This commit is contained in:
Zhiyong Wang 2025-02-10 17:34:13 +08:00 committed by GitHub
commit 3cc4b12955
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 536 additions and 0 deletions

118
examples/llava/clip-cli.cpp Normal file
View file

@ -0,0 +1,118 @@
//
// Example usage of just the vision encoder (CLIP) part of the LLAVA codebase.
// It loads a CLIP model (gguf file) and an image file,
// computes the image embedding, and prints out (a few elements of) the embedding.
//
// Build and run (for example):
// ./bin/llama-clip-cli -c model.gguf -i input.png --threads 1 --verbosity 1
// ./bin/llama-clip-cli -c clip.gguf -i input.png --threads 1 --verbosity 1
#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "clip.h"
#include "llava.h"
#include "ggml.h"
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>
#include <algorithm>
// Structure to hold our command line parameters.
struct vision_params {
std::string clip_model; // Path to the CLIP model file (gguf)
std::string image_file; // Path to the image file to process
int n_threads = 1; // Number of CPU threads to use
int verbosity = 1; // Verbosity level for model loading
};
static void print_usage(const char* progname) {
LOG("\nUsage: %s -c <clip_model_path> -i <image_file> [--threads <n_threads>] [--verbosity <level>]\n\n", progname);
}
int main(int argc, char ** argv) {
ggml_time_init();
vision_params params;
// Simple command line parsing
if (argc < 5) {
print_usage(argv[0]);
return 1;
}
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-c" || arg == "--clip") {
if (i + 1 < argc) {
params.clip_model = argv[++i];
} else {
print_usage(argv[0]);
return 1;
}
} else if (arg == "-i" || arg == "--image") {
if (i + 1 < argc) {
params.image_file = argv[++i];
} else {
print_usage(argv[0]);
return 1;
}
} else if (arg == "--threads") {
if (i + 1 < argc) {
params.n_threads = std::atoi(argv[++i]);
} else {
print_usage(argv[0]);
return 1;
}
} else if (arg == "--verbosity") {
if (i + 1 < argc) {
params.verbosity = std::atoi(argv[++i]);
} else {
print_usage(argv[0]);
return 1;
}
} else {
// Unknown argument.
print_usage(argv[0]);
return 1;
}
}
if (params.clip_model.empty() || params.image_file.empty()) {
print_usage(argv[0]);
return 1;
}
// Load the CLIP model.
struct clip_ctx * ctx_clip = clip_model_load(params.clip_model.c_str(), params.verbosity);
if (!ctx_clip) {
LOG_ERR("Failed to load clip model from %s\n", params.clip_model.c_str());
return 1;
}
LOG_INF("Clip model loaded from %s\n", params.clip_model.c_str());
// Load and process the image.
llava_image_embed * embed = llava_image_embed_make_with_filename(ctx_clip, params.n_threads, params.image_file.c_str());
if (!embed) {
LOG_ERR("Failed to load or process image from %s\n", params.image_file.c_str());
clip_free(ctx_clip);
return 1;
}
LOG_INF("Image loaded and processed from %s\n", params.image_file.c_str());
LOG_INF("Image embedding computed with %d positions.\n", embed->n_image_pos);
int print_count = (embed->n_image_pos < 10 ? embed->n_image_pos : 10);
LOG_INF("First %d elements: ", print_count);
for (int i = 0; i < print_count; i++) {
LOG_INF("%f ", embed->embed[i]);
}
LOG_INF("\n");
llava_image_embed_free(embed);
clip_free(ctx_clip);
return 0;
}

View file

@ -571,6 +571,23 @@ struct clip_vision_model {
struct ggml_tensor * mm_model_ln_kv_b;
struct ggml_tensor * mm_model_ln_post_w;
struct ggml_tensor * mm_model_ln_post_b;
// Janus Attention Pool with Latent Query
struct ggml_tensor * attn_pool_latent;
struct ggml_tensor * attn_pool_q_w;
struct ggml_tensor * attn_pool_q_b;
struct ggml_tensor * attn_pool_k_w;
struct ggml_tensor * attn_pool_k_b;
struct ggml_tensor * attn_pool_v_w;
struct ggml_tensor * attn_pool_v_b;
struct ggml_tensor * attn_pool_proj_w;
struct ggml_tensor * attn_pool_proj_b;
struct ggml_tensor * attn_pool_norm_w;
struct ggml_tensor * attn_pool_norm_b;
struct ggml_tensor * attn_pool_ffn_up_w;
struct ggml_tensor * attn_pool_ffn_up_b;
struct ggml_tensor * attn_pool_ffn_down_w;
struct ggml_tensor * attn_pool_ffn_down_b;
};
struct clip_ctx {
@ -580,6 +597,7 @@ struct clip_ctx {
bool has_minicpmv_projector = false;
bool has_glm_projector = false;
bool has_qwen2vl_merger = false;
bool has_janus_attn_pool_latent = false;
int minicpmv_version = 2;
struct clip_vision_model vision_model;
@ -1153,6 +1171,77 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
}
// janus attn pool with latent query
// TODO: Check the ctx0
else if (ctx->has_janus_attn_pool_latent){
if (ctx->proj_type == PROJECTOR_TYPE_JANUS) {
struct ggml_tensor* latent = model.attn_pool_latent; // Should be [D, 1, 1]
struct ggml_tensor* latent_expanded = ggml_repeat(ctx0, latent,
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, 1, batch_size)); // [D, 1, B]
struct ggml_tensor* Q = ggml_add(ctx0,
ggml_mul_mat(ctx0, model.attn_pool_q_w, latent_expanded),
model.attn_pool_q_b
);
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, 1, batch_size);
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
Q = ggml_cont(ggml_permute(ctx0, Q, 0, 2, 1, 3));
Q = ggml_reshape_3d(ctx0, Q, d_head, 1, n_head * batch_size);
struct ggml_tensor* K = ggml_add(ctx0,
ggml_mul_mat(ctx0, model.attn_pool_k_w, embeddings),
model.attn_pool_k_b
);
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
K = ggml_cont(ggml_permute(ctx0, K, 0, 2, 1, 3));
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
struct ggml_tensor* V = ggml_add(ctx0,
ggml_mul_mat(ctx0, model.attn_pool_v_w, embeddings),
model.attn_pool_v_b
);
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
V = ggml_cont(ggml_permute(ctx0, V, 1, 2, 0, 3));
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
struct ggml_tensor* attn_scores = ggml_mul_mat(ctx0, K, Q);
attn_scores = ggml_soft_max_inplace(ctx0, attn_scores);
struct ggml_tensor* attn_output = ggml_mul_mat(ctx0, V, attn_scores);
attn_output = ggml_reshape_4d(ctx0, attn_output, d_head, 1, n_head, batch_size);
attn_output = ggml_cont(ggml_permute(ctx0, attn_output, 0, 2, 1, 3));
attn_output = ggml_cont_3d(ctx0, attn_output, hidden_size, 1, batch_size);
attn_output = ggml_add(ctx0,
ggml_mul_mat(ctx0, model.attn_pool_proj_w, attn_output),
model.attn_pool_proj_b
);
// MLP: fc1 -> gelu -> norm -> fc2
// References:
// https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/mlp.py#L13
struct ggml_tensor * cur = attn_output;
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.attn_pool_norm_w, cur), model.attn_pool_norm_b);
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.attn_pool_ffn_down_w, cur), model.attn_pool_ffn_down_b);
cur = ggml_gelu_inplace(ctx0, cur);
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.attn_pool_norm_w, cur), model.attn_pool_norm_b);
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.attn_pool_ffn_up_w, cur), model.attn_pool_ffn_up_b);
// Residual connection
// https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/attention_pool.py#L98
attn_output = ggml_add(ctx0, attn_output, cur); // [D, 1, B]
// Pooling, select first token
embeddings = ggml_view_2d(ctx0,
attn_output,
attn_output->ne[0],
attn_output->ne[2],
attn_output->nb[2]);
} else {
GGML_ABORT("fatal error");
}
}
// build the graph
ggml_build_forward_expand(gf, embeddings);

View file

@ -0,0 +1,328 @@
import argparse
import os
import json
import re
import torch
import numpy as np
from gguf import *
from janus.models.clip_encoder import CLIPVisionTower
TEXT = "clip.text"
VISION = "clip.vision"
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
if name in (
"logit_scale",
"text_model.embeddings.position_ids",
"vision_model.embeddings.position_ids",
):
return True
if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]:
return True
if name.startswith("v") and not has_vision:
return True
if name.startswith("t") and not has_text:
return True
return False
def get_tensor_name_from_janus(name: str) -> str:
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.attn\.qkv\.(weight|bias)$', r'v.blk.\1.attn_qkv.\2',name)
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.norm1\.(.*)$', r'v.blk.\1.ln1.\2', name)
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.attn\.proj\.(.*)$', r'v.blk.\1.attn_out.\2', name)
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.norm2\.(.*)$', r'v.blk.\1.ln2.\2', name)
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.mlp\.fc1\.(.*)$', r'v.blk.\1.ffn_down.\2', name)
name = re.sub(r'^vision_tower\.blocks\.(\d+)\.mlp\.fc2\.(.*)$', r'v.blk.\1.ffn_up.\2', name)
name = re.sub(r'^vision_tower\.patch_embed\.proj\.(.*)$', r'v.patch_embd.\1', name)
name = re.sub(r'^vision_tower\.pos_embed$', r'v.position_embd.weight', name)
name = re.sub(r'^vision_tower\.norm\.(weight|bias)$', r'v.post_ln.\1', name)
name = name.replace("vision_tower", "v")
name = name.replace("text_model", "t")
name = name.replace("vision_model", "v")
name = name.replace("encoder.layers", "blk")
name = name.replace("blocks", "blk")
name = name.replace("embeddings.", "")
name = name.replace("_proj", "")
name = name.replace("self_attn.", "attn_")
name = name.replace("layer_norm", "ln")
name = name.replace("layernorm", "ln")
name = name.replace("mlp.fc1", "ffn_down")
name = name.replace("mlp.fc2", "ffn_up")
name = name.replace("embedding", "embd")
name = name.replace("final", "post")
name = name.replace("layrnorm", "ln")
return name
def process_and_save_tensor(tensor: torch.Tensor, new_name: str, ftype: int, fout) -> None:
"""Process a tensor (squeeze, cast dtype, log) and save it to `fout`."""
data = tensor.squeeze().numpy()
n_dims = len(data.shape)
ftype_str = {0: "f32", 1: "f16"}
ftype_cur = 0
if n_dims == 4:
print(f"tensor {new_name} is always saved in f16")
data = data.astype(np.float16)
ftype_cur = 1
elif ftype == 1:
if new_name.endswith(".weight") and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
print(f"{new_name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
fout.add_tensor(new_name, data)
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
help="The clip model is from openclip (for ViT-SO400M type))")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
# TODO: Double check these two values
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
default_image_std = [0.26862954, 0.26130258, 0.27577711]
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
# with proper
args = ap.parse_args()
if args.use_f32:
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
vocab = None
tokens = None
# Copied from https://huggingface.co/deepseek-ai/Janus-Pro-7B/blob/main/config.json
# This config is used to initialize the `CLIPVisionTower` class
vision_config = {
"image_size":384,
"model_name": "siglip_large_patch16_384",
"select_feature": "same",
"select_layer": -1
}
# Copied from https://github.com/deepseek-ai/Janus/blob/main/janus/models/siglip_vit.py
# This config is used to initialize the `vision_tower` in `CLIPVisionTower` class
model_config={
"image_size": 384,
"patch_size": 16,
"width": 1024,
"layers": 24,
"heads": 16,
"mlp_ratio": 4,
"global_pool": "map",
"use_checkpoint": False,
}
model = CLIPVisionTower(**vision_config)
model.load_state_dict(torch.load(args.model_dir + "/vision_model.pytorch.bin"))
# Merge the two configs
v_hparams = {**vision_config, **model_config}
t_hparams = None
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if args.use_f32:
ftype = 0
fname_middle = None
has_text_encoder = False
has_vision_encoder = True
has_llava_projector = False
fname_middle = ""
output_dir = args.output_dir if args.output_dir is not None else dir_model
os.makedirs(output_dir, exist_ok=True)
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
fout = GGUFWriter(path=fname_out, arch="clip")
fout.add_bool("clip.has_text_encoder", has_text_encoder)
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
fout.add_bool("clip.has_llava_projector", has_llava_projector)
fout.add_file_type(ftype)
model_name = model_config["model_name"] if "model_name" in model_config else os.path.basename(dir_model)
fout.add_name(model_name)
# TODO: Add more information in the description
fout.add_description("vision-only CLIP model")
if has_vision_encoder:
# vision_model hparams
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["width"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["width"] * v_hparams["mlp_ratio"])
fout.add_uint32("clip.vision.projection_dim", model.vision_tower.patch_embed.proj.out_channels)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), model.vision_tower.blocks[0].norm1.eps)
block_count = v_hparams['layers'] - 1 if has_llava_projector else v_hparams['layers']
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
# /**
# "image_grid_pinpoints": [
# [
# 336,
# 672
# ],
# [
# 672,
# 336
# ],
# [
# 672,
# 672
# ],
# [
# 1008,
# 336
# ],
# [
# 336,
# 1008
# ]
# ],
# Flattened:
# [
# 336, 672,
# 672, 336,
# 672, 672,
# 1008, 336,
# 336, 1008
# ]
# *
# */
if "image_grid_pinpoints" in v_hparams:
# flatten it
image_grid_pinpoints = []
for pinpoint in v_hparams["image_grid_pinpoints"]:
for p in pinpoint:
image_grid_pinpoints.append(p)
fout.add_array("clip.vision.image_grid_pinpoints", image_grid_pinpoints)
if "image_crop_resolution" in v_hparams:
fout.add_uint32("clip.vision.image_crop_resolution", v_hparams["image_crop_resolution"])
if "image_aspect_ratio" in v_hparams:
fout.add_string("clip.vision.image_aspect_ratio", v_hparams["image_aspect_ratio"])
if "image_split_resolution" in v_hparams:
fout.add_uint32("clip.vision.image_split_resolution", v_hparams["image_split_resolution"])
if "mm_patch_merge_type" in v_hparams:
fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
if "mm_projector_type" in v_hparams:
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
image_std = args.image_std if args.image_std is not None else default_image_std
fout.add_array("clip.vision.image_mean", image_mean)
fout.add_array("clip.vision.image_std", image_std)
use_gelu = True
fout.add_bool("clip.use_gelu", use_gelu)
if has_llava_projector:
model.vision_model.encoder.layers.pop(-1)
projector = torch.load(args.llava_projector)
for name, data in projector.items():
name = get_tensor_name(name)
# pw and dw conv ndim==4
if data.ndim == 2 or data.ndim == 4:
data = data.squeeze().numpy().astype(np.float16)
else:
data = data.squeeze().numpy().astype(np.float32)
fout.add_tensor(name, data)
print("Projector tensors added\n")
state_dict = model.state_dict()
for name, data in state_dict.items():
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
# we don't need this
print(f"skipping parameter: {name}")
continue
name = get_tensor_name_from_janus(name)
# Handle the qkv projection weights and biases
if "qkv" in name:
q_tensor, k_tensor, v_tensor = torch.chunk(data, 3, dim=0)
process_and_save_tensor(q_tensor, name.replace("qkv", "q"), ftype, fout)
process_and_save_tensor(k_tensor, name.replace("qkv", "k"), ftype, fout)
process_and_save_tensor(v_tensor, name.replace("qkv", "v"), ftype, fout)
else:
process_and_save_tensor(data, name, ftype, fout)
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print("Done. Output file: " + fname_out)

View file

@ -3,3 +3,4 @@
pillow~=10.2.0
torch~=2.2.1
torchvision~=0.17.1
janus @ git+https://github.com/deepseek-ai/Janus.git@main