Merge branch 'master' into concedo_experimental

# Conflicts:
#	.github/workflows/docker.yml
#	Makefile
#	README.md
#	llama.cpp
This commit is contained in:
Concedo 2023-12-22 21:39:23 +08:00
commit 3bca03d26b
5 changed files with 65 additions and 37 deletions

View file

@ -7691,7 +7691,8 @@ inline void ggml_cuda_op_scale(
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const float scale = ((float *) dst->op_params)[0];
float scale;
memcpy(&scale, dst->op_params, sizeof(float));
scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
CUDA_CHECK(cudaGetLastError());

8
ggml.c
View file

@ -10335,7 +10335,8 @@ static void ggml_compute_forward_scale_f32(
}
// scale factor
const float v = *(float *) dst->op_params;
float v;
memcpy(&v, dst->op_params, sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
@ -15152,7 +15153,8 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
// necessary for llama
if (src0->grad) {
const float s = ((float *) tensor->op_params)[0];
float s;
memcpy(&s, tensor->op_params, sizeof(float));
src0->grad =
ggml_add_or_set(ctx,
@ -15335,6 +15337,8 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
const int n_past = ((int32_t *) tensor->op_params)[0];
src0->grad =
ggml_add_or_set(ctx, src0->grad,
/* ggml_diag_mask_inf_impl() shouldn't be here */
/* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
zero_table);
}

3
ggml.h
View file

@ -491,7 +491,8 @@ extern "C" {
enum ggml_log_level {
GGML_LOG_LEVEL_ERROR = 2,
GGML_LOG_LEVEL_WARN = 3,
GGML_LOG_LEVEL_INFO = 4
GGML_LOG_LEVEL_INFO = 4,
GGML_LOG_LEVEL_DEBUG = 5
};
// ggml object

View file

@ -779,7 +779,7 @@ struct llama_file {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error(std::string("unexpectedly reached end of file"));
throw std::runtime_error("unexpectedly reached end of file");
}
}
@ -932,22 +932,22 @@ struct llama_mmap {
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
(void) numa;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
GGML_UNUSED(numa);
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
DWORD error = GetLastError();
if (hMapping == NULL) {
DWORD error = GetLastError();
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
error = GetLastError();
DWORD error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
@ -955,7 +955,7 @@ struct llama_mmap {
}
#ifndef USE_FAILSAFE
if (prefetch) {
if (prefetch > 0) {
// PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
@ -967,9 +967,9 @@ struct llama_mmap {
// advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
@ -987,26 +987,26 @@ struct llama_mmap {
~llama_mmap() {
if (!UnmapViewOfFile(addr)) {
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
(void) file;
(void) prefetch;
(void) numa;
llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
GGML_UNUSED(file);
GGML_UNUSED(prefetch);
GGML_UNUSED(numa);
throw std::runtime_error(std::string("mmap not supported"));
throw std::runtime_error("mmap not supported");
}
void unmap(size_t offset, size_t len) {
(void) offset;
(void) len;
void unmap_fragment(size_t first, size_t last) {
GGML_UNUSED(first);
GGML_UNUSED(last);
throw std::runtime_error(std::string("mmap not supported"));
throw std::runtime_error("mmap not supported");
}
#endif
};
@ -2383,7 +2383,8 @@ struct llama_model_loader {
}
}
void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) const {
// Returns false if cancelled by progress_callback
bool load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) const {
size_t size_data = 0;
for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
@ -2415,7 +2416,9 @@ struct llama_model_loader {
GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
if (progress_callback) {
progress_callback((float) size_done / size_data, progress_callback_user_data);
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
return false;
}
}
const size_t offs = file_offset(ggml_get_name(cur));
@ -2477,8 +2480,11 @@ struct llama_model_loader {
}
if (progress_callback) {
progress_callback(1.0f, progress_callback_user_data);
// Even though the model is done loading, we still honor
// cancellation since we need to free allocations.
return progress_callback(1.0f, progress_callback_user_data);
}
return true;
}
};
@ -3074,7 +3080,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
}
static void llm_load_tensors(
// Returns false if cancelled by progress_callback
static bool llm_load_tensors(
llama_model_loader & ml,
llama_model & model,
int n_gpu_layers,
@ -3751,16 +3758,20 @@ static void llm_load_tensors(
model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
}
ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf_mmap, use_mlock ? &model.mlock_mmap : NULL);
if (!ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf_mmap, use_mlock ? &model.mlock_mmap : NULL)) {
return false;
}
model.mapping = std::move(ml.mapping);
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
model.t_load_us = ggml_time_us() - model.t_start_us;
return true;
}
static bool llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) {
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
static int llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) {
try {
llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
@ -3778,19 +3789,21 @@ static bool llama_model_load(const std::string & fname, llama_model & model, con
if (params.vocab_only) {
LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
return true;
return 0;
}
llm_load_tensors(
if (!llm_load_tensors(
ml, model, params.n_gpu_layers, params.main_gpu, params.tensor_split, params.use_mlock,
params.progress_callback, params.progress_callback_user_data
);
)) {
return -2;
}
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
return false;
return -1;
}
return true;
return 0;
}
//
@ -9406,11 +9419,18 @@ struct llama_model * llama_load_model_from_file(
LLAMA_LOG_INFO("\n");
}
}
return true;
};
}
if (!llama_model_load(path_model, *model, params)) {
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
int status = llama_model_load(path_model, *model, params);
GGML_ASSERT(status <= 0);
if (status < 0) {
if (status == -1) {
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
} else if (status == -2) {
LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
}
delete model;
return nullptr;
}

View file

@ -127,7 +127,7 @@ extern "C" {
bool sorted;
} llama_token_data_array;
typedef void (*llama_progress_callback)(float progress, void *ctx);
typedef bool (*llama_progress_callback)(float progress, void *ctx);
// Input data for llama_decode
// A llama_batch object can contain input about one or many sequences
@ -180,7 +180,9 @@ extern "C" {
int32_t main_gpu; // the GPU that is used for scratch and small tensors
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
// called with a progress value between 0 and 1, pass NULL to disable
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
// If the provided progress_callback returns true, model loading continues.
// If it returns false, model loading is immediately aborted.
llama_progress_callback progress_callback;
// context pointer passed to the progress callback