rename gpt to common
This commit is contained in:
parent
672438dce1
commit
3c0b8628cd
36 changed files with 677 additions and 677 deletions
442
common/arg.cpp
442
common/arg.cpp
File diff suppressed because it is too large
Load diff
26
common/arg.h
26
common/arg.h
|
@ -18,29 +18,29 @@ struct common_arg {
|
||||||
const char * env = nullptr;
|
const char * env = nullptr;
|
||||||
std::string help;
|
std::string help;
|
||||||
bool is_sparam = false; // is current arg a sampling param?
|
bool is_sparam = false; // is current arg a sampling param?
|
||||||
void (*handler_void) (gpt_params & params) = nullptr;
|
void (*handler_void) (common_params & params) = nullptr;
|
||||||
void (*handler_string) (gpt_params & params, const std::string &) = nullptr;
|
void (*handler_string) (common_params & params, const std::string &) = nullptr;
|
||||||
void (*handler_str_str)(gpt_params & params, const std::string &, const std::string &) = nullptr;
|
void (*handler_str_str)(common_params & params, const std::string &, const std::string &) = nullptr;
|
||||||
void (*handler_int) (gpt_params & params, int) = nullptr;
|
void (*handler_int) (common_params & params, int) = nullptr;
|
||||||
|
|
||||||
common_arg(
|
common_arg(
|
||||||
const std::initializer_list<const char *> & args,
|
const std::initializer_list<const char *> & args,
|
||||||
const char * value_hint,
|
const char * value_hint,
|
||||||
const std::string & help,
|
const std::string & help,
|
||||||
void (*handler)(gpt_params & params, const std::string &)
|
void (*handler)(common_params & params, const std::string &)
|
||||||
) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
|
) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
|
||||||
|
|
||||||
common_arg(
|
common_arg(
|
||||||
const std::initializer_list<const char *> & args,
|
const std::initializer_list<const char *> & args,
|
||||||
const char * value_hint,
|
const char * value_hint,
|
||||||
const std::string & help,
|
const std::string & help,
|
||||||
void (*handler)(gpt_params & params, int)
|
void (*handler)(common_params & params, int)
|
||||||
) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
|
) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
|
||||||
|
|
||||||
common_arg(
|
common_arg(
|
||||||
const std::initializer_list<const char *> & args,
|
const std::initializer_list<const char *> & args,
|
||||||
const std::string & help,
|
const std::string & help,
|
||||||
void (*handler)(gpt_params & params)
|
void (*handler)(common_params & params)
|
||||||
) : args(args), help(help), handler_void(handler) {}
|
) : args(args), help(help), handler_void(handler) {}
|
||||||
|
|
||||||
// support 2 values for arg
|
// support 2 values for arg
|
||||||
|
@ -49,7 +49,7 @@ struct common_arg {
|
||||||
const char * value_hint,
|
const char * value_hint,
|
||||||
const char * value_hint_2,
|
const char * value_hint_2,
|
||||||
const std::string & help,
|
const std::string & help,
|
||||||
void (*handler)(gpt_params & params, const std::string &, const std::string &)
|
void (*handler)(common_params & params, const std::string &, const std::string &)
|
||||||
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
|
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
|
||||||
|
|
||||||
common_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
common_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
||||||
|
@ -61,17 +61,17 @@ struct common_arg {
|
||||||
std::string to_string();
|
std::string to_string();
|
||||||
};
|
};
|
||||||
|
|
||||||
struct gpt_params_context {
|
struct common_params_context {
|
||||||
enum llama_example ex = LLAMA_EXAMPLE_COMMON;
|
enum llama_example ex = LLAMA_EXAMPLE_COMMON;
|
||||||
gpt_params & params;
|
common_params & params;
|
||||||
std::vector<common_arg> options;
|
std::vector<common_arg> options;
|
||||||
void(*print_usage)(int, char **) = nullptr;
|
void(*print_usage)(int, char **) = nullptr;
|
||||||
gpt_params_context(gpt_params & params) : params(params) {}
|
common_params_context(common_params & params) : params(params) {}
|
||||||
};
|
};
|
||||||
|
|
||||||
// parse input arguments from CLI
|
// parse input arguments from CLI
|
||||||
// if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
|
// if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
|
||||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||||
|
|
||||||
// function to be used by test-arg-parser
|
// function to be used by test-arg-parser
|
||||||
gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||||
|
|
|
@ -362,10 +362,10 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_init() {
|
void common_init() {
|
||||||
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
|
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||||
if (LOG_DEFAULT_LLAMA <= gpt_log_verbosity_thold) {
|
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
|
||||||
gpt_log_add(gpt_log_main(), level, "%s", text);
|
common_log_add(common_log_main(), level, "%s", text);
|
||||||
}
|
}
|
||||||
}, NULL);
|
}, NULL);
|
||||||
|
|
||||||
|
@ -378,7 +378,7 @@ void gpt_init() {
|
||||||
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
|
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string gpt_params_get_system_info(const gpt_params & params) {
|
std::string common_params_get_system_info(const common_params & params) {
|
||||||
std::ostringstream os;
|
std::ostringstream os;
|
||||||
|
|
||||||
os << "system_info: n_threads = " << params.cpuparams.n_threads;
|
os << "system_info: n_threads = " << params.cpuparams.n_threads;
|
||||||
|
@ -819,9 +819,9 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||||
//
|
//
|
||||||
// Model utils
|
// Model utils
|
||||||
//
|
//
|
||||||
struct common_init_result llama_init_from_gpt_params(gpt_params & params) {
|
struct common_init_result common_init_from_common_params(common_params & params) {
|
||||||
common_init_result iparams;
|
common_init_result iparams;
|
||||||
auto mparams = common_model_params_from_gpt_params(params);
|
auto mparams = common_model_params_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = nullptr;
|
llama_model * model = nullptr;
|
||||||
|
|
||||||
|
@ -863,7 +863,7 @@ struct common_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
auto cparams = common_context_params_from_gpt_params(params);
|
auto cparams = common_context_params_from_common_params(params);
|
||||||
|
|
||||||
llama_context * lctx = llama_new_context_with_model(model, cparams);
|
llama_context * lctx = llama_new_context_with_model(model, cparams);
|
||||||
if (lctx == NULL) {
|
if (lctx == NULL) {
|
||||||
|
@ -970,7 +970,7 @@ void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_l
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
struct llama_model_params common_model_params_from_gpt_params(const gpt_params & params) {
|
struct llama_model_params common_model_params_from_common_params(const common_params & params) {
|
||||||
auto mparams = llama_model_default_params();
|
auto mparams = llama_model_default_params();
|
||||||
|
|
||||||
if (params.n_gpu_layers != -1) {
|
if (params.n_gpu_layers != -1) {
|
||||||
|
@ -1022,7 +1022,7 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||||
throw std::runtime_error("Invalid cache type: " + s);
|
throw std::runtime_error("Invalid cache type: " + s);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct llama_context_params common_context_params_from_gpt_params(const gpt_params & params) {
|
struct llama_context_params common_context_params_from_common_params(const common_params & params) {
|
||||||
auto cparams = llama_context_default_params();
|
auto cparams = llama_context_default_params();
|
||||||
|
|
||||||
cparams.n_ctx = params.n_ctx;
|
cparams.n_ctx = params.n_ctx;
|
||||||
|
@ -1946,7 +1946,7 @@ void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const cha
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
|
void yaml_dump_non_result_info(FILE * stream, const common_params & params, const llama_context * lctx,
|
||||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
|
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
|
||||||
const auto & sparams = params.sparams;
|
const auto & sparams = params.sparams;
|
||||||
|
|
||||||
|
|
|
@ -82,14 +82,14 @@ enum llama_example {
|
||||||
LLAMA_EXAMPLE_COUNT,
|
LLAMA_EXAMPLE_COUNT,
|
||||||
};
|
};
|
||||||
|
|
||||||
enum gpt_sampler_type {
|
enum common_sampler_type {
|
||||||
GPT_SAMPLER_TYPE_NONE = 0,
|
COMMON_SAMPLER_TYPE_NONE = 0,
|
||||||
GPT_SAMPLER_TYPE_TOP_K = 1,
|
COMMON_SAMPLER_TYPE_TOP_K = 1,
|
||||||
GPT_SAMPLER_TYPE_TOP_P = 2,
|
COMMON_SAMPLER_TYPE_TOP_P = 2,
|
||||||
GPT_SAMPLER_TYPE_MIN_P = 3,
|
COMMON_SAMPLER_TYPE_MIN_P = 3,
|
||||||
GPT_SAMPLER_TYPE_TFS_Z = 4,
|
COMMON_SAMPLER_TYPE_TFS_Z = 4,
|
||||||
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
|
COMMON_SAMPLER_TYPE_TYPICAL_P = 5,
|
||||||
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
|
COMMON_SAMPLER_TYPE_TEMPERATURE = 6,
|
||||||
};
|
};
|
||||||
|
|
||||||
// dimensionality reduction methods, used by cvector-generator
|
// dimensionality reduction methods, used by cvector-generator
|
||||||
|
@ -99,7 +99,7 @@ enum dimre_method {
|
||||||
};
|
};
|
||||||
|
|
||||||
// sampler parameters
|
// sampler parameters
|
||||||
struct gpt_sampler_params {
|
struct common_sampler_params {
|
||||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||||
|
|
||||||
int32_t n_prev = 64; // number of previous tokens to remember
|
int32_t n_prev = 64; // number of previous tokens to remember
|
||||||
|
@ -124,13 +124,13 @@ struct gpt_sampler_params {
|
||||||
bool ignore_eos = false;
|
bool ignore_eos = false;
|
||||||
bool no_perf = false; // disable performance metrics
|
bool no_perf = false; // disable performance metrics
|
||||||
|
|
||||||
std::vector<enum gpt_sampler_type> samplers = {
|
std::vector<enum common_sampler_type> samplers = {
|
||||||
GPT_SAMPLER_TYPE_TOP_K,
|
COMMON_SAMPLER_TYPE_TOP_K,
|
||||||
GPT_SAMPLER_TYPE_TFS_Z,
|
COMMON_SAMPLER_TYPE_TFS_Z,
|
||||||
GPT_SAMPLER_TYPE_TYPICAL_P,
|
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
||||||
GPT_SAMPLER_TYPE_TOP_P,
|
COMMON_SAMPLER_TYPE_TOP_P,
|
||||||
GPT_SAMPLER_TYPE_MIN_P,
|
COMMON_SAMPLER_TYPE_MIN_P,
|
||||||
GPT_SAMPLER_TYPE_TEMPERATURE
|
COMMON_SAMPLER_TYPE_TEMPERATURE
|
||||||
};
|
};
|
||||||
|
|
||||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||||
|
@ -141,7 +141,7 @@ struct gpt_sampler_params {
|
||||||
std::string print() const;
|
std::string print() const;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct gpt_params {
|
struct common_params {
|
||||||
int32_t n_predict = -1; // new tokens to predict
|
int32_t n_predict = -1; // new tokens to predict
|
||||||
int32_t n_ctx = 0; // context size
|
int32_t n_ctx = 0; // context size
|
||||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||||
|
@ -183,7 +183,7 @@ struct gpt_params {
|
||||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||||
|
|
||||||
struct gpt_sampler_params sparams;
|
struct common_sampler_params sparams;
|
||||||
|
|
||||||
std::string model = ""; // model path // NOLINT
|
std::string model = ""; // model path // NOLINT
|
||||||
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
||||||
|
@ -348,9 +348,9 @@ struct gpt_params {
|
||||||
|
|
||||||
// call once at the start of a program if it uses libcommon
|
// call once at the start of a program if it uses libcommon
|
||||||
// initializes the logging system and prints info about the build
|
// initializes the logging system and prints info about the build
|
||||||
void gpt_init();
|
void common_init();
|
||||||
|
|
||||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
std::string common_params_get_system_info(const common_params & params);
|
||||||
|
|
||||||
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||||
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||||
|
@ -410,10 +410,10 @@ struct common_init_result {
|
||||||
std::vector<common_lora_adapter_container> lora_adapters;
|
std::vector<common_lora_adapter_container> lora_adapters;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct common_init_result llama_init_from_gpt_params(gpt_params & params);
|
struct common_init_result common_init_from_common_params(common_params & params);
|
||||||
|
|
||||||
struct llama_model_params common_model_params_from_gpt_params (const gpt_params & params);
|
struct llama_model_params common_model_params_from_common_params (const common_params & params);
|
||||||
struct llama_context_params common_context_params_from_gpt_params (const gpt_params & params);
|
struct llama_context_params common_context_params_from_common_params(const common_params & params);
|
||||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||||
|
|
||||||
struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||||
|
@ -554,5 +554,5 @@ void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std
|
||||||
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||||
|
|
||||||
void yaml_dump_non_result_info(
|
void yaml_dump_non_result_info(
|
||||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
FILE * stream, const common_params & params, const llama_context * lctx,
|
||||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||||
|
|
100
common/log.cpp
100
common/log.cpp
|
@ -8,10 +8,10 @@
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
int gpt_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
int common_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
||||||
|
|
||||||
void gpt_log_set_verbosity_thold(int verbosity) {
|
void common_log_set_verbosity_thold(int verbosity) {
|
||||||
gpt_log_verbosity_thold = verbosity;
|
common_log_verbosity_thold = verbosity;
|
||||||
}
|
}
|
||||||
|
|
||||||
#define LOG_COL_DEFAULT "\033[0m"
|
#define LOG_COL_DEFAULT "\033[0m"
|
||||||
|
@ -29,16 +29,16 @@ static int64_t t_us() {
|
||||||
}
|
}
|
||||||
|
|
||||||
// colors
|
// colors
|
||||||
enum gpt_log_col : int {
|
enum common_log_col : int {
|
||||||
GPT_LOG_COL_DEFAULT = 0,
|
COMMON_LOG_COL_DEFAULT = 0,
|
||||||
GPT_LOG_COL_BOLD,
|
COMMON_LOG_COL_BOLD,
|
||||||
GPT_LOG_COL_RED,
|
COMMON_LOG_COL_RED,
|
||||||
GPT_LOG_COL_GREEN,
|
COMMON_LOG_COL_GREEN,
|
||||||
GPT_LOG_COL_YELLOW,
|
COMMON_LOG_COL_YELLOW,
|
||||||
GPT_LOG_COL_BLUE,
|
COMMON_LOG_COL_BLUE,
|
||||||
GPT_LOG_COL_MAGENTA,
|
COMMON_LOG_COL_MAGENTA,
|
||||||
GPT_LOG_COL_CYAN,
|
COMMON_LOG_COL_CYAN,
|
||||||
GPT_LOG_COL_WHITE,
|
COMMON_LOG_COL_WHITE,
|
||||||
};
|
};
|
||||||
|
|
||||||
// disable colors by default
|
// disable colors by default
|
||||||
|
@ -54,7 +54,7 @@ static std::vector<const char *> g_col = {
|
||||||
"",
|
"",
|
||||||
};
|
};
|
||||||
|
|
||||||
struct gpt_log_entry {
|
struct common_log_entry {
|
||||||
enum ggml_log_level level;
|
enum ggml_log_level level;
|
||||||
|
|
||||||
bool prefix;
|
bool prefix;
|
||||||
|
@ -71,7 +71,7 @@ struct gpt_log_entry {
|
||||||
if (!fcur) {
|
if (!fcur) {
|
||||||
// stderr displays DBG messages only when their verbosity level is not higher than the threshold
|
// stderr displays DBG messages only when their verbosity level is not higher than the threshold
|
||||||
// these messages will still be logged to a file
|
// these messages will still be logged to a file
|
||||||
if (level == GGML_LOG_LEVEL_DEBUG && gpt_log_verbosity_thold < LOG_DEFAULT_DEBUG) {
|
if (level == GGML_LOG_LEVEL_DEBUG && common_log_verbosity_thold < LOG_DEFAULT_DEBUG) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -86,19 +86,19 @@ struct gpt_log_entry {
|
||||||
if (timestamp) {
|
if (timestamp) {
|
||||||
// [M.s.ms.us]
|
// [M.s.ms.us]
|
||||||
fprintf(fcur, "%s%d.%02d.%03d.%03d%s ",
|
fprintf(fcur, "%s%d.%02d.%03d.%03d%s ",
|
||||||
g_col[GPT_LOG_COL_BLUE],
|
g_col[COMMON_LOG_COL_BLUE],
|
||||||
(int) (timestamp / 1000000 / 60),
|
(int) (timestamp / 1000000 / 60),
|
||||||
(int) (timestamp / 1000000 % 60),
|
(int) (timestamp / 1000000 % 60),
|
||||||
(int) (timestamp / 1000 % 1000),
|
(int) (timestamp / 1000 % 1000),
|
||||||
(int) (timestamp % 1000),
|
(int) (timestamp % 1000),
|
||||||
g_col[GPT_LOG_COL_DEFAULT]);
|
g_col[COMMON_LOG_COL_DEFAULT]);
|
||||||
}
|
}
|
||||||
|
|
||||||
switch (level) {
|
switch (level) {
|
||||||
case GGML_LOG_LEVEL_INFO: fprintf(fcur, "%sI %s", g_col[GPT_LOG_COL_GREEN], g_col[GPT_LOG_COL_DEFAULT]); break;
|
case GGML_LOG_LEVEL_INFO: fprintf(fcur, "%sI %s", g_col[COMMON_LOG_COL_GREEN], g_col[COMMON_LOG_COL_DEFAULT]); break;
|
||||||
case GGML_LOG_LEVEL_WARN: fprintf(fcur, "%sW %s", g_col[GPT_LOG_COL_MAGENTA], "" ); break;
|
case GGML_LOG_LEVEL_WARN: fprintf(fcur, "%sW %s", g_col[COMMON_LOG_COL_MAGENTA], "" ); break;
|
||||||
case GGML_LOG_LEVEL_ERROR: fprintf(fcur, "%sE %s", g_col[GPT_LOG_COL_RED], "" ); break;
|
case GGML_LOG_LEVEL_ERROR: fprintf(fcur, "%sE %s", g_col[COMMON_LOG_COL_RED], "" ); break;
|
||||||
case GGML_LOG_LEVEL_DEBUG: fprintf(fcur, "%sD %s", g_col[GPT_LOG_COL_YELLOW], "" ); break;
|
case GGML_LOG_LEVEL_DEBUG: fprintf(fcur, "%sD %s", g_col[COMMON_LOG_COL_YELLOW], "" ); break;
|
||||||
default:
|
default:
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
@ -107,18 +107,18 @@ struct gpt_log_entry {
|
||||||
fprintf(fcur, "%s", msg.data());
|
fprintf(fcur, "%s", msg.data());
|
||||||
|
|
||||||
if (level == GGML_LOG_LEVEL_WARN || level == GGML_LOG_LEVEL_ERROR || level == GGML_LOG_LEVEL_DEBUG) {
|
if (level == GGML_LOG_LEVEL_WARN || level == GGML_LOG_LEVEL_ERROR || level == GGML_LOG_LEVEL_DEBUG) {
|
||||||
fprintf(fcur, "%s", g_col[GPT_LOG_COL_DEFAULT]);
|
fprintf(fcur, "%s", g_col[COMMON_LOG_COL_DEFAULT]);
|
||||||
}
|
}
|
||||||
|
|
||||||
fflush(fcur);
|
fflush(fcur);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct gpt_log {
|
struct common_log {
|
||||||
// default capacity - will be expanded if needed
|
// default capacity - will be expanded if needed
|
||||||
gpt_log() : gpt_log(256) {}
|
common_log() : common_log(256) {}
|
||||||
|
|
||||||
gpt_log(size_t capacity) {
|
common_log(size_t capacity) {
|
||||||
file = nullptr;
|
file = nullptr;
|
||||||
prefix = false;
|
prefix = false;
|
||||||
timestamps = false;
|
timestamps = false;
|
||||||
|
@ -137,7 +137,7 @@ struct gpt_log {
|
||||||
resume();
|
resume();
|
||||||
}
|
}
|
||||||
|
|
||||||
~gpt_log() {
|
~common_log() {
|
||||||
pause();
|
pause();
|
||||||
if (file) {
|
if (file) {
|
||||||
fclose(file);
|
fclose(file);
|
||||||
|
@ -158,12 +158,12 @@ private:
|
||||||
int64_t t_start;
|
int64_t t_start;
|
||||||
|
|
||||||
// ring buffer of entries
|
// ring buffer of entries
|
||||||
std::vector<gpt_log_entry> entries;
|
std::vector<common_log_entry> entries;
|
||||||
size_t head;
|
size_t head;
|
||||||
size_t tail;
|
size_t tail;
|
||||||
|
|
||||||
// worker thread copies into this
|
// worker thread copies into this
|
||||||
gpt_log_entry cur;
|
common_log_entry cur;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
void add(enum ggml_log_level level, const char * fmt, va_list args) {
|
void add(enum ggml_log_level level, const char * fmt, va_list args) {
|
||||||
|
@ -219,7 +219,7 @@ public:
|
||||||
tail = (tail + 1) % entries.size();
|
tail = (tail + 1) % entries.size();
|
||||||
if (tail == head) {
|
if (tail == head) {
|
||||||
// expand the buffer
|
// expand the buffer
|
||||||
std::vector<gpt_log_entry> new_entries(2*entries.size());
|
std::vector<common_log_entry> new_entries(2*entries.size());
|
||||||
|
|
||||||
size_t new_tail = 0;
|
size_t new_tail = 0;
|
||||||
|
|
||||||
|
@ -320,15 +320,15 @@ public:
|
||||||
pause();
|
pause();
|
||||||
|
|
||||||
if (colors) {
|
if (colors) {
|
||||||
g_col[GPT_LOG_COL_DEFAULT] = LOG_COL_DEFAULT;
|
g_col[COMMON_LOG_COL_DEFAULT] = LOG_COL_DEFAULT;
|
||||||
g_col[GPT_LOG_COL_BOLD] = LOG_COL_BOLD;
|
g_col[COMMON_LOG_COL_BOLD] = LOG_COL_BOLD;
|
||||||
g_col[GPT_LOG_COL_RED] = LOG_COL_RED;
|
g_col[COMMON_LOG_COL_RED] = LOG_COL_RED;
|
||||||
g_col[GPT_LOG_COL_GREEN] = LOG_COL_GREEN;
|
g_col[COMMON_LOG_COL_GREEN] = LOG_COL_GREEN;
|
||||||
g_col[GPT_LOG_COL_YELLOW] = LOG_COL_YELLOW;
|
g_col[COMMON_LOG_COL_YELLOW] = LOG_COL_YELLOW;
|
||||||
g_col[GPT_LOG_COL_BLUE] = LOG_COL_BLUE;
|
g_col[COMMON_LOG_COL_BLUE] = LOG_COL_BLUE;
|
||||||
g_col[GPT_LOG_COL_MAGENTA] = LOG_COL_MAGENTA;
|
g_col[COMMON_LOG_COL_MAGENTA] = LOG_COL_MAGENTA;
|
||||||
g_col[GPT_LOG_COL_CYAN] = LOG_COL_CYAN;
|
g_col[COMMON_LOG_COL_CYAN] = LOG_COL_CYAN;
|
||||||
g_col[GPT_LOG_COL_WHITE] = LOG_COL_WHITE;
|
g_col[COMMON_LOG_COL_WHITE] = LOG_COL_WHITE;
|
||||||
} else {
|
} else {
|
||||||
for (size_t i = 0; i < g_col.size(); i++) {
|
for (size_t i = 0; i < g_col.size(); i++) {
|
||||||
g_col[i] = "";
|
g_col[i] = "";
|
||||||
|
@ -355,47 +355,47 @@ public:
|
||||||
// public API
|
// public API
|
||||||
//
|
//
|
||||||
|
|
||||||
struct gpt_log * gpt_log_init() {
|
struct common_log * common_log_init() {
|
||||||
return new gpt_log;
|
return new common_log;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct gpt_log * gpt_log_main() {
|
struct common_log * common_log_main() {
|
||||||
static struct gpt_log log;
|
static struct common_log log;
|
||||||
|
|
||||||
return &log;
|
return &log;
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_log_pause(struct gpt_log * log) {
|
void common_log_pause(struct common_log * log) {
|
||||||
log->pause();
|
log->pause();
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_log_resume(struct gpt_log * log) {
|
void common_log_resume(struct common_log * log) {
|
||||||
log->resume();
|
log->resume();
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_log_free(struct gpt_log * log) {
|
void common_log_free(struct common_log * log) {
|
||||||
delete log;
|
delete log;
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * fmt, ...) {
|
void common_log_add(struct common_log * log, enum ggml_log_level level, const char * fmt, ...) {
|
||||||
va_list args;
|
va_list args;
|
||||||
va_start(args, fmt);
|
va_start(args, fmt);
|
||||||
log->add(level, fmt, args);
|
log->add(level, fmt, args);
|
||||||
va_end(args);
|
va_end(args);
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_log_set_file(struct gpt_log * log, const char * file) {
|
void common_log_set_file(struct common_log * log, const char * file) {
|
||||||
log->set_file(file);
|
log->set_file(file);
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_log_set_colors(struct gpt_log * log, bool colors) {
|
void common_log_set_colors(struct common_log * log, bool colors) {
|
||||||
log->set_colors(colors);
|
log->set_colors(colors);
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_log_set_prefix(struct gpt_log * log, bool prefix) {
|
void common_log_set_prefix(struct common_log * log, bool prefix) {
|
||||||
log->set_prefix(prefix);
|
log->set_prefix(prefix);
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps) {
|
void common_log_set_timestamps(struct common_log * log, bool timestamps) {
|
||||||
log->set_timestamps(timestamps);
|
log->set_timestamps(timestamps);
|
||||||
}
|
}
|
||||||
|
|
36
common/log.h
36
common/log.h
|
@ -14,23 +14,23 @@
|
||||||
#define LOG_DEFAULT_LLAMA 0
|
#define LOG_DEFAULT_LLAMA 0
|
||||||
|
|
||||||
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
|
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
|
||||||
// set via gpt_log_set_verbosity()
|
// set via common_log_set_verbosity()
|
||||||
extern int gpt_log_verbosity_thold;
|
extern int common_log_verbosity_thold;
|
||||||
|
|
||||||
void gpt_log_set_verbosity_thold(int verbosity); // not thread-safe
|
void common_log_set_verbosity_thold(int verbosity); // not thread-safe
|
||||||
|
|
||||||
// the gpt_log uses an internal worker thread to print/write log messages
|
// the common_log uses an internal worker thread to print/write log messages
|
||||||
// when the worker thread is paused, incoming log messages are discarded
|
// when the worker thread is paused, incoming log messages are discarded
|
||||||
struct gpt_log;
|
struct common_log;
|
||||||
|
|
||||||
struct gpt_log * gpt_log_init();
|
struct common_log * common_log_init();
|
||||||
struct gpt_log * gpt_log_main(); // singleton, automatically destroys itself on exit
|
struct common_log * common_log_main(); // singleton, automatically destroys itself on exit
|
||||||
void gpt_log_pause (struct gpt_log * log); // pause the worker thread, not thread-safe
|
void common_log_pause (struct common_log * log); // pause the worker thread, not thread-safe
|
||||||
void gpt_log_resume(struct gpt_log * log); // resume the worker thread, not thread-safe
|
void common_log_resume(struct common_log * log); // resume the worker thread, not thread-safe
|
||||||
void gpt_log_free (struct gpt_log * log);
|
void common_log_free (struct common_log * log);
|
||||||
|
|
||||||
LOG_ATTRIBUTE_FORMAT(3, 4)
|
LOG_ATTRIBUTE_FORMAT(3, 4)
|
||||||
void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * fmt, ...);
|
void common_log_add(struct common_log * log, enum ggml_log_level level, const char * fmt, ...);
|
||||||
|
|
||||||
// defaults: file = NULL, colors = false, prefix = false, timestamps = false
|
// defaults: file = NULL, colors = false, prefix = false, timestamps = false
|
||||||
//
|
//
|
||||||
|
@ -54,10 +54,10 @@ void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * f
|
||||||
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
|
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
|
||||||
//
|
//
|
||||||
|
|
||||||
void gpt_log_set_file (struct gpt_log * log, const char * file); // not thread-safe
|
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
|
||||||
void gpt_log_set_colors (struct gpt_log * log, bool colors); // not thread-safe
|
void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe
|
||||||
void gpt_log_set_prefix (struct gpt_log * log, bool prefix); // whether to output prefix to each log
|
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
|
||||||
void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps); // whether to output timestamps in the prefix
|
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||||
|
|
||||||
// helper macros for logging
|
// helper macros for logging
|
||||||
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
|
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
|
||||||
|
@ -66,13 +66,13 @@ void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps); // w
|
||||||
//
|
//
|
||||||
// LOG_DBG("this is a debug message: %d\n", expensive_function());
|
// LOG_DBG("this is a debug message: %d\n", expensive_function());
|
||||||
//
|
//
|
||||||
// this will avoid calling expensive_function() if LOG_DEFAULT_DEBUG > gpt_log_verbosity_thold
|
// this will avoid calling expensive_function() if LOG_DEFAULT_DEBUG > common_log_verbosity_thold
|
||||||
//
|
//
|
||||||
|
|
||||||
#define LOG_TMPL(level, verbosity, ...) \
|
#define LOG_TMPL(level, verbosity, ...) \
|
||||||
do { \
|
do { \
|
||||||
if ((verbosity) <= gpt_log_verbosity_thold) { \
|
if ((verbosity) <= common_log_verbosity_thold) { \
|
||||||
gpt_log_add(gpt_log_main(), (level), __VA_ARGS__); \
|
common_log_add(common_log_main(), (level), __VA_ARGS__); \
|
||||||
} \
|
} \
|
||||||
} while (0)
|
} while (0)
|
||||||
|
|
||||||
|
|
|
@ -98,8 +98,8 @@ struct ring_buffer {
|
||||||
std::vector<T> data;
|
std::vector<T> data;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct gpt_sampler {
|
struct common_sampler {
|
||||||
gpt_sampler_params params;
|
common_sampler_params params;
|
||||||
|
|
||||||
struct llama_sampler * grmr;
|
struct llama_sampler * grmr;
|
||||||
struct llama_sampler * chain;
|
struct llama_sampler * chain;
|
||||||
|
@ -125,7 +125,7 @@ struct gpt_sampler {
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
std::string gpt_sampler_params::print() const {
|
std::string common_sampler_params::print() const {
|
||||||
char result[1024];
|
char result[1024];
|
||||||
|
|
||||||
snprintf(result, sizeof(result),
|
snprintf(result, sizeof(result),
|
||||||
|
@ -139,12 +139,12 @@ std::string gpt_sampler_params::print() const {
|
||||||
return std::string(result);
|
return std::string(result);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
|
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params) {
|
||||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||||
|
|
||||||
lparams.no_perf = params.no_perf;
|
lparams.no_perf = params.no_perf;
|
||||||
|
|
||||||
auto * result = new gpt_sampler {
|
auto * result = new common_sampler {
|
||||||
/* .params = */ params,
|
/* .params = */ params,
|
||||||
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
|
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
|
||||||
/* .chain = */ llama_sampler_chain_init(lparams),
|
/* .chain = */ llama_sampler_chain_init(lparams),
|
||||||
|
@ -175,22 +175,22 @@ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const st
|
||||||
if (params.mirostat == 0) {
|
if (params.mirostat == 0) {
|
||||||
for (const auto & cnstr : params.samplers) {
|
for (const auto & cnstr : params.samplers) {
|
||||||
switch (cnstr) {
|
switch (cnstr) {
|
||||||
case GPT_SAMPLER_TYPE_TOP_K:
|
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||||
break;
|
break;
|
||||||
case GPT_SAMPLER_TYPE_TOP_P:
|
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||||
break;
|
break;
|
||||||
case GPT_SAMPLER_TYPE_MIN_P:
|
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||||
break;
|
break;
|
||||||
case GPT_SAMPLER_TYPE_TFS_Z:
|
case COMMON_SAMPLER_TYPE_TFS_Z:
|
||||||
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
|
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
|
||||||
break;
|
break;
|
||||||
case GPT_SAMPLER_TYPE_TYPICAL_P:
|
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||||
break;
|
break;
|
||||||
case GPT_SAMPLER_TYPE_TEMPERATURE:
|
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
|
@ -224,7 +224,7 @@ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const st
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_sampler_free(struct gpt_sampler * gsmpl) {
|
void common_sampler_free(struct common_sampler * gsmpl) {
|
||||||
if (gsmpl) {
|
if (gsmpl) {
|
||||||
llama_sampler_free(gsmpl->grmr);
|
llama_sampler_free(gsmpl->grmr);
|
||||||
|
|
||||||
|
@ -234,7 +234,7 @@ void gpt_sampler_free(struct gpt_sampler * gsmpl) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||||
if (accept_grammar) {
|
if (accept_grammar) {
|
||||||
llama_sampler_accept(gsmpl->grmr, token);
|
llama_sampler_accept(gsmpl->grmr, token);
|
||||||
}
|
}
|
||||||
|
@ -244,14 +244,14 @@ void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool acce
|
||||||
gsmpl->prev.push_back(token);
|
gsmpl->prev.push_back(token);
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_sampler_reset(struct gpt_sampler * gsmpl) {
|
void common_sampler_reset(struct common_sampler * gsmpl) {
|
||||||
llama_sampler_reset(gsmpl->grmr);
|
llama_sampler_reset(gsmpl->grmr);
|
||||||
|
|
||||||
llama_sampler_reset(gsmpl->chain);
|
llama_sampler_reset(gsmpl->chain);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
|
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
|
||||||
return new gpt_sampler {
|
return new common_sampler {
|
||||||
/* .params = */ gsmpl->params,
|
/* .params = */ gsmpl->params,
|
||||||
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
|
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
|
||||||
/* .chain = */ llama_sampler_clone(gsmpl->chain),
|
/* .chain = */ llama_sampler_clone(gsmpl->chain),
|
||||||
|
@ -261,7 +261,7 @@ struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) {
|
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
|
||||||
// TODO: measure grammar performance
|
// TODO: measure grammar performance
|
||||||
|
|
||||||
if (gsmpl) {
|
if (gsmpl) {
|
||||||
|
@ -272,7 +272,7 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||||
gsmpl->set_logits(ctx, idx);
|
gsmpl->set_logits(ctx, idx);
|
||||||
|
|
||||||
auto & grmr = gsmpl->grmr;
|
auto & grmr = gsmpl->grmr;
|
||||||
|
@ -318,21 +318,21 @@ llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context
|
||||||
return cur_p.data[cur_p.selected].id;
|
return cur_p.data[cur_p.selected].id;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
|
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
||||||
return llama_sampler_get_seed(gsmpl->chain);
|
return llama_sampler_get_seed(gsmpl->chain);
|
||||||
}
|
}
|
||||||
|
|
||||||
// helpers
|
// helpers
|
||||||
|
|
||||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
|
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
|
||||||
return &gsmpl->cur_p;
|
return &gsmpl->cur_p;
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
|
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
|
||||||
return gsmpl->prev.rat(0);
|
return gsmpl->prev.rat(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
std::string common_sampler_print(const struct common_sampler * gsmpl) {
|
||||||
std::string result = "logits ";
|
std::string result = "logits ";
|
||||||
|
|
||||||
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
|
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
|
||||||
|
@ -343,7 +343,7 @@ std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) {
|
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
|
||||||
n = std::min(n, (int) gsmpl->prev.size());
|
n = std::min(n, (int) gsmpl->prev.size());
|
||||||
|
|
||||||
if (n <= 0) {
|
if (n <= 0) {
|
||||||
|
@ -364,57 +364,57 @@ std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main,
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) {
|
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
||||||
switch (cnstr) {
|
switch (cnstr) {
|
||||||
case GPT_SAMPLER_TYPE_TOP_K: return 'k';
|
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
|
||||||
case GPT_SAMPLER_TYPE_TFS_Z: return 'f';
|
case COMMON_SAMPLER_TYPE_TFS_Z: return 'f';
|
||||||
case GPT_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||||
case GPT_SAMPLER_TYPE_TOP_P: return 'p';
|
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
||||||
case GPT_SAMPLER_TYPE_MIN_P: return 'm';
|
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
||||||
case GPT_SAMPLER_TYPE_TEMPERATURE: return 't';
|
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||||
default : return '?';
|
default : return '?';
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) {
|
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
||||||
switch (cnstr) {
|
switch (cnstr) {
|
||||||
case GPT_SAMPLER_TYPE_TOP_K: return "top_k";
|
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||||
case GPT_SAMPLER_TYPE_TFS_Z: return "tfs_z";
|
case COMMON_SAMPLER_TYPE_TFS_Z: return "tfs_z";
|
||||||
case GPT_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||||
case GPT_SAMPLER_TYPE_TOP_P: return "top_p";
|
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||||
case GPT_SAMPLER_TYPE_MIN_P: return "min_p";
|
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||||
case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||||
default : return "";
|
default : return "";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||||
std::unordered_map<std::string, gpt_sampler_type> sampler_canonical_name_map {
|
std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
|
||||||
{ "top_k", GPT_SAMPLER_TYPE_TOP_K },
|
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||||
{ "top_p", GPT_SAMPLER_TYPE_TOP_P },
|
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||||
{ "typ_p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||||
{ "min_p", GPT_SAMPLER_TYPE_MIN_P },
|
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||||
{ "tfs_z", GPT_SAMPLER_TYPE_TFS_Z },
|
{ "tfs_z", COMMON_SAMPLER_TYPE_TFS_Z },
|
||||||
{ "temperature", GPT_SAMPLER_TYPE_TEMPERATURE },
|
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||||
};
|
};
|
||||||
|
|
||||||
// since samplers names are written multiple ways
|
// since samplers names are written multiple ways
|
||||||
// make it ready for both system names and input names
|
// make it ready for both system names and input names
|
||||||
std::unordered_map<std::string, gpt_sampler_type> sampler_alt_name_map {
|
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
|
||||||
{ "top-k", GPT_SAMPLER_TYPE_TOP_K },
|
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||||
{ "top-p", GPT_SAMPLER_TYPE_TOP_P },
|
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||||
{ "nucleus", GPT_SAMPLER_TYPE_TOP_P },
|
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
|
||||||
{ "typical-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||||
{ "typical", GPT_SAMPLER_TYPE_TYPICAL_P },
|
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||||
{ "typ-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
{ "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||||
{ "typ", GPT_SAMPLER_TYPE_TYPICAL_P },
|
{ "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||||
{ "min-p", GPT_SAMPLER_TYPE_MIN_P },
|
{ "min-p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||||
{ "tfs-z", GPT_SAMPLER_TYPE_TFS_Z },
|
{ "tfs-z", COMMON_SAMPLER_TYPE_TFS_Z },
|
||||||
{ "tfs", GPT_SAMPLER_TYPE_TFS_Z },
|
{ "tfs", COMMON_SAMPLER_TYPE_TFS_Z },
|
||||||
{ "temp", GPT_SAMPLER_TYPE_TEMPERATURE },
|
{ "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||||
};
|
};
|
||||||
|
|
||||||
std::vector<gpt_sampler_type> samplers;
|
std::vector<common_sampler_type> samplers;
|
||||||
samplers.reserve(names.size());
|
samplers.reserve(names.size());
|
||||||
|
|
||||||
for (const auto & name : names) {
|
for (const auto & name : names) {
|
||||||
|
@ -434,17 +434,17 @@ std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std
|
||||||
return samplers;
|
return samplers;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars) {
|
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
|
||||||
std::unordered_map<char, gpt_sampler_type> sampler_name_map = {
|
std::unordered_map<char, common_sampler_type> sampler_name_map = {
|
||||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K), GPT_SAMPLER_TYPE_TOP_K },
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
|
||||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z), GPT_SAMPLER_TYPE_TFS_Z },
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TFS_Z), COMMON_SAMPLER_TYPE_TFS_Z },
|
||||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P), GPT_SAMPLER_TYPE_TYPICAL_P },
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P), GPT_SAMPLER_TYPE_TOP_P },
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
||||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P), GPT_SAMPLER_TYPE_MIN_P },
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
||||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE }
|
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE }
|
||||||
};
|
};
|
||||||
|
|
||||||
std::vector<gpt_sampler_type> samplers;
|
std::vector<common_sampler_type> samplers;
|
||||||
samplers.reserve(chars.size());
|
samplers.reserve(chars.size());
|
||||||
|
|
||||||
for (const auto & c : chars) {
|
for (const auto & c : chars) {
|
||||||
|
|
|
@ -7,7 +7,7 @@
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
// gpt_sampler extends llama_sampler with additional functionality:
|
// common_sampler extends llama_sampler with additional functionality:
|
||||||
//
|
//
|
||||||
// - grammar support
|
// - grammar support
|
||||||
// - custom sampler logic based on the parameters
|
// - custom sampler logic based on the parameters
|
||||||
|
@ -23,30 +23,30 @@
|
||||||
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
|
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
|
||||||
// grammar constraints are applied to the full vocabulary and the token is resampled.
|
// grammar constraints are applied to the full vocabulary and the token is resampled.
|
||||||
//
|
//
|
||||||
// The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
|
// The common_sampler also maintains a container with the last accepted tokens. In the future, this can
|
||||||
// be moved into the core llama library.
|
// be moved into the core llama library.
|
||||||
//
|
//
|
||||||
// For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
|
// For convenience, the common_sampler also maintains a container with the current candidate tokens.
|
||||||
// This can be used to access the probabilities of the rest of the non-sampled tokens.
|
// This can be used to access the probabilities of the rest of the non-sampled tokens.
|
||||||
//
|
//
|
||||||
// TODO: measure grammar performance
|
// TODO: measure grammar performance
|
||||||
//
|
//
|
||||||
|
|
||||||
struct gpt_sampler;
|
struct common_sampler;
|
||||||
|
|
||||||
// llama_sampler API overloads
|
// llama_sampler API overloads
|
||||||
|
|
||||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
|
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params);
|
||||||
|
|
||||||
void gpt_sampler_free(struct gpt_sampler * gsmpl);
|
void common_sampler_free(struct common_sampler * gsmpl);
|
||||||
|
|
||||||
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
|
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
|
||||||
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
|
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar);
|
||||||
void gpt_sampler_reset (struct gpt_sampler * gsmpl);
|
void common_sampler_reset (struct common_sampler * gsmpl);
|
||||||
struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
|
struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
|
||||||
|
|
||||||
// arguments can be nullptr to skip printing
|
// arguments can be nullptr to skip printing
|
||||||
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
|
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
|
||||||
|
|
||||||
// extended sampling implementation:
|
// extended sampling implementation:
|
||||||
//
|
//
|
||||||
|
@ -58,26 +58,26 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
||||||
// if grammar_first is true, the grammar is applied before the samplers (slower)
|
// if grammar_first is true, the grammar is applied before the samplers (slower)
|
||||||
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
|
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
|
||||||
//
|
//
|
||||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||||
|
|
||||||
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl);
|
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
|
||||||
|
|
||||||
// helpers
|
// helpers
|
||||||
|
|
||||||
// access the internal list of current candidate tokens
|
// access the internal list of current candidate tokens
|
||||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
|
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);
|
||||||
|
|
||||||
// get the last accepted token
|
// get the last accepted token
|
||||||
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
|
llama_token common_sampler_last(const struct common_sampler * gsmpl);
|
||||||
|
|
||||||
// print the sampler chain into a string
|
// print the sampler chain into a string
|
||||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
|
std::string common_sampler_print(const struct common_sampler * gsmpl);
|
||||||
|
|
||||||
// get a string representation of the last accepted tokens
|
// get a string representation of the last accepted tokens
|
||||||
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
|
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx, int n);
|
||||||
|
|
||||||
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
|
char common_sampler_type_to_chr(enum common_sampler_type cnstr);
|
||||||
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
|
std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
|
||||||
|
|
||||||
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||||
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);
|
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
|
||||||
|
|
|
@ -15,13 +15,13 @@ static void print_usage(int, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
int is_pp_shared = params.is_pp_shared;
|
int is_pp_shared = params.is_pp_shared;
|
||||||
|
|
||||||
|
@ -36,7 +36,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// initialize the model
|
// initialize the model
|
||||||
|
|
||||||
llama_model_params model_params = common_model_params_from_gpt_params(params);
|
llama_model_params model_params = common_model_params_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||||
|
|
||||||
|
@ -45,7 +45,7 @@ int main(int argc, char ** argv) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_context_params ctx_params = common_context_params_from_gpt_params(params);
|
llama_context_params ctx_params = common_context_params_from_common_params(params);
|
||||||
|
|
||||||
// ensure enough sequences are available
|
// ensure enough sequences are available
|
||||||
ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());
|
ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());
|
||||||
|
|
|
@ -15,16 +15,16 @@ static void print_usage(int, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
params.prompt = "Hello my name is";
|
params.prompt = "Hello my name is";
|
||||||
params.n_predict = 32;
|
params.n_predict = 32;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
// number of parallel batches
|
// number of parallel batches
|
||||||
int n_parallel = params.n_parallel;
|
int n_parallel = params.n_parallel;
|
||||||
|
@ -39,7 +39,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// initialize the model
|
// initialize the model
|
||||||
|
|
||||||
llama_model_params model_params = common_model_params_from_gpt_params(params);
|
llama_model_params model_params = common_model_params_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||||
|
|
||||||
|
@ -57,7 +57,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// initialize the context
|
// initialize the context
|
||||||
|
|
||||||
llama_context_params ctx_params = common_context_params_from_gpt_params(params);
|
llama_context_params ctx_params = common_context_params_from_common_params(params);
|
||||||
|
|
||||||
ctx_params.n_ctx = n_kv_req;
|
ctx_params.n_ctx = n_kv_req;
|
||||||
ctx_params.n_batch = std::max(n_predict, n_parallel);
|
ctx_params.n_batch = std::max(n_predict, n_parallel);
|
||||||
|
|
|
@ -872,7 +872,7 @@ static std::string basename(const std::string &path) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
struct train_params params = get_default_train_params();
|
struct train_params params = get_default_train_params();
|
||||||
if (!params_parse(argc, argv, ¶ms)) {
|
if (!params_parse(argc, argv, ¶ms)) {
|
||||||
|
|
|
@ -370,7 +370,7 @@ static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const
|
||||||
* Load prompt files and completion file.
|
* Load prompt files and completion file.
|
||||||
* Then format each pair of prompt + completion to make an entry.
|
* Then format each pair of prompt + completion to make an entry.
|
||||||
*/
|
*/
|
||||||
static int prepare_entries(gpt_params & params, train_context & ctx_train) {
|
static int prepare_entries(common_params & params, train_context & ctx_train) {
|
||||||
// load prompts
|
// load prompts
|
||||||
std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
|
std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
|
||||||
std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
|
std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
|
||||||
|
@ -388,9 +388,9 @@ static int prepare_entries(gpt_params & params, train_context & ctx_train) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -413,7 +413,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
// load the model to get hparams
|
// load the model to get hparams
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
|
|
@ -79,13 +79,13 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
params.embedding = true;
|
params.embedding = true;
|
||||||
// For non-causal models, batch size must be equal to ubatch size
|
// For non-causal models, batch size must be equal to ubatch size
|
||||||
|
@ -95,7 +95,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
// load the model
|
// load the model
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
@ -122,7 +122,7 @@ int main(int argc, char ** argv) {
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
// split the prompt into lines
|
// split the prompt into lines
|
||||||
|
|
|
@ -126,7 +126,7 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool run(llama_context * ctx, const gpt_params & params) {
|
static bool run(llama_context * ctx, const common_params & params) {
|
||||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||||
|
|
||||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
|
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
|
||||||
|
@ -142,13 +142,13 @@ static bool run(llama_context * ctx, const gpt_params & params) {
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
callback_data cb_data;
|
callback_data cb_data;
|
||||||
|
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
@ -160,7 +160,7 @@ int main(int argc, char ** argv) {
|
||||||
params.warmup = false;
|
params.warmup = false;
|
||||||
|
|
||||||
// init
|
// init
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
@ -172,7 +172,7 @@ int main(int argc, char ** argv) {
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -400,9 +400,9 @@ static void print_usage(int, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -50,8 +50,8 @@ static void write_table(std::ofstream & file, std::vector<common_arg *> & opts)
|
||||||
static void export_md(std::string fname, llama_example ex) {
|
static void export_md(std::string fname, llama_example ex) {
|
||||||
std::ofstream file(fname, std::ofstream::out | std::ofstream::trunc);
|
std::ofstream file(fname, std::ofstream::out | std::ofstream::trunc);
|
||||||
|
|
||||||
gpt_params params;
|
common_params params;
|
||||||
auto ctx_arg = gpt_params_parser_init(params, ex);
|
auto ctx_arg = common_params_parser_init(params, ex);
|
||||||
|
|
||||||
std::vector<common_arg *> common_options;
|
std::vector<common_arg *> common_options;
|
||||||
std::vector<common_arg *> sparam_options;
|
std::vector<common_arg *> sparam_options;
|
||||||
|
|
|
@ -152,16 +152,16 @@ static std::string gritlm_instruction(const std::string & instruction) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char * argv[]) {
|
int main(int argc, char * argv[]) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
llama_model_params mparams = common_model_params_from_gpt_params(params);
|
llama_model_params mparams = common_model_params_from_common_params(params);
|
||||||
llama_context_params cparams = common_context_params_from_gpt_params(params);
|
llama_context_params cparams = common_context_params_from_common_params(params);
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
|
|
||||||
|
|
|
@ -37,13 +37,13 @@ struct Stats {
|
||||||
class IMatrixCollector {
|
class IMatrixCollector {
|
||||||
public:
|
public:
|
||||||
IMatrixCollector() = default;
|
IMatrixCollector() = default;
|
||||||
void set_params(gpt_params params) { m_params = std::move(params); }
|
void set_params(common_params params) { m_params = std::move(params); }
|
||||||
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
|
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
|
||||||
void save_imatrix(int ncall = -1) const;
|
void save_imatrix(int ncall = -1) const;
|
||||||
bool load_imatrix(const char * file_name);
|
bool load_imatrix(const char * file_name);
|
||||||
private:
|
private:
|
||||||
std::unordered_map<std::string, Stats> m_stats;
|
std::unordered_map<std::string, Stats> m_stats;
|
||||||
gpt_params m_params;
|
common_params m_params;
|
||||||
std::mutex m_mutex;
|
std::mutex m_mutex;
|
||||||
int m_last_call = 0;
|
int m_last_call = 0;
|
||||||
std::vector<float> m_src1_data;
|
std::vector<float> m_src1_data;
|
||||||
|
@ -428,7 +428,7 @@ static void process_logits(
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
|
@ -568,17 +568,17 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
params.n_ctx = 512;
|
params.n_ctx = 512;
|
||||||
params.logits_all = true;
|
params.logits_all = true;
|
||||||
params.escape = false;
|
params.escape = false;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||||
|
|
||||||
|
@ -607,7 +607,7 @@ int main(int argc, char ** argv) {
|
||||||
params.warmup = false;
|
params.warmup = false;
|
||||||
|
|
||||||
// init
|
// init
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
@ -625,7 +625,7 @@ int main(int argc, char ** argv) {
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!compute_imatrix(ctx, params)) {
|
if (!compute_imatrix(ctx, params)) {
|
||||||
|
|
|
@ -35,8 +35,8 @@
|
||||||
|
|
||||||
static llama_context ** g_ctx;
|
static llama_context ** g_ctx;
|
||||||
static llama_model ** g_model;
|
static llama_model ** g_model;
|
||||||
static gpt_sampler ** g_smpl;
|
static common_sampler ** g_smpl;
|
||||||
static gpt_params * g_params;
|
static common_params * g_params;
|
||||||
static std::vector<llama_token> * g_input_tokens;
|
static std::vector<llama_token> * g_input_tokens;
|
||||||
static std::ostringstream * g_output_ss;
|
static std::ostringstream * g_output_ss;
|
||||||
static std::vector<llama_token> * g_output_tokens;
|
static std::vector<llama_token> * g_output_tokens;
|
||||||
|
@ -44,7 +44,7 @@ static std::vector<llama_token> * g_output_tokens;
|
||||||
static bool is_interacting = false;
|
static bool is_interacting = false;
|
||||||
|
|
||||||
static void write_logfile(
|
static void write_logfile(
|
||||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
const llama_context * ctx, const common_params & params, const llama_model * model,
|
||||||
const std::vector<llama_token> & input_tokens, const std::string & output,
|
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||||
const std::vector<llama_token> & output_tokens
|
const std::vector<llama_token> & output_tokens
|
||||||
) {
|
) {
|
||||||
|
@ -95,12 +95,12 @@ static void sigint_handler(int signo) {
|
||||||
} else {
|
} else {
|
||||||
console::cleanup();
|
console::cleanup();
|
||||||
LOG("\n");
|
LOG("\n");
|
||||||
gpt_perf_print(*g_ctx, *g_smpl);
|
common_perf_print(*g_ctx, *g_smpl);
|
||||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||||
|
|
||||||
// make sure all logs are flushed
|
// make sure all logs are flushed
|
||||||
LOG("Interrupted by user\n");
|
LOG("Interrupted by user\n");
|
||||||
gpt_log_pause(gpt_log_main());
|
common_log_pause(common_log_main());
|
||||||
|
|
||||||
_exit(130);
|
_exit(130);
|
||||||
}
|
}
|
||||||
|
@ -109,14 +109,14 @@ static void sigint_handler(int signo) {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
g_params = ¶ms;
|
g_params = ¶ms;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
auto & sparams = params.sparams;
|
auto & sparams = params.sparams;
|
||||||
|
|
||||||
|
@ -166,7 +166,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
llama_model * model = nullptr;
|
llama_model * model = nullptr;
|
||||||
llama_context * ctx = nullptr;
|
llama_context * ctx = nullptr;
|
||||||
gpt_sampler * smpl = nullptr;
|
common_sampler * smpl = nullptr;
|
||||||
|
|
||||||
g_model = &model;
|
g_model = &model;
|
||||||
g_ctx = &ctx;
|
g_ctx = &ctx;
|
||||||
|
@ -174,7 +174,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// load the model and apply lora adapter, if any
|
// load the model and apply lora adapter, if any
|
||||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
model = llama_init.model;
|
model = llama_init.model;
|
||||||
ctx = llama_init.context;
|
ctx = llama_init.context;
|
||||||
|
@ -195,7 +195,7 @@ int main(int argc, char ** argv) {
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
const bool add_bos = llama_add_bos_token(model);
|
const bool add_bos = llama_add_bos_token(model);
|
||||||
GGML_ASSERT(!llama_add_eos_token(model));
|
GGML_ASSERT(!llama_add_eos_token(model));
|
||||||
|
@ -298,11 +298,11 @@ int main(int argc, char ** argv) {
|
||||||
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
smpl = gpt_sampler_init(model, sparams);
|
smpl = common_sampler_init(model, sparams);
|
||||||
|
|
||||||
LOG_INF("sampler seed: %u\n", gpt_sampler_get_seed(smpl));
|
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
|
||||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||||
LOG_INF("sampler chain: %s\n", gpt_sampler_print(smpl).c_str());
|
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
|
||||||
|
|
||||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
|
|
||||||
|
@ -411,9 +411,9 @@ int main(int argc, char ** argv) {
|
||||||
embd.clear();
|
embd.clear();
|
||||||
|
|
||||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||||
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
const llama_token id = common_sampler_sample(smpl, ctx, -1);
|
||||||
|
|
||||||
gpt_sampler_accept(smpl, id, true);
|
common_sampler_accept(smpl, id, true);
|
||||||
|
|
||||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||||
|
|
||||||
|
@ -434,7 +434,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||||
// for the prompt, we don't apply grammar rules
|
// for the prompt, we don't apply grammar rules
|
||||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], false);
|
common_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||||
|
|
||||||
++n_consumed;
|
++n_consumed;
|
||||||
if ((int) embd.size() >= params.n_batch) {
|
if ((int) embd.size() >= params.n_batch) {
|
||||||
|
@ -465,7 +465,7 @@ int main(int argc, char ** argv) {
|
||||||
// if not currently processing queued inputs;
|
// if not currently processing queued inputs;
|
||||||
if ((int) embd_inp.size() <= n_consumed) {
|
if ((int) embd_inp.size() <= n_consumed) {
|
||||||
// deal with eot token in infill mode
|
// deal with eot token in infill mode
|
||||||
if ((gpt_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
if ((common_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||||
if (is_interacting && !params.interactive_first) {
|
if (is_interacting && !params.interactive_first) {
|
||||||
// print an eot token
|
// print an eot token
|
||||||
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||||
|
@ -529,7 +529,7 @@ int main(int argc, char ** argv) {
|
||||||
is_interacting = false;
|
is_interacting = false;
|
||||||
}
|
}
|
||||||
// deal with end of generation tokens in interactive mode
|
// deal with end of generation tokens in interactive mode
|
||||||
else if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
else if (llama_token_is_eog(model, common_sampler_last(smpl))) {
|
||||||
LOG_DBG("found EOS token\n");
|
LOG_DBG("found EOS token\n");
|
||||||
|
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
|
@ -601,7 +601,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
if (n_past > 0) {
|
if (n_past > 0) {
|
||||||
if (is_interacting) {
|
if (is_interacting) {
|
||||||
gpt_sampler_reset(smpl);
|
common_sampler_reset(smpl);
|
||||||
}
|
}
|
||||||
is_interacting = false;
|
is_interacting = false;
|
||||||
}
|
}
|
||||||
|
@ -624,13 +624,13 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG("\n");
|
LOG("\n");
|
||||||
gpt_perf_print(ctx, smpl);
|
common_perf_print(ctx, smpl);
|
||||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||||
|
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
|
||||||
gpt_sampler_free(smpl);
|
common_sampler_free(smpl);
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
|
|
@ -42,11 +42,11 @@ static bool eval_string(struct llama_context * ctx_llama, const char* str, int n
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
static const char * sample(struct gpt_sampler * smpl,
|
static const char * sample(struct common_sampler * smpl,
|
||||||
struct llama_context * ctx_llama,
|
struct llama_context * ctx_llama,
|
||||||
int * n_past) {
|
int * n_past) {
|
||||||
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
|
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
||||||
gpt_sampler_accept(smpl, id, true);
|
common_sampler_accept(smpl, id, true);
|
||||||
static std::string ret;
|
static std::string ret;
|
||||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||||
ret = "</s>";
|
ret = "</s>";
|
||||||
|
@ -120,7 +120,7 @@ static void print_usage(int, char ** argv) {
|
||||||
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) {
|
static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) {
|
||||||
|
|
||||||
// load and preprocess the image
|
// load and preprocess the image
|
||||||
llava_image_embed * embed = NULL;
|
llava_image_embed * embed = NULL;
|
||||||
|
@ -146,7 +146,7 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
|
||||||
return embed;
|
return embed;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, gpt_params * params, const std::string & prompt) {
|
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) {
|
||||||
int n_past = 0;
|
int n_past = 0;
|
||||||
|
|
||||||
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
||||||
|
@ -191,7 +191,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||||
|
|
||||||
LOG("\n");
|
LOG("\n");
|
||||||
|
|
||||||
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
|
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
|
||||||
if (!smpl) {
|
if (!smpl) {
|
||||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||||
exit(1);
|
exit(1);
|
||||||
|
@ -211,15 +211,15 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_sampler_free(smpl);
|
common_sampler_free(smpl);
|
||||||
LOG("\n");
|
LOG("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llama_model * llava_init(gpt_params * params) {
|
static struct llama_model * llava_init(common_params * params) {
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params->numa);
|
llama_numa_init(params->numa);
|
||||||
|
|
||||||
llama_model_params model_params = common_model_params_from_gpt_params(*params);
|
llama_model_params model_params = common_model_params_from_common_params(*params);
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
|
@ -229,7 +229,7 @@ static struct llama_model * llava_init(gpt_params * params) {
|
||||||
return model;
|
return model;
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||||
const char * clip_path = params->mmproj.c_str();
|
const char * clip_path = params->mmproj.c_str();
|
||||||
|
|
||||||
auto prompt = params->prompt;
|
auto prompt = params->prompt;
|
||||||
|
@ -240,7 +240,7 @@ static struct llava_context * llava_init_context(gpt_params * params, llama_mode
|
||||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||||
|
|
||||||
|
|
||||||
llama_context_params ctx_params = common_context_params_from_gpt_params(*params);
|
llama_context_params ctx_params = common_context_params_from_common_params(*params);
|
||||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||||
|
|
||||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||||
|
@ -272,13 +272,13 @@ static void llava_free(struct llava_context * ctx_llava) {
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
ggml_time_init();
|
ggml_time_init();
|
||||||
|
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||||
print_usage(argc, argv);
|
print_usage(argc, argv);
|
||||||
|
|
|
@ -25,11 +25,11 @@ static void show_additional_info(int /*argc*/, char ** argv) {
|
||||||
LOG("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
|
LOG("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llama_model * llava_init(gpt_params * params) {
|
static struct llama_model * llava_init(common_params * params) {
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params->numa);
|
llama_numa_init(params->numa);
|
||||||
|
|
||||||
llama_model_params model_params = common_model_params_from_gpt_params(*params);
|
llama_model_params model_params = common_model_params_from_common_params(*params);
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
|
@ -39,13 +39,13 @@ static struct llama_model * llava_init(gpt_params * params) {
|
||||||
return model;
|
return model;
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||||
auto prompt = params->prompt;
|
auto prompt = params->prompt;
|
||||||
if (prompt.empty()) {
|
if (prompt.empty()) {
|
||||||
prompt = "describe the image in detail.";
|
prompt = "describe the image in detail.";
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_context_params ctx_params = common_context_params_from_gpt_params(*params);
|
llama_context_params ctx_params = common_context_params_from_common_params(*params);
|
||||||
if (params->n_ctx < 2048) {
|
if (params->n_ctx < 2048) {
|
||||||
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
|
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
|
||||||
LOG_WRN("%s: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
LOG_WRN("%s: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
||||||
|
@ -79,7 +79,7 @@ static void llava_free(struct llava_context * ctx_llava) {
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct clip_ctx * clip_init_context(gpt_params * params) {
|
static struct clip_ctx * clip_init_context(common_params * params) {
|
||||||
const char * clip_path = params->mmproj.c_str();
|
const char * clip_path = params->mmproj.c_str();
|
||||||
|
|
||||||
auto prompt = params->prompt;
|
auto prompt = params->prompt;
|
||||||
|
@ -129,7 +129,7 @@ static void process_eval_image_embed(struct llava_context * ctx_llava, const str
|
||||||
llava_image_embed_free(slice_embed);
|
llava_image_embed_free(slice_embed);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) {
|
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, common_params * params, int &n_past) {
|
||||||
std::string system_prompt;
|
std::string system_prompt;
|
||||||
int idx = 0;
|
int idx = 0;
|
||||||
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
|
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
|
||||||
|
@ -162,11 +162,11 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
|
||||||
LOG_INF("%s: image token past: %d\n", __func__, n_past);
|
LOG_INF("%s: image token past: %d\n", __func__, n_past);
|
||||||
}
|
}
|
||||||
|
|
||||||
static const char * sample(struct gpt_sampler * smpl,
|
static const char * sample(struct common_sampler * smpl,
|
||||||
struct llama_context * ctx_llama,
|
struct llama_context * ctx_llama,
|
||||||
int * n_past) {
|
int * n_past) {
|
||||||
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
|
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
||||||
gpt_sampler_accept(smpl, id, true);
|
common_sampler_accept(smpl, id, true);
|
||||||
static std::string ret;
|
static std::string ret;
|
||||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||||
ret = "</s>";
|
ret = "</s>";
|
||||||
|
@ -177,7 +177,7 @@ static const char * sample(struct gpt_sampler * smpl,
|
||||||
return ret.c_str();
|
return ret.c_str();
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
static struct llava_context * minicpmv_init(common_params * params, const std::string & fname, int &n_past){
|
||||||
auto * ctx_clip = clip_init_context(params);
|
auto * ctx_clip = clip_init_context(params);
|
||||||
auto * embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
auto * embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
||||||
if (!embeds) {
|
if (!embeds) {
|
||||||
|
@ -213,7 +213,7 @@ static struct llava_context * minicpmv_init(gpt_params * params, const std::stri
|
||||||
return ctx_llava;
|
return ctx_llava;
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_params * params, const std::string & prompt, int & n_past, bool is_first = false){
|
static struct common_sampler * llama_init(struct llava_context * ctx_llava, common_params * params, const std::string & prompt, int & n_past, bool is_first = false){
|
||||||
std::string user_prompt = prompt;
|
std::string user_prompt = prompt;
|
||||||
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
||||||
if (!is_first) {
|
if (!is_first) {
|
||||||
|
@ -237,11 +237,11 @@ static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_par
|
||||||
|
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
|
|
||||||
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
|
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
|
||||||
return smpl;
|
return smpl;
|
||||||
}
|
}
|
||||||
|
|
||||||
static const char * llama_loop(struct llava_context * ctx_llava,struct gpt_sampler * smpl, int &n_past){
|
static const char * llama_loop(struct llava_context * ctx_llava,struct common_sampler * smpl, int &n_past){
|
||||||
|
|
||||||
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
|
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
|
||||||
return tmp;
|
return tmp;
|
||||||
|
@ -250,13 +250,13 @@ static const char * llama_loop(struct llava_context * ctx_llava,struct gpt_sampl
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
ggml_time_init();
|
ggml_time_init();
|
||||||
|
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
if (params.mmproj.empty() || (params.image.empty())) {
|
if (params.mmproj.empty() || (params.image.empty())) {
|
||||||
show_additional_info(argc, argv);
|
show_additional_info(argc, argv);
|
||||||
|
@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
gpt_sampler_free(smpl);
|
common_sampler_free(smpl);
|
||||||
}else {
|
}else {
|
||||||
while (true) {
|
while (true) {
|
||||||
LOG("<user>");
|
LOG("<user>");
|
||||||
|
@ -309,7 +309,7 @@ int main(int argc, char ** argv) {
|
||||||
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
gpt_sampler_free(smpl);
|
common_sampler_free(smpl);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
|
|
@ -37,13 +37,13 @@ struct ngram_container {
|
||||||
};
|
};
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
const int W = 15; // lookahead window
|
const int W = 15; // lookahead window
|
||||||
const int N = 5; // n-gram size
|
const int N = 5; // n-gram size
|
||||||
|
@ -56,7 +56,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
// load the target model
|
// load the target model
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
@ -115,7 +115,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
||||||
|
|
||||||
// target model sampling context
|
// target model sampling context
|
||||||
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
|
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
|
||||||
|
|
||||||
// verification n-grams
|
// verification n-grams
|
||||||
std::vector<ngram_data> ngrams_cur(G);
|
std::vector<ngram_data> ngrams_cur(G);
|
||||||
|
@ -156,9 +156,9 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// sample first token
|
// sample first token
|
||||||
{
|
{
|
||||||
id = gpt_sampler_sample(smpl, ctx, 0);
|
id = common_sampler_sample(smpl, ctx, 0);
|
||||||
|
|
||||||
gpt_sampler_accept(smpl, id, true);
|
common_sampler_accept(smpl, id, true);
|
||||||
|
|
||||||
{
|
{
|
||||||
const std::string token_str = common_token_to_piece(ctx, id);
|
const std::string token_str = common_token_to_piece(ctx, id);
|
||||||
|
@ -281,9 +281,9 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// sample the next token
|
// sample the next token
|
||||||
id = gpt_sampler_sample(smpl, ctx, i_batch);
|
id = common_sampler_sample(smpl, ctx, i_batch);
|
||||||
|
|
||||||
gpt_sampler_accept(smpl, id, true);
|
common_sampler_accept(smpl, id, true);
|
||||||
|
|
||||||
// print
|
// print
|
||||||
{
|
{
|
||||||
|
@ -358,7 +358,7 @@ int main(int argc, char ** argv) {
|
||||||
if (v == 0) {
|
if (v == 0) {
|
||||||
// sample from the last level
|
// sample from the last level
|
||||||
for (int i = 0; i < W; i++) {
|
for (int i = 0; i < W; i++) {
|
||||||
tokens_j[N - 2][i] = gpt_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
|
tokens_j[N - 2][i] = common_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
for (int i = 0; i < W; i++) {
|
for (int i = 0; i < W; i++) {
|
||||||
|
@ -466,9 +466,9 @@ int main(int argc, char ** argv) {
|
||||||
LOG_INF("n_accept = %d\n", n_accept);
|
LOG_INF("n_accept = %d\n", n_accept);
|
||||||
|
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
gpt_perf_print(ctx, smpl);
|
common_perf_print(ctx, smpl);
|
||||||
|
|
||||||
gpt_sampler_free(smpl);
|
common_sampler_free(smpl);
|
||||||
|
|
||||||
llama_kv_cache_view_free(&kvc_view);
|
llama_kv_cache_view_free(&kvc_view);
|
||||||
|
|
||||||
|
|
|
@ -12,9 +12,9 @@
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
int main(int argc, char ** argv){
|
int main(int argc, char ** argv){
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -23,7 +23,7 @@ int main(int argc, char ** argv){
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
// load the model
|
// load the model
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
|
|
@ -13,13 +13,13 @@
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
int main(int argc, char ** argv){
|
int main(int argc, char ** argv){
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
const int n_draft = params.n_draft;
|
const int n_draft = params.n_draft;
|
||||||
|
|
||||||
|
@ -28,7 +28,7 @@ int main(int argc, char ** argv){
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
// load the model
|
// load the model
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
|
|
@ -13,13 +13,13 @@
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
int main(int argc, char ** argv){
|
int main(int argc, char ** argv){
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
// max. number of additional tokens to draft if match is found
|
// max. number of additional tokens to draft if match is found
|
||||||
const int n_draft = params.n_draft;
|
const int n_draft = params.n_draft;
|
||||||
|
@ -31,7 +31,7 @@ int main(int argc, char ** argv){
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
// load the model
|
// load the model
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
@ -102,7 +102,7 @@ int main(int argc, char ** argv){
|
||||||
|
|
||||||
bool has_eos = false;
|
bool has_eos = false;
|
||||||
|
|
||||||
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
|
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
|
||||||
|
|
||||||
std::vector<llama_token> draft;
|
std::vector<llama_token> draft;
|
||||||
|
|
||||||
|
@ -126,9 +126,9 @@ int main(int argc, char ** argv){
|
||||||
int i_dft = 0;
|
int i_dft = 0;
|
||||||
while (true) {
|
while (true) {
|
||||||
// sample from the target model
|
// sample from the target model
|
||||||
llama_token id = gpt_sampler_sample(smpl, ctx, i_dft);
|
llama_token id = common_sampler_sample(smpl, ctx, i_dft);
|
||||||
|
|
||||||
gpt_sampler_accept(smpl, id, true);
|
common_sampler_accept(smpl, id, true);
|
||||||
|
|
||||||
const std::string token_str = common_token_to_piece(ctx, id);
|
const std::string token_str = common_token_to_piece(ctx, id);
|
||||||
|
|
||||||
|
@ -237,9 +237,9 @@ int main(int argc, char ** argv){
|
||||||
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||||
|
|
||||||
LOG_INF("\ntarget:\n\n");
|
LOG_INF("\ntarget:\n\n");
|
||||||
gpt_perf_print(ctx, smpl);
|
common_perf_print(ctx, smpl);
|
||||||
|
|
||||||
gpt_sampler_free(smpl);
|
common_sampler_free(smpl);
|
||||||
|
|
||||||
llama_batch_free(batch_tgt);
|
llama_batch_free(batch_tgt);
|
||||||
|
|
||||||
|
|
|
@ -33,8 +33,8 @@
|
||||||
|
|
||||||
static llama_context ** g_ctx;
|
static llama_context ** g_ctx;
|
||||||
static llama_model ** g_model;
|
static llama_model ** g_model;
|
||||||
static gpt_sampler ** g_smpl;
|
static common_sampler ** g_smpl;
|
||||||
static gpt_params * g_params;
|
static common_params * g_params;
|
||||||
static std::vector<llama_token> * g_input_tokens;
|
static std::vector<llama_token> * g_input_tokens;
|
||||||
static std::ostringstream * g_output_ss;
|
static std::ostringstream * g_output_ss;
|
||||||
static std::vector<llama_token> * g_output_tokens;
|
static std::vector<llama_token> * g_output_tokens;
|
||||||
|
@ -63,7 +63,7 @@ static bool file_is_empty(const std::string & path) {
|
||||||
}
|
}
|
||||||
|
|
||||||
static void write_logfile(
|
static void write_logfile(
|
||||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
const llama_context * ctx, const common_params & params, const llama_model * model,
|
||||||
const std::vector<llama_token> & input_tokens, const std::string & output,
|
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||||
const std::vector<llama_token> & output_tokens
|
const std::vector<llama_token> & output_tokens
|
||||||
) {
|
) {
|
||||||
|
@ -114,12 +114,12 @@ static void sigint_handler(int signo) {
|
||||||
} else {
|
} else {
|
||||||
console::cleanup();
|
console::cleanup();
|
||||||
LOG("\n");
|
LOG("\n");
|
||||||
gpt_perf_print(*g_ctx, *g_smpl);
|
common_perf_print(*g_ctx, *g_smpl);
|
||||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||||
|
|
||||||
// make sure all logs are flushed
|
// make sure all logs are flushed
|
||||||
LOG("Interrupted by user\n");
|
LOG("Interrupted by user\n");
|
||||||
gpt_log_pause(gpt_log_main());
|
common_log_pause(common_log_main());
|
||||||
|
|
||||||
_exit(130);
|
_exit(130);
|
||||||
}
|
}
|
||||||
|
@ -136,13 +136,13 @@ static std::string chat_add_and_format(struct llama_model * model, std::vector<c
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
g_params = ¶ms;
|
g_params = ¶ms;
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
auto & sparams = params.sparams;
|
auto & sparams = params.sparams;
|
||||||
|
|
||||||
|
@ -187,7 +187,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
llama_model * model = nullptr;
|
llama_model * model = nullptr;
|
||||||
llama_context * ctx = nullptr;
|
llama_context * ctx = nullptr;
|
||||||
gpt_sampler * smpl = nullptr;
|
common_sampler * smpl = nullptr;
|
||||||
|
|
||||||
std::vector<common_chat_msg> chat_msgs;
|
std::vector<common_chat_msg> chat_msgs;
|
||||||
|
|
||||||
|
@ -197,7 +197,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// load the model and apply lora adapter, if any
|
// load the model and apply lora adapter, if any
|
||||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
model = llama_init.model;
|
model = llama_init.model;
|
||||||
ctx = llama_init.context;
|
ctx = llama_init.context;
|
||||||
|
@ -255,7 +255,7 @@ int main(int argc, char ** argv) {
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -448,15 +448,15 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
smpl = gpt_sampler_init(model, sparams);
|
smpl = common_sampler_init(model, sparams);
|
||||||
if (!smpl) {
|
if (!smpl) {
|
||||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG_INF("sampler seed: %u\n", gpt_sampler_get_seed(smpl));
|
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
|
||||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||||
LOG_INF("sampler chain: %s\n", gpt_sampler_print(smpl).c_str());
|
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
|
||||||
|
|
||||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
|
|
||||||
|
@ -679,9 +679,9 @@ int main(int argc, char ** argv) {
|
||||||
LOG_DBG("saved session to %s\n", path_session.c_str());
|
LOG_DBG("saved session to %s\n", path_session.c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
const llama_token id = common_sampler_sample(smpl, ctx, -1);
|
||||||
|
|
||||||
gpt_sampler_accept(smpl, id, /* accept_grammar= */ true);
|
common_sampler_accept(smpl, id, /* accept_grammar= */ true);
|
||||||
|
|
||||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||||
|
|
||||||
|
@ -702,7 +702,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||||
// for the prompt, we don't apply grammar rules
|
// for the prompt, we don't apply grammar rules
|
||||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
|
common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
|
||||||
|
|
||||||
++n_consumed;
|
++n_consumed;
|
||||||
if ((int) embd.size() >= params.n_batch) {
|
if ((int) embd.size() >= params.n_batch) {
|
||||||
|
@ -743,7 +743,7 @@ int main(int argc, char ** argv) {
|
||||||
// check for reverse prompt in the last n_prev tokens
|
// check for reverse prompt in the last n_prev tokens
|
||||||
if (!params.antiprompt.empty()) {
|
if (!params.antiprompt.empty()) {
|
||||||
const int n_prev = 32;
|
const int n_prev = 32;
|
||||||
const std::string last_output = gpt_sampler_prev_str(smpl, ctx, n_prev);
|
const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev);
|
||||||
|
|
||||||
is_antiprompt = false;
|
is_antiprompt = false;
|
||||||
// Check if each of the reverse prompts appears at the end of the output.
|
// Check if each of the reverse prompts appears at the end of the output.
|
||||||
|
@ -765,7 +765,7 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// check for reverse prompt using special tokens
|
// check for reverse prompt using special tokens
|
||||||
llama_token last_token = gpt_sampler_last(smpl);
|
llama_token last_token = common_sampler_last(smpl);
|
||||||
for (std::vector<llama_token> ids : antiprompt_ids) {
|
for (std::vector<llama_token> ids : antiprompt_ids) {
|
||||||
if (ids.size() == 1 && last_token == ids[0]) {
|
if (ids.size() == 1 && last_token == ids[0]) {
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
|
@ -782,7 +782,7 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// deal with end of generation tokens in interactive mode
|
// deal with end of generation tokens in interactive mode
|
||||||
if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
if (llama_token_is_eog(model, common_sampler_last(smpl))) {
|
||||||
LOG_DBG("found an EOG token\n");
|
LOG_DBG("found an EOG token\n");
|
||||||
|
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
|
@ -803,7 +803,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// if current token is not EOG, we add it to current assistant message
|
// if current token is not EOG, we add it to current assistant message
|
||||||
if (params.conversation) {
|
if (params.conversation) {
|
||||||
const auto id = gpt_sampler_last(smpl);
|
const auto id = common_sampler_last(smpl);
|
||||||
assistant_ss << common_token_to_piece(ctx, id, false);
|
assistant_ss << common_token_to_piece(ctx, id, false);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -899,7 +899,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
if (n_past > 0) {
|
if (n_past > 0) {
|
||||||
if (is_interacting) {
|
if (is_interacting) {
|
||||||
gpt_sampler_reset(smpl);
|
common_sampler_reset(smpl);
|
||||||
}
|
}
|
||||||
is_interacting = false;
|
is_interacting = false;
|
||||||
}
|
}
|
||||||
|
@ -925,10 +925,10 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG("\n\n");
|
LOG("\n\n");
|
||||||
gpt_perf_print(ctx, smpl);
|
common_perf_print(ctx, smpl);
|
||||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||||
|
|
||||||
gpt_sampler_free(smpl);
|
common_sampler_free(smpl);
|
||||||
|
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
|
|
@ -54,7 +54,7 @@ static std::vector<std::string> k_prompts = {
|
||||||
struct client {
|
struct client {
|
||||||
~client() {
|
~client() {
|
||||||
if (smpl) {
|
if (smpl) {
|
||||||
gpt_sampler_free(smpl);
|
common_sampler_free(smpl);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -75,7 +75,7 @@ struct client {
|
||||||
std::string prompt;
|
std::string prompt;
|
||||||
std::string response;
|
std::string response;
|
||||||
|
|
||||||
struct gpt_sampler * smpl = nullptr;
|
struct common_sampler * smpl = nullptr;
|
||||||
};
|
};
|
||||||
|
|
||||||
static void print_date_time() {
|
static void print_date_time() {
|
||||||
|
@ -103,13 +103,13 @@ static std::vector<std::string> split_string(const std::string& input, char deli
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
srand(1234);
|
srand(1234);
|
||||||
|
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
// number of simultaneous "clients" to simulate
|
// number of simultaneous "clients" to simulate
|
||||||
const int32_t n_clients = params.n_parallel;
|
const int32_t n_clients = params.n_parallel;
|
||||||
|
@ -130,7 +130,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
// load the target model
|
// load the target model
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
@ -160,7 +160,7 @@ int main(int argc, char ** argv) {
|
||||||
for (size_t i = 0; i < clients.size(); ++i) {
|
for (size_t i = 0; i < clients.size(); ++i) {
|
||||||
auto & client = clients[i];
|
auto & client = clients[i];
|
||||||
client.id = i;
|
client.id = i;
|
||||||
client.smpl = gpt_sampler_init(model, params.sparams);
|
client.smpl = common_sampler_init(model, params.sparams);
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<llama_token> tokens_system;
|
std::vector<llama_token> tokens_system;
|
||||||
|
@ -252,7 +252,7 @@ int main(int argc, char ** argv) {
|
||||||
client.prompt = client.input + "\nAssistant:";
|
client.prompt = client.input + "\nAssistant:";
|
||||||
client.response = "";
|
client.response = "";
|
||||||
|
|
||||||
gpt_sampler_reset(client.smpl);
|
common_sampler_reset(client.smpl);
|
||||||
|
|
||||||
// do not prepend BOS because we have a system prompt!
|
// do not prepend BOS because we have a system prompt!
|
||||||
std::vector<llama_token> tokens_prompt;
|
std::vector<llama_token> tokens_prompt;
|
||||||
|
@ -340,9 +340,9 @@ int main(int argc, char ** argv) {
|
||||||
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
||||||
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
||||||
|
|
||||||
const llama_token id = gpt_sampler_sample(client.smpl, ctx, client.i_batch - i);
|
const llama_token id = common_sampler_sample(client.smpl, ctx, client.i_batch - i);
|
||||||
|
|
||||||
gpt_sampler_accept(client.smpl, id, true);
|
common_sampler_accept(client.smpl, id, true);
|
||||||
|
|
||||||
if (client.n_decoded == 1) {
|
if (client.n_decoded == 1) {
|
||||||
// start measuring generation time after the first token to make sure all concurrent clients
|
// start measuring generation time after the first token to make sure all concurrent clients
|
||||||
|
|
|
@ -15,17 +15,17 @@ static void print_usage(int, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
params.n_junk = 250;
|
params.n_junk = 250;
|
||||||
params.n_keep = 32;
|
params.n_keep = 32;
|
||||||
params.i_pos = -1;
|
params.i_pos = -1;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
int n_junk = params.n_junk;
|
int n_junk = params.n_junk;
|
||||||
int n_keep = params.n_keep;
|
int n_keep = params.n_keep;
|
||||||
|
@ -61,7 +61,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// initialize the model
|
// initialize the model
|
||||||
|
|
||||||
llama_model_params model_params = common_model_params_from_gpt_params(params);
|
llama_model_params model_params = common_model_params_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||||
|
|
||||||
|
@ -72,7 +72,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// initialize the context
|
// initialize the context
|
||||||
|
|
||||||
llama_context_params ctx_params = common_context_params_from_gpt_params(params);
|
llama_context_params ctx_params = common_context_params_from_common_params(params);
|
||||||
|
|
||||||
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
|
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
|
||||||
|
|
||||||
|
|
|
@ -35,7 +35,7 @@ struct results_log_softmax {
|
||||||
};
|
};
|
||||||
|
|
||||||
static void write_logfile(
|
static void write_logfile(
|
||||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
const llama_context * ctx, const common_params & params, const llama_model * model,
|
||||||
const struct results_perplexity & results
|
const struct results_perplexity & results
|
||||||
) {
|
) {
|
||||||
if (params.logdir.empty()) {
|
if (params.logdir.empty()) {
|
||||||
|
@ -337,7 +337,7 @@ static void process_logits(int n_vocab, const float * logits, const int * tokens
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
static results_perplexity perplexity_v2(llama_context * ctx, const common_params & params) {
|
||||||
// Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
// Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
||||||
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||||
// Output: `perplexity: 13.5106 [114/114]`
|
// Output: `perplexity: 13.5106 [114/114]`
|
||||||
|
@ -472,7 +472,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||||
return {tokens, std::exp(nll / count), logit_history, prob_history};
|
return {tokens, std::exp(nll / count), logit_history, prob_history};
|
||||||
}
|
}
|
||||||
|
|
||||||
static results_perplexity perplexity(llama_context * ctx, const gpt_params & params, const int32_t n_ctx) {
|
static results_perplexity perplexity(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
|
||||||
if (params.ppl_stride > 0) {
|
if (params.ppl_stride > 0) {
|
||||||
return perplexity_v2(ctx, params);
|
return perplexity_v2(ctx, params);
|
||||||
}
|
}
|
||||||
|
@ -763,7 +763,7 @@ static void compute_logprobs(const float * batch_logits, int n_vocab, std::vecto
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
static void hellaswag_score(llama_context * ctx, const common_params & params) {
|
||||||
// Calculates hellaswag score (acc_norm) from prompt
|
// Calculates hellaswag score (acc_norm) from prompt
|
||||||
//
|
//
|
||||||
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
||||||
|
@ -1102,7 +1102,7 @@ static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string
|
||||||
* 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
|
* 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
static void winogrande_score(llama_context * ctx, const common_params & params) {
|
||||||
|
|
||||||
constexpr int k_min_trailing_ctx = 3;
|
constexpr int k_min_trailing_ctx = 3;
|
||||||
|
|
||||||
|
@ -1403,7 +1403,7 @@ static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choic
|
||||||
// git@hf.co:datasets/Stevross/mmlu
|
// git@hf.co:datasets/Stevross/mmlu
|
||||||
// https://huggingface.co/datasets/truthful_qa
|
// https://huggingface.co/datasets/truthful_qa
|
||||||
//
|
//
|
||||||
static void multiple_choice_score(llama_context * ctx, const gpt_params & params) {
|
static void multiple_choice_score(llama_context * ctx, const common_params & params) {
|
||||||
|
|
||||||
std::istringstream strstream(params.prompt);
|
std::istringstream strstream(params.prompt);
|
||||||
uint32_t n_task;
|
uint32_t n_task;
|
||||||
|
@ -1683,7 +1683,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
static void kl_divergence(llama_context * ctx, const common_params & params) {
|
||||||
if (params.logits_file.empty()) {
|
if (params.logits_file.empty()) {
|
||||||
LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
|
LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
|
||||||
return;
|
return;
|
||||||
|
@ -1955,17 +1955,17 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
params.n_ctx = 512;
|
params.n_ctx = 512;
|
||||||
params.logits_all = true;
|
params.logits_all = true;
|
||||||
params.escape = false;
|
params.escape = false;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
const int32_t n_ctx = params.n_ctx;
|
const int32_t n_ctx = params.n_ctx;
|
||||||
|
|
||||||
|
@ -2004,7 +2004,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
// load the model and apply lora adapter, if any
|
// load the model and apply lora adapter, if any
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
@ -2023,7 +2023,7 @@ int main(int argc, char ** argv) {
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
struct results_perplexity results;
|
struct results_perplexity results;
|
||||||
|
|
|
@ -112,13 +112,13 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
// For BERT models, batch size must be equal to ubatch size
|
// For BERT models, batch size must be equal to ubatch size
|
||||||
params.n_ubatch = params.n_batch;
|
params.n_ubatch = params.n_batch;
|
||||||
|
@ -149,7 +149,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
// load the model
|
// load the model
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
@ -176,7 +176,7 @@ int main(int argc, char ** argv) {
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
// max batch size
|
// max batch size
|
||||||
|
|
|
@ -6,12 +6,12 @@
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
params.prompt = "The quick brown fox";
|
params.prompt = "The quick brown fox";
|
||||||
params.sparams.seed = 1234;
|
params.sparams.seed = 1234;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -28,7 +28,7 @@ int main(int argc, char ** argv) {
|
||||||
std::string result2;
|
std::string result2;
|
||||||
|
|
||||||
// init
|
// init
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_init.model;
|
llama_model * model = llama_init.model;
|
||||||
llama_context * ctx = llama_init.context;
|
llama_context * ctx = llama_init.context;
|
||||||
|
@ -92,7 +92,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
|
|
||||||
// make new context
|
// make new context
|
||||||
auto * ctx2 = llama_new_context_with_model(model, common_context_params_from_gpt_params(params));
|
auto * ctx2 = llama_new_context_with_model(model, common_context_params_from_common_params(params));
|
||||||
|
|
||||||
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
|
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
|
||||||
|
|
||||||
|
@ -152,7 +152,7 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// make new context
|
// make new context
|
||||||
auto * ctx3 = llama_new_context_with_model(model, common_context_params_from_gpt_params(params));
|
auto * ctx3 = llama_new_context_with_model(model, common_context_params_from_common_params(params));
|
||||||
|
|
||||||
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
|
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
|
||||||
|
|
||||||
|
|
|
@ -188,8 +188,8 @@ struct server_slot {
|
||||||
// sampling
|
// sampling
|
||||||
json json_schema;
|
json json_schema;
|
||||||
|
|
||||||
struct gpt_sampler_params sparams;
|
struct common_sampler_params sparams;
|
||||||
struct gpt_sampler * smpl = nullptr;
|
struct common_sampler * smpl = nullptr;
|
||||||
|
|
||||||
llama_token sampled;
|
llama_token sampled;
|
||||||
|
|
||||||
|
@ -231,7 +231,7 @@ struct server_slot {
|
||||||
generated_token_probs.clear();
|
generated_token_probs.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
bool has_budget(gpt_params &global_params) {
|
bool has_budget(common_params &global_params) {
|
||||||
if (params.n_predict == -1 && global_params.n_predict == -1) {
|
if (params.n_predict == -1 && global_params.n_predict == -1) {
|
||||||
return true; // limitless
|
return true; // limitless
|
||||||
}
|
}
|
||||||
|
@ -613,7 +613,7 @@ struct server_context {
|
||||||
llama_context * ctx = nullptr;
|
llama_context * ctx = nullptr;
|
||||||
std::vector<common_lora_adapter_container> loras;
|
std::vector<common_lora_adapter_container> loras;
|
||||||
|
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
llama_batch batch = {};
|
llama_batch batch = {};
|
||||||
|
|
||||||
|
@ -655,20 +655,20 @@ struct server_context {
|
||||||
// Clear any sampling context
|
// Clear any sampling context
|
||||||
for (server_slot & slot : slots) {
|
for (server_slot & slot : slots) {
|
||||||
if (slot.smpl != nullptr) {
|
if (slot.smpl != nullptr) {
|
||||||
gpt_sampler_free(slot.smpl);
|
common_sampler_free(slot.smpl);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_batch_free(batch);
|
llama_batch_free(batch);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool load_model(const gpt_params & params_) {
|
bool load_model(const common_params & params_) {
|
||||||
params = params_;
|
params = params_;
|
||||||
|
|
||||||
// dedicate one sequence to the system prompt
|
// dedicate one sequence to the system prompt
|
||||||
params.n_parallel += 1;
|
params.n_parallel += 1;
|
||||||
|
|
||||||
common_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result llama_init = common_init_from_common_params(params);
|
||||||
|
|
||||||
model = llama_init.model;
|
model = llama_init.model;
|
||||||
ctx = llama_init.context;
|
ctx = llama_init.context;
|
||||||
|
@ -1031,7 +1031,7 @@ struct server_context {
|
||||||
sampler_names.emplace_back(name);
|
sampler_names.emplace_back(name);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
slot.sparams.samplers = gpt_sampler_types_from_names(sampler_names, false);
|
slot.sparams.samplers = common_sampler_types_from_names(sampler_names, false);
|
||||||
} else {
|
} else {
|
||||||
slot.sparams.samplers = default_sparams.samplers;
|
slot.sparams.samplers = default_sparams.samplers;
|
||||||
}
|
}
|
||||||
|
@ -1039,10 +1039,10 @@ struct server_context {
|
||||||
|
|
||||||
{
|
{
|
||||||
if (slot.smpl != nullptr) {
|
if (slot.smpl != nullptr) {
|
||||||
gpt_sampler_free(slot.smpl);
|
common_sampler_free(slot.smpl);
|
||||||
}
|
}
|
||||||
|
|
||||||
slot.smpl = gpt_sampler_init(model, slot.sparams);
|
slot.smpl = common_sampler_init(model, slot.sparams);
|
||||||
if (slot.smpl == nullptr) {
|
if (slot.smpl == nullptr) {
|
||||||
// for now, the only error that may happen here is invalid grammar
|
// for now, the only error that may happen here is invalid grammar
|
||||||
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
|
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
|
||||||
|
@ -1224,7 +1224,7 @@ struct server_context {
|
||||||
std::vector<std::string> samplers;
|
std::vector<std::string> samplers;
|
||||||
samplers.reserve(slot.sparams.samplers.size());
|
samplers.reserve(slot.sparams.samplers.size());
|
||||||
for (const auto & sampler : slot.sparams.samplers) {
|
for (const auto & sampler : slot.sparams.samplers) {
|
||||||
samplers.emplace_back(gpt_sampler_type_to_str(sampler));
|
samplers.emplace_back(common_sampler_type_to_str(sampler));
|
||||||
}
|
}
|
||||||
|
|
||||||
return json {
|
return json {
|
||||||
|
@ -1232,7 +1232,7 @@ struct server_context {
|
||||||
{"n_predict", slot.n_predict}, // Server configured n_predict
|
{"n_predict", slot.n_predict}, // Server configured n_predict
|
||||||
{"model", params.model_alias},
|
{"model", params.model_alias},
|
||||||
{"seed", slot.sparams.seed},
|
{"seed", slot.sparams.seed},
|
||||||
{"seed_cur", slot.smpl ? gpt_sampler_get_seed(slot.smpl) : 0},
|
{"seed_cur", slot.smpl ? common_sampler_get_seed(slot.smpl) : 0},
|
||||||
{"temperature", slot.sparams.temp},
|
{"temperature", slot.sparams.temp},
|
||||||
{"dynatemp_range", slot.sparams.dynatemp_range},
|
{"dynatemp_range", slot.sparams.dynatemp_range},
|
||||||
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
||||||
|
@ -2092,7 +2092,7 @@ struct server_context {
|
||||||
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_sampler_reset(slot.smpl);
|
common_sampler_reset(slot.smpl);
|
||||||
|
|
||||||
if (!slot.params.cache_prompt) {
|
if (!slot.params.cache_prompt) {
|
||||||
slot.n_past_se = 0;
|
slot.n_past_se = 0;
|
||||||
|
@ -2105,7 +2105,7 @@ struct server_context {
|
||||||
|
|
||||||
// push the prompt into the sampling context (do not apply grammar)
|
// push the prompt into the sampling context (do not apply grammar)
|
||||||
for (int i = 0; i < slot.n_past; ++i) {
|
for (int i = 0; i < slot.n_past; ++i) {
|
||||||
gpt_sampler_accept(slot.smpl, slot.cache_tokens[i], false);
|
common_sampler_accept(slot.smpl, slot.cache_tokens[i], false);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -2159,7 +2159,7 @@ struct server_context {
|
||||||
slot.n_past_se = 0;
|
slot.n_past_se = 0;
|
||||||
slot.ga_i = 0;
|
slot.ga_i = 0;
|
||||||
// TODO: is the system prompt ever in the sampling context?
|
// TODO: is the system prompt ever in the sampling context?
|
||||||
gpt_sampler_reset(slot.smpl);
|
common_sampler_reset(slot.smpl);
|
||||||
}
|
}
|
||||||
|
|
||||||
// remove the non-common part from the cache
|
// remove the non-common part from the cache
|
||||||
|
@ -2322,9 +2322,9 @@ struct server_context {
|
||||||
}
|
}
|
||||||
|
|
||||||
completion_token_output result;
|
completion_token_output result;
|
||||||
const llama_token id = gpt_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
|
const llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
|
||||||
|
|
||||||
gpt_sampler_accept(slot.smpl, id, true);
|
common_sampler_accept(slot.smpl, id, true);
|
||||||
|
|
||||||
slot.n_decoded += 1;
|
slot.n_decoded += 1;
|
||||||
if (slot.n_decoded == 1) {
|
if (slot.n_decoded == 1) {
|
||||||
|
@ -2335,7 +2335,7 @@ struct server_context {
|
||||||
|
|
||||||
result.tok = id;
|
result.tok = id;
|
||||||
|
|
||||||
const auto * cur_p = gpt_sampler_get_candidates(slot.smpl);
|
const auto * cur_p = common_sampler_get_candidates(slot.smpl);
|
||||||
|
|
||||||
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
|
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
|
||||||
result.probs.push_back({
|
result.probs.push_back({
|
||||||
|
@ -2399,13 +2399,13 @@ inline void signal_handler(int signal) {
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
// own arguments required by this example
|
// own arguments required by this example
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
// enabling this will output extra debug information in the HTTP responses from the server
|
// enabling this will output extra debug information in the HTTP responses from the server
|
||||||
// see format_final_response_oaicompat()
|
// see format_final_response_oaicompat()
|
||||||
|
@ -2427,7 +2427,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
|
LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
|
|
||||||
std::unique_ptr<httplib::Server> svr;
|
std::unique_ptr<httplib::Server> svr;
|
||||||
|
|
|
@ -12,16 +12,16 @@ static void print_usage(int, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
params.prompt = "Hello my name is";
|
params.prompt = "Hello my name is";
|
||||||
params.n_predict = 32;
|
params.n_predict = 32;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
// total length of the sequence including the prompt
|
// total length of the sequence including the prompt
|
||||||
const int n_predict = params.n_predict;
|
const int n_predict = params.n_predict;
|
||||||
|
@ -33,7 +33,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// initialize the model
|
// initialize the model
|
||||||
|
|
||||||
llama_model_params model_params = common_model_params_from_gpt_params(params);
|
llama_model_params model_params = common_model_params_from_common_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// initialize the context
|
// initialize the context
|
||||||
|
|
||||||
llama_context_params ctx_params = common_context_params_from_gpt_params(params);
|
llama_context_params ctx_params = common_context_params_from_common_params(params);
|
||||||
|
|
||||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||||
|
|
||||||
|
|
|
@ -26,20 +26,20 @@ struct seq_draft {
|
||||||
std::vector<llama_token> tokens;
|
std::vector<llama_token> tokens;
|
||||||
std::vector<std::vector<llama_token_data>> dists;
|
std::vector<std::vector<llama_token_data>> dists;
|
||||||
|
|
||||||
struct gpt_sampler * smpl = nullptr;
|
struct common_sampler * smpl = nullptr;
|
||||||
};
|
};
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
// needed to get candidate probs even for temp <= 0.0
|
// needed to get candidate probs even for temp <= 0.0
|
||||||
params.sparams.n_probs = 128;
|
params.sparams.n_probs = 128;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_init();
|
common_init();
|
||||||
|
|
||||||
if (params.model_draft.empty()) {
|
if (params.model_draft.empty()) {
|
||||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||||
|
@ -66,7 +66,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_context * ctx_dft = NULL;
|
llama_context * ctx_dft = NULL;
|
||||||
|
|
||||||
// load the target model
|
// load the target model
|
||||||
common_init_result llama_init_tgt = llama_init_from_gpt_params(params);
|
common_init_result llama_init_tgt = common_init_from_common_params(params);
|
||||||
model_tgt = llama_init_tgt.model;
|
model_tgt = llama_init_tgt.model;
|
||||||
ctx_tgt = llama_init_tgt.context;
|
ctx_tgt = llama_init_tgt.context;
|
||||||
|
|
||||||
|
@ -78,7 +78,7 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
|
params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
|
||||||
common_init_result llama_init_dft = llama_init_from_gpt_params(params);
|
common_init_result llama_init_dft = common_init_from_common_params(params);
|
||||||
model_dft = llama_init_dft.model;
|
model_dft = llama_init_dft.model;
|
||||||
ctx_dft = llama_init_dft.context;
|
ctx_dft = llama_init_dft.context;
|
||||||
|
|
||||||
|
@ -178,7 +178,7 @@ int main(int argc, char ** argv) {
|
||||||
bool has_eos = false;
|
bool has_eos = false;
|
||||||
|
|
||||||
// target model sampling context (reuse the llama_context's sampling instance)
|
// target model sampling context (reuse the llama_context's sampling instance)
|
||||||
struct gpt_sampler * smpl = gpt_sampler_init(model_tgt, params.sparams);
|
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams);
|
||||||
|
|
||||||
struct llama_sampler * softmax = llama_sampler_init_softmax();
|
struct llama_sampler * softmax = llama_sampler_init_softmax();
|
||||||
|
|
||||||
|
@ -186,8 +186,8 @@ int main(int argc, char ** argv) {
|
||||||
std::vector<seq_draft> drafts(n_seq_dft);
|
std::vector<seq_draft> drafts(n_seq_dft);
|
||||||
|
|
||||||
for (int s = 0; s < n_seq_dft; ++s) {
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
// allocate gpt_sampler for each draft sequence
|
// allocate llama_sampler for each draft sequence
|
||||||
drafts[s].smpl = gpt_sampler_init(model_dft, params.sparams);
|
drafts[s].smpl = common_sampler_init(model_dft, params.sparams);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
||||||
|
@ -229,9 +229,9 @@ int main(int argc, char ** argv) {
|
||||||
bool accept = false;
|
bool accept = false;
|
||||||
if (params.sparams.temp > 0) {
|
if (params.sparams.temp > 0) {
|
||||||
// stochastic verification
|
// stochastic verification
|
||||||
gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||||
|
|
||||||
auto & dist_tgt = *gpt_sampler_get_candidates(smpl);
|
auto & dist_tgt = *common_sampler_get_candidates(smpl);
|
||||||
|
|
||||||
float p_tgt = 0.0f;
|
float p_tgt = 0.0f;
|
||||||
float p_dft = 0.0f;
|
float p_dft = 0.0f;
|
||||||
|
@ -278,7 +278,7 @@ int main(int argc, char ** argv) {
|
||||||
accept = true;
|
accept = true;
|
||||||
token_id = drafts[s].tokens[i_dft];
|
token_id = drafts[s].tokens[i_dft];
|
||||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||||
gpt_sampler_accept(smpl, token_id, true);
|
common_sampler_accept(smpl, token_id, true);
|
||||||
|
|
||||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
|
LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||||
break;
|
break;
|
||||||
|
@ -349,7 +349,7 @@ int main(int argc, char ** argv) {
|
||||||
const int idx = dist(rng);
|
const int idx = dist(rng);
|
||||||
|
|
||||||
token_id = dist_tgt.data[idx].id;
|
token_id = dist_tgt.data[idx].id;
|
||||||
gpt_sampler_accept(smpl, token_id, true);
|
common_sampler_accept(smpl, token_id, true);
|
||||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
|
@ -357,9 +357,9 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// sample from the target model
|
// sample from the target model
|
||||||
LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||||
token_id = gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
|
token_id = common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||||
|
|
||||||
gpt_sampler_accept(smpl, token_id, true);
|
common_sampler_accept(smpl, token_id, true);
|
||||||
|
|
||||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||||
|
|
||||||
|
@ -446,9 +446,9 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
if (drafts[0].smpl) {
|
if (drafts[0].smpl) {
|
||||||
gpt_sampler_free(drafts[0].smpl);
|
common_sampler_free(drafts[0].smpl);
|
||||||
}
|
}
|
||||||
drafts[0].smpl = gpt_sampler_clone(smpl);
|
drafts[0].smpl = common_sampler_clone(smpl);
|
||||||
|
|
||||||
int n_seq_cur = 1;
|
int n_seq_cur = 1;
|
||||||
int n_past_cur = n_past_dft;
|
int n_past_cur = n_past_dft;
|
||||||
|
@ -477,9 +477,9 @@ int main(int argc, char ** argv) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
|
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
|
||||||
|
|
||||||
const auto * cur_p = gpt_sampler_get_candidates(drafts[s].smpl);
|
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
|
||||||
|
|
||||||
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
|
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
|
||||||
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||||
|
@ -518,9 +518,9 @@ int main(int argc, char ** argv) {
|
||||||
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
||||||
|
|
||||||
if (drafts[n_seq_cur].smpl) {
|
if (drafts[n_seq_cur].smpl) {
|
||||||
gpt_sampler_free(drafts[n_seq_cur].smpl);
|
common_sampler_free(drafts[n_seq_cur].smpl);
|
||||||
}
|
}
|
||||||
drafts[n_seq_cur].smpl = gpt_sampler_clone(drafts[s].smpl);
|
drafts[n_seq_cur].smpl = common_sampler_clone(drafts[s].smpl);
|
||||||
|
|
||||||
sa.push_back(n_seq_cur);
|
sa.push_back(n_seq_cur);
|
||||||
|
|
||||||
|
@ -536,7 +536,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
const int s = sa[is];
|
const int s = sa[is];
|
||||||
|
|
||||||
gpt_sampler_accept(drafts[s].smpl, id, true);
|
common_sampler_accept(drafts[s].smpl, id, true);
|
||||||
|
|
||||||
drafts[s].tokens.push_back(id);
|
drafts[s].tokens.push_back(id);
|
||||||
// save cur_p.data into drafts[s].dists
|
// save cur_p.data into drafts[s].dists
|
||||||
|
@ -617,11 +617,11 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
LOG_INF("\n");
|
LOG_INF("\n");
|
||||||
LOG_INF("target:\n\n");
|
LOG_INF("target:\n\n");
|
||||||
gpt_perf_print(ctx_tgt, smpl);
|
common_perf_print(ctx_tgt, smpl);
|
||||||
|
|
||||||
gpt_sampler_free(smpl);
|
common_sampler_free(smpl);
|
||||||
for (int s = 0; s < n_seq_dft; ++s) {
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
gpt_sampler_free(drafts[s].smpl);
|
common_sampler_free(drafts[s].smpl);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_sampler_free(softmax);
|
llama_sampler_free(softmax);
|
||||||
|
|
|
@ -10,12 +10,12 @@
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
|
|
||||||
int main(void) {
|
int main(void) {
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
printf("test-arg-parser: make sure there is no duplicated arguments in any examples\n\n");
|
printf("test-arg-parser: make sure there is no duplicated arguments in any examples\n\n");
|
||||||
for (int ex = 0; ex < LLAMA_EXAMPLE_COUNT; ex++) {
|
for (int ex = 0; ex < LLAMA_EXAMPLE_COUNT; ex++) {
|
||||||
try {
|
try {
|
||||||
auto ctx_arg = gpt_params_parser_init(params, (enum llama_example)ex);
|
auto ctx_arg = common_params_parser_init(params, (enum llama_example)ex);
|
||||||
std::unordered_set<std::string> seen_args;
|
std::unordered_set<std::string> seen_args;
|
||||||
std::unordered_set<std::string> seen_env_vars;
|
std::unordered_set<std::string> seen_env_vars;
|
||||||
for (const auto & opt : ctx_arg.options) {
|
for (const auto & opt : ctx_arg.options) {
|
||||||
|
@ -58,44 +58,44 @@ int main(void) {
|
||||||
|
|
||||||
// missing value
|
// missing value
|
||||||
argv = {"binary_name", "-m"};
|
argv = {"binary_name", "-m"};
|
||||||
assert(false == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||||
|
|
||||||
// wrong value (int)
|
// wrong value (int)
|
||||||
argv = {"binary_name", "-ngl", "hello"};
|
argv = {"binary_name", "-ngl", "hello"};
|
||||||
assert(false == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||||
|
|
||||||
// wrong value (enum)
|
// wrong value (enum)
|
||||||
argv = {"binary_name", "-sm", "hello"};
|
argv = {"binary_name", "-sm", "hello"};
|
||||||
assert(false == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||||
|
|
||||||
// non-existence arg in specific example (--draft cannot be used outside llama-speculative)
|
// non-existence arg in specific example (--draft cannot be used outside llama-speculative)
|
||||||
argv = {"binary_name", "--draft", "123"};
|
argv = {"binary_name", "--draft", "123"};
|
||||||
assert(false == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_SERVER));
|
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_SERVER));
|
||||||
|
|
||||||
|
|
||||||
printf("test-arg-parser: test valid usage\n\n");
|
printf("test-arg-parser: test valid usage\n\n");
|
||||||
|
|
||||||
argv = {"binary_name", "-m", "model_file.gguf"};
|
argv = {"binary_name", "-m", "model_file.gguf"};
|
||||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||||
assert(params.model == "model_file.gguf");
|
assert(params.model == "model_file.gguf");
|
||||||
|
|
||||||
argv = {"binary_name", "-t", "1234"};
|
argv = {"binary_name", "-t", "1234"};
|
||||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||||
assert(params.cpuparams.n_threads == 1234);
|
assert(params.cpuparams.n_threads == 1234);
|
||||||
|
|
||||||
argv = {"binary_name", "--verbose"};
|
argv = {"binary_name", "--verbose"};
|
||||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||||
assert(params.verbosity > 1);
|
assert(params.verbosity > 1);
|
||||||
|
|
||||||
argv = {"binary_name", "-m", "abc.gguf", "--predict", "6789", "--batch-size", "9090"};
|
argv = {"binary_name", "-m", "abc.gguf", "--predict", "6789", "--batch-size", "9090"};
|
||||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||||
assert(params.model == "abc.gguf");
|
assert(params.model == "abc.gguf");
|
||||||
assert(params.n_predict == 6789);
|
assert(params.n_predict == 6789);
|
||||||
assert(params.n_batch == 9090);
|
assert(params.n_batch == 9090);
|
||||||
|
|
||||||
// --draft cannot be used outside llama-speculative
|
// --draft cannot be used outside llama-speculative
|
||||||
argv = {"binary_name", "--draft", "123"};
|
argv = {"binary_name", "--draft", "123"};
|
||||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_SPECULATIVE));
|
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_SPECULATIVE));
|
||||||
assert(params.n_draft == 123);
|
assert(params.n_draft == 123);
|
||||||
|
|
||||||
// skip this part on windows, because setenv is not supported
|
// skip this part on windows, because setenv is not supported
|
||||||
|
@ -106,12 +106,12 @@ int main(void) {
|
||||||
|
|
||||||
setenv("LLAMA_ARG_THREADS", "blah", true);
|
setenv("LLAMA_ARG_THREADS", "blah", true);
|
||||||
argv = {"binary_name"};
|
argv = {"binary_name"};
|
||||||
assert(false == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||||
|
|
||||||
setenv("LLAMA_ARG_MODEL", "blah.gguf", true);
|
setenv("LLAMA_ARG_MODEL", "blah.gguf", true);
|
||||||
setenv("LLAMA_ARG_THREADS", "1010", true);
|
setenv("LLAMA_ARG_THREADS", "1010", true);
|
||||||
argv = {"binary_name"};
|
argv = {"binary_name"};
|
||||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||||
assert(params.model == "blah.gguf");
|
assert(params.model == "blah.gguf");
|
||||||
assert(params.cpuparams.n_threads == 1010);
|
assert(params.cpuparams.n_threads == 1010);
|
||||||
|
|
||||||
|
@ -121,7 +121,7 @@ int main(void) {
|
||||||
setenv("LLAMA_ARG_MODEL", "blah.gguf", true);
|
setenv("LLAMA_ARG_MODEL", "blah.gguf", true);
|
||||||
setenv("LLAMA_ARG_THREADS", "1010", true);
|
setenv("LLAMA_ARG_THREADS", "1010", true);
|
||||||
argv = {"binary_name", "-m", "overwritten.gguf"};
|
argv = {"binary_name", "-m", "overwritten.gguf"};
|
||||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||||
assert(params.model == "overwritten.gguf");
|
assert(params.model == "overwritten.gguf");
|
||||||
assert(params.cpuparams.n_threads == 1010);
|
assert(params.cpuparams.n_threads == 1010);
|
||||||
#endif // _WIN32
|
#endif // _WIN32
|
||||||
|
|
|
@ -24,8 +24,8 @@ int main() {
|
||||||
}
|
}
|
||||||
|
|
||||||
if (rand () % 10 < 5) {
|
if (rand () % 10 < 5) {
|
||||||
gpt_log_set_timestamps(gpt_log_main(), rand() % 2);
|
common_log_set_timestamps(common_log_main(), rand() % 2);
|
||||||
gpt_log_set_prefix (gpt_log_main(), rand() % 2);
|
common_log_set_prefix (common_log_main(), rand() % 2);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue