py : type-check all Python scripts with Pyright (#8341)

* py : type-check all Python scripts with Pyright

* server-tests : use trailing slash in openai base_url

* server-tests : add more type annotations

* server-tests : strip "chat" from base_url in oai_chat_completions

* server-tests : model metadata is a dict

* ci : disable pip cache in type-check workflow

The cache is not shared between branches, and it's 250MB in size,
so it would become quite a big part of the 10GB cache limit of the repo.

* py : fix new type errors from master branch

* tests : fix test-tokenizer-random.py

Apparently, gcc applies optimisations even when pre-processing,
which confuses pycparser.

* ci : only show warnings and errors in python type-check

The "information" level otherwise has entries
from 'examples/pydantic_models_to_grammar.py',
which could be confusing for someone trying to figure out what failed,
considering that these messages can safely be ignored
even though they look like errors.
This commit is contained in:
compilade 2024-07-07 15:04:39 -04:00 committed by GitHub
parent a8db2a9ce6
commit 3fd62a6b1c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
33 changed files with 297 additions and 173 deletions

View file

@ -185,6 +185,8 @@ else:
fout.add_description("two-tower CLIP model")
if has_text_encoder:
assert t_hparams is not None
assert tokens is not None
# text_model hparams
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
@ -259,8 +261,8 @@ if has_vision_encoder:
if processor is not None:
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue]
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std # pyright: ignore[reportAttributeAccessIssue]
else:
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
image_std = args.image_std if args.image_std is not None else default_image_std
@ -272,7 +274,7 @@ fout.add_bool("clip.use_gelu", use_gelu)
if has_llava_projector:
model.vision_model.encoder.layers.pop(-1)
model.vision_model.encoder.layers.pop(-1) # pyright: ignore[reportAttributeAccessIssue]
projector = torch.load(args.llava_projector)
for name, data in projector.items():
name = get_tensor_name(name)
@ -286,7 +288,7 @@ if has_llava_projector:
print("Projector tensors added\n")
state_dict = model.state_dict()
state_dict = model.state_dict() # pyright: ignore[reportAttributeAccessIssue]
for name, data in state_dict.items():
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
# we don't need this

View file

@ -2,7 +2,9 @@ import argparse
import glob
import os
import torch
from safetensors.torch import load as safe_load, save as safe_save, safe_open, save_file
from safetensors import safe_open
from safetensors.torch import save_file
from typing import Any, ContextManager, cast
# Function to determine if file is a SafeTensor file
def is_safetensor_file(file_path):
@ -13,7 +15,7 @@ def is_safetensor_file(file_path):
def load_model(file_path):
if is_safetensor_file(file_path):
tensors = {}
with safe_open(file_path, framework="pt", device="cpu") as f:
with cast(ContextManager[Any], safe_open(file_path, framework="pt", device="cpu")) as f:
for key in f.keys():
tensors[key] = f.get_tensor(key).clone()
# output shape
@ -134,7 +136,7 @@ if len(mm_tensors) == 0:
if last_checkpoint is not None:
for k, v in last_checkpoint.items():
print(k)
print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint)} tensors.")
print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint) if last_checkpoint is not None else 0} tensors.")
print("No tensors found. Is this a LLaVA model?")
exit()
@ -143,8 +145,10 @@ print(f"Found additional {len(first_mm_tensors)} tensors to extract.")
# projector = {name: checkpoint.[name].float() for name in mm_tensors}
projector = {}
for name in mm_tensors:
assert last_checkpoint is not None
projector[name] = last_checkpoint[name].float()
for name in first_mm_tensors:
assert first_checkpoint is not None
projector[name] = first_checkpoint[name].float()
if len(projector) > 0: