docker : add server-first container images (#5157)
* feat: add Dockerfiles for each platform that user ./server instead of ./main * feat: update .github/workflows/docker.yml to build server-first docker containers * doc: add information about running the server with Docker to README.md * doc: add information about running with docker to the server README * doc: update n-gpu-layers to show correct GPU usage * fix(doc): update container tag from `server` to `server-cuda` for README example on running server container with CUDA
This commit is contained in:
parent
6db2b41a76
commit
39baaf55a1
7 changed files with 147 additions and 1 deletions
32
.devops/server-cuda.Dockerfile
Normal file
32
.devops/server-cuda.Dockerfile
Normal file
|
@ -0,0 +1,32 @@
|
||||||
|
ARG UBUNTU_VERSION=22.04
|
||||||
|
# This needs to generally match the container host's environment.
|
||||||
|
ARG CUDA_VERSION=11.7.1
|
||||||
|
# Target the CUDA build image
|
||||||
|
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||||
|
# Target the CUDA runtime image
|
||||||
|
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||||
|
|
||||||
|
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||||
|
|
||||||
|
# Unless otherwise specified, we make a fat build.
|
||||||
|
ARG CUDA_DOCKER_ARCH=all
|
||||||
|
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y build-essential git
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
# Set nvcc architecture
|
||||||
|
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||||
|
# Enable cuBLAS
|
||||||
|
ENV LLAMA_CUBLAS=1
|
||||||
|
|
||||||
|
RUN make
|
||||||
|
|
||||||
|
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||||
|
|
||||||
|
COPY --from=build /app/server /server
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/server" ]
|
25
.devops/server-intel.Dockerfile
Normal file
25
.devops/server-intel.Dockerfile
Normal file
|
@ -0,0 +1,25 @@
|
||||||
|
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
|
||||||
|
ARG UBUNTU_VERSION=22.04
|
||||||
|
|
||||||
|
FROM intel/hpckit:$ONEAPI_VERSION as build
|
||||||
|
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y git
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
# for some reasons, "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DLLAMA_NATIVE=ON" give worse performance
|
||||||
|
RUN mkdir build && \
|
||||||
|
cd build && \
|
||||||
|
cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx && \
|
||||||
|
cmake --build . --config Release --target main server
|
||||||
|
|
||||||
|
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||||
|
|
||||||
|
COPY --from=build /app/build/bin/server /server
|
||||||
|
|
||||||
|
ENV LC_ALL=C.utf8
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/server" ]
|
45
.devops/server-rocm.Dockerfile
Normal file
45
.devops/server-rocm.Dockerfile
Normal file
|
@ -0,0 +1,45 @@
|
||||||
|
ARG UBUNTU_VERSION=22.04
|
||||||
|
|
||||||
|
# This needs to generally match the container host's environment.
|
||||||
|
ARG ROCM_VERSION=5.6
|
||||||
|
|
||||||
|
# Target the CUDA build image
|
||||||
|
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||||
|
|
||||||
|
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||||
|
|
||||||
|
# Unless otherwise specified, we make a fat build.
|
||||||
|
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||||
|
# This is mostly tied to rocBLAS supported archs.
|
||||||
|
ARG ROCM_DOCKER_ARCH=\
|
||||||
|
gfx803 \
|
||||||
|
gfx900 \
|
||||||
|
gfx906 \
|
||||||
|
gfx908 \
|
||||||
|
gfx90a \
|
||||||
|
gfx1010 \
|
||||||
|
gfx1030 \
|
||||||
|
gfx1100 \
|
||||||
|
gfx1101 \
|
||||||
|
gfx1102
|
||||||
|
|
||||||
|
COPY requirements.txt requirements.txt
|
||||||
|
COPY requirements requirements
|
||||||
|
|
||||||
|
RUN pip install --upgrade pip setuptools wheel \
|
||||||
|
&& pip install -r requirements.txt
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
# Set nvcc architecture
|
||||||
|
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||||
|
# Enable ROCm
|
||||||
|
ENV LLAMA_HIPBLAS=1
|
||||||
|
ENV CC=/opt/rocm/llvm/bin/clang
|
||||||
|
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||||
|
|
||||||
|
RUN make
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/server" ]
|
20
.devops/server.Dockerfile
Normal file
20
.devops/server.Dockerfile
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
ARG UBUNTU_VERSION=22.04
|
||||||
|
|
||||||
|
FROM ubuntu:$UBUNTU_VERSION as build
|
||||||
|
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y build-essential git
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
RUN make
|
||||||
|
|
||||||
|
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||||
|
|
||||||
|
COPY --from=build /app/server /server
|
||||||
|
|
||||||
|
ENV LC_ALL=C.utf8
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/server" ]
|
4
.github/workflows/docker.yml
vendored
4
.github/workflows/docker.yml
vendored
|
@ -28,14 +28,18 @@ jobs:
|
||||||
config:
|
config:
|
||||||
- { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
|
- { tag: "server", dockerfile: ".devops/server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
|
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
|
||||||
# have disabled them for now until the reason why
|
# have disabled them for now until the reason why
|
||||||
# is understood.
|
# is understood.
|
||||||
- { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" }
|
- { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||||
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
|
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||||
|
- { tag: "server-cuda", dockerfile: ".devops/server-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||||
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
|
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
|
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
|
||||||
|
- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
|
||||||
steps:
|
steps:
|
||||||
- name: Check out the repo
|
- name: Check out the repo
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
|
|
14
README.md
14
README.md
|
@ -931,17 +931,20 @@ Place your desired model into the `~/llama.cpp/models/` directory and execute th
|
||||||
* Create a folder to store big models & intermediate files (ex. /llama/models)
|
* Create a folder to store big models & intermediate files (ex. /llama/models)
|
||||||
|
|
||||||
#### Images
|
#### Images
|
||||||
We have two Docker images available for this project:
|
We have three Docker images available for this project:
|
||||||
|
|
||||||
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
|
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executabhle file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
|
|
||||||
Additionally, there the following images, similar to the above:
|
Additionally, there the following images, similar to the above:
|
||||||
|
|
||||||
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||||
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||||
|
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||||
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
|
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
|
|
||||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
|
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
|
||||||
|
|
||||||
|
@ -967,6 +970,12 @@ or with a light image:
|
||||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||||
```
|
```
|
||||||
|
|
||||||
|
or with a server image:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
|
||||||
|
```
|
||||||
|
|
||||||
### Docker With CUDA
|
### Docker With CUDA
|
||||||
|
|
||||||
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
|
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
|
||||||
|
@ -976,6 +985,7 @@ Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia
|
||||||
```bash
|
```bash
|
||||||
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
|
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
|
||||||
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
|
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
|
||||||
|
docker build -t local/llama.cpp:server-cuda -f .devops/server-cuda.Dockerfile .
|
||||||
```
|
```
|
||||||
|
|
||||||
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
|
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
|
||||||
|
@ -989,6 +999,7 @@ The resulting images, are essentially the same as the non-CUDA images:
|
||||||
|
|
||||||
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
|
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
|
||||||
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
|
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
|
||||||
|
3. `local/llama.cpp:server-cuda`: This image only includes the server executable file.
|
||||||
|
|
||||||
#### Usage
|
#### Usage
|
||||||
|
|
||||||
|
@ -997,6 +1008,7 @@ After building locally, Usage is similar to the non-CUDA examples, but you'll ne
|
||||||
```bash
|
```bash
|
||||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||||
|
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
|
||||||
```
|
```
|
||||||
|
|
||||||
### Contributing
|
### Contributing
|
||||||
|
|
|
@ -66,6 +66,14 @@ server.exe -m models\7B\ggml-model.gguf -c 2048
|
||||||
The above command will start a server that by default listens on `127.0.0.1:8080`.
|
The above command will start a server that by default listens on `127.0.0.1:8080`.
|
||||||
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.
|
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.
|
||||||
|
|
||||||
|
### Docker:
|
||||||
|
```bash
|
||||||
|
docker run -p 8080:8080 -v /path/to/models:/models ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
|
||||||
|
|
||||||
|
# or, with CUDA:
|
||||||
|
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ggerganov/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
|
||||||
|
```
|
||||||
|
|
||||||
## Testing with CURL
|
## Testing with CURL
|
||||||
|
|
||||||
Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the base OS.
|
Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the base OS.
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue