Optimize RWKV6 Operator Naming and Implement Multi-core CPU/ SYCL Acceleration (#10133)

* rwkv6: rename to wkv6

* rwkv6: support avx2 avx512 armv8 armv9

* rwkv6: update cuda file name

* rwkv6: rename params

* wkv on sycl

* sycl: add some ops

* sycl: Enhance OP support judgment

* wkv6: drop armv9 and tranfer to GGML style

ggml-ci

* sync : ggml

* update the function to use appropriate types

* fix define error

* Update ggml/src/ggml-cpu.c

* add appropriate asserts

* move element-wise functions outside

* put the declaration outside the loop

* rewrite to be more inline with the common pattern for distributing threads

* use recommended way GGML_TENSOR_LOCALS

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Plamen Minev <pacominev@gmail.com>
Co-authored-by: Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Co-authored-by: Meng, Hengyu <airdldl@163.com>
This commit is contained in:
Zhiyuan Li 2024-11-07 18:19:10 +11:00 committed by GitHub
parent 5c333e0140
commit 3bcd40b3c5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
22 changed files with 1977 additions and 1027 deletions

View file

@ -26,5 +26,8 @@
#include "softmax.hpp"
#include "tsembd.hpp"
#include "im2col.hpp"
#include "wkv6.hpp"
#include "outprod.hpp"
#include "element_wise.hpp"
#endif // GGML_SYCL_BACKEND_HPP

View file

@ -62,3 +62,43 @@ int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block
}
return sycl_down_blk_size;
}
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op) try {
const int64_t nrows0 = ggml_nrows(src0);
const bool use_src1 = src1 != nullptr;
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
// dd = data device
float * src0_ddf = (float *) src0->data;
float * src1_ddf = use_src1 ? (float *) src1->data : nullptr;
float * dst_ddf = (float *) dst->data;
ggml_sycl_pool_alloc<float> src0_f(ctx.pool());
ggml_sycl_pool_alloc<float> src1_f(ctx.pool());
ggml_sycl_pool_alloc<float> dst_f(ctx.pool());
ggml_sycl_set_device(ctx.device);
queue_ptr main_stream = ctx.stream();
// GGML_SYCL_DEBUG("ctx.device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
// ctx.device, main_stream, src0_on_device, src1_on_device, dst_on_device);
// do the computation
op(ctx, src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
// print_ggml_tensor("tensor", dst);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}

View file

@ -404,4 +404,262 @@ static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);
typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) /
ne3;
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) %
ne3;
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0;
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i3 = i/(ne2*ne1*ne0);
const int i2 = (i/(ne1*ne0)) % ne2;
const int i1 = (i/ne0) % ne1;
const int i0 = i % ne0;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
template<float (*bin_op)(const float, const float)>
struct bin_bcast_sycl {
template <typename src0_t, typename src1_t, typename dst_t>
void operator()(ggml_backend_sycl_context & ctx,
const struct ggml_tensor *src0,
const struct ggml_tensor *src1, struct ggml_tensor *dst,
const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
queue_ptr stream) {
GGML_TENSOR_BINARY_OP_LOCALS
int nr0 = ne10/ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
int nr3 = ne13/ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension
int64_t cne0[] = {ne0, ne1, ne2, ne3};
int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb0[] = {nb0, nb1, nb2, nb3};
size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne0);
collapse(cne1);
}
}
{
int64_t ne0 = cne0[0];
int64_t ne1 = cne0[1];
int64_t ne2 = cne0[2];
int64_t ne3 = cne0[3];
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
size_t nb0 = cnb0[0];
size_t nb1 = cnb0[1];
size_t nb2 = cnb0[2];
size_t nb3 = cnb0[3];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0/2LL, 1LL);
sycl::range<3> block_dims(1, 1, 1);
block_dims[2] = std::min<unsigned int>(hne0, block_size);
block_dims[1] = std::min<unsigned int>(
ne1, block_size / (unsigned int)block_dims[2]);
block_dims[0] = std::min(
std::min<unsigned int>(
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
(unsigned int)block_dims[1]),
64U);
sycl::range<3> block_nums(
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
(ne1 + block_dims[1] - 1) / block_dims[1],
(hne0 + block_dims[2] - 1) / block_dims[2]);
if (block_nums[0] > 65535) {
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
sycl::range<3>(1, 1, block_size),
sycl::range<3>(1, 1, block_size)),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast_unravel<bin_op>(
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
s13, item_ct1);
});
}
} else {
/*
DPCT1049:16: The work-group size passed to the SYCL kernel may
exceed the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if
needed.
*/
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
ne2, ne3, ne10, ne11, ne12, ne13,
s1, s2, s3, s11, s12, s13,
item_ct1);
});
}
}
}
};
template <class op>
inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
(sycl::half *)dst_dd, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
main_stream);
} else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
main_stream);
} else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
main_stream);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op);
#endif // GGML_SYCL_COMMON_HPP

View file

@ -106,6 +106,7 @@ static void concat_f32_sycl(const float *x, const float *y, float *dst,
concat_f32_dim1(x, y, dst, ne0, ne01, item_ct1);
});
break;
// dim >=2 will be dispatched to the default path
default:
stream->parallel_for(
sycl::nd_range<3>(gridDim *

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,76 @@
#ifndef GGML_SYCL_ELEMENTWISE_HPP
#define GGML_SYCL_ELEMENTWISE_HPP
#include "common.hpp"
static __dpct_inline__ float op_repeat(const float a, const float b) {
return b;
GGML_UNUSED(a);
}
static __dpct_inline__ float op_add(const float a, const float b) {
return a + b;
}
static __dpct_inline__ float op_sub(const float a, const float b) {
return a - b;
}
static __dpct_inline__ float op_mul(const float a, const float b) {
return a * b;
}
static __dpct_inline__ float op_div(const float a, const float b) {
return a / b;
}
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sin(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_cos(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_acc(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_silu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_exp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_log(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_step(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_add(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_div(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
#endif // GGML_SYCL_ELEMENTWISE_HPP

View file

@ -0,0 +1,55 @@
#include <sycl/sycl.hpp>
#include "outprod.hpp"
void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_TENSOR_BINARY_OP_LOCALS
// Get SYCL queue
dpct::queue_ptr stream = ctx.stream();
// Dimension checks
GGML_ASSERT(ne01 == ne11); // Inner dimensions must match
GGML_ASSERT(ne0 == ne00); // Output rows match src0 rows
GGML_ASSERT(ne1 == ne10); // Output cols match src1 cols
// Get data pointers
const float* src0_d = (const float*)src0->data;
const float* src1_d = (const float*)src1->data;
float* dst_d = (float*)dst->data;
// GEMM parameters
const float alpha = 1.0f;
const float beta = 0.0f;
// Handle transposition of src1
const bool src1_T = ggml_is_transposed(src1);
const oneapi::mkl::transpose src1_op =
src1_T ? oneapi::mkl::transpose::nontrans : oneapi::mkl::transpose::trans;
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
try {
// Perform matrix multiplication using oneMKL GEMM
oneapi::mkl::blas::gemm(*stream,
oneapi::mkl::transpose::nontrans, src1_op,
ne0, ne1, ne01,
alpha,
src0_d, ne00,
src1_d, ldb,
beta,
dst_d, ne0);
}
catch (sycl::exception const& exc) {
std::cerr << exc.what() << std::endl;
GGML_ASSERT(false);
}
}

View file

@ -0,0 +1,11 @@
#ifndef GGML_SYCL_OUTPROD_HPP
#define GGML_SYCL_OUTPROD_HPP
#include "common.hpp"
void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst);
#endif // GGML_SYCL_OUTPROD_HPP

View file

@ -25,6 +25,11 @@
#define SYCL_RELU_BLOCK_SIZE 256
#define SYCL_HARDSIGMOID_BLOCK_SIZE 256
#define SYCL_HARDSWISH_BLOCK_SIZE 256
#define SYCL_EXP_BLOCK_SIZE 256
#define SYCL_NEG_BLOCK_SIZE 256
#define SYCL_SIGMOID_BLOCK_SIZE 256
#define SYCL_SQRT_BLOCK_SIZE 256
#define SYCL_SIN_BLOCK_SIZE 256
#define SYCL_SQR_BLOCK_SIZE 256
#define SYCL_CPY_BLOCK_SIZE 32
#define SYCL_SCALE_BLOCK_SIZE 256
@ -41,6 +46,7 @@
#define SYCL_ACC_BLOCK_SIZE 256
#define SYCL_IM2COL_BLOCK_SIZE 256
#define SYCL_POOL2D_BLOCK_SIZE 256
#define SYCL_ARGMAX_BLOCK_SIZE 256
#define SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE 256
#define SYCL_TIMESTEP_EMBEDDING_BLOCK_SIZE 256

138
ggml/src/ggml-sycl/wkv6.cpp Normal file
View file

@ -0,0 +1,138 @@
#include <sycl/sycl.hpp>
#include "wkv6.hpp"
constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
// Helper function for the main kernel
static void rwkv_wkv_f32_kernel(
const int B, const int T, const int C, const int H,
const float* k, const float* v, const float* r,
const float* tf, const float* td, const float* s,
float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
const int tid = item_ct1.get_local_id(2);
const int bid = item_ct1.get_group(2);
const int head_size = WKV_BLOCK_SIZE;
const int batch_i = bid / H;
const int head_i = bid % H;
const int state_size = C * head_size;
const int n_seq_tokens = T / B;
// Set up shared memory pointers
float* _k = shared_mem;
float* _r = _k + head_size;
float* _tf = _r + head_size;
float* _td = _tf + head_size;
// Local state array
float state[WKV_BLOCK_SIZE];
// Load initial state
#pragma unroll
for (int i = 0; i < head_size; i++) {
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
}
// Sync threads before shared memory operations
item_ct1.barrier(sycl::access::fence_space::local_space);
// Load time-mixing parameters
_tf[tid] = tf[head_i * head_size + tid];
item_ct1.barrier(sycl::access::fence_space::local_space);
// Main sequence processing loop
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
t += C) {
item_ct1.barrier(sycl::access::fence_space::local_space);
// Load current timestep data to shared memory
_k[tid] = k[t];
_r[tid] = r[t];
_td[tid] = td[t];
item_ct1.barrier(sycl::access::fence_space::local_space);
const float _v = v[t];
float y = 0;
// Process in chunks of 4 for better vectorization
sycl::float4 k4, r4, tf4, td4, s4, kv4;
#pragma unroll
for (int j = 0; j < head_size; j += 4) {
// Load data in vec4 chunks
k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
// Compute key-value product
sycl::float4 kv4 = k4 * _v;
// Accumulate weighted sum
y += sycl::dot(r4, tf4 * kv4 + s4);
// Update state
s4 = s4 * td4 + kv4;
// Store updated state
state[j] = s4.x();
state[j+1] = s4.y();
state[j+2] = s4.z();
state[j+3] = s4.w();
}
dst[t] = y;
}
// Save final state
#pragma unroll
for (int i = 0; i < head_size; i++) {
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
}
}
void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
const float* k_d = (const float*)dst->src[0]->data;
const float* v_d = (const float*)dst->src[1]->data;
const float* r_d = (const float*)dst->src[2]->data;
const float* tf_d = (const float*)dst->src[3]->data;
const float* td_d = (const float*)dst->src[4]->data;
const float* s_d = (const float*)dst->src[5]->data;
float* dst_d = (float*)dst->data;
const int64_t B = dst->src[5]->ne[1];
const int64_t T = dst->src[0]->ne[3];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[2];
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == WKV_BLOCK_SIZE); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64
dpct::queue_ptr stream = ctx.stream();
// Calculate execution configuration
const size_t shared_mem_size = WKV_BLOCK_SIZE * 4 * sizeof(float); // For k, r, tf, td
sycl::range<3> block_dims(1, 1, C / H);
sycl::range<3> grid_dims(1, 1, B * H);
// Submit kernel
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
cgh.parallel_for(
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rwkv_wkv_f32_kernel(
B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
item_ct1, shared_mem_acc.get_pointer()
);
});
});
}

View file

@ -0,0 +1,10 @@
#ifndef GGML_SYCL_WKV6_HPP
#define GGML_SYCL_WKV6_HPP
#include "common.hpp"
void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor * dst);
#endif // GGML_SYCL_WKV6_HPP