ir1 = MIN(ir0 + dr, nr); - - for (int ir = ir0; ir < ir1; ++ir) { - // src0 indices - const int i03 = ir/(ne02*ne01); - const int i02 = (ir - i03*ne02*ne01)/ne01; - const int i01 = (ir - i03*ne02*ne01 - i02*ne01); - - for (int64_t ic = 0; ic < ne11; ++ic) { - // src1 indices - const int i13 = i03; - const int i12 = i02; - const int i11 = ic; - - // dst indices - const int i0 = i01; - const int i1 = i11; - const int i2 = i02; - const int i3 = i03; - - ggml_vec_dot_f32(ne00, - (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), - (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)), - (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13))); - } - } - - //int64_t t1 = ggml_perf_time_us(); - //static int64_t acc = 0; - //acc += t1 - t0; - //if (t1 - t0 > 10) { - // printf("\n"); - // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); - // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); - // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); - // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); - - // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); - //} -} - -static void ggml_compute_forward_mul_mat_f16_f32( - const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - struct ggml_tensor * dst) { - int64_t t0 = ggml_perf_time_us(); - UNUSED(t0); - - GGML_TENSOR_BINARY_OP_LOCALS; - - //const int64_t ne = ne0*ne1*ne2*ne3; - - const int ith = params->ith; - const int nth = params->nth; - - GGML_ASSERT(ne02 == ne12); - GGML_ASSERT(ne03 == ne13); - GGML_ASSERT(ne2 == ne12); - GGML_ASSERT(ne3 == ne13); - - // TODO: we don't support permuted src0 - GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); - - // dst cannot be transposed or permuted - GGML_ASSERT(nb0 == sizeof(float)); - GGML_ASSERT(nb0 <= nb1); - GGML_ASSERT(nb1 <= nb2); - GGML_ASSERT(nb2 <= nb3); - - GGML_ASSERT(ne0 == ne01); - GGML_ASSERT(ne1 == ne11); - GGML_ASSERT(ne2 == ne02); - GGML_ASSERT(ne3 == ne03); - - // nb01 >= nb00 - src0 is not transposed - // compute by src0 rows - -#if defined(GGML_USE_CLBLAST) - if (ggml_cl_can_mul_mat(src0, src1, dst)) { - if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { - ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); - } - return; - } -#endif - -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { - GGML_ASSERT(nb10 == sizeof(float)); - - if (params->ith != 0) { - return; - } - - if (params->type == GGML_TASK_INIT) { - return; - } - - if (params->type == GGML_TASK_FINALIZE) { - return; - } - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - float * const wdata = params->wdata; - { - size_t id = 0; - for (int64_t i01 = 0; i01 < ne01; ++i01) { - for (int64_t i00 = 0; i00 < ne00; ++i00) { - wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00)); - } - } - - assert(id*sizeof(float) <= params->wsize); - } - - const float * x = wdata; - const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); - - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - - // zT = y * xT - cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, - ne11, ne01, ne10, - 1.0f, y, ne10, - x, ne00, - 0.0f, d, ne01); - } - } - - /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/ - - return; - } -#endif - - if (params->type == GGML_TASK_INIT) { - ggml_fp16_t * const wdata = params->wdata; - - size_t id = 0; - for (int64_t i13 = 0; i13 < ne13; ++i13) { - for (int64_t i12 = 0; i12 < ne12; ++i12) { - for (int64_t i11 = 0; i11 < ne11; ++i11) { - for (int64_t i10 = 0; i10 < ne10; ++i10) { - wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10)); - } - } - } - } - - GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize); - - return; - } - - if (params->type == GGML_TASK_FINALIZE) { - return; - } - - // fp16 -> half the size, so divide by 2 - // TODO: do not support transposed src1 - assert(nb10/2 == sizeof(ggml_fp16_t)); - - // parallelize by src0 rows using ggml_vec_dot_f16 - - // total rows in src0 - const int nr = ne01*ne02*ne03; - - // rows per thread - const int dr = (nr + nth - 1)/nth; - - // row range for this thread - const int ir0 = dr*ith; - const int ir1 = MIN(ir0 + dr, nr); - - ggml_fp16_t * wdata = params->wdata; - - for (int ir = ir0; ir < ir1; ++ir) { - // src0 indices - const int i03 = ir/(ne02*ne01); - const int i02 = (ir - i03*ne02*ne01)/ne01; - const int i01 = (ir - i03*ne02*ne01 - i02*ne01); - - const int i13 = i03; - const int i12 = i02; - - const int i0 = i01; - const int i2 = i02; - const int i3 = i03; - - ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); - ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00; - - float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3)); - - for (int64_t ic = 0; ic < ne11; ++ic) { - ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00); - } - } - - //int64_t t1 = ggml_time_us(); - //static int64_t acc = 0; - //acc += t1 - t0; - //if (t1 - t0 > 10) { - // printf("\n"); - // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); - // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); - // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); - - // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); - //} -} - -static void ggml_compute_forward_mul_mat_q_f32( +static void ggml_compute_forward_mul_mat( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -10907,9 +10582,10 @@ static void ggml_compute_forward_mul_mat_q_f32( GGML_ASSERT(ne3 == ne13); const enum ggml_type type = src0->type; - quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot; - vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q; - enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type; + + ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot; + enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type; + ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); @@ -10952,27 +10628,27 @@ static void ggml_compute_forward_mul_mat_q_f32( return; } - float * const wdata = params->wdata; - dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; - for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { + const void * x = (char *) src0->data + i03*nb03 + i02*nb02; const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - { + if (type != GGML_TYPE_F32) { + float * const wdata = params->wdata; + ggml_to_float_t const to_float = type_traits[type].to_float; + size_t id = 0; for (int64_t i01 = 0; i01 < ne01; ++i01) { - dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00); + to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00); id += ne00; } assert(id*sizeof(float) <= params->wsize); + x = wdata; } - const float * x = wdata; - cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, @@ -10988,14 +10664,16 @@ static void ggml_compute_forward_mul_mat_q_f32( #endif if (params->type == GGML_TASK_INIT) { - char * wdata = params->wdata; - const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; + if (src1->type != vec_dot_type) { + char * wdata = params->wdata; + const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; - for (int64_t i13 = 0; i13 < ne13; ++i13) { - for (int64_t i12 = 0; i12 < ne12; ++i12) { - for (int64_t i11 = 0; i11 < ne11; ++i11) { - quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); - wdata += row_size; + for (int64_t i13 = 0; i13 < ne13; ++i13) { + for (int64_t i12 = 0; i12 < ne12; ++i12) { + for (int64_t i11 = 0; i11 < ne11; ++i11) { + from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); + wdata += row_size; + } } } } @@ -11019,7 +10697,7 @@ static void ggml_compute_forward_mul_mat_q_f32( const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); - void * wdata = params->wdata; + void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; for (int ir = ir0; ir < ir1; ++ir) { @@ -11043,7 +10721,7 @@ static void ggml_compute_forward_mul_mat_q_f32( assert(ne00 % 32 == 0); for (int64_t ic = 0; ic < ne11; ++ic) { - vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size)); + vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size)); } } @@ -11060,40 +10738,6 @@ static void ggml_compute_forward_mul_mat_q_f32( //} } -static void ggml_compute_forward_mul_mat( - const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - struct ggml_tensor * dst) { - switch (src0->type) { - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q5_0: - case GGML_TYPE_Q5_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_Q8_1: - case GGML_TYPE_Q2_K: - case GGML_TYPE_Q3_K: - case GGML_TYPE_Q4_K: - case GGML_TYPE_Q5_K: - case GGML_TYPE_Q6_K: - { - ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst); - } break; - case GGML_TYPE_F16: - { - ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst); - } break; - case GGML_TYPE_F32: - { - ggml_compute_forward_mul_mat_f32(params, src0, src1, dst); - } break; - default: - { - GGML_ASSERT(false); - } break; - } -} // ggml_compute_forward_out_prod @@ -11483,7 +11127,7 @@ static void ggml_compute_forward_get_rows_q( const int nc = src0->ne[0]; const int nr = ggml_nelements(src1); const enum ggml_type type = src0->type; - dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; + ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; assert( dst->ne[0] == nc); assert( dst->ne[1] == nr); @@ -16529,6 +16173,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks); size_t cur = 0; + const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type; #if defined(GGML_USE_CUBLAS) if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) { @@ -16544,37 +16189,18 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) } else #endif - if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) { #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { - node->n_tasks = 1; // TODO: this actually is doing nothing - // the threads are still spinning + if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { + node->n_tasks = 1; // TODO: this actually is doing nothing + // the threads are still spinning + if (node->src0->type != GGML_TYPE_F32) { // here we need memory just for single 2D matrix from src0 cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); - } else { - cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1); } -#else - cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1); + } else #endif - } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) { - cur = 0; -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { - node->n_tasks = 1; - } -#endif - } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { - node->n_tasks = 1; - cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); - } else -#endif - { - const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type; - cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q]; - } + if (node->src1->type != vec_dot_type) { + cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type]; } else { GGML_ASSERT(false); } diff --git a/ggml.h b/ggml.h index 0af96c76b..24ca8ae22 100644 --- a/ggml.h +++ b/ggml.h @@ -250,8 +250,8 @@ extern "C" { GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x); GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x); - GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n); - GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n); + GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n); + GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n); struct ggml_object; struct ggml_context; @@ -1514,26 +1514,19 @@ extern "C" { // Internal types and functions exposed for tests and benchmarks // -#ifdef __cplusplus - // restrict not standard in C++ -#define GGML_RESTRICT -#else -#define GGML_RESTRICT restrict -#endif - typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); - typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); - typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y); + typedef void (*ggml_to_float_t)(const void * x, float * y, int k); + typedef void (*ggml_from_float_t)(const float * x, void * y, int k); + typedef void (*ggml_vec_dot_t)(const int n, float * s, const void * x, const void * y); typedef struct { - dequantize_row_q_t dequantize_row_q; - quantize_row_q_t quantize_row_q; - quantize_row_q_t quantize_row_q_reference; - quantize_row_q_t quantize_row_q_dot; - vec_dot_q_t vec_dot_q; - enum ggml_type vec_dot_type; - } quantize_fns_t; + ggml_to_float_t to_float; + ggml_from_float_t from_float; + ggml_from_float_t from_float_reference; + ggml_vec_dot_t vec_dot; + enum ggml_type vec_dot_type; + } ggml_type_traits_t; - quantize_fns_t ggml_internal_get_quantize_fn(size_t i); + ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i); #ifdef __cplusplus } diff --git a/llama.cpp b/llama.cpp index e04fbfc0a..7a866cb79 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2257,10 +2257,10 @@ static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llam } float * f32_output = (float *) output.addr; - quantize_fns_t qtype; + ggml_type_traits_t qtype; if (ggml_is_quantized(tensor.type)) { - qtype = ggml_internal_get_quantize_fn(tensor.type); - if (qtype.dequantize_row_q == NULL) { + qtype = ggml_internal_get_type_traits(tensor.type); + if (qtype.to_float == NULL) { throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type))); } } else if (tensor.type != GGML_TYPE_F16) { @@ -2271,7 +2271,7 @@ static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llam if (tensor.type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements); } else if (ggml_is_quantized(tensor.type)) { - qtype.dequantize_row_q(tensor.data, f32_output, nelements); + qtype.to_float(tensor.data, f32_output, nelements); } else { LLAMA_ASSERT(false); // unreachable } @@ -2296,7 +2296,7 @@ static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llam if (typ == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); } else { - qtype.dequantize_row_q(inbuf, outbuf, nels); + qtype.to_float(inbuf, outbuf, nels); } }; workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems)); diff --git a/pocs/vdot/q8dot.cpp b/pocs/vdot/q8dot.cpp index 5748c8ac2..4e0e02357 100644 --- a/pocs/vdot/q8dot.cpp +++ b/pocs/vdot/q8dot.cpp @@ -136,7 +136,7 @@ int main(int argc, char** argv) { auto ggml_type = type == 0 ? GGML_TYPE_Q4_0 : GGML_TYPE_Q4_1; - auto funcs = ggml_internal_get_quantize_fn(ggml_type); + auto funcs = ggml_internal_get_type_traits(ggml_type); Stat simple, ggml; @@ -156,8 +156,8 @@ int main(int argc, char** argv) { t1 = std::chrono::high_resolution_clock::now(); float fs; - if (type == 0) funcs.vec_dot_q(kVecSize * QK4_1, &fs, x40.data(), y.data()); - else funcs.vec_dot_q(kVecSize * QK4_1, &fs, x41.data(), y.data()); + if (type == 0) funcs.vec_dot(kVecSize * QK4_1, &fs, x40.data(), y.data()); + else funcs.vec_dot(kVecSize * QK4_1, &fs, x41.data(), y.data()); t2 = std::chrono::high_resolution_clock::now(); t = 1e-3*std::chrono::duration_cast(t2-t1).count(); if (iloop > 3) ggml.addResult(fs, t); diff --git a/pocs/vdot/vdot.cpp b/pocs/vdot/vdot.cpp index 7b18090d6..48758cda8 100644 --- a/pocs/vdot/vdot.cpp +++ b/pocs/vdot/vdot.cpp @@ -235,7 +235,7 @@ int main(int argc, char** argv) { int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64); int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64); - auto funcs = useQ4_1 ? ggml_internal_get_quantize_fn(GGML_TYPE_Q4_1) : ggml_internal_get_quantize_fn(GGML_TYPE_Q4_0); + auto funcs = useQ4_1 ? ggml_internal_get_type_traits(GGML_TYPE_Q4_1) : ggml_internal_get_type_traits(GGML_TYPE_Q4_0); std::vector q40; std::vector q41; @@ -261,9 +261,9 @@ int main(int argc, char** argv) { // Note, we do not include this in the timing as in practical application // we already have the quantized model weights. if (useQ4_1) { - funcs.quantize_row_q(x1.data(), q41.data(), kVecSize); + funcs.from_float(x1.data(), q41.data(), kVecSize); } else { - funcs.quantize_row_q(x1.data(), q40.data(), kVecSize); + funcs.from_float(x1.data(), q40.data(), kVecSize); } // Now measure time the dot product needs using the "scalar" version above @@ -282,9 +282,10 @@ int main(int argc, char** argv) { dot_q4_q8(kVecSize, &result, q40.data(), q8.data()); } else { - funcs.quantize_row_q_dot(y1.data(), q8.data(), kVecSize); - if (useQ4_1) funcs.vec_dot_q(kVecSize, &result, q41.data(), q8.data()); - else funcs.vec_dot_q(kVecSize, &result, q40.data(), q8.data()); + auto vdot = ggml_internal_get_type_traits(funcs.vec_dot_type); + vdot.from_float(y1.data(), q8.data(), kVecSize); + if (useQ4_1) funcs.vec_dot(kVecSize, &result, q41.data(), q8.data()); + else funcs.vec_dot(kVecSize, &result, q40.data(), q8.data()); } sumq += result; t2 = std::chrono::high_resolution_clock::now(); diff --git a/tests/test-quantize-fns.cpp b/tests/test-quantize-fns.cpp index c40f1b29c..8d3c162d2 100644 --- a/tests/test-quantize-fns.cpp +++ b/tests/test-quantize-fns.cpp @@ -40,26 +40,26 @@ float array_rmse(const float * a1, const float * a2, size_t n) { } // Total quantization error on test data -float total_quantization_error(quantize_fns_t & qfns, size_t test_size, const float * test_data) { +float total_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) { std::vector tmp_q(2*test_size); std::vector tmp_out(test_size); - qfns.quantize_row_q(test_data, tmp_q.data(), test_size); - qfns.dequantize_row_q(tmp_q.data(), tmp_out.data(), test_size); + qfns.from_float(test_data, tmp_q.data(), test_size); + qfns.to_float(tmp_q.data(), tmp_out.data(), test_size); return array_rmse(test_data, tmp_out.data(), test_size); } // Total quantization error on test data -float reference_quantization_error(quantize_fns_t & qfns, size_t test_size, const float * test_data) { +float reference_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) { std::vector tmp_q(2*test_size); std::vector tmp_out(test_size); std::vector tmp_out_ref(test_size); - qfns.quantize_row_q(test_data, tmp_q.data(), test_size); - qfns.dequantize_row_q(tmp_q.data(), tmp_out.data(), test_size); + qfns.from_float(test_data, tmp_q.data(), test_size); + qfns.to_float(tmp_q.data(), tmp_out.data(), test_size); - qfns.quantize_row_q_reference(test_data, tmp_q.data(), test_size); - qfns.dequantize_row_q(tmp_q.data(), tmp_out_ref.data(), test_size); + qfns.from_float_reference(test_data, tmp_q.data(), test_size); + qfns.to_float(tmp_q.data(), tmp_out_ref.data(), test_size); return array_rmse(tmp_out.data(), tmp_out_ref.data(), test_size); } @@ -73,15 +73,17 @@ float dot_product(const float * a1, const float * a2, size_t test_size) { } // Total dot product error -float dot_product_error(quantize_fns_t & qfns, size_t test_size, const float * test_data1, const float *test_data2) { +float dot_product_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data1, const float *test_data2) { std::vector tmp_q1(2*test_size); std::vector tmp_q2(2*test_size); - qfns.quantize_row_q (test_data1, tmp_q1.data(), test_size); - qfns.quantize_row_q_dot(test_data2, tmp_q2.data(), test_size); + auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type); + + qfns.from_float(test_data1, tmp_q1.data(), test_size); + vdot.from_float(test_data2, tmp_q2.data(), test_size); float result = INFINITY; - qfns.vec_dot_q(test_size, &result, tmp_q1.data(), tmp_q2.data()); + qfns.vec_dot(test_size, &result, tmp_q1.data(), tmp_q2.data()); const float dot_ref = dot_product(test_data1, test_data2, test_size); @@ -123,9 +125,9 @@ int main(int argc, char * argv[]) { for (int i = 0; i < GGML_TYPE_COUNT; i++) { ggml_type type = (ggml_type) i; - quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); + ggml_type_traits_t qfns = ggml_internal_get_type_traits(type); - if (qfns.quantize_row_q && qfns.dequantize_row_q) { + if (qfns.from_float && qfns.to_float) { const float total_error = total_quantization_error(qfns, test_size, test_data.data()); const float max_quantization_error = type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS : diff --git a/tests/test-quantize-perf.cpp b/tests/test-quantize-perf.cpp index c0e361e92..0bb9537f6 100644 --- a/tests/test-quantize-perf.cpp +++ b/tests/test-quantize-perf.cpp @@ -123,9 +123,9 @@ void usage(char * argv[]) { printf(" --type TYPE set test type as"); for (int i = 0; i < GGML_TYPE_COUNT; i++) { ggml_type type = (ggml_type) i; - quantize_fns_t qfns = ggml_internal_get_quantize_fn(type); + ggml_type_traits_t qfns = ggml_internal_get_type_traits(type); if (ggml_type_name(type) != NULL) { - if (qfns.quantize_row_q && qfns.dequantize_row_q) { + if (qfns.from_float && qfns.to_float) { printf(" %s", ggml_type_name(type)); } } @@ -271,12 +271,12 @@ int main(int argc, char * argv[]) { for (int i = 0; i < GGML_TYPE_COUNT; i++) { ggml_type type = (ggml_type) i; - quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); + ggml_type_traits_t qfns = ggml_internal_get_type_traits(type); if (!params.include_types.empty() && ggml_type_name(type) && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) { continue; } - if (qfns.quantize_row_q && qfns.dequantize_row_q) { + if (qfns.from_float && qfns.to_float) { printf("%s\n", ggml_type_name(type)); if (params.op_quantize_row_q_reference) { @@ -284,7 +284,7 @@ int main(int argc, char * argv[]) { for (size_t size : params.test_sizes) { printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); auto quantize_fn = [&](void ) { - qfns.quantize_row_q_reference(test_data1, test_q1, size); + qfns.from_float_reference(test_data1, test_q1, size); return test_q1[0]; }; size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); @@ -298,7 +298,7 @@ int main(int argc, char * argv[]) { for (size_t size : params.test_sizes) { printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); auto quantize_fn = [&](void ) { - qfns.quantize_row_q(test_data1, test_q1, size); + qfns.from_float(test_data1, test_q1, size); return test_q1[0]; }; size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); @@ -309,11 +309,11 @@ int main(int argc, char * argv[]) { if (params.op_dequantize_row_q) { printf(" dequantize_row_q\n"); - qfns.quantize_row_q(test_data1, test_q1, largest); + qfns.from_float(test_data1, test_q1, largest); for (size_t size : params.test_sizes) { printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); auto quantize_fn = [&](void ) { - qfns.dequantize_row_q(test_q1, test_out, size); + qfns.to_float(test_q1, test_out, size); return test_out[0]; }; size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); @@ -327,7 +327,8 @@ int main(int argc, char * argv[]) { for (size_t size : params.test_sizes) { printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); auto quantize_fn = [&](void ) { - qfns.quantize_row_q_dot(test_data1, test_q1, size); + auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type); + vdot.from_float(test_data1, test_q1, size); return test_q1[0]; }; size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); @@ -338,13 +339,13 @@ int main(int argc, char * argv[]) { if (params.op_vec_dot_q) { printf(" vec_dot_q\n"); - qfns.quantize_row_q(test_data1, test_q1, largest); - qfns.quantize_row_q(test_data2, test_q2, largest); + qfns.from_float(test_data1, test_q1, largest); + qfns.from_float(test_data2, test_q2, largest); for (size_t size : params.test_sizes) { printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); auto quantize_fn = [&](void ) { float result; - qfns.vec_dot_q(size, &result, test_q1, test_q2); + qfns.vec_dot(size, &result, test_q1, test_q2); return result; }; size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); From 1b6efeab829f3eeda5b39bd47624bb60b3531b88 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 5 Jul 2023 20:20:05 +0300 Subject: [PATCH 132/135] tests : fix test-grad0 --- scripts/sync-ggml.sh | 5 ++++- tests/test-grad0.c | 2 +- 2 files changed, 5 insertions(+), 2 deletions(-) diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh index 574e5180b..02ea6ec15 100755 --- a/scripts/sync-ggml.sh +++ b/scripts/sync-ggml.sh @@ -8,4 +8,7 @@ cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal -cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h +cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h + +cp -rpv ../ggml/tests/test-opt.c ./tests/test-opt.c +cp -rpv ../ggml/tests/test-grad0.c ./tests/test-grad0.c diff --git a/tests/test-grad0.c b/tests/test-grad0.c index b5a499c1d..a3e25214b 100644 --- a/tests/test-grad0.c +++ b/tests/test-grad0.c @@ -1154,7 +1154,7 @@ int main(int argc, const char ** argv) { continue; } - struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], n_past, n_rot, mode)); + struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], n_past, n_rot, mode, 0)); GGML_PRINT_DEBUG("rope: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode); check_gradient("rope", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY); From ec326d350c72afd23709a409944728a607188cc0 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 5 Jul 2023 20:44:11 +0300 Subject: [PATCH 133/135] ggml : fix bug introduced in #1237 --- ggml.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml.c b/ggml.c index 635c32eb5..d257c3d65 100644 --- a/ggml.c +++ b/ggml.c @@ -16202,7 +16202,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) if (node->src1->type != vec_dot_type) { cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type]; } else { - GGML_ASSERT(false); + cur = 0; } work_size = MAX(work_size, cur); From 983b555e9ddb36703cee4d22642afe958de093b7 Mon Sep 17 00:00:00 2001 From: Jesse Jojo Johnson Date: Wed, 5 Jul 2023 18:03:19 +0000 Subject: [PATCH 134/135] Update Server Instructions (#2113) * Update server instructions for web front end * Update server README * Remove duplicate OAI instructions * Fix duplicate text --------- Co-authored-by: Jesse Johnson --- examples/server/README.md | 26 +++++++++++++++++++++++++- 1 file changed, 25 insertions(+), 1 deletion(-) diff --git a/examples/server/README.md b/examples/server/README.md index 160614ba8..037412d76 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -21,7 +21,7 @@ Command line options: - `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`. - `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`. - `--port`: Set the port to listen. Default: `8080`. -- `--public`: path from which to serve static files (default examples/server/public) +- `--path`: path from which to serve static files (default examples/server/public) - `--embedding`: Enable embedding extraction, Default: disabled. ## Build @@ -207,3 +207,27 @@ openai.api_base = "http://:port" ``` Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API + +### Extending the Web Front End + +The default location for the static files is `examples/server/public`. You can extend the front end by running the server binary with `--path` set to `./your-directory` and importing `/completion.js` to get access to the llamaComplete() method. A simple example is below: + +``` + + +
    +      
    +    
    + + +``` From 31cfbb1013a482e89c72146e2063ac4362becae7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Tobias=20L=C3=BCtke?= Date: Wed, 5 Jul 2023 16:51:13 -0400 Subject: [PATCH 135/135] Expose generation timings from server & update completions.js (#2116) * use javascript generators as much cleaner API Also add ways to access completion as promise and EventSource * export llama_timings as struct and expose them in server * update readme, update baked includes * llama : uniform variable names + struct init --------- Co-authored-by: Georgi Gerganov --- examples/server/README.md | 35 +- examples/server/completion.js.hpp | 548 ++++++--- examples/server/deps.sh | 4 - examples/server/index.html.hpp | 1581 +++++++++++++------------- examples/server/public/completion.js | 119 +- examples/server/public/index.html | 129 ++- examples/server/server.cpp | 821 ++++++++----- llama.cpp | 32 +- llama.h | 15 + 9 files changed, 1921 insertions(+), 1363 deletions(-) diff --git a/examples/server/README.md b/examples/server/README.md index 037412d76..c5139c16b 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -26,20 +26,17 @@ Command line options: ## Build -Build llama.cpp with server from repository root with either make or CMake. +server is build alongside everything else from the root of the project - Using `make`: ```bash - LLAMA_BUILD_SERVER=1 make + make ``` - Using `CMake`: ```bash - mkdir build-server - cd build-server - cmake -DLLAMA_BUILD_SERVER=ON .. cmake --build . --config Release ``` @@ -208,24 +205,30 @@ openai.api_base = "http://:port" Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API -### Extending the Web Front End +### Extending or building alternative Web Front End -The default location for the static files is `examples/server/public`. You can extend the front end by running the server binary with `--path` set to `./your-directory` and importing `/completion.js` to get access to the llamaComplete() method. A simple example is below: +The default location for the static files is `examples/server/public`. You can extend the front end by running the server binary with `--path` set to `./your-directory` and importing `/completion.js` to get access to the llamaComplete() method. -``` +Read the documentation in `/completion.js` to see convenient ways to access llama. + +A simple example is below: + +```html
           
         
    diff --git a/examples/server/completion.js.hpp b/examples/server/completion.js.hpp index 002830cad..f399fb19a 100644 --- a/examples/server/completion.js.hpp +++ b/examples/server/completion.js.hpp @@ -7,187 +7,369 @@ unsigned char completion_js[] = { 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3a, 0x20, 0x30, 0x2e, 0x32, 0x2c, 0x0a, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x5b, 0x22, 0x3c, 0x2f, 0x73, 0x3e, 0x22, 0x5d, 0x0a, 0x7d, - 0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x54, 0x68, - 0x69, 0x73, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, - 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x73, 0x20, 0x74, 0x68, - 0x65, 0x20, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, - 0x20, 0x75, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x61, 0x20, 0x6c, 0x6c, 0x61, - 0x6d, 0x61, 0x20, 0x64, 0x69, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x61, 0x72, - 0x79, 0x2e, 0x0a, 0x20, 0x2a, 0x20, 0x40, 0x70, 0x61, 0x72, 0x61, 0x6d, - 0x20, 0x7b, 0x6f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x7d, 0x20, 0x70, 0x61, - 0x72, 0x61, 0x6d, 0x73, 0x20, 0x2d, 0x20, 0x54, 0x68, 0x65, 0x20, 0x70, - 0x61, 0x72, 0x61, 0x6d, 0x65, 0x74, 0x65, 0x72, 0x73, 0x20, 0x66, 0x6f, - 0x72, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, - 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, - 0x2e, 0x0a, 0x20, 0x2a, 0x20, 0x40, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x20, - 0x7b, 0x6f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x7d, 0x20, 0x63, 0x6f, 0x6e, - 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x2d, 0x20, 0x61, 0x6e, - 0x20, 0x69, 0x6e, 0x73, 0x74, 0x61, 0x6e, 0x63, 0x65, 0x20, 0x6f, 0x66, - 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x6f, - 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x69, 0x66, 0x20, 0x79, 0x6f, 0x75, 0x20, - 0x6e, 0x65, 0x65, 0x64, 0x20, 0x6f, 0x6e, 0x65, 0x2c, 0x20, 0x6f, 0x72, - 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x2e, 0x0a, 0x20, 0x2a, 0x20, 0x40, 0x70, - 0x61, 0x72, 0x61, 0x6d, 0x20, 0x7b, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, - 0x6f, 0x6e, 0x7d, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, - 0x20, 0x2d, 0x20, 0x54, 0x68, 0x65, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, - 0x61, 0x63, 0x6b, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, - 0x20, 0x74, 0x6f, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x20, 0x77, 0x68, 0x65, - 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, - 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x6e, 0x65, - 0x2e, 0x0a, 0x20, 0x2a, 0x20, 0x40, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, - 0x73, 0x20, 0x7b, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x7d, 0x20, 0x74, - 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, - 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x61, 0x73, 0x20, 0x61, 0x20, 0x73, - 0x74, 0x72, 0x69, 0x6e, 0x67, 0x2e, 0x20, 0x49, 0x64, 0x65, 0x61, 0x6c, - 0x6c, 0x79, 0x20, 0x69, 0x67, 0x6e, 0x6f, 0x72, 0x65, 0x64, 0x2c, 0x20, - 0x61, 0x6e, 0x64, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x67, 0x65, 0x74, 0x20, - 0x61, 0x74, 0x20, 0x69, 0x74, 0x20, 0x76, 0x69, 0x61, 0x20, 0x74, 0x68, - 0x65, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x2e, 0x0a, - 0x20, 0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, - 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, - 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, - 0x6e, 0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, - 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, - 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, - 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x63, 0x6f, - 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x29, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, - 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, 0x6f, - 0x72, 0x74, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, - 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, - 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, - 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, - 0x61, 0x75, 0x6c, 0x74, 0x73, 0x2c, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, - 0x72, 0x61, 0x6d, 0x73, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x2f, - 0x2f, 0x20, 0x77, 0x65, 0x20, 0x75, 0x73, 0x65, 0x20, 0x66, 0x65, 0x74, - 0x63, 0x68, 0x20, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x6c, 0x79, 0x20, - 0x68, 0x65, 0x72, 0x65, 0x20, 0x62, 0x65, 0x63, 0x61, 0x73, 0x75, 0x65, - 0x20, 0x74, 0x68, 0x65, 0x20, 0x62, 0x75, 0x69, 0x6c, 0x74, 0x20, 0x69, - 0x6e, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, - 0x53, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20, - 0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, - 0x50, 0x4f, 0x53, 0x54, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, - 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, - 0x22, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, - 0x22, 0x2c, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, - 0x68, 0x6f, 0x64, 0x3a, 0x20, 0x27, 0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, - 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, - 0x79, 0x28, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, - 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, - 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, - 0x70, 0x2d, 0x61, 0x6c, 0x69, 0x76, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x27, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, - 0x2d, 0x54, 0x79, 0x70, 0x65, 0x27, 0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, - 0x6c, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, - 0x6e, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x41, - 0x63, 0x63, 0x65, 0x70, 0x74, 0x27, 0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, - 0x74, 0x2f, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, - 0x61, 0x6d, 0x27, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x2c, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x3a, 0x20, 0x63, - 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x73, 0x69, - 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, - 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x61, - 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, - 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e, 0x67, 0x65, 0x74, 0x52, - 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x63, - 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, - 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54, 0x65, 0x78, 0x74, 0x44, - 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x0a, 0x20, - 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, - 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72, - 0x79, 0x20, 0x7b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, - 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, - 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, - 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, - 0x73, 0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, - 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, - 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, - 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, - 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, - 0x2f, 0x20, 0x73, 0x73, 0x65, 0x20, 0x61, 0x6e, 0x73, 0x77, 0x65, 0x72, - 0x73, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x66, 0x6f, 0x72, - 0x6d, 0x20, 0x6d, 0x75, 0x6c, 0x74, 0x69, 0x70, 0x6c, 0x65, 0x20, 0x6c, - 0x69, 0x6e, 0x65, 0x73, 0x20, 0x6f, 0x66, 0x3a, 0x20, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x5c, 0x6e, 0x20, 0x77, 0x69, 0x74, 0x68, 0x20, 0x64, 0x61, - 0x74, 0x61, 0x20, 0x61, 0x6c, 0x77, 0x61, 0x79, 0x73, 0x20, 0x70, 0x72, - 0x65, 0x73, 0x65, 0x6e, 0x74, 0x20, 0x61, 0x73, 0x20, 0x61, 0x20, 0x6b, - 0x65, 0x79, 0x2e, 0x20, 0x69, 0x6e, 0x20, 0x6f, 0x75, 0x72, 0x20, 0x63, - 0x61, 0x73, 0x65, 0x20, 0x77, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x2f, 0x2f, 0x20, 0x6d, 0x61, 0x69, 0x6e, 0x6c, 0x79, 0x20, 0x63, - 0x61, 0x72, 0x65, 0x20, 0x61, 0x62, 0x6f, 0x75, 0x74, 0x20, 0x74, 0x68, - 0x65, 0x20, 0x64, 0x61, 0x74, 0x61, 0x3a, 0x20, 0x6b, 0x65, 0x79, 0x20, - 0x68, 0x65, 0x72, 0x65, 0x2c, 0x20, 0x77, 0x68, 0x69, 0x63, 0x68, 0x20, - 0x77, 0x65, 0x20, 0x65, 0x78, 0x70, 0x65, 0x63, 0x74, 0x20, 0x61, 0x73, - 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, - 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, - 0x6f, 0x64, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x70, 0x61, 0x72, 0x73, 0x65, 0x20, 0x61, - 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, - 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74, 0x68, - 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e, 0x28, - 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29, 0x24, - 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, - 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, - 0x74, 0x63, 0x68, 0x20, 0x6f, 0x66, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, - 0x6d, 0x61, 0x74, 0x63, 0x68, 0x41, 0x6c, 0x6c, 0x28, 0x72, 0x65, 0x67, - 0x65, 0x78, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61, - 0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61, - 0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, - 0x20, 0x73, 0x69, 0x6e, 0x63, 0x65, 0x20, 0x77, 0x65, 0x20, 0x6b, 0x6e, - 0x6f, 0x77, 0x20, 0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6c, - 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x2c, 0x20, 0x6c, 0x65, - 0x74, 0x27, 0x73, 0x20, 0x6a, 0x75, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, - 0x6f, 0x64, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6a, 0x73, 0x6f, 0x6e, - 0x20, 0x69, 0x6e, 0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, - 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, - 0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, - 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72, - 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, - 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x61, 0x63, - 0x6b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, - 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, - 0x20, 0x3d, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, - 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x29, 0x20, 0x21, 0x3d, 0x20, 0x66, - 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, - 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20, - 0x73, 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66, - 0x72, 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20, - 0x77, 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61, - 0x6b, 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, - 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65, - 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, - 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65, 0x72, - 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x20, 0x65, - 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x65, 0x29, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, - 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, - 0x6c, 0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, - 0x72, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, - 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, - 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a + 0x3b, 0x0a, 0x0a, 0x6c, 0x65, 0x74, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, + 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, + 0x67, 0x73, 0x20, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x0a, + 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, + 0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, + 0x20, 0x61, 0x73, 0x20, 0x61, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, + 0x74, 0x6f, 0x72, 0x2e, 0x20, 0x52, 0x65, 0x63, 0x6f, 0x6d, 0x6d, 0x65, + 0x6e, 0x64, 0x65, 0x64, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x6d, 0x6f, 0x73, + 0x74, 0x20, 0x75, 0x73, 0x65, 0x20, 0x63, 0x61, 0x73, 0x65, 0x73, 0x2e, + 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, + 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, + 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, + 0x61, 0x6d, 0x61, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, + 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, + 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65, + 0x73, 0x74, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x22, + 0x54, 0x65, 0x6c, 0x6c, 0x20, 0x6d, 0x65, 0x20, 0x61, 0x20, 0x6a, 0x6f, + 0x6b, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, + 0x69, 0x63, 0x74, 0x3a, 0x20, 0x38, 0x30, 0x30, 0x7d, 0x29, 0x0a, 0x2f, + 0x2f, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, + 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, + 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65, + 0x73, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, + 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, + 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, + 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x2f, 0x2f, 0x0a, + 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, + 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x2a, 0x20, 0x6c, + 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, + 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, + 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, + 0x7d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, + 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20, + 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x72, + 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x69, 0x66, + 0x20, 0x28, 0x21, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, + 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, + 0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43, 0x6f, 0x6e, 0x74, 0x72, + 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, + 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61, + 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, + 0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x73, 0x2c, + 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, + 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, + 0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, + 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x63, 0x6f, 0x6d, 0x70, + 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x2c, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x3a, 0x20, 0x27, + 0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x62, + 0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74, + 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x63, 0x6f, 0x6d, 0x70, + 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, + 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61, 0x64, 0x65, + 0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x27, + 0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, 0x70, 0x2d, 0x61, 0x6c, 0x69, 0x76, + 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x43, + 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x54, 0x79, 0x70, 0x65, 0x27, + 0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, 0x6c, 0x69, 0x63, 0x61, 0x74, 0x69, + 0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70, 0x74, 0x27, + 0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76, 0x65, 0x6e, + 0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, + 0x6e, 0x61, 0x6c, 0x3a, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, + 0x6c, 0x65, 0x72, 0x2e, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, + 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, + 0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, + 0x79, 0x2e, 0x67, 0x65, 0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, + 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, + 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, + 0x20, 0x54, 0x65, 0x78, 0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, + 0x28, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, + 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, + 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, + 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, + 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, + 0x2e, 0x72, 0x65, 0x61, 0x64, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, + 0x74, 0x2e, 0x64, 0x6f, 0x6e, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x73, 0x65, 0x20, 0x61, + 0x6e, 0x73, 0x77, 0x65, 0x72, 0x73, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x68, + 0x65, 0x20, 0x66, 0x6f, 0x72, 0x6d, 0x20, 0x6d, 0x75, 0x6c, 0x74, 0x69, + 0x70, 0x6c, 0x65, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x20, 0x6f, 0x66, + 0x3a, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x5c, 0x6e, 0x20, 0x77, 0x69, + 0x74, 0x68, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x61, 0x6c, 0x77, 0x61, + 0x79, 0x73, 0x20, 0x70, 0x72, 0x65, 0x73, 0x65, 0x6e, 0x74, 0x20, 0x61, + 0x73, 0x20, 0x61, 0x20, 0x6b, 0x65, 0x79, 0x2e, 0x20, 0x69, 0x6e, 0x20, + 0x6f, 0x75, 0x72, 0x20, 0x63, 0x61, 0x73, 0x65, 0x20, 0x77, 0x65, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x6d, 0x61, 0x69, + 0x6e, 0x6c, 0x79, 0x20, 0x63, 0x61, 0x72, 0x65, 0x20, 0x61, 0x62, 0x6f, + 0x75, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x64, 0x61, 0x74, 0x61, 0x3a, + 0x20, 0x6b, 0x65, 0x79, 0x20, 0x68, 0x65, 0x72, 0x65, 0x2c, 0x20, 0x77, + 0x68, 0x69, 0x63, 0x68, 0x20, 0x77, 0x65, 0x20, 0x65, 0x78, 0x70, 0x65, + 0x63, 0x74, 0x20, 0x61, 0x73, 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, + 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, + 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x28, 0x72, 0x65, 0x73, + 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x3b, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x70, 0x61, + 0x72, 0x73, 0x65, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, + 0x65, 0x76, 0x65, 0x6e, 0x74, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, + 0x64, 0x64, 0x20, 0x74, 0x68, 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, + 0x65, 0x73, 0x75, 0x6c, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, + 0x3d, 0x20, 0x2f, 0x5e, 0x28, 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, + 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x20, 0x6f, 0x66, 0x20, + 0x74, 0x65, 0x78, 0x74, 0x2e, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x41, 0x6c, + 0x6c, 0x28, 0x72, 0x65, 0x67, 0x65, 0x78, 0x29, 0x29, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, + 0x6c, 0x74, 0x5b, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, + 0x20, 0x3d, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6e, 0x63, 0x65, 0x20, + 0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20, 0x74, 0x68, 0x69, 0x73, + 0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, + 0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x6a, 0x75, 0x73, + 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x74, 0x68, 0x65, + 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x64, 0x61, 0x74, + 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, + 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a, 0x53, + 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, + 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, + 0x20, 0x2b, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, + 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x79, + 0x69, 0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x79, + 0x69, 0x65, 0x6c, 0x64, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x3b, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x69, + 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20, 0x73, + 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66, 0x72, + 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20, 0x77, + 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, + 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, + 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, + 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, + 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, + 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, + 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, + 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, + 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, + 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, + 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, + 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20, 0x63, + 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61, 0x6d, + 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62, 0x6f, 0x72, 0x74, + 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, + 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, + 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x65, + 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20, 0x20, + 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, + 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, + 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, + 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, + 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, + 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20, 0x74, + 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x79, + 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75, 0x62, 0x63, 0x72, + 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, + 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, + 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, + 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, + 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20, 0x66, + 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, + 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a, + 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, + 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, + 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76, + 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, + 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x28, + 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, + 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, + 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, + 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x2e, + 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, + 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, + 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, + 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, + 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, + 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, + 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, + 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, + 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x29, + 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, + 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, + 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, + 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, + 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, + 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, + 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, + 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, + 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, + 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, + 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, + 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, + 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, + 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, + 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, + 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, + 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29, 0x29, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, + 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, + 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, + 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, + 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, + 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, + 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65, 0x6e, + 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, + 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, + 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, + 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, + 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, + 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, + 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, + 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, + 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, + 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, + 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, + 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, + 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, + 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, + 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, + 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, + 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, + 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f, 0x6e, + 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, + 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, + 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x28, + 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, + 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x3b, + 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, + 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, + 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, + 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, + 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, + 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20, 0x6e, + 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x73, + 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f, 0x0a, + 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, + 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c, + 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, + 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, + 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e, + 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, + 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, + 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, + 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a, 0x2f, + 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, + 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, + 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, + 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, + 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, + 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, + 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, + 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, + 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, + 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, + 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x50, + 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, + 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20, 0x72, + 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, + 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, + 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, + 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, + 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, + 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, + 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, + 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, + 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20, + 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x65, + 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x2f, + 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72, 0x65, + 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a, 0x65, + 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, + 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, + 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, + 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, + 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, + 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72, 0x61, + 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, + 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a, 0x20, + 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65, 0x74, + 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20, 0x69, + 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68, 0x65, + 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68, 0x69, + 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c, 0x20, + 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x20, + 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20, + 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73, + 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, + 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20, + 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65, 0x6e, + 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, + 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, + 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x61, 0x77, + 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, + 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x22, 0x29, + 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, + 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, + 0x7d, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, + 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, + 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a }; -unsigned int completion_js_len = 2275; +unsigned int completion_js_len = 4462; diff --git a/examples/server/deps.sh b/examples/server/deps.sh index cf995162a..1e9fe964b 100755 --- a/examples/server/deps.sh +++ b/examples/server/deps.sh @@ -4,10 +4,6 @@ # get the directory of this script file DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )" PUBLIC=$DIR/public -OUTPUT=$DIR/templats.hpp - -echo "// Generated file, do not edit" > $OUTPUT -echo "" > $OUTPUT echo "download js bundle files" curl https://npm.reversehttp.com/@preact/signals-core,@preact/signals,htm/preact,preact,preact/hooks > $PUBLIC/index.js diff --git a/examples/server/index.html.hpp b/examples/server/index.html.hpp index 832e9a3bb..42707fad9 100644 --- a/examples/server/index.html.hpp +++ b/examples/server/index.html.hpp @@ -13,138 +13,143 @@ unsigned char index_html[] = { 0x3c, 0x74, 0x69, 0x74, 0x6c, 0x65, 0x3e, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x2d, 0x20, 0x63, 0x68, 0x61, 0x74, 0x3c, 0x2f, 0x74, 0x69, 0x74, 0x6c, 0x65, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x3c, - 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x62, 0x6f, 0x64, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, - 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x66, 0x66, 0x66, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6c, 0x6f, 0x72, - 0x3a, 0x20, 0x23, 0x30, 0x30, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, 0x66, 0x61, 0x6d, 0x69, 0x6c, - 0x79, 0x3a, 0x20, 0x73, 0x79, 0x73, 0x74, 0x65, 0x6d, 0x2d, 0x75, 0x69, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, - 0x2d, 0x73, 0x69, 0x7a, 0x65, 0x3a, 0x20, 0x39, 0x30, 0x25, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x23, - 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, - 0x3a, 0x20, 0x30, 0x65, 0x6d, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x3b, 0x0a, + 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x62, + 0x6f, 0x64, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, 0x63, + 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x66, 0x66, 0x66, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, + 0x20, 0x23, 0x30, 0x30, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, 0x66, 0x61, 0x6d, 0x69, 0x6c, 0x79, + 0x3a, 0x20, 0x73, 0x79, 0x73, 0x74, 0x65, 0x6d, 0x2d, 0x75, 0x69, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, + 0x73, 0x69, 0x7a, 0x65, 0x3a, 0x20, 0x39, 0x30, 0x25, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x23, 0x63, + 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, + 0x20, 0x30, 0x65, 0x6d, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, + 0x3a, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x64, 0x69, 0x72, 0x65, 0x63, + 0x74, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x63, 0x6f, 0x6c, 0x75, 0x6d, 0x6e, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6a, 0x75, 0x73, 0x74, + 0x69, 0x66, 0x79, 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3a, + 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x2d, 0x62, 0x65, 0x74, 0x77, 0x65, + 0x65, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, + 0x69, 0x67, 0x68, 0x74, 0x3a, 0x20, 0x31, 0x30, 0x30, 0x25, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6d, + 0x61, 0x69, 0x6e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, 0x20, 0x33, 0x70, 0x78, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, + 0x61, 0x79, 0x3a, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x64, 0x69, 0x72, + 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x63, 0x6f, 0x6c, 0x75, + 0x6d, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6a, 0x75, + 0x73, 0x74, 0x69, 0x66, 0x79, 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, + 0x74, 0x3a, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x2d, 0x62, 0x65, 0x74, + 0x77, 0x65, 0x65, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x67, 0x61, 0x70, 0x3a, 0x20, 0x31, 0x65, 0x6d, 0x3b, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x67, 0x72, + 0x6f, 0x77, 0x3a, 0x20, 0x31, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x6f, 0x76, 0x65, 0x72, 0x66, 0x6c, 0x6f, 0x77, 0x2d, 0x79, 0x3a, + 0x20, 0x61, 0x75, 0x74, 0x6f, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x62, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x3a, 0x20, 0x31, 0x70, + 0x78, 0x20, 0x73, 0x6f, 0x6c, 0x69, 0x64, 0x20, 0x23, 0x63, 0x63, 0x63, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x72, 0x64, + 0x65, 0x72, 0x2d, 0x72, 0x61, 0x64, 0x69, 0x75, 0x73, 0x3a, 0x20, 0x35, + 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, + 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x62, 0x6f, 0x64, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x6d, 0x61, 0x78, 0x2d, 0x77, 0x69, 0x64, 0x74, 0x68, 0x3a, + 0x20, 0x36, 0x30, 0x30, 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x6d, 0x69, 0x6e, 0x2d, 0x77, 0x69, 0x64, 0x74, 0x68, 0x3a, + 0x20, 0x33, 0x30, 0x30, 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x2d, 0x68, 0x65, 0x69, 0x67, 0x68, + 0x74, 0x3a, 0x20, 0x31, 0x2e, 0x32, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x20, + 0x61, 0x75, 0x74, 0x6f, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x20, 0x30, + 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x70, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x6f, 0x76, 0x65, 0x72, 0x66, 0x6c, 0x6f, 0x77, 0x2d, + 0x77, 0x72, 0x61, 0x70, 0x3a, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2d, + 0x77, 0x6f, 0x72, 0x64, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x77, 0x6f, 0x72, 0x64, 0x2d, 0x77, 0x72, 0x61, 0x70, 0x3a, 0x20, 0x62, + 0x72, 0x65, 0x61, 0x6b, 0x2d, 0x77, 0x6f, 0x72, 0x64, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x79, 0x70, 0x68, 0x65, 0x6e, 0x73, + 0x3a, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x2d, 0x74, 0x6f, 0x70, + 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x2d, 0x62, 0x6f, + 0x74, 0x74, 0x6f, 0x6d, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x23, 0x77, 0x72, 0x69, 0x74, 0x65, 0x20, 0x66, 0x6f, 0x72, 0x6d, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, + 0x69, 0x6e, 0x3a, 0x20, 0x31, 0x65, 0x6d, 0x20, 0x30, 0x20, 0x30, 0x20, + 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, + 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x64, + 0x69, 0x72, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x63, 0x6f, + 0x6c, 0x75, 0x6d, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x67, 0x61, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, 0x6c, 0x69, 0x67, 0x6e, 0x2d, + 0x69, 0x74, 0x65, 0x6d, 0x73, 0x3a, 0x20, 0x73, 0x74, 0x72, 0x65, 0x74, + 0x63, 0x68, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x2e, 0x72, 0x69, 0x67, 0x68, 0x74, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x64, 0x69, 0x72, 0x65, - 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x63, 0x6f, 0x6c, 0x75, 0x6d, - 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6a, 0x75, 0x73, - 0x74, 0x69, 0x66, 0x79, 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, - 0x3a, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x2d, 0x62, 0x65, 0x74, 0x77, - 0x65, 0x65, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, - 0x65, 0x69, 0x67, 0x68, 0x74, 0x3a, 0x20, 0x31, 0x30, 0x30, 0x25, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2c, 0x20, 0x66, 0x6f, 0x6f, 0x74, - 0x65, 0x72, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, - 0x65, 0x78, 0x74, 0x2d, 0x61, 0x6c, 0x69, 0x67, 0x6e, 0x3a, 0x20, 0x63, - 0x65, 0x6e, 0x74, 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x69, 0x6e, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, - 0x6e, 0x3a, 0x20, 0x33, 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x66, - 0x6c, 0x65, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, - 0x6c, 0x65, 0x78, 0x2d, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x69, 0x6f, - 0x6e, 0x3a, 0x20, 0x63, 0x6f, 0x6c, 0x75, 0x6d, 0x6e, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x6a, 0x75, 0x73, 0x74, 0x69, 0x66, 0x79, - 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3a, 0x20, 0x73, 0x70, - 0x61, 0x63, 0x65, 0x2d, 0x62, 0x65, 0x74, 0x77, 0x65, 0x65, 0x6e, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x61, 0x70, 0x3a, 0x20, - 0x31, 0x65, 0x6d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x67, 0x72, 0x6f, 0x77, 0x3a, 0x20, 0x31, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x76, 0x65, 0x72, - 0x66, 0x6c, 0x6f, 0x77, 0x2d, 0x79, 0x3a, 0x20, 0x61, 0x75, 0x74, 0x6f, - 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x72, - 0x64, 0x65, 0x72, 0x3a, 0x20, 0x31, 0x70, 0x78, 0x20, 0x73, 0x6f, 0x6c, - 0x69, 0x64, 0x20, 0x23, 0x63, 0x63, 0x63, 0x3b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x62, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x2d, 0x72, 0x61, - 0x64, 0x69, 0x75, 0x73, 0x3a, 0x20, 0x35, 0x70, 0x78, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, - 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x64, 0x79, - 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x78, - 0x2d, 0x77, 0x69, 0x64, 0x74, 0x68, 0x3a, 0x20, 0x36, 0x30, 0x30, 0x70, - 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x69, 0x6e, - 0x2d, 0x77, 0x69, 0x64, 0x74, 0x68, 0x3a, 0x20, 0x33, 0x30, 0x30, 0x70, - 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x69, 0x6e, - 0x65, 0x2d, 0x68, 0x65, 0x69, 0x67, 0x68, 0x74, 0x3a, 0x20, 0x31, 0x2e, - 0x32, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, - 0x67, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x20, 0x61, 0x75, 0x74, 0x6f, 0x3b, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x72, 0x6f, 0x77, 0x3b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x61, 0x70, 0x3a, 0x20, 0x30, + 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x6a, 0x75, 0x73, 0x74, 0x69, 0x66, 0x79, 0x2d, 0x63, 0x6f, 0x6e, 0x74, + 0x65, 0x6e, 0x74, 0x3a, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x65, 0x6e, + 0x64, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x72, 0x64, 0x65, + 0x72, 0x3a, 0x20, 0x6e, 0x6f, 0x6e, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, + 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, + 0x67, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x78, 0x74, 0x61, + 0x72, 0x65, 0x61, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x35, 0x70, 0x78, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78, + 0x2d, 0x67, 0x72, 0x6f, 0x77, 0x3a, 0x20, 0x31, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x77, 0x69, 0x64, 0x74, 0x68, 0x3a, 0x20, 0x31, + 0x30, 0x30, 0x25, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x70, 0x72, 0x65, 0x20, 0x63, 0x6f, 0x64, 0x65, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, + 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x3b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, + 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, + 0x20, 0x23, 0x32, 0x32, 0x32, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x64, 0x64, 0x64, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x64, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, 0x66, 0x61, 0x6d, 0x69, 0x6c, 0x79, + 0x3a, 0x20, 0x6d, 0x6f, 0x6e, 0x6f, 0x73, 0x70, 0x61, 0x63, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, - 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x70, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x76, - 0x65, 0x72, 0x66, 0x6c, 0x6f, 0x77, 0x2d, 0x77, 0x72, 0x61, 0x70, 0x3a, - 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2d, 0x77, 0x6f, 0x72, 0x64, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x77, 0x6f, 0x72, 0x64, 0x2d, - 0x77, 0x72, 0x61, 0x70, 0x3a, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2d, - 0x77, 0x6f, 0x72, 0x64, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x68, 0x79, 0x70, 0x68, 0x65, 0x6e, 0x73, 0x3a, 0x20, 0x61, 0x75, 0x74, - 0x6f, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, - 0x67, 0x69, 0x6e, 0x2d, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x35, - 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, - 0x72, 0x67, 0x69, 0x6e, 0x2d, 0x62, 0x6f, 0x74, 0x74, 0x6f, 0x6d, 0x3a, - 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x23, 0x77, 0x72, 0x69, 0x74, - 0x65, 0x20, 0x66, 0x6f, 0x72, 0x6d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, 0x20, 0x31, - 0x65, 0x6d, 0x20, 0x30, 0x20, 0x30, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, - 0x20, 0x66, 0x6c, 0x65, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, - 0x69, 0x6f, 0x6e, 0x3a, 0x20, 0x63, 0x6f, 0x6c, 0x75, 0x6d, 0x6e, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x61, 0x70, 0x3a, 0x20, - 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x61, 0x6c, 0x69, 0x67, 0x6e, 0x2d, 0x69, 0x74, 0x65, 0x6d, 0x73, - 0x3a, 0x20, 0x73, 0x74, 0x72, 0x65, 0x74, 0x63, 0x68, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, - 0x69, 0x67, 0x68, 0x74, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x66, 0x6c, - 0x65, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6c, - 0x65, 0x78, 0x2d, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, - 0x3a, 0x20, 0x72, 0x6f, 0x77, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x67, 0x61, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6a, 0x75, 0x73, 0x74, 0x69, - 0x66, 0x79, 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3a, 0x20, - 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x65, 0x6e, 0x64, 0x3b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x69, 0x65, - 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x62, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x3a, 0x20, 0x6e, 0x6f, - 0x6e, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, - 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, 0x20, - 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, - 0x6e, 0x67, 0x3a, 0x20, 0x35, 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x67, 0x72, 0x6f, 0x77, - 0x3a, 0x20, 0x31, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x77, - 0x69, 0x64, 0x74, 0x68, 0x3a, 0x20, 0x31, 0x30, 0x30, 0x25, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x70, - 0x72, 0x65, 0x20, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x2e, 0x31, 0x65, 0x6d, 0x20, 0x30, 0x2e, + 0x33, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, + 0x6f, 0x72, 0x64, 0x65, 0x72, 0x2d, 0x72, 0x61, 0x64, 0x69, 0x75, 0x73, + 0x3a, 0x20, 0x33, 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, + 0x65, 0x74, 0x20, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, + 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f, 0x75, 0x6e, 0x64, - 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x32, 0x32, 0x32, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6c, 0x6f, - 0x72, 0x3a, 0x20, 0x23, 0x64, 0x64, 0x64, 0x3b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x64, 0x65, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, - 0x2d, 0x66, 0x61, 0x6d, 0x69, 0x6c, 0x79, 0x3a, 0x20, 0x6d, 0x6f, 0x6e, - 0x6f, 0x73, 0x70, 0x61, 0x63, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x30, - 0x2e, 0x31, 0x65, 0x6d, 0x20, 0x30, 0x2e, 0x33, 0x65, 0x6d, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x72, 0x64, 0x65, 0x72, - 0x2d, 0x72, 0x61, 0x64, 0x69, 0x75, 0x73, 0x3a, 0x20, 0x33, 0x70, 0x78, + 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61, 0x64, 0x65, + 0x72, 0x2c, 0x20, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2d, 0x61, + 0x6c, 0x69, 0x67, 0x6e, 0x3a, 0x20, 0x63, 0x65, 0x6e, 0x74, 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x6c, 0x61, - 0x62, 0x65, 0x6c, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, - 0x6d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, - 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x62, 0x6c, 0x6f, 0x63, - 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x3c, + 0x20, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, 0x73, 0x69, 0x7a, + 0x65, 0x3a, 0x20, 0x38, 0x30, 0x25, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x38, 0x38, + 0x38, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x3c, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x6d, 0x6f, 0x64, 0x75, 0x6c, 0x65, 0x22, 0x3e, 0x0a, 0x20, 0x20, @@ -159,440 +164,432 @@ unsigned char index_html[] = { 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x2e, 0x6a, 0x73, 0x27, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, - 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x7d, 0x20, 0x66, - 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, - 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x3b, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x65, 0x73, - 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, - 0x6c, 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x72, - 0x6f, 0x6d, 0x70, 0x74, 0x3a, 0x20, 0x22, 0x54, 0x68, 0x69, 0x73, 0x20, - 0x69, 0x73, 0x20, 0x61, 0x20, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x73, - 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x62, 0x65, 0x74, 0x77, 0x65, 0x65, - 0x6e, 0x20, 0x75, 0x73, 0x65, 0x72, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x6c, - 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x61, 0x20, 0x66, 0x72, 0x69, 0x65, - 0x6e, 0x64, 0x6c, 0x79, 0x20, 0x63, 0x68, 0x61, 0x74, 0x62, 0x6f, 0x74, - 0x2e, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x64, 0x20, 0x69, 0x6e, - 0x20, 0x6d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x2e, 0x22, 0x2c, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, - 0x61, 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x70, 0x72, 0x6f, 0x6d, - 0x70, 0x74, 0x7d, 0x7d, 0x5c, 0x6e, 0x5c, 0x6e, 0x7b, 0x7b, 0x68, 0x69, - 0x73, 0x74, 0x6f, 0x72, 0x79, 0x7d, 0x7d, 0x5c, 0x6e, 0x7b, 0x7b, 0x63, - 0x68, 0x61, 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x6e, - 0x61, 0x6d, 0x65, 0x7d, 0x7d, 0x3a, 0x20, 0x7b, 0x7b, 0x6d, 0x65, 0x73, - 0x73, 0x61, 0x67, 0x65, 0x7d, 0x7d, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, - 0x74, 0x3a, 0x20, 0x5b, 0x5d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x74, 0x79, 0x70, 0x65, 0x3a, 0x20, 0x22, 0x63, 0x68, 0x61, 0x74, - 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x68, 0x61, - 0x72, 0x3a, 0x20, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x22, 0x2c, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x3a, 0x20, - 0x22, 0x55, 0x73, 0x65, 0x72, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, - 0x74, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, - 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x74, 0x72, - 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x29, 0x20, 0x3d, 0x3e, - 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x73, - 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, - 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, - 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x63, 0x68, 0x61, 0x74, 0x53, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64, - 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64, 0x28, - 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, - 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, - 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, - 0x68, 0x20, 0x3e, 0x20, 0x30, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, - 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, - 0x69, 0x63, 0x74, 0x3a, 0x20, 0x34, 0x30, 0x30, 0x2c, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, - 0x75, 0x72, 0x65, 0x3a, 0x20, 0x30, 0x2e, 0x37, 0x2c, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, - 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x3a, 0x20, 0x32, 0x35, 0x36, 0x2c, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, - 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x3a, 0x20, 0x31, 0x2e, - 0x31, 0x38, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f, - 0x70, 0x5f, 0x6b, 0x3a, 0x20, 0x34, 0x30, 0x2c, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x5f, 0x70, 0x3a, 0x20, 0x30, 0x2e, - 0x35, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, - 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x73, 0x69, - 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x67, 0x65, 0x6e, - 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x3d, 0x20, 0x63, 0x6f, - 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64, 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, - 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x3d, 0x20, 0x6e, 0x75, 0x6c, - 0x6c, 0x20, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, - 0x73, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, - 0x61, 0x74, 0x65, 0x20, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x73, 0x74, - 0x72, 0x2c, 0x20, 0x65, 0x78, 0x74, 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, - 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x73, 0x65, 0x74, - 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, 0x73, - 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x78, 0x74, - 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, - 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, - 0x2e, 0x2e, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x2c, 0x20, - 0x2e, 0x2e, 0x2e, 0x65, 0x78, 0x74, 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, - 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, - 0x74, 0x75, 0x72, 0x6e, 0x20, 0x53, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x28, - 0x73, 0x74, 0x72, 0x29, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, - 0x41, 0x6c, 0x6c, 0x28, 0x2f, 0x5c, 0x7b, 0x5c, 0x7b, 0x28, 0x2e, 0x2a, - 0x3f, 0x29, 0x5c, 0x7d, 0x5c, 0x7d, 0x2f, 0x67, 0x2c, 0x20, 0x28, 0x5f, - 0x2c, 0x20, 0x6b, 0x65, 0x79, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x73, 0x65, 0x74, 0x74, 0x69, - 0x6e, 0x67, 0x73, 0x5b, 0x6b, 0x65, 0x79, 0x5d, 0x29, 0x29, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, - 0x2f, 0x20, 0x73, 0x65, 0x6e, 0x64, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, - 0x67, 0x65, 0x20, 0x74, 0x6f, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, - 0x68, 0x61, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, - 0x28, 0x6d, 0x73, 0x67, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, + 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, + 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, + 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x73, + 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x3a, 0x20, 0x22, 0x54, + 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x63, 0x6f, 0x6e, + 0x76, 0x65, 0x72, 0x73, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x62, 0x65, + 0x74, 0x77, 0x65, 0x65, 0x6e, 0x20, 0x75, 0x73, 0x65, 0x72, 0x20, 0x61, + 0x6e, 0x64, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x61, 0x20, + 0x66, 0x72, 0x69, 0x65, 0x6e, 0x64, 0x6c, 0x79, 0x20, 0x63, 0x68, 0x61, + 0x74, 0x62, 0x6f, 0x74, 0x2e, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, + 0x64, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x20, + 0x6d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x2e, 0x22, 0x2c, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x70, 0x72, 0x6f, 0x6d, 0x70, + 0x74, 0x7d, 0x7d, 0x5c, 0x6e, 0x5c, 0x6e, 0x7b, 0x7b, 0x68, 0x69, 0x73, + 0x74, 0x6f, 0x72, 0x79, 0x7d, 0x7d, 0x5c, 0x6e, 0x7b, 0x7b, 0x63, 0x68, + 0x61, 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x6e, 0x61, + 0x6d, 0x65, 0x7d, 0x7d, 0x3a, 0x20, 0x7b, 0x7b, 0x6d, 0x65, 0x73, 0x73, + 0x61, 0x67, 0x65, 0x7d, 0x7d, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, + 0x3a, 0x20, 0x5b, 0x5d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x74, 0x79, 0x70, 0x65, 0x3a, 0x20, 0x22, 0x63, 0x68, 0x61, 0x74, 0x22, + 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x68, 0x61, 0x72, + 0x3a, 0x20, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x22, 0x2c, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x3a, 0x20, 0x22, + 0x55, 0x73, 0x65, 0x72, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x69, + 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x3a, 0x20, + 0x34, 0x30, 0x30, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, + 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3a, 0x20, + 0x30, 0x2e, 0x37, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, + 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, + 0x3a, 0x20, 0x32, 0x35, 0x36, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, + 0x6c, 0x74, 0x79, 0x3a, 0x20, 0x31, 0x2e, 0x31, 0x38, 0x2c, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x5f, 0x6b, 0x3a, 0x20, + 0x34, 0x30, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f, + 0x70, 0x5f, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x2c, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61, + 0x74, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, + 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, + 0x65, 0x72, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, + 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, + 0x69, 0x6e, 0x67, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, + 0x65, 0x64, 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, - 0x28, 0x27, 0x61, 0x6c, 0x72, 0x65, 0x61, 0x64, 0x79, 0x20, 0x72, 0x75, - 0x6e, 0x6e, 0x69, 0x6e, 0x67, 0x2e, 0x2e, 0x2e, 0x27, 0x29, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, - 0x72, 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, - 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, - 0x20, 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43, 0x6f, - 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, - 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, - 0x5b, 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, - 0x72, 0x69, 0x70, 0x74, 0x2c, 0x20, 0x5b, 0x22, 0x7b, 0x7b, 0x75, 0x73, - 0x65, 0x72, 0x7d, 0x7d, 0x22, 0x2c, 0x20, 0x6d, 0x73, 0x67, 0x5d, 0x5d, - 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, - 0x73, 0x74, 0x20, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64, 0x20, 0x3d, - 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x73, 0x65, - 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, - 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2c, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x73, 0x73, - 0x61, 0x67, 0x65, 0x3a, 0x20, 0x6d, 0x73, 0x67, 0x2c, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, - 0x79, 0x3a, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, + 0x65, 0x20, 0x3d, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x20, 0x29, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, + 0x61, 0x74, 0x53, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64, 0x20, 0x3d, 0x20, + 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64, 0x28, 0x28, 0x29, 0x20, + 0x3d, 0x3e, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, - 0x69, 0x70, 0x74, 0x2e, 0x66, 0x6c, 0x61, 0x74, 0x4d, 0x61, 0x70, 0x28, - 0x28, 0x5b, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x6d, 0x65, 0x73, 0x73, - 0x61, 0x67, 0x65, 0x5d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x65, 0x6d, - 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, - 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x68, 0x69, 0x73, 0x74, - 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2c, - 0x20, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x6d, 0x65, 0x73, 0x73, - 0x61, 0x67, 0x65, 0x7d, 0x29, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, 0x28, - 0x22, 0x5c, 0x6e, 0x22, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x6c, 0x65, 0x74, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, - 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, 0x27, 0x27, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x20, 0x3d, 0x20, 0x73, - 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x0a, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, - 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, - 0x20, 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, + 0x69, 0x70, 0x74, 0x2e, 0x6c, 0x65, 0x6e, 0x67, 0x74, 0x68, 0x20, 0x3e, + 0x20, 0x30, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, + 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x74, + 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x29, 0x20, 0x3d, + 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, + 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, + 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x3a, 0x20, 0x70, 0x61, - 0x79, 0x6c, 0x6f, 0x61, 0x64, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x5b, 0x22, 0x3c, - 0x2f, 0x73, 0x3e, 0x22, 0x2c, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, - 0x74, 0x65, 0x28, 0x22, 0x7b, 0x7b, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x7d, - 0x3a, 0x22, 0x29, 0x2c, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, - 0x65, 0x28, 0x22, 0x7b, 0x7b, 0x75, 0x73, 0x65, 0x72, 0x7d, 0x7d, 0x3a, - 0x22, 0x29, 0x5d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, 0x77, 0x61, 0x69, - 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, - 0x65, 0x74, 0x65, 0x28, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x61, 0x72, - 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, - 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x28, - 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, - 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x6d, - 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x75, 0x72, - 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, - 0x2b, 0x3d, 0x20, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, - 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x2f, 0x2f, 0x20, 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x6c, - 0x65, 0x61, 0x64, 0x69, 0x6e, 0x67, 0x20, 0x77, 0x68, 0x69, 0x74, 0x65, - 0x73, 0x70, 0x61, 0x63, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, - 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, - 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x2e, 0x72, 0x65, - 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x5c, 0x73, 0x2b, 0x2f, - 0x2c, 0x20, 0x22, 0x22, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, - 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, 0x2e, 0x2e, 0x2e, - 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x2c, 0x20, 0x5b, 0x22, 0x7b, - 0x7b, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x7d, 0x22, 0x2c, 0x20, 0x63, 0x75, - 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, - 0x5d, 0x5d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x69, 0x66, 0x20, 0x28, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, - 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, - 0x6c, 0x6f, 0x67, 0x28, 0x22, 0x2d, 0x2d, 0x3e, 0x22, 0x2c, 0x20, 0x64, - 0x61, 0x74, 0x61, 0x2c, 0x20, 0x27, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, - 0x6e, 0x73, 0x65, 0x20, 0x77, 0x61, 0x73, 0x3a, 0x27, 0x2c, 0x20, 0x63, - 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, - 0x65, 0x2c, 0x20, 0x27, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, - 0x70, 0x74, 0x20, 0x73, 0x74, 0x61, 0x74, 0x65, 0x3a, 0x27, 0x2c, 0x20, - 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, - 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, + 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, + 0x74, 0x65, 0x20, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x73, 0x74, 0x72, + 0x2c, 0x20, 0x65, 0x78, 0x74, 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, 0x69, + 0x6e, 0x67, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x73, 0x65, 0x74, 0x74, + 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, + 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x78, 0x74, 0x72, + 0x61, 0x53, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x74, + 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, + 0x2e, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x2c, 0x20, 0x2e, + 0x2e, 0x2e, 0x65, 0x78, 0x74, 0x72, 0x61, 0x53, 0x65, 0x74, 0x74, 0x69, + 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, + 0x75, 0x72, 0x6e, 0x20, 0x53, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x28, 0x73, + 0x74, 0x72, 0x29, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x41, + 0x6c, 0x6c, 0x28, 0x2f, 0x5c, 0x7b, 0x5c, 0x7b, 0x28, 0x2e, 0x2a, 0x3f, + 0x29, 0x5c, 0x7d, 0x5c, 0x7d, 0x2f, 0x67, 0x2c, 0x20, 0x28, 0x5f, 0x2c, + 0x20, 0x6b, 0x65, 0x79, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, + 0x67, 0x73, 0x5b, 0x6b, 0x65, 0x79, 0x5d, 0x29, 0x29, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, + 0x20, 0x73, 0x65, 0x6e, 0x64, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x20, 0x74, 0x6f, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, + 0x61, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, + 0x6d, 0x73, 0x67, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, + 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, + 0x27, 0x61, 0x6c, 0x72, 0x65, 0x61, 0x64, 0x79, 0x20, 0x72, 0x75, 0x6e, + 0x6e, 0x69, 0x6e, 0x67, 0x2e, 0x2e, 0x2e, 0x27, 0x29, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, + 0x6e, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, - 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, - 0x6e, 0x20, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x49, 0x6e, 0x70, - 0x75, 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, - 0x67, 0x65, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x53, 0x69, 0x67, 0x6e, - 0x61, 0x6c, 0x28, 0x22, 0x22, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x74, 0x6f, 0x70, - 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x2e, 0x70, 0x72, - 0x65, 0x76, 0x65, 0x6e, 0x74, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, - 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, - 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x20, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x65, 0x74, 0x20, + 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, + 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, + 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, + 0x69, 0x70, 0x74, 0x2c, 0x20, 0x5b, 0x22, 0x7b, 0x7b, 0x75, 0x73, 0x65, + 0x72, 0x7d, 0x7d, 0x22, 0x2c, 0x20, 0x6d, 0x73, 0x67, 0x5d, 0x5d, 0x29, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, + 0x74, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x3d, 0x20, 0x74, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x73, 0x65, 0x73, 0x73, + 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2c, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x3a, 0x20, 0x6d, 0x73, 0x67, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x3a, + 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, + 0x74, 0x2e, 0x66, 0x6c, 0x61, 0x74, 0x4d, 0x61, 0x70, 0x28, 0x28, 0x5b, + 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x5d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x28, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, + 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x2c, 0x20, 0x7b, + 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x7d, 0x29, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e, 0x28, 0x22, 0x5c, + 0x6e, 0x22, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, + 0x74, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, + 0x73, 0x61, 0x67, 0x65, 0x20, 0x3d, 0x20, 0x27, 0x27, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x68, + 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, + 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, + 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, + 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x73, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x5b, 0x22, 0x3c, 0x2f, 0x73, 0x3e, + 0x22, 0x2c, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, + 0x22, 0x7b, 0x7b, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x29, + 0x2c, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x22, + 0x7b, 0x7b, 0x75, 0x73, 0x65, 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x29, 0x5d, + 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, + 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, + 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, + 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x6c, 0x6c, 0x61, + 0x6d, 0x61, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, + 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3a, 0x20, + 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, + 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, + 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, + 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x2b, 0x3d, 0x20, 0x64, 0x61, + 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, + 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x6c, 0x65, 0x61, 0x64, 0x69, + 0x6e, 0x67, 0x20, 0x77, 0x68, 0x69, 0x74, 0x65, 0x73, 0x70, 0x61, 0x63, + 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x75, + 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, + 0x20, 0x3d, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, + 0x73, 0x73, 0x61, 0x67, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, + 0x65, 0x28, 0x2f, 0x5e, 0x5c, 0x73, 0x2b, 0x2f, 0x2c, 0x20, 0x22, 0x22, + 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, + 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, 0x64, + 0x61, 0x74, 0x65, 0x28, 0x5b, 0x2e, 0x2e, 0x2e, 0x68, 0x69, 0x73, 0x74, + 0x6f, 0x72, 0x79, 0x2c, 0x20, 0x5b, 0x22, 0x7b, 0x7b, 0x63, 0x68, 0x61, + 0x72, 0x7d, 0x7d, 0x22, 0x2c, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, + 0x74, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x5d, 0x5d, 0x29, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, + 0x28, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, 0x6f, 0x70, 0x29, 0x20, + 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x6c, 0x6f, 0x67, 0x28, + 0x22, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x20, + 0x66, 0x69, 0x6e, 0x69, 0x73, 0x68, 0x65, 0x64, 0x3a, 0x20, 0x27, 0x22, + 0x2c, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x4d, 0x65, 0x73, + 0x73, 0x61, 0x67, 0x65, 0x2c, 0x20, 0x22, 0x27, 0x2c, 0x20, 0x73, 0x75, + 0x6d, 0x6d, 0x61, 0x72, 0x79, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x64, 0x61, + 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x69, 0x66, 0x20, 0x28, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, + 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, + 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, + 0x20, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, + 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, + 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x6e, + 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x49, 0x6e, 0x70, 0x75, + 0x74, 0x28, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x53, 0x69, 0x67, 0x6e, 0x61, + 0x6c, 0x28, 0x22, 0x22, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x28, - 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, - 0x64, 0x61, 0x74, 0x65, 0x28, 0x5b, 0x5d, 0x29, 0x3b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x75, 0x62, 0x6d, 0x69, - 0x74, 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, - 0x70, 0x28, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x68, 0x61, 0x74, 0x28, 0x6d, 0x65, 0x73, 0x73, 0x61, - 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x3b, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, - 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x22, - 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, - 0x65, 0x6e, 0x74, 0x65, 0x72, 0x53, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x73, - 0x20, 0x3d, 0x20, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, - 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x69, 0x66, 0x20, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x68, - 0x69, 0x63, 0x68, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x31, 0x33, 0x20, 0x26, - 0x26, 0x20, 0x21, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x68, 0x69, - 0x66, 0x74, 0x4b, 0x65, 0x79, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x75, 0x62, 0x6d, 0x69, - 0x74, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x2e, 0x70, 0x72, 0x65, + 0x76, 0x65, 0x6e, 0x74, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x28, + 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, + 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, + 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x20, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, - 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x72, - 0x6d, 0x20, 0x6f, 0x6e, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x3d, 0x24, - 0x7b, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x7d, 0x3e, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, + 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x65, 0x74, 0x20, 0x3d, + 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x28, 0x65, + 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, + 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x55, 0x70, 0x64, + 0x61, 0x74, 0x65, 0x28, 0x5b, 0x5d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, + 0x20, 0x3d, 0x20, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70, + 0x28, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x68, 0x61, 0x74, 0x28, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x22, 0x22, + 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, + 0x6e, 0x74, 0x65, 0x72, 0x53, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x73, 0x20, + 0x3d, 0x20, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e, + 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, + 0x66, 0x20, 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x68, 0x69, + 0x63, 0x68, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x31, 0x33, 0x20, 0x26, 0x26, + 0x20, 0x21, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x68, 0x69, 0x66, + 0x74, 0x4b, 0x65, 0x79, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, + 0x28, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x72, 0x6d, + 0x20, 0x6f, 0x6e, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x3d, 0x24, 0x7b, + 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x7d, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x74, + 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x72, + 0x6f, 0x77, 0x73, 0x3d, 0x32, 0x20, 0x6f, 0x6e, 0x6b, 0x65, 0x79, 0x70, + 0x72, 0x65, 0x73, 0x73, 0x3d, 0x24, 0x7b, 0x65, 0x6e, 0x74, 0x65, 0x72, + 0x53, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x73, 0x7d, 0x20, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, + 0x24, 0x7b, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x6d, 0x65, 0x73, + 0x73, 0x61, 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, + 0x20, 0x65, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x7d, 0x20, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x68, 0x6f, + 0x6c, 0x64, 0x65, 0x72, 0x3d, 0x22, 0x53, 0x61, 0x79, 0x20, 0x73, 0x6f, + 0x6d, 0x65, 0x74, 0x68, 0x69, 0x6e, 0x67, 0x2e, 0x2e, 0x2e, 0x22, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x74, 0x79, - 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x72, 0x6f, - 0x77, 0x73, 0x3d, 0x32, 0x20, 0x6f, 0x6e, 0x6b, 0x65, 0x79, 0x70, 0x72, - 0x65, 0x73, 0x73, 0x3d, 0x24, 0x7b, 0x65, 0x6e, 0x74, 0x65, 0x72, 0x53, - 0x75, 0x62, 0x6d, 0x69, 0x74, 0x73, 0x7d, 0x20, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, - 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, - 0x7b, 0x28, 0x65, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x6d, 0x65, 0x73, 0x73, - 0x61, 0x67, 0x65, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, - 0x65, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x7d, 0x20, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x68, 0x6f, 0x6c, - 0x64, 0x65, 0x72, 0x3d, 0x22, 0x53, 0x61, 0x79, 0x20, 0x73, 0x6f, 0x6d, - 0x65, 0x74, 0x68, 0x69, 0x6e, 0x67, 0x2e, 0x2e, 0x2e, 0x22, 0x2f, 0x3e, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x72, 0x69, 0x67, 0x68, 0x74, 0x22, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x74, 0x79, 0x70, + 0x65, 0x3d, 0x22, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x22, 0x20, 0x64, + 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x21, 0x67, + 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x2e, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x7d, 0x20, 0x3e, 0x53, 0x65, 0x6e, 0x64, 0x3c, 0x2f, + 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, + 0x74, 0x6f, 0x6e, 0x20, 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, + 0x24, 0x7b, 0x73, 0x74, 0x6f, 0x70, 0x7d, 0x20, 0x64, 0x69, 0x73, 0x61, + 0x62, 0x6c, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x67, 0x65, 0x6e, 0x65, 0x72, + 0x61, 0x74, 0x69, 0x6e, 0x67, 0x7d, 0x3e, 0x53, 0x74, 0x6f, 0x70, 0x3c, + 0x2f, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, + 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, + 0x3d, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x65, 0x74, 0x7d, 0x3e, 0x52, 0x65, + 0x73, 0x65, 0x74, 0x3c, 0x2f, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, - 0x22, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x74, 0x22, 0x20, 0x64, 0x69, 0x73, - 0x61, 0x62, 0x6c, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x21, 0x67, 0x65, 0x6e, - 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, 0x67, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x7d, 0x20, 0x3e, 0x53, 0x65, 0x6e, 0x64, 0x3c, 0x2f, 0x62, 0x75, - 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, - 0x6f, 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, 0x73, 0x74, - 0x6f, 0x70, 0x7d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, - 0x3d, 0x24, 0x7b, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6e, - 0x67, 0x7d, 0x3e, 0x53, 0x74, 0x6f, 0x70, 0x3c, 0x2f, 0x62, 0x75, 0x74, - 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x62, 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x20, 0x6f, - 0x6e, 0x63, 0x6c, 0x69, 0x63, 0x6b, 0x3d, 0x24, 0x7b, 0x72, 0x65, 0x73, - 0x65, 0x74, 0x7d, 0x3e, 0x52, 0x65, 0x73, 0x65, 0x74, 0x3c, 0x2f, 0x62, - 0x75, 0x74, 0x74, 0x6f, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, - 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, - 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x43, 0x68, 0x61, 0x74, 0x4c, 0x6f, 0x67, - 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, 0x3d, - 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, - 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, - 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, - 0x69, 0x70, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, - 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, - 0x65, 0x72, 0x20, 0x3d, 0x20, 0x75, 0x73, 0x65, 0x52, 0x65, 0x66, 0x28, - 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x75, 0x73, 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, 0x28, 0x28, - 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, - 0x20, 0x74, 0x6f, 0x20, 0x62, 0x6f, 0x74, 0x74, 0x6f, 0x6d, 0x20, 0x28, - 0x69, 0x66, 0x20, 0x6e, 0x65, 0x65, 0x64, 0x65, 0x64, 0x29, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, - 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, - 0x72, 0x65, 0x6e, 0x74, 0x20, 0x26, 0x26, 0x20, 0x63, 0x6f, 0x6e, 0x74, - 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, - 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x48, 0x65, 0x69, 0x67, - 0x68, 0x74, 0x20, 0x3c, 0x3d, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, - 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, - 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x54, 0x6f, 0x70, 0x20, 0x2b, 0x20, - 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, - 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x6f, 0x66, 0x66, 0x73, 0x65, 0x74, - 0x48, 0x65, 0x69, 0x67, 0x68, 0x74, 0x20, 0x2b, 0x20, 0x33, 0x30, 0x30, - 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, - 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, - 0x6c, 0x6c, 0x54, 0x6f, 0x28, 0x30, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, - 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, - 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x48, 0x65, 0x69, 0x67, - 0x68, 0x74, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x2c, 0x20, 0x5b, - 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x5d, 0x29, 0x0a, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, - 0x63, 0x68, 0x61, 0x74, 0x4c, 0x69, 0x6e, 0x65, 0x20, 0x3d, 0x20, 0x28, - 0x5b, 0x75, 0x73, 0x65, 0x72, 0x2c, 0x20, 0x6d, 0x73, 0x67, 0x5d, 0x29, - 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, - 0x6c, 0x60, 0x3c, 0x70, 0x20, 0x6b, 0x65, 0x79, 0x3d, 0x24, 0x7b, 0x6d, - 0x73, 0x67, 0x7d, 0x3e, 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, - 0x24, 0x7b, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x75, - 0x73, 0x65, 0x72, 0x29, 0x7d, 0x3a, 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, - 0x6e, 0x67, 0x3e, 0x20, 0x3c, 0x24, 0x7b, 0x4d, 0x61, 0x72, 0x6b, 0x64, - 0x6f, 0x77, 0x6e, 0x7d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x3d, 0x24, 0x7b, - 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x6d, 0x73, 0x67, - 0x29, 0x7d, 0x20, 0x2f, 0x3e, 0x3c, 0x2f, 0x70, 0x3e, 0x60, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, - 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x64, 0x3d, - 0x22, 0x63, 0x68, 0x61, 0x74, 0x22, 0x20, 0x72, 0x65, 0x66, 0x3d, 0x24, - 0x7b, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x7d, 0x3e, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, - 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x2e, 0x66, 0x6c, - 0x61, 0x74, 0x4d, 0x61, 0x70, 0x28, 0x63, 0x68, 0x61, 0x74, 0x4c, 0x69, - 0x6e, 0x65, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x2f, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x3e, 0x60, - 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x43, 0x6f, 0x6e, 0x66, - 0x69, 0x67, 0x46, 0x6f, 0x72, 0x6d, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, + 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x43, + 0x68, 0x61, 0x74, 0x4c, 0x6f, 0x67, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, - 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x20, - 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x73, 0x65, - 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, - 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, - 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, - 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, - 0x65, 0x5d, 0x3a, 0x20, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, - 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, - 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, - 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x70, 0x61, 0x72, - 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, - 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, + 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x65, + 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, + 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, + 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x75, + 0x73, 0x65, 0x52, 0x65, 0x66, 0x28, 0x6e, 0x75, 0x6c, 0x6c, 0x29, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x45, 0x66, + 0x66, 0x65, 0x63, 0x74, 0x28, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, + 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x20, 0x74, 0x6f, 0x20, 0x62, 0x6f, + 0x74, 0x74, 0x6f, 0x6d, 0x20, 0x28, 0x69, 0x66, 0x20, 0x6e, 0x65, 0x65, + 0x64, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, + 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x20, 0x26, + 0x26, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, + 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, + 0x6c, 0x6c, 0x48, 0x65, 0x69, 0x67, 0x68, 0x74, 0x20, 0x3c, 0x3d, 0x20, + 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, + 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, + 0x54, 0x6f, 0x70, 0x20, 0x2b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, + 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, + 0x6f, 0x66, 0x66, 0x73, 0x65, 0x74, 0x48, 0x65, 0x69, 0x67, 0x68, 0x74, + 0x20, 0x2b, 0x20, 0x33, 0x30, 0x30, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, + 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, + 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, 0x6c, 0x6c, 0x54, 0x6f, 0x28, 0x30, + 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x2e, + 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x2e, 0x73, 0x63, 0x72, 0x6f, + 0x6c, 0x6c, 0x48, 0x65, 0x69, 0x67, 0x68, 0x74, 0x29, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x2c, 0x20, 0x5b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, + 0x65, 0x73, 0x5d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x74, 0x4c, 0x69, + 0x6e, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x5b, 0x75, 0x73, 0x65, 0x72, 0x2c, + 0x20, 0x6d, 0x73, 0x67, 0x5d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, + 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x70, 0x20, 0x6b, + 0x65, 0x79, 0x3d, 0x24, 0x7b, 0x6d, 0x73, 0x67, 0x7d, 0x3e, 0x3c, 0x73, + 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x7b, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x28, 0x75, 0x73, 0x65, 0x72, 0x29, 0x7d, 0x3a, + 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x20, 0x3c, 0x24, + 0x7b, 0x4d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x69, 0x73, 0x68, + 0x7d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x3d, 0x24, 0x7b, 0x74, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x28, 0x6d, 0x73, 0x67, 0x29, 0x7d, 0x20, + 0x2f, 0x3e, 0x3c, 0x2f, 0x70, 0x3e, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x65, + 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x63, 0x68, + 0x61, 0x74, 0x22, 0x20, 0x72, 0x65, 0x66, 0x3d, 0x24, 0x7b, 0x63, 0x6f, + 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x7d, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x6d, 0x65, + 0x73, 0x73, 0x61, 0x67, 0x65, 0x73, 0x2e, 0x66, 0x6c, 0x61, 0x74, 0x4d, + 0x61, 0x70, 0x28, 0x63, 0x68, 0x61, 0x74, 0x4c, 0x69, 0x6e, 0x65, 0x29, + 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, + 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x3e, 0x60, 0x3b, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, + 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x43, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x46, + 0x6f, 0x72, 0x6d, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, + 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, + 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x28, + 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, + 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b, + 0x20, 0x2e, 0x2e, 0x2e, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, 0x20, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, - 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, - 0x20, 0x3d, 0x20, 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x70, - 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, - 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, - 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, 0x6c, - 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, - 0x5d, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x73, 0x65, 0x46, 0x6c, 0x6f, 0x61, - 0x74, 0x28, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, - 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x66, 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, - 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, - 0x22, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x22, 0x3e, 0x50, 0x72, 0x6f, - 0x6d, 0x70, 0x74, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, - 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, - 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, - 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, - 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x7d, 0x22, 0x20, 0x72, 0x6f, - 0x77, 0x73, 0x3d, 0x34, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, - 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, - 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, - 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, - 0x75, 0x73, 0x65, 0x72, 0x22, 0x3e, 0x55, 0x73, 0x65, 0x72, 0x20, 0x6e, - 0x61, 0x6d, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, - 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, - 0x65, 0x3d, 0x22, 0x75, 0x73, 0x65, 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, - 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x75, 0x73, 0x65, 0x72, - 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, - 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, - 0x6f, 0x6e, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, - 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x28, 0x65, + 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, + 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, + 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, 0x20, 0x65, 0x6c, + 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, + 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, + 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x20, 0x3d, 0x20, + 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x70, 0x61, 0x72, 0x61, + 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b, + 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, 0x6c, 0x2e, 0x74, 0x61, + 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, 0x20, + 0x70, 0x61, 0x72, 0x73, 0x65, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x28, 0x65, + 0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x29, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, + 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, + 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, + 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x70, 0x72, + 0x6f, 0x6d, 0x70, 0x74, 0x22, 0x3e, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, + 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x62, - 0x6f, 0x74, 0x22, 0x3e, 0x42, 0x6f, 0x74, 0x20, 0x6e, 0x61, 0x6d, 0x65, + 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x74, 0x79, 0x70, + 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, + 0x65, 0x3d, 0x22, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x22, 0x20, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, + 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, + 0x6f, 0x6d, 0x70, 0x74, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, + 0x34, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, + 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, + 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, + 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x75, 0x73, 0x65, + 0x72, 0x22, 0x3e, 0x55, 0x73, 0x65, 0x72, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, - 0x63, 0x68, 0x61, 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, + 0x75, 0x73, 0x65, 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x22, 0x20, + 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x75, 0x73, 0x65, 0x72, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, @@ -600,247 +597,303 @@ unsigned char index_html[] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, - 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, - 0x6c, 0x61, 0x74, 0x65, 0x22, 0x3e, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, - 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, + 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x62, 0x6f, 0x74, 0x22, + 0x3e, 0x42, 0x6f, 0x74, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, - 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, - 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, - 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, - 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, - 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, - 0x77, 0x73, 0x3d, 0x34, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, - 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, - 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, - 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, - 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x3e, 0x43, 0x68, - 0x61, 0x74, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x20, 0x74, - 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, - 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, - 0x72, 0x65, 0x61, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, - 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, - 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, - 0x61, 0x74, 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, - 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, - 0x6c, 0x75, 0x65, 0x2e, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, - 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, - 0x77, 0x73, 0x3d, 0x31, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, - 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, - 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, - 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, - 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, - 0x3e, 0x54, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, - 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, - 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, + 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, + 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x63, 0x68, 0x61, + 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, + 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x2e, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, + 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, + 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x20, 0x2f, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, + 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, + 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x22, 0x3e, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x74, 0x65, + 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, + 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, + 0x65, 0x61, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, + 0x61, 0x74, 0x65, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x74, + 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c, + 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, + 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, + 0x34, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, + 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, + 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, + 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, + 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x3e, 0x43, 0x68, 0x61, 0x74, 0x20, + 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x20, 0x74, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, + 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, + 0x65, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x68, 0x69, 0x73, + 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, + 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, + 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x2e, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, + 0x6c, 0x61, 0x74, 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, + 0x31, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, + 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, + 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, + 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, + 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x3e, 0x54, 0x65, + 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3c, 0x2f, 0x6c, + 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, + 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, + 0x67, 0x65, 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, + 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x20, 0x6d, 0x69, 0x6e, + 0x3d, 0x22, 0x30, 0x2e, 0x30, 0x22, 0x20, 0x6d, 0x61, 0x78, 0x3d, 0x22, + 0x31, 0x2e, 0x30, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3d, 0x22, 0x30, + 0x2e, 0x30, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x20, - 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x30, 0x2e, 0x30, 0x22, 0x20, 0x6d, 0x61, - 0x78, 0x3d, 0x22, 0x31, 0x2e, 0x30, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, - 0x3d, 0x22, 0x30, 0x2e, 0x30, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, - 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, - 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, - 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, - 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, - 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, - 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, - 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, - 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x7d, 0x3c, 0x2f, - 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, - 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x6e, 0x50, - 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x22, 0x3e, 0x50, 0x72, 0x65, 0x64, - 0x69, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x3c, 0x2f, 0x6c, 0x61, 0x62, - 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, - 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, - 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x6e, 0x50, 0x72, 0x65, 0x64, 0x69, - 0x63, 0x74, 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x31, 0x22, 0x20, - 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x32, 0x30, 0x34, 0x38, 0x22, 0x20, 0x73, - 0x74, 0x65, 0x70, 0x3d, 0x22, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, - 0x3d, 0x22, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x22, - 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, - 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, - 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x7d, 0x22, 0x20, 0x6f, - 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, - 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, - 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, - 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, - 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, - 0x69, 0x63, 0x74, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, - 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, - 0x6f, 0x72, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, - 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x3e, 0x50, 0x65, 0x6e, 0x61, - 0x6c, 0x69, 0x7a, 0x65, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x20, - 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63, 0x65, 0x3c, 0x2f, 0x6c, 0x61, - 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, - 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, - 0x65, 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, - 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x20, 0x6d, - 0x69, 0x6e, 0x3d, 0x22, 0x30, 0x2e, 0x30, 0x22, 0x20, 0x6d, 0x61, 0x78, - 0x3d, 0x22, 0x32, 0x2e, 0x30, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3d, - 0x22, 0x30, 0x2e, 0x30, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, - 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, - 0x6c, 0x74, 0x79, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, - 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, - 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, + 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x7d, 0x22, 0x20, + 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, + 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, + 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, + 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, + 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x65, + 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, + 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, + 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x6e, 0x50, 0x72, 0x65, 0x64, + 0x69, 0x63, 0x74, 0x22, 0x3e, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, + 0x69, 0x6f, 0x6e, 0x73, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, + 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69, + 0x64, 0x3d, 0x22, 0x6e, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x22, + 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x31, 0x22, 0x20, 0x6d, 0x61, 0x78, + 0x3d, 0x22, 0x32, 0x30, 0x34, 0x38, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, + 0x3d, 0x22, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x6e, + 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x22, 0x20, 0x76, 0x61, + 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, + 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72, + 0x65, 0x64, 0x69, 0x63, 0x74, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, - 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, - 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, - 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, - 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, - 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, - 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x22, 0x3e, 0x43, 0x6f, 0x6e, - 0x73, 0x69, 0x64, 0x65, 0x72, 0x20, 0x4e, 0x20, 0x74, 0x6f, 0x6b, 0x65, - 0x6e, 0x73, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, - 0x69, 0x7a, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, + 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, + 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, + 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, - 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69, 0x64, - 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, - 0x74, 0x5f, 0x6e, 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x30, 0x2e, - 0x30, 0x22, 0x20, 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x32, 0x30, 0x34, 0x38, - 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, - 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x22, 0x20, 0x76, - 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, - 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, - 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x7d, 0x22, - 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, - 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, - 0x6c, 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, + 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, + 0x6c, 0x74, 0x79, 0x22, 0x3e, 0x50, 0x65, 0x6e, 0x61, 0x6c, 0x69, 0x7a, + 0x65, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x20, 0x73, 0x65, 0x71, + 0x75, 0x65, 0x6e, 0x63, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, + 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, + 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, + 0x69, 0x64, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, + 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d, + 0x22, 0x30, 0x2e, 0x30, 0x22, 0x20, 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x32, + 0x2e, 0x30, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3d, 0x22, 0x30, 0x2e, + 0x30, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x72, 0x65, + 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, + 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, + 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, + 0x74, 0x79, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, + 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, + 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, + 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, + 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, + 0x74, 0x79, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, - 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, - 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x7d, 0x3c, 0x2f, - 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, - 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, - 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, - 0x4d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x20, 0x3d, 0x20, 0x28, - 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, - 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x64, 0x20, - 0x3d, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x74, 0x65, 0x78, - 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, - 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x23, 0x7b, 0x31, 0x2c, 0x36, 0x7d, 0x20, - 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f, 0x67, 0x69, 0x6d, 0x2c, 0x20, 0x27, - 0x3c, 0x68, 0x33, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x68, 0x33, 0x3e, 0x27, - 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, - 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x2a, 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, - 0x29, 0x5c, 0x2a, 0x5c, 0x2a, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x73, + 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, + 0x72, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, + 0x73, 0x74, 0x5f, 0x6e, 0x22, 0x3e, 0x43, 0x6f, 0x6e, 0x73, 0x69, 0x64, + 0x65, 0x72, 0x20, 0x4e, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x73, 0x20, + 0x66, 0x6f, 0x72, 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x69, 0x7a, 0x65, + 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, + 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x72, + 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, + 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x30, 0x2e, 0x30, 0x22, 0x20, + 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x32, 0x30, 0x34, 0x38, 0x22, 0x20, 0x6e, + 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, + 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, + 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, + 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x7d, 0x22, 0x20, 0x6f, 0x6e, + 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, + 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, + 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, + 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, + 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, + 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, + 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, 0x72, 0x6d, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x70, 0x6f, + 0x6f, 0x72, 0x20, 0x6d, 0x61, 0x6e, 0x73, 0x20, 0x6d, 0x61, 0x72, 0x6b, + 0x64, 0x6f, 0x77, 0x6e, 0x20, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, + 0x6d, 0x65, 0x6e, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, + 0x73, 0x74, 0x20, 0x4d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x69, + 0x73, 0x68, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, + 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x64, 0x20, 0x3d, 0x20, + 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x74, 0x65, 0x78, 0x74, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, + 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x23, 0x7b, 0x31, 0x2c, 0x36, + 0x7d, 0x20, 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f, 0x67, 0x69, 0x6d, 0x2c, + 0x20, 0x27, 0x3c, 0x68, 0x33, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x68, 0x33, + 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x2a, + 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x5c, 0x2a, 0x2f, + 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, + 0x24, 0x31, 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27, + 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, + 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5f, 0x5f, 0x28, 0x2e, + 0x2a, 0x3f, 0x29, 0x5f, 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5f, 0x5f, - 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5f, 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, - 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x31, 0x3c, 0x2f, - 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, + 0x28, 0x2f, 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x2f, + 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, 0x3c, 0x2f, + 0x65, 0x6d, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, - 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x2f, 0x67, 0x2c, - 0x20, 0x27, 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x65, 0x6d, - 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, - 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5f, 0x28, 0x2e, 0x2a, 0x3f, 0x29, - 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, - 0x3c, 0x2f, 0x65, 0x6d, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x60, - 0x60, 0x2e, 0x2a, 0x3f, 0x5c, 0x6e, 0x28, 0x5b, 0x5c, 0x73, 0x5c, 0x53, - 0x5d, 0x2a, 0x3f, 0x29, 0x60, 0x60, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, - 0x3c, 0x70, 0x72, 0x65, 0x3e, 0x3c, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x24, - 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x3c, 0x2f, 0x70, 0x72, - 0x65, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, - 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x28, 0x2e, 0x2a, 0x3f, - 0x29, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x63, 0x6f, 0x64, 0x65, - 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x27, 0x29, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, - 0x65, 0x28, 0x2f, 0x5c, 0x6e, 0x2f, 0x67, 0x69, 0x6d, 0x2c, 0x20, 0x27, - 0x3c, 0x62, 0x72, 0x20, 0x2f, 0x3e, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, + 0x5f, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, + 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x65, 0x6d, 0x3e, 0x27, + 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, + 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x60, 0x60, 0x2e, + 0x2a, 0x3f, 0x5c, 0x6e, 0x28, 0x5b, 0x5c, 0x73, 0x5c, 0x53, 0x5d, 0x2a, + 0x3f, 0x29, 0x60, 0x60, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x70, + 0x72, 0x65, 0x3e, 0x3c, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x24, 0x31, 0x3c, + 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x3c, 0x2f, 0x70, 0x72, 0x65, 0x3e, + 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, + 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x28, 0x2e, + 0x2a, 0x3f, 0x29, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x63, 0x6f, + 0x64, 0x65, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, + 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, + 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x6e, 0x2f, + 0x67, 0x69, 0x6d, 0x2c, 0x20, 0x27, 0x3c, 0x62, 0x72, 0x20, 0x2f, 0x3e, + 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, + 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x73, + 0x70, 0x61, 0x6e, 0x20, 0x64, 0x61, 0x6e, 0x67, 0x65, 0x72, 0x6f, 0x75, + 0x73, 0x6c, 0x79, 0x53, 0x65, 0x74, 0x49, 0x6e, 0x6e, 0x65, 0x72, 0x48, + 0x54, 0x4d, 0x4c, 0x3d, 0x24, 0x7b, 0x7b, 0x20, 0x5f, 0x5f, 0x68, 0x74, + 0x6d, 0x6c, 0x3a, 0x20, 0x6d, 0x64, 0x20, 0x7d, 0x7d, 0x20, 0x2f, 0x3e, + 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x4d, 0x6f, 0x64, + 0x65, 0x6c, 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, + 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, + 0x6d, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x6c, 0x6c, 0x61, 0x6d, + 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, + 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, - 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x20, 0x64, 0x61, 0x6e, 0x67, 0x65, 0x72, - 0x6f, 0x75, 0x73, 0x6c, 0x79, 0x53, 0x65, 0x74, 0x49, 0x6e, 0x6e, 0x65, - 0x72, 0x48, 0x54, 0x4d, 0x4c, 0x3d, 0x24, 0x7b, 0x7b, 0x20, 0x5f, 0x5f, - 0x68, 0x74, 0x6d, 0x6c, 0x3a, 0x20, 0x6d, 0x64, 0x20, 0x7d, 0x7d, 0x20, - 0x2f, 0x3e, 0x60, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x41, 0x70, - 0x70, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x0a, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, - 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x64, 0x69, 0x76, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x63, 0x6f, - 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, 0x22, 0x3e, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x68, 0x65, 0x61, 0x64, 0x65, - 0x72, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x68, 0x31, 0x3e, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, - 0x70, 0x70, 0x3c, 0x2f, 0x68, 0x31, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, - 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x6d, 0x61, 0x69, 0x6e, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x63, 0x6f, 0x6e, - 0x74, 0x65, 0x6e, 0x74, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, 0x7b, 0x63, 0x68, 0x61, 0x74, - 0x53, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64, 0x2e, 0x76, 0x61, 0x6c, 0x75, - 0x65, 0x20, 0x3f, 0x20, 0x43, 0x68, 0x61, 0x74, 0x4c, 0x6f, 0x67, 0x20, - 0x3a, 0x20, 0x43, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x46, 0x6f, 0x72, 0x6d, - 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x3c, 0x2f, 0x6d, 0x61, 0x69, 0x6e, 0x3e, 0x0a, 0x0a, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x6f, 0x74, 0x65, - 0x72, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x77, 0x72, 0x69, 0x74, 0x65, 0x22, - 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, - 0x3c, 0x24, 0x7b, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x49, 0x6e, - 0x70, 0x75, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, - 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, - 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x70, 0x3e, 0x50, 0x6f, 0x77, - 0x65, 0x72, 0x65, 0x64, 0x20, 0x62, 0x79, 0x20, 0x3c, 0x61, 0x20, 0x68, - 0x72, 0x65, 0x66, 0x3d, 0x22, 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a, 0x2f, - 0x2f, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, - 0x67, 0x67, 0x65, 0x72, 0x67, 0x61, 0x6e, 0x6f, 0x76, 0x2f, 0x6c, 0x6c, - 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x22, 0x3e, 0x6c, 0x6c, 0x61, - 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x3c, 0x2f, 0x61, 0x3e, 0x20, 0x61, - 0x6e, 0x64, 0x20, 0x3c, 0x61, 0x20, 0x68, 0x72, 0x65, 0x66, 0x3d, 0x22, - 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a, 0x2f, 0x2f, 0x67, 0x67, 0x6d, 0x6c, - 0x2e, 0x61, 0x69, 0x22, 0x3e, 0x67, 0x67, 0x6d, 0x6c, 0x2e, 0x61, 0x69, - 0x3c, 0x2f, 0x61, 0x3e, 0x3c, 0x2f, 0x70, 0x3e, 0x0a, 0x20, 0x20, 0x20, - 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, 0x6f, 0x74, 0x65, - 0x72, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, - 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x3b, - 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, - 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x28, 0x68, 0x28, 0x41, 0x70, 0x70, - 0x29, 0x2c, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, - 0x62, 0x6f, 0x64, 0x79, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x3c, 0x2f, 0x73, - 0x63, 0x72, 0x69, 0x70, 0x74, 0x3e, 0x0a, 0x3c, 0x2f, 0x68, 0x65, 0x61, - 0x64, 0x3e, 0x0a, 0x0a, 0x3c, 0x62, 0x6f, 0x64, 0x79, 0x3e, 0x0a, 0x3c, - 0x2f, 0x62, 0x6f, 0x64, 0x79, 0x3e, 0x0a, 0x0a, 0x3c, 0x2f, 0x68, 0x74, - 0x6d, 0x6c, 0x3e, 0x0a + 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x2f, 0x3e, 0x60, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, + 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, + 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x24, 0x7b, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61, 0x74, + 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, 0x65, 0x64, + 0x69, 0x63, 0x74, 0x65, 0x64, 0x5f, 0x70, 0x65, 0x72, 0x5f, 0x74, 0x6f, + 0x6b, 0x65, 0x6e, 0x5f, 0x6d, 0x73, 0x2e, 0x74, 0x6f, 0x46, 0x69, 0x78, + 0x65, 0x64, 0x28, 0x29, 0x7d, 0x6d, 0x73, 0x20, 0x70, 0x65, 0x72, 0x20, + 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x2c, 0x20, 0x24, 0x7b, 0x6c, 0x6c, 0x61, + 0x6d, 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, + 0x65, 0x2e, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x65, 0x64, 0x5f, + 0x70, 0x65, 0x72, 0x5f, 0x73, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x2e, 0x74, + 0x6f, 0x46, 0x69, 0x78, 0x65, 0x64, 0x28, 0x32, 0x29, 0x7d, 0x20, 0x74, + 0x6f, 0x6b, 0x65, 0x6e, 0x73, 0x20, 0x70, 0x65, 0x72, 0x20, 0x73, 0x65, + 0x63, 0x6f, 0x6e, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x41, 0x70, 0x70, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20, + 0x7b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, + 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x20, 0x69, + 0x64, 0x3d, 0x22, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72, + 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x68, + 0x31, 0x3e, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x3c, + 0x2f, 0x68, 0x31, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x3e, + 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x3c, 0x6d, 0x61, 0x69, 0x6e, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x63, 0x6f, + 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, 0x7b, 0x63, + 0x68, 0x61, 0x74, 0x53, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64, 0x2e, 0x76, + 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3f, 0x20, 0x43, 0x68, 0x61, 0x74, 0x4c, + 0x6f, 0x67, 0x20, 0x3a, 0x20, 0x43, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x46, + 0x6f, 0x72, 0x6d, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x6d, 0x61, 0x69, 0x6e, + 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x3c, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x64, + 0x3d, 0x22, 0x77, 0x72, 0x69, 0x74, 0x65, 0x22, 0x3e, 0x0a, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, + 0x7b, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x49, 0x6e, 0x70, 0x75, + 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, + 0x6e, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x3e, 0x0a, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x70, 0x3e, 0x3c, 0x24, 0x7b, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x47, 0x65, + 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x49, 0x6e, 0x66, 0x6f, + 0x7d, 0x20, 0x2f, 0x3e, 0x3c, 0x2f, 0x70, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x70, 0x3e, + 0x50, 0x6f, 0x77, 0x65, 0x72, 0x65, 0x64, 0x20, 0x62, 0x79, 0x20, 0x3c, + 0x61, 0x20, 0x68, 0x72, 0x65, 0x66, 0x3d, 0x22, 0x68, 0x74, 0x74, 0x70, + 0x73, 0x3a, 0x2f, 0x2f, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, + 0x6f, 0x6d, 0x2f, 0x67, 0x67, 0x65, 0x72, 0x67, 0x61, 0x6e, 0x6f, 0x76, + 0x2f, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x22, 0x3e, + 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x3c, 0x2f, 0x61, + 0x3e, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x3c, 0x61, 0x20, 0x68, 0x72, 0x65, + 0x66, 0x3d, 0x22, 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a, 0x2f, 0x2f, 0x67, + 0x67, 0x6d, 0x6c, 0x2e, 0x61, 0x69, 0x22, 0x3e, 0x67, 0x67, 0x6d, 0x6c, + 0x2e, 0x61, 0x69, 0x3c, 0x2f, 0x61, 0x3e, 0x2e, 0x3c, 0x2f, 0x70, 0x3e, + 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, + 0x2f, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x3e, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, + 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, + 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6e, 0x64, + 0x65, 0x72, 0x28, 0x68, 0x28, 0x41, 0x70, 0x70, 0x29, 0x2c, 0x20, 0x64, + 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x62, 0x6f, 0x64, 0x79, + 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x63, 0x72, 0x69, 0x70, + 0x74, 0x3e, 0x0a, 0x3c, 0x2f, 0x68, 0x65, 0x61, 0x64, 0x3e, 0x0a, 0x0a, + 0x3c, 0x62, 0x6f, 0x64, 0x79, 0x3e, 0x0a, 0x3c, 0x2f, 0x62, 0x6f, 0x64, + 0x79, 0x3e, 0x0a, 0x0a, 0x3c, 0x2f, 0x68, 0x74, 0x6d, 0x6c, 0x3e, 0x0a }; -unsigned int index_html_len = 10108; +unsigned int index_html_len = 10752; diff --git a/examples/server/public/completion.js b/examples/server/public/completion.js index 4f5005cfb..a43d5a7d5 100644 --- a/examples/server/public/completion.js +++ b/examples/server/public/completion.js @@ -5,20 +5,29 @@ const paramDefaults = { stop: [""] }; -/** - * This function completes the input text using a llama dictionary. - * @param {object} params - The parameters for the completion request. - * @param {object} controller - an instance of AbortController if you need one, or null. - * @param {function} callback - The callback function to call when the completion is done. - * @returns {string} the completed text as a string. Ideally ignored, and you get at it via the callback. - */ -export const llamaComplete = async (params, controller, callback) => { +let generation_settings = null; + + +// Completes the prompt as a generator. Recommended for most use cases. +// +// Example: +// +// import { llama } from '/completion.js' +// +// const request = llama("Tell me a joke", {n_predict: 800}) +// for await (const chunk of request) { +// document.write(chunk.data.content) +// } +// +export async function* llama(prompt, params = {}, config = {}) { + let controller = config.controller; + if (!controller) { controller = new AbortController(); } - const completionParams = { ...paramDefaults, ...params }; - // we use fetch directly here becasue the built in fetchEventSource does not support POST + const completionParams = { ...paramDefaults, ...params, prompt }; + const response = await fetch("/completion", { method: 'POST', body: JSON.stringify(completionParams), @@ -36,7 +45,6 @@ export const llamaComplete = async (params, controller, callback) => { let content = ""; try { - let cont = true; while (cont) { @@ -59,18 +67,21 @@ export const llamaComplete = async (params, controller, callback) => { result.data = JSON.parse(result.data); content += result.data.content; - // callack - if (callback) { - cont = callback(result) != false; - } + // yield + yield result; // if we got a stop token from server, we will break here if (result.data.stop) { + if (result.data.generation_settings) { + generation_settings = result.data.generation_settings; + } break; } } } catch (e) { - console.error("llama error: ", e); + if (e.name !== 'AbortError') { + console.error("llama error: ", e); + } throw e; } finally { @@ -79,3 +90,79 @@ export const llamaComplete = async (params, controller, callback) => { return content; } + +// Call llama, return an event target that you can subcribe to +// +// Example: +// +// import { llamaEventTarget } from '/completion.js' +// +// const conn = llamaEventTarget(prompt) +// conn.addEventListener("message", (chunk) => { +// document.write(chunk.detail.content) +// }) +// +export const llamaEventTarget = (prompt, params = {}, config = {}) => { + const eventTarget = new EventTarget(); + (async () => { + let content = ""; + for await (const chunk of llama(prompt, params, config)) { + if (chunk.data) { + content += chunk.data.content; + eventTarget.dispatchEvent(new CustomEvent("message", { detail: chunk.data })); + } + if (chunk.data.generation_settings) { + eventTarget.dispatchEvent(new CustomEvent("generation_settings", { detail: chunk.data.generation_settings })); + } + if (chunk.data.timings) { + eventTarget.dispatchEvent(new CustomEvent("timings", { detail: chunk.data.timings })); + } + } + eventTarget.dispatchEvent(new CustomEvent("done", { detail: { content } })); + })(); + return eventTarget; +} + +// Call llama, return a promise that resolves to the completed text. This does not support streaming +// +// Example: +// +// llamaPromise(prompt).then((content) => { +// document.write(content) +// }) +// +// or +// +// const content = await llamaPromise(prompt) +// document.write(content) +// +export const llamaPromise = (prompt, params = {}, config = {}) => { + return new Promise(async (resolve, reject) => { + let content = ""; + try { + for await (const chunk of llama(prompt, params, config)) { + content += chunk.data.content; + } + resolve(content); + } catch (error) { + reject(error); + } + }); +}; + +/** + * (deprecated) + */ +export const llamaComplete = async (params, controller, callback) => { + for await (const chunk of llama(params.prompt, params, { controller })) { + callback(chunk); + } +} + +// Get the model info from the server. This is useful for getting the context window and so on. +export const llamaModelInfo = async () => { + if (!generation_settings) { + generation_settings = await fetch("/model.json").then(r => r.json()); + } + return generation_settings; +} diff --git a/examples/server/public/index.html b/examples/server/public/index.html index 6393e2e75..8ace0b0af 100644 --- a/examples/server/public/index.html +++ b/examples/server/public/index.html @@ -6,7 +6,6 @@ llama.cpp - chat