Merge branch 'ggerganov:master' into master

This commit is contained in:
jameswu2014 2023-09-05 20:11:49 +08:00 committed by GitHub
commit 39c4b8540d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
15 changed files with 292 additions and 158 deletions

29
.gitignore vendored
View file

@ -31,28 +31,29 @@ tmp/
models/* models/*
models-mnt models-mnt
/main
/quantize
/quantize-stats
/result
/perplexity
/embedding
/train-text-from-scratch
/convert-llama2c-to-ggml
/simple
/benchmark-matmult
/vdot
/server
/Pipfile /Pipfile
/baby-llama
/beam-search
/benchmark-matmult
/convert-llama2c-to-ggml
/embd-input-test /embd-input-test
/embedding
/gguf /gguf
/gguf-llama-simple /gguf-llama-simple
/libllama.so /libllama.so
/llama-bench /llama-bench
/baby-llama /main
/beam-search /metal
/perplexity
/quantize
/quantize-stats
/result
/save-load-state /save-load-state
/server
/simple
/speculative /speculative
/train-text-from-scratch
/vdot
build-info.h build-info.h
arm_neon.h arm_neon.h
compile_commands.json compile_commands.json

View file

@ -36,6 +36,12 @@ endif()
# Option list # Option list
# #
if (APPLE)
set(LLAMA_METAL_DEFAULT ON)
else()
set(LLAMA_METAL_DEFAULT OFF)
endif()
# general # general
option(LLAMA_STATIC "llama: static link libraries" OFF) option(LLAMA_STATIC "llama: static link libraries" OFF)
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF) option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
@ -76,7 +82,7 @@ option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K") set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF) option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF) option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_METAL "llama: use Metal" OFF) option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_MPI "llama: use MPI" OFF) option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_K_QUANTS "llama: use k-quants" ON) option(LLAMA_K_QUANTS "llama: use k-quants" ON)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF) option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
@ -158,6 +164,31 @@ if (APPLE AND LLAMA_ACCELERATE)
endif() endif()
endif() endif()
if (LLAMA_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
message(STATUS "Metal framework found")
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
add_compile_definitions(GGML_USE_METAL)
#add_compile_definitions(GGML_METAL_NDEBUG)
# get full path to the file
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
)
endif()
if (LLAMA_BLAS) if (LLAMA_BLAS)
if (LLAMA_STATIC) if (LLAMA_STATIC)
set(BLA_STATIC ON) set(BLA_STATIC ON)
@ -293,29 +324,6 @@ if (LLAMA_CUBLAS)
endif() endif()
endif() endif()
if (LLAMA_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
add_compile_definitions(GGML_USE_METAL)
#add_compile_definitions(GGML_METAL_NDEBUG)
# get full path to the file
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
)
endif()
if (LLAMA_MPI) if (LLAMA_MPI)
cmake_minimum_required(VERSION 3.10) cmake_minimum_required(VERSION 3.10)
find_package(MPI) find_package(MPI)

View file

@ -7,6 +7,39 @@ TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-dou
# Code coverage output files # Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
ifndef UNAME_P
UNAME_P := $(shell uname -p)
endif
ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif
# Mac OS + Arm can report x86_64
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
ifeq ($(UNAME_S),Darwin)
ifndef LLAMA_NO_METAL
LLAMA_METAL := 1
endif
ifneq ($(UNAME_P),arm)
SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
ifeq ($(SYSCTL_M),1)
# UNAME_P := arm
# UNAME_M := arm64
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
endif
endif
endif
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
BUILD_TARGETS += metal
endif
default: $(BUILD_TARGETS) default: $(BUILD_TARGETS)
test: test:
@ -38,18 +71,6 @@ gcovr-report: coverage ## Generate gcovr report
mkdir -p gcovr-report mkdir -p gcovr-report
gcovr --root . --html --html-details --output gcovr-report/coverage.html gcovr --root . --html --html-details --output gcovr-report/coverage.html
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
ifndef UNAME_P
UNAME_P := $(shell uname -p)
endif
ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif
ifdef RISCV_CROSS_COMPILE ifdef RISCV_CROSS_COMPILE
CC := riscv64-unknown-linux-gnu-gcc CC := riscv64-unknown-linux-gnu-gcc
CXX := riscv64-unknown-linux-gnu-g++ CXX := riscv64-unknown-linux-gnu-g++
@ -58,19 +79,6 @@ endif
CCV := $(shell $(CC) --version | head -n 1) CCV := $(shell $(CC) --version | head -n 1)
CXXV := $(shell $(CXX) --version | head -n 1) CXXV := $(shell $(CXX) --version | head -n 1)
# Mac OS + Arm can report x86_64
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
ifeq ($(UNAME_S),Darwin)
ifneq ($(UNAME_P),arm)
SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
ifeq ($(SYSCTL_M),1)
# UNAME_P := arm
# UNAME_M := arm64
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
endif
endif
endif
# #
# Compile flags # Compile flags
# #
@ -231,14 +239,24 @@ endif
endif endif
ifndef LLAMA_NO_ACCELERATE ifndef LLAMA_NO_ACCELERATE
# Mac M1 - include Accelerate framework. # Mac OS - include Accelerate framework.
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time). # `-framework Accelerate` works both with Apple Silicon and Mac Intel
ifeq ($(UNAME_S),Darwin) ifeq ($(UNAME_S),Darwin)
MK_CPPFLAGS += -DGGML_USE_ACCELERATE MK_CPPFLAGS += -DGGML_USE_ACCELERATE
MK_LDFLAGS += -framework Accelerate MK_LDFLAGS += -framework Accelerate
endif endif
endif # LLAMA_NO_ACCELERATE endif # LLAMA_NO_ACCELERATE
ifdef LLAMA_METAL
# By default - use GPU acceleration on Mac OS
ifeq ($(UNAME_S),Darwin)
CFLAGS += -DGGML_USE_METAL #-DGGML_METAL_NDEBUG
CXXFLAGS += -DGGML_USE_METAL
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
OBJS += ggml-metal.o
endif
endif # LLAMA_METAL
ifdef LLAMA_MPI ifdef LLAMA_MPI
MK_CPPFLAGS += -DGGML_USE_MPI MK_CPPFLAGS += -DGGML_USE_MPI
MK_CFLAGS += -Wno-cast-qual MK_CFLAGS += -Wno-cast-qual
@ -477,13 +495,9 @@ baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o $(OBJS)
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS) beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o $(OBJS) speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
BUILD_TARGETS += metal
endif
ifdef LLAMA_METAL ifdef LLAMA_METAL
metal: examples/metal/metal.cpp ggml.o $(OBJS) metal: examples/metal/metal.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)

View file

@ -280,29 +280,11 @@ In order to build llama.cpp you have three different options.
### Metal Build ### Metal Build
Using Metal allows the computation to be executed on the GPU for Apple devices: On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
- Using `make`: When built with Metal support, you can explicitly disable GPU inference with the `--gpu-layers|-ngl 0` command-line
argument.
```bash
LLAMA_METAL=1 make
```
- Using `CMake`:
```bash
mkdir build-metal
cd build-metal
cmake -DLLAMA_METAL=ON ..
cmake --build . --config Release
```
When built with Metal support, you can enable GPU inference with the `--gpu-layers|-ngl` command-line argument.
Any value larger than 0 will offload the computation to the GPU. For example:
```bash
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -ngl 1
```
### MPI Build ### MPI Build

View file

@ -717,7 +717,9 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
lparams.n_ctx = params.n_ctx; lparams.n_ctx = params.n_ctx;
lparams.n_batch = params.n_batch; lparams.n_batch = params.n_batch;
if (params.n_gpu_layers != -1) {
lparams.n_gpu_layers = params.n_gpu_layers; lparams.n_gpu_layers = params.n_gpu_layers;
}
lparams.main_gpu = params.main_gpu; lparams.main_gpu = params.main_gpu;
lparams.tensor_split = params.tensor_split; lparams.tensor_split = params.tensor_split;
lparams.low_vram = params.low_vram; lparams.low_vram = params.low_vram;
@ -770,7 +772,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
{ {
LOG("warming up the model with an empty run\n"); LOG("warming up the model with an empty run\n");
const std::vector<llama_token> tmp = { llama_token_bos(lctx), }; const std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
llama_eval(lctx, tmp.data(), tmp.size(), 0, params.n_threads); llama_eval(lctx, tmp.data(), tmp.size(), 0, params.n_threads);
llama_reset_timings(lctx); llama_reset_timings(lctx);
} }
@ -1212,7 +1214,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false"); fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false");
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
fprintf(stream, "n_gpu_layers: %d # default: 0\n", params.n_gpu_layers); fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs); fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");

View file

@ -34,7 +34,7 @@ struct gpt_params {
int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 16; // number of tokens to draft during speculative decoding int32_t n_draft = 16; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_gpu_layers = 0; // number of layers to store in VRAM int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.

View file

@ -58,7 +58,7 @@ def parse_args() -> argparse.Namespace:
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1) parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
return parser.parse_args() return parser.parse_args()
args = parse_args() args = parse_args()

View file

@ -151,14 +151,6 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale); LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
} }
if (params.n_ctx > 2048) {
// TODO: determine the actual max context of the model (e.g. 4096 for LLaMA v2) and use that instead of 2048
LOG_TEE("%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified)\n", __func__, params.n_ctx);
} else if (params.n_ctx < 8) {
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed == LLAMA_DEFAULT_SEED) { if (params.seed == LLAMA_DEFAULT_SEED) {
@ -194,6 +186,13 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
if (params.n_ctx > llama_n_ctx(ctx)) {
LOG_TEE("%s: warning: base model only supports context sizes no greater than %d tokens (%d specified)\n", __func__, llama_n_ctx(ctx), params.n_ctx);
} else if (params.n_ctx < 8) {
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
// print system information // print system information
{ {
LOG_TEE("\n"); LOG_TEE("\n");

View file

@ -368,7 +368,7 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
// Example, we have a context window of 512, we will compute perplexity for each of the // Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to // last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt. // process the entire prompt.
const int first = std::min(512, params.n_ctx/2); const int first = params.n_ctx/2;
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first, process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first,
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
count += params.n_ctx - first - 1; count += params.n_ctx - first - 1;
@ -668,11 +668,6 @@ int main(int argc, char ** argv) {
params.n_ctx += params.ppl_stride/2; params.n_ctx += params.ppl_stride/2;
} }
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
}
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed == LLAMA_DEFAULT_SEED) { if (params.seed == LLAMA_DEFAULT_SEED) {
@ -698,6 +693,11 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
if (params.n_ctx > llama_n_ctx(ctx)) {
fprintf(stderr, "%s: warning: model might not support context sizes greater than %d tokens (%d specified);"
"expect poor results\n", __func__, llama_n_ctx(ctx), params.n_ctx);
}
// print system information // print system information
{ {
fprintf(stderr, "\n"); fprintf(stderr, "\n");

View file

@ -6,6 +6,7 @@
#include "common.h" #include "common.h"
#include "llama.h" #include "llama.h"
#include "grammar-parser.h"
#include <cmath> #include <cmath>
#include <cstdio> #include <cstdio>
@ -109,16 +110,35 @@ int main(int argc, char ** argv) {
// used to determine end of generation // used to determine end of generation
bool has_eos = false; bool has_eos = false;
// grammar stuff
struct llama_grammar * grammar_dft = NULL;
struct llama_grammar * grammar_tgt = NULL;
grammar_parser::parse_state parsed_grammar;
// if requested - load the grammar, error checking is omitted for brevity
if (!params.grammar.empty()) {
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
if (parsed_grammar.rules.empty()) {
return 1;
}
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
}
const auto t_dec_start = ggml_time_us(); const auto t_dec_start = ggml_time_us();
while (true) { while (true) {
LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted)); LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
// sample from the drafted tokens if any
int i_dft = 0; int i_dft = 0;
while (true) { while (true) {
const llama_token id = llama_sample_token(ctx_tgt, NULL, NULL, params, last_tokens, candidates, i_dft); // sample from the target model
const llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft);
// remember which tokens were sampled - used for repetition penalties during sampling
last_tokens.erase(last_tokens.begin()); last_tokens.erase(last_tokens.begin());
last_tokens.push_back(id); last_tokens.push_back(id);
@ -134,8 +154,9 @@ int main(int argc, char ** argv) {
++n_predict; ++n_predict;
// check if the draft matches the target
if (i_dft < (int) drafted.size() && id == drafted[i_dft]) { if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
LOG("drafted token %d accepted\n", id); LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
++n_accept; ++n_accept;
++n_past_tgt; ++n_past_tgt;
++n_past_dft; ++n_past_dft;
@ -145,6 +166,14 @@ int main(int argc, char ** argv) {
} }
// the drafted token was rejected or we are out of drafted tokens // the drafted token was rejected or we are out of drafted tokens
if (i_dft < (int) drafted.size()) {
LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n",
i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str());
} else {
LOG("out of drafted tokens\n");
}
llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads); llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads);
++n_past_dft; ++n_past_dft;
@ -158,7 +187,16 @@ int main(int argc, char ** argv) {
break; break;
} }
// sample n_draft tokens from the draft model picking the best token if (grammar_tgt) {
if (grammar_dft) {
llama_grammar_free(grammar_dft);
}
grammar_dft = llama_grammar_copy(grammar_tgt);
LOG("copied target grammar to draft grammar\n");
}
// sample n_draft tokens from the draft model using greedy decoding
int n_past_cur = n_past_dft; int n_past_cur = n_past_dft;
for (int i = 0; i < n_draft; ++i) { for (int i = 0; i < n_draft; ++i) {
float * logits = llama_get_logits(ctx_dft); float * logits = llama_get_logits(ctx_dft);
@ -170,25 +208,40 @@ int main(int argc, char ** argv) {
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
if (grammar_dft != NULL) {
llama_sample_grammar(ctx_dft, &cur_p, grammar_dft);
}
// computes softmax and sorts the candidates // computes softmax and sorts the candidates
llama_sample_softmax(ctx_dft, &cur_p); llama_sample_softmax(ctx_dft, &cur_p);
for (int i = 0; i < 3; ++i) { for (int i = 0; i < 3; ++i) {
LOG(" - draft candidate %d: %d (%.3f)\n", i, cur_p.data[i].id, cur_p.data[i].p); LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str());
} }
// too low probability, stop drafting // TODO: better logic?
if (cur_p.data[0].p < 2*cur_p.data[1].p) { if (cur_p.data[0].p < 2*cur_p.data[1].p) {
LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p);
break; break;
} }
drafted.push_back(cur_p.data[0].id); // drafted token
const llama_token id = cur_p.data[0].id;
drafted.push_back(id);
++n_drafted; ++n_drafted;
if (i < n_draft - 1) { // no need to evaluate the last drafted token, since we won't use the result
if (i == n_draft - 1) {
break;
}
// evaluate the drafted token on the draft model // evaluate the drafted token on the draft model
llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads); llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads);
++n_past_cur; ++n_past_cur;
if (grammar_dft != NULL) {
llama_grammar_accept_token(ctx_dft, grammar_dft, id);
} }
} }
@ -196,6 +249,7 @@ int main(int argc, char ** argv) {
llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads); llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads);
++n_past_tgt; ++n_past_tgt;
// the first token is always proposed by the traget model before the speculation loop
drafted.erase(drafted.begin()); drafted.erase(drafted.begin());
} }
@ -226,6 +280,10 @@ int main(int argc, char ** argv) {
llama_free(ctx_dft); llama_free(ctx_dft);
llama_free_model(model_dft); llama_free_model(model_dft);
if (grammar_dft != NULL) {
llama_grammar_free(grammar_dft);
llama_grammar_free(grammar_tgt);
}
llama_backend_free(); llama_backend_free();
fprintf(stderr, "\n\n"); fprintf(stderr, "\n\n");

View file

@ -1334,7 +1334,7 @@ void ggml_cl_free_data(const struct ggml_tensor* tensor) {
return; return;
} }
cl_mem mem = (cl_mem)tensor->data; cl_mem mem = (cl_mem)tensor->extra;
clReleaseMemObject(mem); clReleaseMemObject(mem);
} }
@ -1393,7 +1393,7 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
size_t d_size; size_t d_size;
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0 cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted. cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
@ -1491,7 +1491,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
size_t d_size; size_t d_size;
cl_mem d_X; cl_mem d_X;
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
d_X = (cl_mem) src0->data; d_X = (cl_mem) src0->extra;
} else { } else {
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
} }
@ -1567,7 +1567,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
size_t d_size; size_t d_size;
cl_mem d_X; cl_mem d_X;
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
d_X = (cl_mem) src0->data; d_X = (cl_mem) src0->extra;
} else { } else {
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size); d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
} }
@ -1697,7 +1697,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
events.emplace_back(); events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
} else if (src0->backend == GGML_BACKEND_GPU) { } else if (src0->backend == GGML_BACKEND_GPU) {
d_Q = (cl_mem) src0->data; d_Q = (cl_mem) src0->extra;
} else { } else {
GGML_ASSERT(false); GGML_ASSERT(false);
} }
@ -1860,6 +1860,6 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
CL_CHECK(clFinish(queue)); CL_CHECK(clFinish(queue));
tensor->data = dst; tensor->extra = dst;
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
} }

34
grammars/json_arr.gbnf Normal file
View file

@ -0,0 +1,34 @@
# This is the same as json.gbnf but we restrict whitespaces at the end of the root array
# Useful for generating JSON arrays
root ::= arr
value ::= object | array | string | number | ("true" | "false" | "null") ws
arr ::=
"[\n" ws (
value
(",\n" ws value)*
)? "]"
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?

View file

@ -83,7 +83,7 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t *
float ax = fabsf(x[i]); float ax = fabsf(x[i]);
if (ax > amax) { amax = ax; max = x[i]; } if (ax > amax) { amax = ax; max = x[i]; }
} }
if (!amax) { // all zero if (amax < 1e-30f) { // all zero
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
L[i] = 0; L[i] = 0;
} }
@ -1086,6 +1086,12 @@ void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict
} }
if (!max_abs_scale) {
memset(&y[i], 0, sizeof(block_q6_K));
y[i].d = ggml_fp32_to_fp16(0.f);
continue;
}
float iscale = -128.f/max_scale; float iscale = -128.f/max_scale;
y[i].d = ggml_fp32_to_fp16(1/iscale); y[i].d = ggml_fp32_to_fp16(1/iscale);
for (int ib = 0; ib < QK_K/16; ++ib) { for (int ib = 0; ib < QK_K/16; ++ib) {

View file

@ -3402,7 +3402,12 @@ static bool llama_eval_internal(
// for big prompts, if BLAS is enabled, it is better to use only one thread // for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads; // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
// we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
// with the BLAS calls. need a better solution
if (N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
n_threads = std::min(4, n_threads);
}
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2]; struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
@ -4310,6 +4315,25 @@ void llama_grammar_free(struct llama_grammar * grammar) {
delete grammar; delete grammar;
} }
struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
// redirect elements in stacks to point to new rules
for (size_t is = 0; is < result->stacks.size(); is++) {
for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
result->stacks[is][ie] = &result->rules[ir0][ir1];
}
}
}
}
}
return result;
}
// //
// sampling // sampling
// //
@ -5800,7 +5824,7 @@ struct llama_context_params llama_context_default_params() {
/*.seed =*/ LLAMA_DEFAULT_SEED, /*.seed =*/ LLAMA_DEFAULT_SEED,
/*.n_ctx =*/ 512, /*.n_ctx =*/ 512,
/*.n_batch =*/ 512, /*.n_batch =*/ 512,
/*.gpu_layers =*/ 0, /*.n_gpu_layers =*/ 0,
/*.main_gpu =*/ 0, /*.main_gpu =*/ 0,
/*.tensor_split =*/ nullptr, /*.tensor_split =*/ nullptr,
/*.rope_freq_base =*/ 10000.0f, /*.rope_freq_base =*/ 10000.0f,
@ -5817,6 +5841,10 @@ struct llama_context_params llama_context_default_params() {
/*.embedding =*/ false, /*.embedding =*/ false,
}; };
#ifdef GGML_USE_METAL
result.n_gpu_layers = 1;
#endif
return result; return result;
} }
@ -6009,7 +6037,6 @@ struct llama_context * llama_new_context_with_model(
} }
#endif #endif
} }
}
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL
if (params.n_gpu_layers > 0) { if (params.n_gpu_layers > 0) {
@ -6046,6 +6073,7 @@ struct llama_context * llama_new_context_with_model(
#undef LLAMA_METAL_CHECK_BUF #undef LLAMA_METAL_CHECK_BUF
} }
#endif #endif
}
#ifdef GGML_USE_MPI #ifdef GGML_USE_MPI
ctx->ctx_mpi = ggml_mpi_init(); ctx->ctx_mpi = ggml_mpi_init();

View file

@ -410,6 +410,8 @@ extern "C" {
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar); LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
// //
// Sampling functions // Sampling functions
// //