improvement(tools): optimize with argparse
This commit is contained in:
parent
904d2a8d6a
commit
3c7cb413fb
1 changed files with 129 additions and 112 deletions
|
@ -22,19 +22,27 @@ import json
|
|||
import struct
|
||||
import numpy as np
|
||||
import torch
|
||||
import argparse
|
||||
import os
|
||||
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
|
||||
print(" ftype == 0 -> float32")
|
||||
print(" ftype == 1 -> float16")
|
||||
sys.exit(1)
|
||||
|
||||
# output in the same directory as the model
|
||||
dir_model = sys.argv[1]
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Convert ckpt models to ggml models.')
|
||||
parser.add_argument('dir_model',
|
||||
type=str,
|
||||
help='Directory path of the checkpoint model')
|
||||
parser.add_argument('ftype',
|
||||
type=str,
|
||||
choices=['f32', 'f16'],
|
||||
help='Data type of the converted tensor, f32 or f16')
|
||||
parser.add_argument('out_dir',
|
||||
type=str,
|
||||
help='Directory path for storing ggml model')
|
||||
return parser.parse_args()
|
||||
|
||||
fname_hparams = sys.argv[1] + "/params.json"
|
||||
fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
|
||||
|
||||
def get_n_parts(dim):
|
||||
if dim == 4096:
|
||||
|
@ -49,129 +57,138 @@ def get_n_parts(dim):
|
|||
print("Invalid dim: " + str(dim))
|
||||
sys.exit(1)
|
||||
|
||||
# possible data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
#
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
ftype = 1
|
||||
if len(sys.argv) > 2:
|
||||
ftype = int(sys.argv[2])
|
||||
if ftype < 0 or ftype > 1:
|
||||
print("Invalid ftype: " + str(ftype))
|
||||
sys.exit(1)
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
||||
def main():
|
||||
args = parse_args()
|
||||
dir_model = args.dir_model
|
||||
out_dir = args.out_dir
|
||||
|
||||
with open(fname_hparams, "r") as f:
|
||||
hparams = json.load(f)
|
||||
if not os.path.exists(out_dir):
|
||||
os.mkdir(out_dir)
|
||||
|
||||
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
||||
ftype = args.ftype
|
||||
ftype_int = {'f32': 0, 'f16': 1}
|
||||
fname_hparams = os.path.join(dir_model, 'params.json')
|
||||
fname_tokenizer = os.path.join(dir_model, '..', 'tokenizer.model')
|
||||
|
||||
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
||||
with open(fname_hparams, "r") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
n_parts = get_n_parts(hparams["dim"])
|
||||
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
||||
|
||||
print(hparams)
|
||||
print('n_parts = ', n_parts)
|
||||
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
||||
|
||||
for p in range(n_parts):
|
||||
print('Processing part ', p)
|
||||
n_parts = get_n_parts(hparams["dim"])
|
||||
|
||||
#fname_model = sys.argv[1] + "/consolidated.00.pth"
|
||||
fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
||||
if (p > 0):
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
|
||||
print(hparams)
|
||||
print('n_parts = ', n_parts)
|
||||
|
||||
model = torch.load(fname_model, map_location="cpu")
|
||||
for p in range(n_parts):
|
||||
print('Processing part ', p)
|
||||
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||
fout.write(struct.pack("i", hparams["dim"]))
|
||||
fout.write(struct.pack("i", hparams["multiple_of"]))
|
||||
fout.write(struct.pack("i", hparams["n_heads"]))
|
||||
fout.write(struct.pack("i", hparams["n_layers"]))
|
||||
fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
|
||||
fout.write(struct.pack("i", ftype))
|
||||
|
||||
# Is this correct??
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
if tokenizer.is_unknown(i):
|
||||
# "<unk>" token (translated as ??)
|
||||
text = " \u2047 ".encode("utf-8")
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
elif tokenizer.is_control(i):
|
||||
# "<s>"/"</s>" tokens
|
||||
fout.write(struct.pack("i", 0))
|
||||
elif tokenizer.is_byte(i):
|
||||
# "<U+XX>" tokens (which may be invalid UTF-8)
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
if len(piece) != 6:
|
||||
print("Invalid token: " + piece)
|
||||
sys.exit(1)
|
||||
byte_value = int(piece[3:-1], 16)
|
||||
fout.write(struct.pack("i", 1))
|
||||
fout.write(struct.pack("B", byte_value))
|
||||
#fname_model = sys.argv[1] + "/consolidated.00.pth"
|
||||
fname_model = os.path.join(dir_model, "consolidated.0{}.pth".format(p))
|
||||
if p > 0:
|
||||
fname_out = os.path.join(out_dir,
|
||||
"ggml-model-{}.bin.{}".format(ftype, p))
|
||||
else:
|
||||
# normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
|
||||
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
fname_out = os.path.join(out_dir,
|
||||
"ggml-model-{}.bin".format(ftype))
|
||||
|
||||
for k, v in model.items():
|
||||
name = k
|
||||
shape = v.shape
|
||||
model = torch.load(fname_model, map_location="cpu")
|
||||
|
||||
# skip layers.X.attention.inner_attention.rope.freqs
|
||||
if name[-5:] == "freqs":
|
||||
continue
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
|
||||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||
fout.write(struct.pack("i", hparams["dim"]))
|
||||
fout.write(struct.pack("i", hparams["multiple_of"]))
|
||||
fout.write(struct.pack("i", hparams["n_heads"]))
|
||||
fout.write(struct.pack("i", hparams["n_layers"]))
|
||||
fout.write(struct.pack("i", hparams["dim"] //
|
||||
hparams["n_heads"])) # rot (obsolete)
|
||||
fout.write(struct.pack("i", ftype_int[ftype]))
|
||||
|
||||
#data = tf.train.load_variable(dir_model, name).squeeze()
|
||||
data = v.numpy().squeeze()
|
||||
n_dims = len(data.shape);
|
||||
# Is this correct??
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
if tokenizer.is_unknown(i):
|
||||
# "<unk>" token (translated as ??)
|
||||
text = " \u2047 ".encode("utf-8")
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
elif tokenizer.is_control(i):
|
||||
# "<s>"/"</s>" tokens
|
||||
fout.write(struct.pack("i", 0))
|
||||
elif tokenizer.is_byte(i):
|
||||
# "<U+XX>" tokens (which may be invalid UTF-8)
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
if len(piece) != 6:
|
||||
print("Invalid token: " + piece)
|
||||
sys.exit(1)
|
||||
byte_value = int(piece[3:-1], 16)
|
||||
fout.write(struct.pack("i", 1))
|
||||
fout.write(struct.pack("B", byte_value))
|
||||
else:
|
||||
# normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
|
||||
text = tokenizer.id_to_piece(i).replace("\u2581",
|
||||
" ").encode("utf-8")
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
|
||||
# for efficiency - transpose some matrices
|
||||
# "model/h.*/attn/c_attn/w"
|
||||
# "model/h.*/attn/c_proj/w"
|
||||
# "model/h.*/mlp/c_fc/w"
|
||||
# "model/h.*/mlp/c_proj/w"
|
||||
#if name[-14:] == "/attn/c_attn/w" or \
|
||||
# name[-14:] == "/attn/c_proj/w" or \
|
||||
# name[-11:] == "/mlp/c_fc/w" or \
|
||||
# name[-13:] == "/mlp/c_proj/w":
|
||||
# print(" Transposing")
|
||||
# data = data.transpose()
|
||||
for k, v in model.items():
|
||||
name = k
|
||||
shape = v.shape
|
||||
|
||||
dshape = data.shape
|
||||
# skip layers.X.attention.inner_attention.rope.freqs
|
||||
if name[-5:] == "freqs":
|
||||
continue
|
||||
|
||||
# default type is fp16
|
||||
ftype_cur = 1
|
||||
if ftype == 0 or n_dims == 1:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
print("Processing variable: " + name + " with shape: ", shape,
|
||||
" and type: ", v.dtype)
|
||||
|
||||
# header
|
||||
sname = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
||||
fout.write(sname);
|
||||
#data = tf.train.load_variable(dir_model, name).squeeze()
|
||||
data = v.numpy().squeeze()
|
||||
n_dims = len(data.shape)
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
# for efficiency - transpose some matrices
|
||||
# "model/h.*/attn/c_attn/w"
|
||||
# "model/h.*/attn/c_proj/w"
|
||||
# "model/h.*/mlp/c_fc/w"
|
||||
# "model/h.*/mlp/c_proj/w"
|
||||
#if name[-14:] == "/attn/c_attn/w" or \
|
||||
# name[-14:] == "/attn/c_proj/w" or \
|
||||
# name[-11:] == "/mlp/c_fc/w" or \
|
||||
# name[-13:] == "/mlp/c_proj/w":
|
||||
# print(" Transposing")
|
||||
# data = data.transpose()
|
||||
|
||||
# I hope this deallocates the memory ..
|
||||
model = None
|
||||
dshape = data.shape
|
||||
|
||||
fout.close()
|
||||
# default type is fp16
|
||||
ftype_cur = 1
|
||||
if ftype == 'f32' or n_dims == 1:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
print("Done. Output file: " + fname_out + ", (part ", p, ")")
|
||||
print("")
|
||||
# header
|
||||
sname = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
||||
fout.write(sname)
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
||||
# I hope this deallocates the memory ..
|
||||
model = None
|
||||
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " + fname_out + ", (part ", p, ")")
|
||||
print("")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue