diff --git a/src/llama.cpp b/src/llama.cpp index 40bb3abf5..083e8a86c 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -320,6 +320,7 @@ enum llm_kv { LLM_KV_DECODER_START_TOKEN_ID, LLM_KV_ATTN_LOGIT_SOFTCAPPING, LLM_KV_FINAL_LOGIT_SOFTCAPPING, + LLM_KV_SWIN_NORM, LLM_KV_ATTENTION_HEAD_COUNT, LLM_KV_ATTENTION_HEAD_COUNT_KV, @@ -413,6 +414,7 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" }, { LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" }, { LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" }, + { LLM_KV_SWIN_NORM, "%s.swin_norm" }, { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, @@ -2172,6 +2174,7 @@ struct llama_hparams { bool vocab_only; bool rope_finetuned; bool use_par_res; + bool swin_norm; uint32_t n_vocab; uint32_t n_ctx_train; // context size the model was trained on @@ -5242,6 +5245,7 @@ static void llm_load_hparams( { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default + ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; @@ -7560,7 +7564,7 @@ static bool llm_load_tensors( layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}); layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}); layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); @@ -13686,7 +13690,7 @@ struct llm_build_context { // ref: https://github.com/facebookresearch/chameleon // based on the original build_llama() function, changes: // * qk-norm - // * swin-norm (TODO) + // * swin-norm // * removed bias // * removed MoE struct ggml_cgraph * build_chameleon() { @@ -13714,9 +13718,11 @@ struct llm_build_context { struct ggml_tensor * inpSA = inpL; // norm - cur = llm_build_norm(ctx0, inpL, hparams, + if (!hparams.swin_norm) { + cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); + } cb(cur, "attn_norm", il); // self-attention @@ -13773,6 +13779,12 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, nullptr, Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + + if (hparams.swin_norm) { + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + } } if (il == n_layer - 1) { @@ -13787,10 +13799,12 @@ struct llm_build_context { cb(ffn_inp, "ffn_inp", il); // feed-forward network - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); + if (!hparams.swin_norm) { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + } cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, NULL, @@ -13800,6 +13814,13 @@ struct llm_build_context { LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); + if (hparams.swin_norm) { + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + } + cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); @@ -14818,6 +14839,7 @@ static int llama_decode_internal( GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size); ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float)); } + } // extract embeddings