Per token attributes (#7685)

* Add per token attributes enum
* Using phi-3 for testing 'rstrip'
* Using jina-v2 for testing 'lstrip'
* Brute force test for 'lstrip' and 'rstrip'
* Implement 'rstrip' and 'lstrip'
* Update phi-3 GGUF file (obsolete since 917dc8c)
* Replace llama_token_type with llama_token_attribs
This commit is contained in:
jaime-m-p 2024-06-04 09:17:17 +02:00 committed by GitHub
parent 6d1616944d
commit 3b38d48609
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 155 additions and 62 deletions

View file

@ -156,17 +156,39 @@ def generator_custom_text_edge_cases() -> Iterator[str]:
'<s>a', # Phi-3 fail
'<unk><|endoftext|><s>', # Phi-3 fail
'a\na', # TODO: Bert fail
'a </s> b', # rstrip phi-3
'a <mask> b', # lstrip jina-v2
]
def generator_random_special_tokens(tokenizer, iterations=100) -> Iterator[str]:
special_tokens = set(tokenizer.all_special_tokens)
special_tokens.update([" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"])
special_tokens = list(sorted(special_tokens))
def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
"""Brute force check all vocab words"""
yield from vocab
def generator_added_lr_strip(tokenizer) -> Iterator[str]:
WHITESPACES = ["", " ", " ", " "]
special_tokens = list(tokenizer.all_special_tokens)
added_tokens = list(tokenizer.added_tokens_encoder)
all_tokens = list(sorted(set(special_tokens + added_tokens)))
for token in all_tokens:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield lstrip + token + rstrip
yield "a" + lstrip + token + rstrip
yield lstrip + token + rstrip + "z"
yield "a" + lstrip + token + rstrip + "z"
def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
special_tokens = list(tokenizer.all_special_tokens)
added_tokens = list(tokenizer.added_tokens_encoder)
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
all_tokens = list(sorted(set(special_tokens + added_tokens + separations)))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
words = rand.choices(special_tokens, k=500)
words = rand.choices(all_tokens, k=500)
if words[0] == tokenizer.bos_token: # skip spam warning of double BOS
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
words.pop(0)
@ -175,11 +197,6 @@ def generator_random_special_tokens(tokenizer, iterations=100) -> Iterator[str]:
yield "".join(words)
def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
"""Brute force check all vocab words"""
yield from vocab
def generator_random_chars(iterations=100) -> Iterator[str]:
"""Brute force random text with simple characters"""
@ -274,8 +291,8 @@ def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, g
ids2 = func_tokenize2(text)
if ids1 != ids2:
i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 2 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 2 + 1]
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
logger.info(" TokenIDs: " + str(ids1))
logger.info(" Expected: " + str(ids2))
raise Exception()
@ -309,8 +326,9 @@ def main(argv: list[str] = None):
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer, 10_000))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
@ -322,14 +340,14 @@ def main(argv: list[str] = None):
if __name__ == "__main__":
# main()
path_tokenizers = "./models/tokenizers/"
path_tokenizers = "./models/tokenizers/"
path_vocab_format = "./models/ggml-vocab-%s.gguf"
# import os
# tokenizers = os.listdir(path_tokenizers)
tokenizers = [
# "llama-spm", # SPM
# "phi-3", # SPM
"llama-spm", # SPM
"phi-3", # SPM
"jina-v2-en", # WPM
"bert-bge", # WPM
]