Add bruteforce random tests for token encoding
This commit is contained in:
parent
0c6d820b89
commit
3e3e2838a1
1 changed files with 300 additions and 0 deletions
300
tests/test-tokenizer-random-bpe.py
Normal file
300
tests/test-tokenizer-random-bpe.py
Normal file
|
@ -0,0 +1,300 @@
|
|||
# tests with BPE tokenizer
|
||||
#
|
||||
# sample usage:
|
||||
#
|
||||
# python3 tests/test-tokenizer-0-bpe.py ./models/ggml-vocab-llama-bpe.gguf ~/Data/huggingface/Meta-Llama-3-8B-Instruct/
|
||||
#
|
||||
|
||||
import random
|
||||
import argparse
|
||||
import subprocess
|
||||
|
||||
import cffi
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||
|
||||
|
||||
class LibLlama:
|
||||
|
||||
DEFAULT_PATH_LLAMA_H = "./llama.h"
|
||||
DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
|
||||
|
||||
def __init__(self, path_llama_h:str=None, path_libllama:str=None):
|
||||
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
|
||||
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
|
||||
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
|
||||
self.lib.llama_backend_init()
|
||||
|
||||
def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
|
||||
cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
|
||||
res = subprocess.run(cmd, stdout=subprocess.PIPE)
|
||||
assert(res.returncode == 0)
|
||||
source = res.stdout.decode()
|
||||
ffi = cffi.FFI()
|
||||
if True: # workarounds for pycparser
|
||||
source = "typedef struct { } __builtin_va_list;" + "\n" + source
|
||||
source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
|
||||
source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
|
||||
source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
|
||||
source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
|
||||
ffi.cdef(source, override=True)
|
||||
lib = ffi.dlopen(path_libllama)
|
||||
return (ffi, lib)
|
||||
|
||||
def model_default_params(self, **kwargs):
|
||||
mparams = self.lib.llama_model_default_params()
|
||||
for k, v in kwargs.items():
|
||||
setattr(mparams, k, v)
|
||||
return mparams
|
||||
|
||||
def context_default_params(self, **kwargs):
|
||||
cparams = self.lib.llama_context_default_params()
|
||||
for k, v in kwargs.items():
|
||||
setattr(cparams, k, v)
|
||||
return cparams
|
||||
|
||||
class LibLlamaModel:
|
||||
|
||||
def __init__(self, libllama:LibLlama, path_model:str, mparams={}, cparams={}):
|
||||
self.lib = libllama.lib
|
||||
self.ffi = libllama.ffi
|
||||
if type(mparams) == dict:
|
||||
mparams = libllama.model_default_params(**mparams)
|
||||
self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
|
||||
if not self.model:
|
||||
raise RuntimeError("error: failed to load model '%s'"%path_model)
|
||||
if type(cparams) == dict:
|
||||
cparams = libllama.context_default_params(**cparams)
|
||||
self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
|
||||
if not self.ctx:
|
||||
raise RuntimeError("error: failed to create context for model '%s'"%path_model)
|
||||
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
|
||||
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
|
||||
|
||||
def free(self):
|
||||
if self.ctx:
|
||||
self.lib.llama_free(self.ctx)
|
||||
if self.model:
|
||||
self.lib.llama_free_model(self.model)
|
||||
self.ctx = None
|
||||
self.model = None
|
||||
self.lib = None
|
||||
|
||||
def tokenize(self, text:str, n_tokens_max:int=0, add_special:bool=False, parse_special:bool=False) -> list[int]:
|
||||
n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
|
||||
text = text.encode("utf-8")
|
||||
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
|
||||
if num < 0:
|
||||
return []
|
||||
return list(self.token_ids[0:num])
|
||||
|
||||
|
||||
def find_first_mismatch(ids1:list[int], ids2:list[int]):
|
||||
for i, (a,b) in enumerate(zip(ids1, ids2)):
|
||||
if a != b:
|
||||
return i
|
||||
return -1 if len(ids1) == len(ids2) else i
|
||||
|
||||
|
||||
def test_custom_texts(model:LibLlamaModel, tokenizer:PreTrainedTokenizerBase):
|
||||
|
||||
tests = [
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
" ",
|
||||
"\t",
|
||||
"\n",
|
||||
"\n\n",
|
||||
"\n\n\n",
|
||||
"\t\n",
|
||||
"Hello world",
|
||||
" Hello world",
|
||||
"Hello World",
|
||||
" Hello World",
|
||||
" Hello World!",
|
||||
"Hello, world!",
|
||||
" Hello, world!",
|
||||
" this is 🦙.cpp",
|
||||
"w048 7tuijk dsdfhu",
|
||||
"нещо на Български",
|
||||
"កាន់តែពិសេសអាចខលចេញ",
|
||||
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
||||
"Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello\n Hello",
|
||||
" (",
|
||||
"\n =",
|
||||
"' era",
|
||||
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
|
||||
"3",
|
||||
"33",
|
||||
"333",
|
||||
"3333",
|
||||
"33333",
|
||||
"333333",
|
||||
"3333333",
|
||||
"33333333",
|
||||
"333333333",
|
||||
]
|
||||
|
||||
more_tests = [
|
||||
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
|
||||
'¼-a', # unicode_ranges_digit, 0x00BC
|
||||
'½-a', # unicode_ranges_digit, 0x00BD
|
||||
'¾-a', # unicode_ranges_digit, 0x00BE
|
||||
'a 〇b', # unicode_ranges_digit, 0x3007
|
||||
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
|
||||
]
|
||||
|
||||
for text in tests+more_tests:
|
||||
ids1 = model.tokenize(text, parse_special=True)
|
||||
ids2 = tokenizer.encode(text)
|
||||
print(repr(text))
|
||||
if ids1 != ids2:
|
||||
print(" TokenIDs:", list(ids1))
|
||||
print(" Expected:", list(ids2))
|
||||
print(" Index:", find_first_mismatch(ids1, ids2) )
|
||||
raise Exception()
|
||||
|
||||
|
||||
def test_random_chars(model:LibLlamaModel, tokenizer:PreTrainedTokenizerBase, iterations=100):
|
||||
|
||||
WHITESPACES = list(" "*20 + "\n"*5 + "\r\n"*5 + "\t"*5)
|
||||
CHARS = list(set("""
|
||||
ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
||||
abcdefghijklmnopqrstuvwxyz
|
||||
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
|
||||
áéíóúàèìòùâêîôûäëïöü
|
||||
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
|
||||
"""))
|
||||
|
||||
print( "Bruteforce random chars encodings ..." )
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
|
||||
print(m)
|
||||
rand.seed(m)
|
||||
|
||||
text = []
|
||||
num_words = rand.randint(300, 400)
|
||||
for i in range(num_words):
|
||||
k = rand.randint(1, 7)
|
||||
word = rand.choices(CHARS, k=k)
|
||||
space = rand.choice(WHITESPACES)
|
||||
text.append("".join(word)+space)
|
||||
text = "".join(text)
|
||||
|
||||
ids1 = model.tokenize(text, parse_special=True)
|
||||
ids2 = tokenizer.encode(text)
|
||||
assert(ids1 == ids2)
|
||||
|
||||
|
||||
def test_random_vocab_chars(model:LibLlamaModel, tokenizer:PreTrainedTokenizerBase, iterations=100):
|
||||
|
||||
print( "Building vocab char list ..." )
|
||||
vocab_ids = list(tokenizer.vocab.values())
|
||||
vocab_text = tokenizer.decode(vocab_ids)
|
||||
vocab_chars = list(set(vocab_text))
|
||||
del vocab_ids, vocab_text
|
||||
|
||||
print( "Bruteforce random text encodings ..." )
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
|
||||
print(m)
|
||||
rand.seed(m)
|
||||
|
||||
text = rand.choices(vocab_chars, k=1024)
|
||||
text = "".join(text)
|
||||
|
||||
ids1 = model.tokenize(text, parse_special=True)
|
||||
ids2 = tokenizer.encode(text)
|
||||
assert( ids1 == ids2 )
|
||||
|
||||
|
||||
def test_random_vocab_tokens(model:LibLlamaModel, tokenizer:PreTrainedTokenizerBase, iterations=100):
|
||||
|
||||
print( "Building token list ..." )
|
||||
space_id = tokenizer.encode(" ")[0]
|
||||
vocab_ids = list(tokenizer.vocab.values())
|
||||
vocab_ids = list(sorted(vocab_ids + vocab_ids))
|
||||
for i in range(1, len(vocab_ids), 2):
|
||||
vocab_ids[i] = space_id
|
||||
vocab_tokens = tokenizer.decode(vocab_ids)
|
||||
vocab_tokens = vocab_tokens.split(" ")
|
||||
del vocab_ids
|
||||
|
||||
print( "Checking single token encodings ..." )
|
||||
for token in vocab_tokens:
|
||||
ids1 = model.tokenize(token, parse_special=True)
|
||||
ids2 = tokenizer.encode(token)
|
||||
assert(ids1 == ids2)
|
||||
|
||||
print( "Bruteforce random text encodings ..." )
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
|
||||
print(m)
|
||||
rand.seed(m)
|
||||
|
||||
text = []
|
||||
num_words = rand.randint(300, 400)
|
||||
for i in range(num_words):
|
||||
k = rand.randint(1, 3)
|
||||
tokens = rand.choices(vocab_tokens, k=k)
|
||||
tokens = [ t.strip(" \n\r\t") for t in tokens ]
|
||||
sep = rand.choice(" \n\r\t")
|
||||
text.append("".join(tokens) + sep)
|
||||
text = "".join(text)
|
||||
|
||||
ids1 = model.tokenize(text, parse_special=True)
|
||||
ids2 = tokenizer.encode(text)
|
||||
assert( ids1 == ids2 )
|
||||
|
||||
|
||||
def test_random_bytes(model:LibLlamaModel, tokenizer:PreTrainedTokenizerBase, iterations=100):
|
||||
|
||||
WHITESPACES = list(" "*20 + "\n"*5 + "\r\n"*5 + "\t"*5)
|
||||
|
||||
print( "Bruteforce random bytes encodings ..." )
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
|
||||
print(m)
|
||||
rand.seed(m)
|
||||
|
||||
text = []
|
||||
num_words = rand.randint(300, 400)
|
||||
for i in range(num_words):
|
||||
k = rand.randint(1, 8)
|
||||
word = [chr(r) for r in rand.randbytes(k) if r]
|
||||
word.append(rand.choice(WHITESPACES))
|
||||
text.append("".join(word))
|
||||
text = "".join(text)
|
||||
|
||||
ids1 = model.tokenize(text, parse_special=True)
|
||||
ids2 = tokenizer.encode(text)
|
||||
assert(ids1 == ids2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
|
||||
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
|
||||
args = parser.parse_args()
|
||||
|
||||
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=2048))
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
|
||||
|
||||
test_custom_texts(model, tokenizer)
|
||||
test_random_chars(model, tokenizer, 10_000)
|
||||
test_random_vocab_chars(model, tokenizer, 10_000)
|
||||
test_random_vocab_tokens(model, tokenizer, 10_000)
|
||||
#test_random_bytes(model, tokenizer, 10_000) # FAIL
|
||||
|
||||
model.free()
|
Loading…
Add table
Add a link
Reference in a new issue