Per token attributes (#7685)
* Add per token attributes enum
* Using phi-3 for testing 'rstrip'
* Using jina-v2 for testing 'lstrip'
* Brute force test for 'lstrip' and 'rstrip'
* Implement 'rstrip' and 'lstrip'
* Update phi-3 GGUF file (obsolete since 917dc8c
)
* Replace llama_token_type with llama_token_attribs
This commit is contained in:
parent
6d1616944d
commit
3b38d48609
4 changed files with 155 additions and 62 deletions
149
llama.cpp
149
llama.cpp
|
@ -2149,12 +2149,12 @@ struct llama_control_vector {
|
|||
struct llama_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
using ttype = llama_token_type;
|
||||
using tattr = llama_token_attr;
|
||||
|
||||
struct token_data {
|
||||
token text;
|
||||
float score;
|
||||
ttype type;
|
||||
tattr attr;
|
||||
};
|
||||
|
||||
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
|
||||
|
@ -4750,7 +4750,20 @@ static void llm_load_vocab(
|
|||
auto & token_data = vocab.id_to_token[i];
|
||||
token_data.text = std::move(word);
|
||||
token_data.score = scores ? scores[i] : 0.0f;
|
||||
token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
|
||||
token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
|
||||
|
||||
if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
|
||||
switch(toktypes[i]) {
|
||||
case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
|
||||
case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
|
||||
case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
|
||||
case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
|
||||
case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
|
||||
case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
|
||||
case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
|
||||
default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
|
||||
|
||||
|
@ -4841,7 +4854,7 @@ static void llm_load_vocab(
|
|||
// build special tokens cache
|
||||
{
|
||||
for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
|
||||
if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
|
||||
if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
|
||||
vocab.cache_special_tokens.push_back(id);
|
||||
}
|
||||
}
|
||||
|
@ -4871,6 +4884,59 @@ static void llm_load_vocab(
|
|||
|
||||
LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
// Handle per token attributes
|
||||
//NOTE: Each model customizes per token attributes.
|
||||
//NOTE: Per token attributes are missing from the GGUF file.
|
||||
//TODO: Extract attributes from GGUF file.
|
||||
{
|
||||
auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
|
||||
for (auto substr : substrs) {
|
||||
if (str.find(substr) < std::string::npos) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
|
||||
uint32_t current = vocab.id_to_token.at(id).attr;
|
||||
current = value ? (current | attr) : (current & ~attr);
|
||||
vocab.id_to_token[id].attr = (llama_token_attr) current;
|
||||
};
|
||||
|
||||
auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
|
||||
_set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
|
||||
};
|
||||
|
||||
std::string model_name;
|
||||
std::string tokenizer_pre;
|
||||
|
||||
ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
|
||||
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
|
||||
|
||||
// model name to lowercase
|
||||
std::transform(model_name.begin(), model_name.end(), model_name.begin(),
|
||||
[] (const std::string::value_type x) {
|
||||
return std::tolower(x);
|
||||
}
|
||||
);
|
||||
|
||||
// set attributes by model/tokenizer name
|
||||
if (_contains_any(tokenizer_pre, {"jina-v2-es", "jina-v2-de"})) {
|
||||
_set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
|
||||
} else if (_contains_any(model_name, {"phi-3", "phi3"})) {
|
||||
for (auto id : vocab.cache_special_tokens) {
|
||||
_set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
|
||||
}
|
||||
for (auto token : {"</s>"}) {
|
||||
_set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
|
||||
}
|
||||
for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
|
||||
_set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
|
@ -12620,27 +12686,27 @@ static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
|
|||
|
||||
static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
|
||||
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
||||
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
|
||||
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
|
||||
}
|
||||
|
||||
static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
|
||||
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
||||
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
|
||||
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
|
||||
}
|
||||
|
||||
static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
|
||||
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
||||
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
|
||||
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
|
||||
static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
|
||||
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
||||
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
|
||||
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
|
||||
}
|
||||
|
||||
static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
|
||||
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
||||
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
|
||||
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
|
||||
}
|
||||
|
||||
static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
|
||||
|
@ -13258,7 +13324,8 @@ struct fragment_buffer_variant {
|
|||
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
|
||||
// for each special token
|
||||
for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
|
||||
const auto & special_token = vocab.id_to_token[special_id].text;
|
||||
const auto & data = vocab.id_to_token[special_id];
|
||||
const auto & special_token = data.text;
|
||||
|
||||
// for each text fragment
|
||||
std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
|
||||
|
@ -13295,13 +13362,22 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
|||
if (match > raw_text_base_offset) {
|
||||
// left
|
||||
const int64_t left_reminder_offset = raw_text_base_offset + 0;
|
||||
const int64_t left_reminder_length = match - raw_text_base_offset;
|
||||
buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
|
||||
int64_t left_reminder_length = match - raw_text_base_offset;
|
||||
|
||||
if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
|
||||
while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
|
||||
left_reminder_length--;
|
||||
}
|
||||
}
|
||||
|
||||
if (left_reminder_length > 0) {
|
||||
buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
|
||||
it++;
|
||||
}
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
|
||||
#endif
|
||||
it++;
|
||||
}
|
||||
|
||||
// special token
|
||||
|
@ -13310,16 +13386,25 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
|||
|
||||
// right
|
||||
if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
|
||||
const int64_t right_reminder_offset = match + special_token.length();
|
||||
const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
|
||||
buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
|
||||
int64_t right_reminder_offset = match + special_token.length();
|
||||
int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
|
||||
|
||||
if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
|
||||
while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
|
||||
right_reminder_offset++;
|
||||
right_reminder_length--;
|
||||
}
|
||||
}
|
||||
|
||||
if (right_reminder_length > 0) {
|
||||
buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
|
||||
it++;
|
||||
}
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
|
||||
#endif
|
||||
|
||||
it++;
|
||||
|
||||
if (source == 0) {
|
||||
buffer.erase_after(buffer.before_begin());
|
||||
} else {
|
||||
|
@ -13365,9 +13450,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
// tokenizer.encode('', add_special_tokens=True) returns [1]
|
||||
// tokenizer.encode('', add_special_tokens=False) returns []
|
||||
|
||||
static const bool rtrim = true; //TODO: as param
|
||||
bool is_prev_special = false;
|
||||
bool special_token_rtrim = false;
|
||||
|
||||
if (add_special && vocab.special_add_bos != 0) {
|
||||
GGML_ASSERT(vocab.special_bos_id != -1);
|
||||
|
@ -13377,25 +13460,8 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
|
||||
for (const auto & fragment : fragment_buffer) {
|
||||
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
||||
// without adding this leading whitespace, we do not get the same results as the original tokenizer
|
||||
|
||||
// TODO: It's likely possible to get rid of this string copy entirely
|
||||
// by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
|
||||
// and passing 'add space prefix' as bool argument
|
||||
//
|
||||
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
|
||||
if (special_token_rtrim) {
|
||||
size_t num_whitespaces = 0;
|
||||
while (isspace(raw_text[num_whitespaces])) {
|
||||
num_whitespaces++;
|
||||
}
|
||||
if (num_whitespaces == raw_text.size()) {
|
||||
continue; // skip if all whitespaces
|
||||
}
|
||||
raw_text = raw_text.substr(num_whitespaces);
|
||||
}
|
||||
|
||||
if (vocab.add_space_prefix) {
|
||||
if (!output.size() || is_prev_special) { // prefix with space if first token
|
||||
raw_text = " " + raw_text;
|
||||
|
@ -13411,11 +13477,6 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
||||
output.push_back(fragment.token);
|
||||
is_prev_special = true;
|
||||
// phi-3 special tokens without rtrim, works fine for llama-spm too
|
||||
special_token_rtrim = rtrim
|
||||
&& fragment.token != vocab.special_bos_id
|
||||
&& fragment.token != vocab.special_unk_id
|
||||
&& fragment.token != vocab.special_eos_id;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -18221,9 +18282,9 @@ float llama_token_get_score(const struct llama_model * model, llama_token token)
|
|||
return model->vocab.id_to_token[token].score;
|
||||
}
|
||||
|
||||
llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
|
||||
llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
|
||||
GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
||||
return model->vocab.id_to_token[token].type;
|
||||
return model->vocab.id_to_token[token].attr;
|
||||
}
|
||||
|
||||
bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue