Add some minimal optimizations for CDNA (#10498)

* Add some minimal optimizations for CDNA

* ggml_cuda: set launch bounds also for GCN as it helps there too
This commit is contained in:
uvos 2024-11-27 17:10:08 +01:00 committed by GitHub
parent 46c69e0e75
commit 3ad5451f3b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 36 additions and 8 deletions

View file

@ -1107,6 +1107,11 @@ static void ggml_cuda_op_mul_mat_cublas(
const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
if (ggml_cuda_info().devices[ctx.device].cc == CC_CDNA) {
cu_compute_type = CUBLAS_COMPUTE_32F;
}
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
CUBLAS_CHECK(
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
@ -1114,7 +1119,7 @@ static void ggml_cuda_op_mul_mat_cublas(
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
src1_ptr, CUDA_R_16F, ne10,
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
CUBLAS_COMPUTE_16F,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
@ -1607,6 +1612,10 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
cudaDataType_t cu_data_type = CUDA_R_16F;
if (ggml_cuda_info().devices[ctx.device].cc == CC_CDNA) {
cu_compute_type = CUBLAS_COMPUTE_32F;
}
// dst strides
size_t nbd2 = dst->nb[2];
size_t nbd3 = dst->nb[3];