diff --git a/MixtralLoopPrompt.py b/MixtralLoopPrompt.py deleted file mode 100644 index b5262e66b..000000000 --- a/MixtralLoopPrompt.py +++ /dev/null @@ -1,181 +0,0 @@ -# running Mixtral in a loop - -# Needs a zsh change to max memory using -# sudo sysctl iogpu.wired_limit_mb=27500 (anything bigger crashes easily) - -import os -import subprocess -import re -import psutil -import threading -import time -import queue - -def get_pid(): - # Get the parent process ID (PPID) of the current Python script - current_pid = os.getpid() - parent_pid = None - - # Iterate through all the parent processes to find the actual Python process - while parent_pid is not None: - try: - parent_proc = psutil.Process(parent_pid) - except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess): - parent_pid = None - else: - if 'python' in parent_proc.name(): - current_pid = parent_pid - else: - parent_pid = parent_proc.ppid() - - # Print the PID of the running Python script - print(f"The PID of the running Python script is: {current_pid}") - - return current_pid - -def get_cpu_percent(): - cpu_percent = psutil.cpu_percent() # Measure CPU usage every second - return cpu_percent - -def get_memory_info(): - mem_info = psutil.virtual_memory() - return { - 'total': mem_info.total, - 'used': mem_info.used, - 'percent': mem_info.percent - } - -def get_threads(): - # Get the PID of the process you want to inspect - pid = get_pid() - - # Get the process object - process = psutil.Process(pid) - - # Print the number of threads used by the process - print("Number of threads:", len(process.threads())) - - # Iterate over the threads and print their attributes - for thread in process.threads(): - print(f"Thread ID: {thread.id}") - #print(f"Thread count: {thread.count}") - #print(f"Thread index: {thread.index}") - print(f"Thread system_time: {thread.system_time}") - print(f"Thread user time: {thread.user_time}") - -def find_time_and_tokens(string): - # Define the regular expression pattern - pattern = r"llama_print_timings: total time =\s*(\d+(\.\d+)?)\s*ms /\s*(\d+)" - pattern2 = r"llama_model_loader: - kv 10: llama.expert_used_count u32 = (\d+)" - - # Search for the pattern in stderr - match = re.search(pattern, string) - match2 = re.search(pattern2, string) - - if match: - # Extract the total time and token count from the matched groups - total_time = float(match.group(1)) - token_count = int(match.group(3)) - - print(f"Total time taken: {total_time} ms") - print(f"Token consumption count: {token_count}") - else: - print("Could not find the total time and token count in the output.") - - if match2: - # Extract the total time and token count from the matched groups - experts_used = float(match2.group(1)) - - print(f"Number of experts used: {experts_used}") - else: - print("Could not find the total number of experts used in the process.") - -def command_setup(return_queue, prompt="How can I use python psutil package to calculate CPU and memory usage in a run?"): - - prompt2 = f" [INST] {prompt} [/INST] " - kv_override = f"llama_kv_expert_used_count=int:3" - command = [ - '/Users/edsilm2/llama.cpp/build/bin/main', - '-m', - '/Users/edsilm2/llama.cpp/models/Mixtral-8x7b-Q2_K/mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf', - '-p', prompt2, - '-ngl', '99', - '-c', '4096', - '-n', '-1', - '-s', '1', - '-ctk', 'q8_0', - '--override-kv', kv_override # this doesn't have any effect on the LOG which doesn't reflect kv overrides (they say) - ] - - - #print(command) - response = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) - - exit_code = response.wait() - # print(dir(response)) - # print("Returned from subprocess call.") - stdout, stderr = response.communicate() - - # Check if the command was successful (exit code 0 usually means success) - if exit_code == 0: - print(f"\nUser input: \033[31m{prompt}\033[0m\n") - # Convert the output bytes to a string and print it - output_str = stdout.decode('utf-8').strip() - print(f"Output: \033[33m{output_str}\033[0m\n") - - output_err = stderr.decode('utf-8').strip() - #print(f"Standard Error: \033[33m{output_err}\033[0m\n") - else: - try: - # There was an error, print the error message - error_str = stderr.decode('utf-8').strip() - print('Error:', error_str) - except AttributeError as ae: - print(f"Unable to process the exit code correctly: {ae}.") - - find_time_and_tokens(output_err) - - cpu_percent_usage = get_cpu_percent() - print(f"CPU percentage usage = {cpu_percent_usage}\n") - - get_threads() - - memory_info = get_memory_info() - print(f"Memory usage: Total = {memory_info['total']} Used = {memory_info['used']} Percentage = {memory_info['percent']}") - - # Put return values on queue - return_queue.put((stdout, stderr, exit_code)) - -def check_response(response): - start = time.time() - while time.time() - start < 30: - if response.poll() is not None: - break - time.sleep(1) - - if response.poll() is None: - print("Killing process") - response.kill() - -if __name__ == "__main__": - - prompt = "Who are you?" - while prompt != "quit": - - # original user prompt was here - - q = queue.Queue() - - #response, error, code = command_setup(prompt) - - thread = threading.Thread(target=command_setup, args=(q, prompt)) - thread.start() - - # Wait with timeout - thread.join(timeout=5) - - # Get return values from queue - if not q.empty(): - stdout, stderr, exit_code = q.get() - - prompt = input("Awaiting the reply from mixtral ... ",) diff --git a/PortTest.ipynb b/PortTest.ipynb deleted file mode 100644 index 5b3c231c8..000000000 --- a/PortTest.ipynb +++ /dev/null @@ -1,2 +0,0 @@ -for i in range(10): - print(i, i**2) diff --git a/SatelliteScrape.ipynb b/SatelliteScrape.ipynb deleted file mode 100644 index dfe2ea3fa..000000000 --- a/SatelliteScrape.ipynb +++ /dev/null @@ -1,174 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: pystac_client in ./.conda/lib/python3.11/site-packages (0.7.5)\n", - "Requirement already satisfied: requests>=2.28.2 in ./.conda/lib/python3.11/site-packages (from pystac_client) (2.31.0)\n", - "Requirement already satisfied: pystac>=1.8.2 in ./.conda/lib/python3.11/site-packages (from pystac[validation]>=1.8.2->pystac_client) (1.9.0)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in ./.conda/lib/python3.11/site-packages (from pystac_client) (2.8.2)\n", - "Requirement already satisfied: jsonschema~=4.18 in ./.conda/lib/python3.11/site-packages (from pystac[validation]>=1.8.2->pystac_client) (4.20.0)\n", - "Requirement already satisfied: six>=1.5 in ./.conda/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pystac_client) (1.16.0)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in ./.conda/lib/python3.11/site-packages (from requests>=2.28.2->pystac_client) (3.3.2)\n", - "Requirement already satisfied: idna<4,>=2.5 in ./.conda/lib/python3.11/site-packages (from requests>=2.28.2->pystac_client) (3.6)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in ./.conda/lib/python3.11/site-packages (from requests>=2.28.2->pystac_client) (2.1.0)\n", - "Requirement already satisfied: certifi>=2017.4.17 in ./.conda/lib/python3.11/site-packages (from requests>=2.28.2->pystac_client) (2023.11.17)\n", - "Requirement already satisfied: attrs>=22.2.0 in ./.conda/lib/python3.11/site-packages (from jsonschema~=4.18->pystac[validation]>=1.8.2->pystac_client) (23.2.0)\n", - "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in ./.conda/lib/python3.11/site-packages (from jsonschema~=4.18->pystac[validation]>=1.8.2->pystac_client) (2023.12.1)\n", - "Requirement already satisfied: referencing>=0.28.4 in ./.conda/lib/python3.11/site-packages (from jsonschema~=4.18->pystac[validation]>=1.8.2->pystac_client) (0.32.1)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in ./.conda/lib/python3.11/site-packages (from jsonschema~=4.18->pystac[validation]>=1.8.2->pystac_client) (0.16.2)\n", - "Requirement already satisfied: odc.stac in ./.conda/lib/python3.11/site-packages (0.3.8)\n", - "Requirement already satisfied: affine in ./.conda/lib/python3.11/site-packages (from odc.stac) (2.4.0)\n", - "Requirement already satisfied: odc-geo>=0.3.0 in ./.conda/lib/python3.11/site-packages (from odc.stac) (0.4.1)\n", - "Requirement already satisfied: rasterio!=1.3.0,!=1.3.1,>=1.0.0 in ./.conda/lib/python3.11/site-packages (from odc.stac) (1.3.9)\n", - "Requirement already satisfied: dask[array] in ./.conda/lib/python3.11/site-packages (from odc.stac) (2023.12.1)\n", - "Requirement already satisfied: numpy>=1.20.0 in ./.conda/lib/python3.11/site-packages (from odc.stac) (1.26.3)\n", - "Requirement already satisfied: pandas in ./.conda/lib/python3.11/site-packages (from odc.stac) (2.1.4)\n", - "Requirement already satisfied: pystac<2,>=1.0.0 in ./.conda/lib/python3.11/site-packages (from odc.stac) (1.9.0)\n", - "Requirement already satisfied: toolz in ./.conda/lib/python3.11/site-packages (from odc.stac) (0.12.0)\n", - "Requirement already satisfied: xarray>=0.19 in ./.conda/lib/python3.11/site-packages (from odc.stac) (2023.12.0)\n", - "Requirement already satisfied: cachetools in ./.conda/lib/python3.11/site-packages (from odc-geo>=0.3.0->odc.stac) (5.3.2)\n", - "Requirement already satisfied: pyproj>=3.0.0 in ./.conda/lib/python3.11/site-packages (from odc-geo>=0.3.0->odc.stac) (3.6.1)\n", - "Requirement already satisfied: shapely in ./.conda/lib/python3.11/site-packages (from odc-geo>=0.3.0->odc.stac) (2.0.2)\n", - "Requirement already satisfied: python-dateutil>=2.7.0 in ./.conda/lib/python3.11/site-packages (from pystac<2,>=1.0.0->odc.stac) (2.8.2)\n", - "Requirement already satisfied: attrs in ./.conda/lib/python3.11/site-packages (from rasterio!=1.3.0,!=1.3.1,>=1.0.0->odc.stac) (23.2.0)\n", - "Requirement already satisfied: certifi in ./.conda/lib/python3.11/site-packages (from rasterio!=1.3.0,!=1.3.1,>=1.0.0->odc.stac) (2023.11.17)\n", - "Requirement already satisfied: click>=4.0 in ./.conda/lib/python3.11/site-packages (from rasterio!=1.3.0,!=1.3.1,>=1.0.0->odc.stac) (8.1.7)\n", - "Requirement already satisfied: cligj>=0.5 in ./.conda/lib/python3.11/site-packages (from rasterio!=1.3.0,!=1.3.1,>=1.0.0->odc.stac) (0.7.2)\n", - "Requirement already satisfied: snuggs>=1.4.1 in ./.conda/lib/python3.11/site-packages (from rasterio!=1.3.0,!=1.3.1,>=1.0.0->odc.stac) (1.4.7)\n", - "Requirement already satisfied: click-plugins in ./.conda/lib/python3.11/site-packages (from rasterio!=1.3.0,!=1.3.1,>=1.0.0->odc.stac) (1.1.1)\n", - "Requirement already satisfied: setuptools in ./.conda/lib/python3.11/site-packages (from rasterio!=1.3.0,!=1.3.1,>=1.0.0->odc.stac) (68.2.2)\n", - "Requirement already satisfied: packaging>=21.3 in ./.conda/lib/python3.11/site-packages (from xarray>=0.19->odc.stac) (23.2)\n", - "Requirement already satisfied: pytz>=2020.1 in ./.conda/lib/python3.11/site-packages (from pandas->odc.stac) (2023.3.post1)\n", - "Requirement already satisfied: tzdata>=2022.1 in ./.conda/lib/python3.11/site-packages (from pandas->odc.stac) (2023.4)\n", - "Requirement already satisfied: cloudpickle>=1.5.0 in ./.conda/lib/python3.11/site-packages (from dask[array]->odc.stac) (3.0.0)\n", - "Requirement already satisfied: fsspec>=2021.09.0 in ./.conda/lib/python3.11/site-packages (from dask[array]->odc.stac) (2023.12.2)\n", - "Requirement already satisfied: partd>=1.2.0 in ./.conda/lib/python3.11/site-packages (from dask[array]->odc.stac) (1.4.1)\n", - "Requirement already satisfied: pyyaml>=5.3.1 in ./.conda/lib/python3.11/site-packages (from dask[array]->odc.stac) (6.0.1)\n", - "Requirement already satisfied: importlib-metadata>=4.13.0 in ./.conda/lib/python3.11/site-packages (from dask[array]->odc.stac) (7.0.1)\n", - "Requirement already satisfied: zipp>=0.5 in ./.conda/lib/python3.11/site-packages (from importlib-metadata>=4.13.0->dask[array]->odc.stac) (3.17.0)\n", - "Requirement already satisfied: locket in ./.conda/lib/python3.11/site-packages (from partd>=1.2.0->dask[array]->odc.stac) (1.0.0)\n", - "Requirement already satisfied: six>=1.5 in ./.conda/lib/python3.11/site-packages (from python-dateutil>=2.7.0->pystac<2,>=1.0.0->odc.stac) (1.16.0)\n", - "Requirement already satisfied: pyparsing>=2.1.6 in ./.conda/lib/python3.11/site-packages (from snuggs>=1.4.1->rasterio!=1.3.0,!=1.3.1,>=1.0.0->odc.stac) (3.1.1)\n", - "Collecting matplotlib\n", - " Downloading matplotlib-3.8.2-cp311-cp311-macosx_11_0_arm64.whl.metadata (5.8 kB)\n", - "Collecting contourpy>=1.0.1 (from matplotlib)\n", - " Downloading contourpy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl.metadata (5.8 kB)\n", - "Collecting cycler>=0.10 (from matplotlib)\n", - " Downloading cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)\n", - "Collecting fonttools>=4.22.0 (from matplotlib)\n", - " Downloading fonttools-4.47.0-cp311-cp311-macosx_10_9_universal2.whl.metadata (157 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m157.2/157.2 kB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", - "\u001b[?25hCollecting kiwisolver>=1.3.1 (from matplotlib)\n", - " Downloading kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl.metadata (6.4 kB)\n", - "Requirement already satisfied: numpy<2,>=1.21 in ./.conda/lib/python3.11/site-packages (from matplotlib) (1.26.3)\n", - "Requirement already satisfied: packaging>=20.0 in ./.conda/lib/python3.11/site-packages (from matplotlib) (23.2)\n", - "Collecting pillow>=8 (from matplotlib)\n", - " Downloading pillow-10.2.0-cp311-cp311-macosx_11_0_arm64.whl.metadata (9.7 kB)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in ./.conda/lib/python3.11/site-packages (from matplotlib) (3.1.1)\n", - "Requirement already satisfied: python-dateutil>=2.7 in ./.conda/lib/python3.11/site-packages (from matplotlib) (2.8.2)\n", - "Requirement already satisfied: six>=1.5 in ./.conda/lib/python3.11/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\n", - "Downloading matplotlib-3.8.2-cp311-cp311-macosx_11_0_arm64.whl (7.5 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.5/7.5 MB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", - "\u001b[?25hDownloading contourpy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl (243 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m243.4/243.4 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading cycler-0.12.1-py3-none-any.whl (8.3 kB)\n", - "Downloading fonttools-4.47.0-cp311-cp311-macosx_10_9_universal2.whl (2.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.8/2.8 MB\u001b[0m \u001b[31m11.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl (66 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.2/66.2 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading pillow-10.2.0-cp311-cp311-macosx_11_0_arm64.whl (3.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.3/3.3 MB\u001b[0m \u001b[31m9.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0mm\n", - "\u001b[?25hInstalling collected packages: pillow, kiwisolver, fonttools, cycler, contourpy, matplotlib\n", - "Successfully installed contourpy-1.2.0 cycler-0.12.1 fonttools-4.47.0 kiwisolver-1.4.5 matplotlib-3.8.2 pillow-10.2.0\n" - ] - } - ], - "source": [ - "!pip3 install pystac_client\n", - "!pip3 install odc.stac\n", - "!pip3 install matplotlib" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pystac_client import Client\n", - "from odc.stac import load" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Example: The bounding box of the New Zealand Exclusive Economic Zone in WGS 84 (from 160.6°E to 170°W and from 55.95°S to 25.89°S) would be represented in JSON as [160.6, -55.95, -170, -25.89] and in a query as bbox=160.6,-55.95,-170,-25.89." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wkV3nvjz/dXdU5T0/c2aScQIkgJBQAEYXAYCEjA0IYE0TmXsBES7JJAgTYliXANsJEC/iBySDhCwYDV2QbgbJ2tWFiz3SO1V31+0N3Rzv7eUva1Qow/vZ5vfaPPdPdVXXqnCd+ns8TCoIgsNEYjdEYjdEYjdEYjdFYG+Hf9w2MxmiMxmiMxmiMxmj8dxsjA2k0RmM0RmM0RmM0RmOfMTKQRmM0RmM0RmM0RmM09hkjA2k0RmM0RmM0RmM0RmOfMTKQRmM0RmM0RmM0RmM09hkjA2k0RmM0RmM0RmM0RmOfMTKQRmM0RmM0RmM0RmM09hkjA2k0RmM0RmM0RmM0RmOfMTKQRmM0RmM0RmM0RmM09hkjA2k0HrRx6aWXWigUekDfPeuss+yss856cG9oP0az2bQ///M/t6mpKQuFQvaa17zmd34Po3HPuOiii2zLli2/79sYjdEYjdEYGUijcWCj3W7bpZdeat/97nd/37fyoIx3vvOd9rGPfcwuvvhi+8QnPmHPe97zfifX/Yd/+Ac788wzbXJy0mKxmG3dutVe8IIX2Pbt29d9bufOnXbZZZfZIx7xCCsUClYqleyss86yb3/72/f629/+9rftsY99rOVyOctkMnbyySfbtddeu+4zr33ta+2kk06yYrFoyWTSjj76aLv00kut2Wyu+1yz2bRLLrnEnvSkJ1mxWLRQKGQf+9jHDurZ5+bm7NJLL7Vf/vKXB/U7f2jjQN9ltVq1F7/4xTY+Pm6pVMoe85jH2M9//vN1n1lZWbH3vve9dsYZZ9j4+Ljl83k75ZRT5H2bmf3617+2Zz3rWXbIIYdYMpm0UqlkZ5xxhn3lK1/Z72e47rrr7IUvfKEdd9xxFolE7tOY9X3f3vOe99jWrVstHo/bQx/6UPvMZz6z39cyM/vhD39oj370oy2ZTNrU1JS96lWvkj1qZnbbbbfZs5/9bJudnbVkMmlHHXWU/dVf/ZW1220zu8d5u79/e5y0W265xV772tfaqaeeavF43EKhkJzNPePaa6+15z73uXb44Yev+439HQdyLTOzRqNhb3jDG2zr1q0Wi8Vsw4YNdt555609670N3/ftYx/7mD3taU+zjRs3WiqVsuOOO87e/va3W7fblc8vLi7aC17wApuYmLBEImEnnXSSfe5znzugZ/uDH8FojMYBjOXl5cDMgksuuUT+5nle0Ol0HtDvnnnmmcGZZ555cDf3AMYjH/nI4LTTTvudX/fiiy8Onv/85wfve9/7gn/6p38K3vrWtwaTk5NBqVQKdu/evfa5v/u7vwsSiURwwQUXBFdeeWXwwQ9+MDjppJMCMws++tGPyu9+9KMfDUKhUPCEJzwhuPLKK4Orr746eM1rXhO8973vXfe50047LXjVq14V/O3f/m3wkY98JLj44ouDWCwWnHbaacFwOFz73LZt2wIzCzZt2hScddZZgZkF11xzzUE9+09+8pN7/Z1+vx90u92D+v3/ruNA3uVwOAxOPfXUIJVKBZdeemlw5ZVXBsccc0yQyWSCW2+9de1zX/nKVwLXdYOnP/3pwQc/+MHgyiuvDB7zmMcEZhb85V/+5brf/NrXvhY88YlPDC699NLgIx/5SPDBD34wOP300wMzCz784Q/v1zM8//nPD+LxeHDqqacGs7OzwebNm+/1s2984xsDMwte9KIXBR/5yEeCc845JzCz4DOf+cx+XesXv/hFEI/HgxNPPDG4+uqrg7e85S1BLBYLnvSkJ6373I4dO4J8Ph9s3rw5eNe73hV8+MMfDi666KLAzIKnPe1pQRAEwX/+538Gn/jEJ9b+XX311YGZBc94xjPWzV933XVBEATBNddcE4TD4eC4444LTjjhhMDMgm3btuF9nnnmmUE6nQ4e85jHBIVC4YDl2IFcq1qtBscff3wwNjYWvOlNbwr+6Z/+KXj3u98dnHPOOcHq6up9XqfRaARmFpxyyinB29/+9uAjH/lI8IIXvCAIh8PBWWedFfi+v/bZWq0WHHbYYUEmkwne+ta3BldeeWVwxhlnBGYWfOpTnzqg5/tDHiMDaTQOaNyXgXQw48EwkHzfD9rt9gF9Z+vWrcE555xzUNd9sMZPf/rTwMyCd73rXWtzN954Y7C8vLzuc91uNzjqqKOC2dnZdfPbtm0LEolE8KpXveoBXf9973tfYGbBj370o3XXmp+fD4Lgvg2bAxkP1u/8oY0DeZfXXnttYGbB5z73ubW5paWlIJ/PBxdccMHa3J133hls37593Xd93w8e+9jHBrFYLGg2m/d5T4PBIDj++OODI488cr+eYffu3UG/3w+CIAjOOeecezWQdu3aFbiuG7z85S9fd1+nn356MDs7GwwGg/u91pOf/ORgeno6qNVqa3P/8A//EJhZ8K1vfWtt7h3veEdgZsGNN9647vsXXnhhYGZoONyfHFtZWQnq9XoQBEHw3ve+9z6Nlh07dqw5Fccee+wBy7EDudbFF18c5PP54M477zygawRBEPR6veAHP/iBzF922WWBmQXXX3/92tx73vOewMyCf/u3f1ubGw6HwcMf/vBgamoq6PV6B3z9P8QxSrH9AY9Go2Gvec1rbMuWLRaLxWxiYsIe//jHrwvDn3XWWXbcccfZz372Mzv11FMtkUjY1q1b7UMf+tC63+r3+/aXf/mXdvLJJ1sul7NUKmWnn366fec731n7zPbt2218fNzMzC677LK1sPSll15qZoxBuuaaa+yxj32sTUxMWCwWs2OOOcauvvrqB+X5t2zZYk996lPtW9/6lj3sYQ+zRCJhH/7wh83s7vTEa17zGtu4caPFYjE77LDD7PLLLzff983M7Lvf/a6FQiHbtm2bfe1rX1t7lvsKbf+2x550RbVaXZs79thjrVQqrftcLBazpzzlKbZr1y5rNBpr8x/60IdsOBzaX/3VX5nZ3emxIAgO6vqxWMympqYO7EHuY3z3u9+1hz/84WZm9oIXvGBt3fek7fbFIG3fvt1CoZC9733vs7//+79fSw894QlPsJ07d1oQBPbXf/3XNjs7a4lEwp7+9Kfb6uqqXPcb3/iGnX766ZZKpSyTydg555xjv/71rx+059qfcSDv8vOf/7xNTk7aM5/5zLW58fFxO//88+1LX/qS9Xo9MzPbunWrbd68ed1vhkIh+6M/+iPr9Xp255133uc9RSIR27hx47p3fl9jZmbGXNe938996UtfMs/z7GUve9m6+7r44ott165d9qMf/eg+v1+v1+3666+35z73uZbNZtfmL7zwQkun0/bZz3523WfNzCYnJ9f9xvT0tIXDYYtGo/v1bHuPYrFomUxmvz67ceNGC4f3T5XefPPNtmPHjgd0rWq1atdcc429+MUvtq1bt1q/31/bB/sOz/Ps5ptvtvn5+bW5aDRqp556qnz2Gc94hpmZ3XTTTWtz3//+9218fNwe+9jHrs2Fw2E7//zzbWFhwf793//9fu/3f8IYGUh/wOOlL32pXX311fbHf/zHdtVVV9nrXvc6SyQS6za6mVmlUrGnPOUpdvLJJ9t73vMem52dtYsvvtg++tGPrn2mXq/bP/7jP9pZZ51ll19+uV166aW2vLxsT3ziE9ewIuPj42vGzTOe8Qz7xCc+YZ/4xCfWCfF9x9VXX22bN2+2N7/5zXbFFVfYxo0b7WUve5n9/d///YOyBrfccotdcMEF9vjHP97+5m/+xk444QRrt9t25pln2ic/+Um78MIL7W//9m/ttNNOsze96U32v/7X/zIzs6OPPto+8YlPWKlUshNOOGHtWfYYgDRqtZqVy+X7/UcYiXsbKysrtrS0ZD/96U/tBS94gZmZPe5xj7vf7y0sLFgymbRkMrk29+1vf9uOOuoo+/rXv26zs7OWyWRsbGzM3va2t60ZhnuPwWBg5XLZ5ubm7LrrrrO3vvWtlslk7BGPeMR+3/+BjqOPPnrNgHvxi1+8tu5nnHHGfX7vU5/6lF111VX2yle+0v73//7f9u///u92/vnn21vf+lb75je/aX/xF39hL37xi+0rX/mKve51r1v33U984hN2zjnnWDqdtssvv9ze9ra32W9+8xt79KMffb8Gse/7+/XOy+WyeZ73gNaE3uUvfvELO+mkk0TxPuIRj7B2u2233nrr/f6mmYlBZmbWarWsXC7bHXfcYR/4wAfsG9/4xn7tuQMZv/jFLyyVStnRRx+9bn7P3vrFL35xn9//1a9+ZYPBwB72sIetm49Go3bCCSes+/4ezM8LX/hC++Uvf2k7d+60a6+91q6++mp71ateZalU6kF4ogdnHH300XbhhRc+oO/+x3/8h3W7XTvssMPsvPPOs2QyaYlEwk477TTB8+3evduOPvpoe9Ob3nS/v0t7pdfrWSKRkM/u2aM/+9nPHtAz/MGN33cIazQe+MjlcutC2DTOPPPMwMyCK664Ym2u1+sFJ5xwQjAxMbEWLh8MBhI2rVQqweTkZPBnf/Zna3P3FZq+5JJLgn23FKW8nvjEJwaHHHKI3OeBhqY3b94cmFnwzW9+c938X//1XwepVGodViMI7sZERCKRYMeOHet+Y39TbHvW8v7+Pf/5z9/vZ4jFYmvfGxsbC/72b//2fr9z2223BfF4PHje8563bj6bzQaFQiGIxWLB2972tuDzn/988Kd/+qeBmQVvfOMb5Xd+9KMfrbvvI488MvjOd75zr9f9XaTYnv/8569L2+zBQI2PjwfVanVt/k1velNgZsHxxx8feJ63Nn/BBRcE0Wh0DcfUaDSCfD4fvOhFL1p3nYWFhSCXy8n8vmPP9ffn332t3b2Ne3uXqVRq3bnbM772ta/hnt97rKysBBMTE8Hpp5+Of3/JS16yds/hcDg477zz7he/QuO+UmznnHOOnPEgCIJWq3Wv+3Hv8bnPfS4ws+B73/ue/O1Zz3pWMDU1tW7ur//6r4NEIrHufbzlLW+5198/EKjA/aW99h73l2Izs/v8+31d6/3vf/+anHjEIx4RfOpTnwquuuqqYHJyMigUCsHc3NzaZ/fs2/2RRWeffXaQzWaDSqWyNvfKV74yCIfDkr599rOfHZhZ8IpXvOJ+f/d/wnAefJNrNH5XI5/P2w033GBzc3M2MzNzr59zHMde8pKXrP0/Go3aS17yErv44ovtZz/7mZ1yyikWiUQsEomY2d1ec7VaNd/37WEPe5hUzhzI2NsLqdVq5nmenXnmmfatb33LarWa5XK5B/zbZnenGJ74xCeum/vc5z5np59+uhUKBSuXy2vzZ599tr373e+2733ve/ac5zzngK91xRVXWKVSud/P3de72Hd84xvfsG63azfddJN98pOftFardZ+fb7fb9qxnPcsSiYS9+93vXve3ZrNpvu/bu9/9bvuLv/gLMzP74z/+Y1tdXbW/+Zu/sTe/+c3rQvnHHHOMXX/99dZqteyHP/yhffvb3z6g6NfvcjzrWc9at1ce+chHmpnZc5/7XHMcZ938Zz7zGdu9e7cdcsghdv3111u1WrULLrhg3V6IRCL2yEc+cl0KmcbU1JRdf/31+3WPxx9//IE80n2+y06nY7FYTL4Tj8fX/k7D9317znOeY9Vq1f7u7/4OP/Oa17zGzjvvPJubm7PPfvazNhwOrd/vH9C93994oPe/9/fN7F5/Y9/vb9myxc444wz74z/+YxsbG7Ovfe1r9s53vtOmpqbsFa94xQN9jAd9BAeQ8t537DmboVDI/u3f/s3S6bSZmZ144on2qEc9yv7+7//e3v72t5vZ3euxP9d65zvfad/+9rftqquusnw+vzb/53/+5/ahD33Izj//fPvABz5gk5OT9tnPfta++MUvmtn9v7//KWNkIB3k+N73vmfvfe977Wc/+5nNz8/bF7/4RfujP/qjA/qNIAjsiiuusI985CN21113WalUspe97GX2lre85T6/9573vMee//zn28aNG+3kk0+2pzzlKXbhhRfaIYccsu5zMzMzEmY+4ogjzOxujMcpp5xiZmb//M//bFdccYXdfPPN69IFW7duPaDn2Xv84Ac/sEsuucR+9KMfSRnqg2Ug7Ttuu+02+6//+q97TZctLS09oGudfPLJD+h79zUe85jHmJnZk5/8ZHv6059uxx13nKXTaRTqw+HQnv3sZ9tvfvMb+8Y3viGGWCKRsFarZRdccMG6+QsuuMC++c1v2i9+8Yt1qaxsNmtnn322mZk9/elPt09/+tP29Kc/3X7+858fsLL/bY9Nmzat+/+efbNx40ac32PI3nbbbWZm67AUe4+98S004vH42ho9mGN/3iXhS/aUY1P6w8zsla98pX3zm9+0j3/84/f6Do866ig76qijzOxuTM8TnvAEO/fcc+2GG26wUChktVptnQKMRqNWLBYP6Pn29/7v7Vp7/n5vv7H38//Lv/yLvfjFL7Zbb73VZmdnzczsmc98pvm+b3/xF39hF1xwgY2NjR3Q/f93HHue+dxzz10zjszMTjnlFNu6dav98Ic/PKDfu/baa+2tb32rvfCFL7SLL7543d8e+tCH2qc//Wl76UtfaqeddpqZ3e0sfPCDH7SLL7543fX/J4+RgXSQo9Vq2fHHH29/9md/dp9YnPsar371q+26666z973vffaQhzzEVldXEWi67zj//PPt9NNPty9+8Yt23XXX2Xvf+167/PLL7Qtf+II9+clPPqB7+OQnP2kXXXSR/dEf/ZG9/vWvt4mJCYtEIvaud73L7rjjjgf0XHfccYc97nGPs6OOOsre//7328aNGy0ajdrXv/51+8AHPoC4mAMdpCh837fHP/7x9oY3vAG/s8c4PNCxurq6X552IpF4QIbfoYceaieeeKJ96lOfQgPpRS96kX31q1+1T33qU6jwZ2Zm7LbbbhOw6sTEhJnZ/Ua/nvnMZ9rznvc8+5d/+Zf/dgbSnujm/s7v8Z737LFPfOITCDbfO/pEYzgc2vLy8n7dY7FY3G9A8P29y+np6XUA2z1jzxxFKS+77DK76qqr7N3vfvcB8Xmdd9559pKXvMRuvfVWO/LII+3Vr361/fM///Pa388888wD5j2bnp6273znOxYEwbrCjX3v/96uNT09ve7ze4/5+fl1z3/VVVfZiSeeuGYc7RlPe9rT7GMf+5j94he/+K0Yub/rseeZ9z3fZnef8f2Jbu8Z119/vV144YV2zjnnSMHOnnHeeefZ0572NPvP//xPGw6HdtJJJ63tgwcqQ//QxshAOsjx5Cc/+T6NkV6vZ295y1vsM5/5jFWrVTvuuOPs8ssvXwMW3nTTTXb11VfbjTfeaEceeaSZHVjEZnp62l72spfZy172MltaWrKTTjrJ3vGOd6y7p7m5OWu1WuuiSHtAnnsqhj7/+c/bIYccYl/4whfWCbRLLrlk3fUOhCn7K1/5ivV6Pfvyl7+8LgJwf2mNgx2HHnqoNZvNB10oPvOZz9yv6o3nP//5D5hMsdPpoNf8+te/3q655hr74Ac/KBGiPePkk0+22267bS29tGfMzc2Zmd0nAN3s7r3q+77VarUHdO/7Ox4o2/oDGYceeqiZ3a1AHsh+2Llz536fx+985zv7RRK4P+/yhBNOsO9///vm+/46oPYNN9xgyWRSFNTf//3f26WXXmqvec1r1tKr+zv2RHD2vPc3vOEN9tznPnft74VC4YB+b8/9/+M//qPddNNNdswxx6y7/z1/v69rHXfcceY4jv30pz+1888/f+3v/X7ffvnLX66bW1xcxHvcEwUfDAYHfP//HceeCPbu3bvlb3Nzc2tRwfsbN9xwgz3jGc+whz3sYfbZz372Pp2EaDS6VnVqZmukpv8TDM79GSMD6bc8XvGKV9hvfvMb+5d/+RebmZmxL37xi/akJz3JfvWrX9nhhx9uX/nKV+yQQw6xr371q/akJz3JgiCws88+297znvfcZ1h7OBxas9lcF6mYmJiwmZkZUbCDwcA+/OEPr1Vw9ft9+/CHP2zj4+Nrh26PJ763x3fDDTfYj370o3XGzZ4qhv0pC977N/eMWq1m11xzzf1+92DG+eefb5deeql961vfEnxStVq1dDp9v5EDGg8WBmkwGFij0RCh/uMf/9h+9atf2Z/+6Z+um3/ve99r73vf++zNb36zvfrVr77X3/2TP/kT+5d/+Rf7p3/6J3vHO95hZndHUK655horFotr77parVoqlZJy7X/8x380M5PKoQd77DHU97e0/GDGE5/4RMtms/bOd77THvOYx8gzLy8v36fh+GBjkPb3XZ533nn2+c9/3r7whS/YeeedZ2Zm5XLZPve5z9m55567Dptz7bXX2qte9Sp7znOeY+9///vv9TeXlpbWool7hud59vGPf9wSicSaIXPMMcesM2oeyHj6059ur33ta+2qq66yK6+80szulgMf+tCHbMOGDWvl5vd2rVwuZ2effbZ98pOftLe97W1r2LlPfOIT1mw27VnPetbaZ4844gi77rrr7NZbb11nOH7mM5+xcDhsD33oQw/qWR7McfPNN1symZSU8f6MI4880o4//nj70pe+ZOVyea3q7LrrrrOdO3faK1/5yrXPep5nd9xxh+VyubVonNndDvk555xjW7Zssa9+9av3mqqlcdttt9mHPvQhe+pTn7punfdUcW7atGlNP7TbbduxY4eVSqV11XEH8/y/jzEykH6LY8eOHXbNNdfYjh071pTm6173OvvmN79p11xzjb3zne+0O++80+666y773Oc+Zx//+MdtOBzaa1/7WjvvvPPs//yf/3Ovv91oNGx2dtbOO+88O/744y2dTtu3v/1t+8lPfmJXXHHFus/OzMzY5Zdfbtu3b7cjjjjCrr32WvvlL39pH/nIR9YUxlOf+lT7whe+YM94xjPsnHPOsW3bttmHPvQhO+aYY9YBd/cI0muvvdaOOOIIKxaLdtxxx9lxxx0n9/iEJzzBotGonXvuufaSl7zEms2m/cM//INNTExg6PzBGq9//evty1/+sj31qU+1iy66yE4++WRrtVr2q1/9yj7/+c/b9u3bsfz5/saDhUFqNpu2ceNG+5M/+RM79thjLZVK2a9+9Su75pprLJfL2dve9ra1z37xi1+0N7zhDXb44Yfb0UcfbZ/85CfX/dbjH//4tZD705/+dHvc4x5n73rXu6xcLtvxxx9v//qv/2r/8R//YR/+8IfXlOp3v/tde9WrXmXnnXeeHX744dbv9+373/++feELX7CHPexh6zx6M7Mrr7zSqtXqWiTqK1/5iu3atcvM7sa87DHSP/axj9kLXvACu+aaa+yiiy661+c/9NBDLZ/P24c+9CHLZDKWSqXskY985EFh3e5tZLNZu/rqq+15z3uenXTSSfbsZz/bxsfHbceOHfa1r33NTjvttDUFTuPBxCAdyLs877zz7JRTTrEXvOAF9pvf/MZKpZJdddVVNhwO7bLLLlv7zo9//GO78MILbWxszB73uMfZpz71qXW/eeqpp65FE1/ykpdYvV63M844wzZs2GALCwv2qU99ym6++Wa74oor9gtX8l//9V/25S9/2czMbr/9dqvVamvA4OOPP97OPfdcMzObnZ2117zmNfbe977XPM+zhz/84fav//qv9v3vf98+9alP3WtqdO/xjne8w0499VQ788wz7cUvfrHt2rXLrrjiCnvCE55gT3rSk9Y+9/rXv36N5+oVr3iFjY2N2Ve/+lX7xje+YX/+539+QEUTe0atVlsDuf/gBz8ws7vPQT6ft3w+vy4F/r3vfc++973vmdndBner1VpbkzPOOGMd7u/oo4+WlOWBXOsDH/iAPf7xj7dHP/rR9pKXvMRqtZq9//3vtyOOOGIdjmhPmf/e0exGo2FPfOITrVKp2Otf/3r72te+tu6ZDz30UHvUox619v9jjjnGnvWsZ9mmTZts27ZtdvXVV1uxWJSU3JVXXmmXXXbZugjqj3/8Y3vMYx5jl1xyyRpP3r09/3/r8Xurn/sfOMws+OIXv7j2/69+9auBmQWpVGrdP8dxgvPPPz8IgiB40YteFJhZcMstt6x972c/+1lgZsHNN998r9fq9XrB61//+uD4448PMplMkEqlguOPPz646qqr1n3uzDPPDI499tjgpz/9afCoRz0qiMfjwebNm4Mrr7xy3ed83w/e+c53Bps3bw5isVhw4oknBl/96lel7DoIguCHP/xhcPLJJwfRaHRdqSyV+X/5y18OHvrQhwbxeDzYsmVLcPnllwcf/ehHpZT1gZb531uJfqPRCN70pjcFhx12WBCNRoNSqRSceuqpwfve9741aoP7+43f1uj1esGrX/3q4KEPfWiQzWYD13WDzZs3By984QulvHfPmt7bv31LyxuNRvDqV786mJqaCqLRaPCQhzwk+OQnP7nuM7fffntw4YUXBoccckiQSCSCeDweHHvsscEll1yCzMt76BTo3973+3d/93f3W4K+Z3zpS18KjjnmmMBxnHUl//dW5r9vq5TvfOc7wjQdBHe3bTCz4Cc/+Yl8/olPfGKQy+WCeDweHHroocFFF10U/PSnP73fe32wxoG+y9XV1eCFL3xhMDY2FiSTyeDMM8+U59rzvPf2b28qhc985jPB2WefHUxOTgaO4wSFQiE4++yzgy996Uv7/Qz3db19S8qHw+GaTIlGo8Gxxx4re/H+xve///3g1FNPDeLxeDA+Ph68/OUvX2Od3nvccMMNwZOf/ORgamoqcF03OOKII4J3vOMd6ygg9h73V+Z/X/QO+8rD+3qv+/6+QZn/gVwrCILg+uuvD0455ZQgHo8HxWIxeN7znrfGdr/vb+79Tu6PsmLf9/fsZz872LhxYxCNRoOZmZngpS99abC4uCj3s+f5996/e87n/jz/f+cRCoKDqDscjXUjFAqtq2K79tpr7TnPeY79+te/Fo8pnU7b1NSUXXLJJfbOd75zXdVYp9OxZDJp1113nT3+8Y8/qHs666yzrFwu24033nhQvzMao3F/4/zzz7ft27fbj3/849/3rYzGaIzGaBz0GKXYfovjxBNPtOFwaEtLS3b66afjZ0477TQbDAZ2xx13rAFK9wCo920hMBqj8d91BEFg3/3udyVtNBqjMRqj8Yc6RgbSQY5ms2m333772v+3bdtmv/zlL61YLNoRRxxhz3nOc+zCCy+0K664wk488URbXl62f/u3f7OHPvShds4559jZZ59tJ510kv3Zn/2ZffCDHzTf9+3lL3+5Pf7xj///TCnlvmN5edmGw+G9/v2B8LKMxm93hEKhB8wvNRqjMRqj8d9xjFJsBzm++93vrpH97T32gOM8z7O3v/3t9vGPf9x2795tpVLJTjnlFLvsssvsIQ95iJndXaL5yle+0q677jpLpVL25Cc/2a644ooHxQj4Q0yxbdmyxe666657/fsfFMhvNEZjNEZjNP4gx8hAGo3/duMHP/jBfVLZFwqF3wqr9WiMxmiMxmiMxp4xMpBGYzRGYzRGYzRGYzT2GeH7/8hojMZojMZojMZojMb/t8YIpP0Ah+/7Njc3Z5lM5nfaOmE0RmM0RmM0RmM0HvgIgsAajYbNzMysa+Wz7xgZSA9wzM3NSSfx0RiN0RiN0RiN0fjDGDt37pQmx3uPkYH0AMee3kCnXjhrTvQeC7Tha3n6oKYdvh1XrdaxsHa3r1hT5ty+9s8ppOIy18/skrlkN6Wfg348k4mYzCVD+mzLNf1cbQBtRIZ5mRqL6L1kIn2ZC6Dkv9XQtZqPa5PXTFe3uF/XtaqMeTKXSuv9JYYtvT/wQEIZmbLynH43l9K1d8erMjcY6Dr3LStzzYbul3Bf768U1c721l+RqYivjWsdRxuDriT0fbiL+t5qGW0xEYT1OaJDBek3BnqODBCUuaxeo+/qujhd+FyiK3Pd3LTMmZlF+vo+o8GczMXT2kS07uszD+Pa5y8Z0X3p9XUdEp4+X6On72QAeyGaKstcp64NXvv1pN5fXJ8j1Nmu95fTfner/arMZUL6bLWsRugTzVWZ6+iUhQFFslDXudmennU3ou/Xn9T9kY2oPGm09Dnavj5HKq0yq2p6LyUVixYN6RkZpPL6weSizi2DDEzpO++Yyh2nrteNhnQfNALdf/2GypNEV+VERUWRdRd0LkrBH70Vy+9z1P2hWfm/7tHj9zZGBtIDHHvSamPhmLnhe1bfz+omG9ugPaZqlR0yV3KUR2Yq7MpcuDcmc81hXeZmnWNlbiLdkDnfVHj1lvVELuX0oPViqmRSwWEyN4zowfBMhchKkJe5EhiTyYQqhCNBSZSzKtDyWf1cDNbAay3LXDim6xIp5WSuV1OKhi1Z7XXlu/p7GyLayPHmnn630tDv+p7ey4zp5zo1VbyFDW2Zc101hpLVDTKXAEPl1nFdv7qnUi5T1T3eiepzRBx9bxEHjIV5fd4ovKNoCQykoa5zsgwKxsyG+0pdMxsktMdfPFBFmxrq+tdMjeVIW+f6Pb2fpuoxHMOQ3vPSLpVZw6a+k/hhOlf3VO7ko/q5XlvPobX13S2B0WqrugZ3xnSvlrKqaDth/Vw+OSFz/bres5PSZ0t2dH8MIiA/E/p+Wz29l46jciJo63eXXJ1rQ31VUFMdkgHDzB2q6q+ZroE70Dm/qvK45ateKaiYMK+h3929qPc3DOueBL/MwGc3BxAvzX0+F/y//98fPGZkIB3k6EfNgr3OeR6CJ5GMchBNFFQQLMDmSTT0YCSG6qV2PDWbl/PqUq2Qee2oB5lNqZeQiqpA21WGHZrdKVOH96BhpK/CphrSA2kdVTAuRZWKOueCsF6CyFWhrAZrt6iGyqCt6xKpqwBPZvResqAQ+kMVkD9v5WWu3lOBYZ3dMlWAhqP9mGrPmaH+XsrR5y1H9PdWA71uz9f9HAHjz1/VyFUjq8bLZF6Nq7an6xftqQc4nNK51bBGZ0KrkzKXmlalGOpq5MTMLPBUfA57ug7NvJ7hXkKlfc/T898FpRUDozBSVwOkDBGGZEK/Gy6qA+ceoXumvetO/a6re3+ppymLZEAhAVXwsYL+Xrup724Momjltn4uFVVncnVV30ekqIaFF+h7T+RUFk039YzEPd37/bDurWhT18Xp6T7w+xrx6QzV4BqoaLMqOJ3DhMqnIUREw6ZRIGdG9+TEks7VanoWElE1pHoeGCl9mAPVMBjoHhpqUM5i+26Xe+chXjdGBtJBjlbVN2evF5fL6iHtBxBhWFYBWQSvcvdQD1CiqL/nQ6pr+6oqmdkYpLUGKpQqWf1ct6dRoH6mKnMbW3ovdUiPxCAi0AMDpOfqNl1Nq3AYQkQqXFPDbAACt1JVQ6V3lM5lTCMgCR8UN5ysjAYX7NaG/l69qcba6kCFdVpllzV6+s5j4KVug7RWCqIVGQrj+2rkVOCdL8E7Sm9SxeFAuqncVoXgQMookVLltLOt+yoHEa7BmP7erp4+b9bjzvOhcT2H1lMl2I/qWW8OICWpy2W1EHwuAsotDYY7RZ8Guj8aYd2/ve36Xd/TRYxGVRslEvog89WqzHVMjboQOEMl2Ec1FUWWieoZGXh6f46rc24NUi1p3ZeTYZXRzTFIa1dUAPQ7illt9FQWRfPwcBGIPoHx19Gfs3BT91BqTO8v5INegRTgcEHfWz2u5zAaUSes3ATBuAGcv5buP+vpdxPjKncyy/B+J9YbZr5n1r5ZL7HvGBlIBzty3rpEaLCkwrRdVGEfAWMj1FbhMJlTb6IHnmsYlEw+o8q3A+kWZ0xD9vFAownVsm7GXFzDy9ku4Iggn7/QVWEdgfz7wCDtkdE1HYR1TeNdFQ6ZoiqT7gZSdnqNIKbedrOgEZU4GBa393VvDFOqnGZygF8AQ69S10hivlaVuV2e3kvMSOmrYOlDpCPZ1xRFFtLDuQF41hBxmAPP0MlBmiam97fQ0T1U2KrXXfJ0XwWLej6Krn6uMQWWqJm5BdVGiX1j+WbWh4jv9pCuw3GQLwAdY0NwpSMhwIrAeWi4qlRjHnj1Td3TUUeNCL+i698Bg9L34CUTdg8iQxVIpw0gStBY1s+lspAOqsL9TegPToZUZi221QB2AA/ZyoGx1tZ9sDnQNe2kQE7AuoRX9Vy7fd0HKdDyrSV93lxMz02tpkbxdBii1HFdg9Wy7r8OrJWBc29hvb9UQp833NIz4wFkMFtdH5HyIfJEY0QU+QBHvV63XC5nT3ztlLmxew5hEzZUYqgbIJHWDT/Mq0Ie1iCMHwaQHKTOhmE1VBKQAuibCs1MeJvMtWNHy1ykcavMhR1dg0Uw6qyhQrOZgLRbRD20tKknF4sC3sDRg9Zr6/todjXKkvU1Xzrl63OUYvrdlZgqwKqvyqQMyqQHRtMKeP7hHRrJaeZ0H7hxwFL0YP+FyejUd5QOV/VzEEEqHJaXuTDYoX2InPQ8vUa0A551Qp83CYZtt6dp31BO31vO1fRQOMw95kIZXf86vCejwg3AWC131Brym6qkh54qmWBVF9FLQpo8gMhQFyLXRGQPaTLC5PmQSnZMv5uGLEqtqwZN4AF+KQnoXFgXsPkRtxJVv8c8gJ6BmWc+GLFRCICQTs5DZLje0+dNQQFPt6jrHAzVYR0A0D/hwkE0lXfhsr6kMBhIg6bK6D4UjLRh7UMxXZgkyAQ9CWYxqDVx4S3ta5sGw8CC/xxYrVazbBZgJ/9vjCJIBzmCesaC6D1KbqKnAqPtAUgTsDE5qHarh3VHjYNsaET1EDhx8GISKqiyd2pEIFJQiQFwKPOKqlDKHgjrQCVuG6q1kkt6IGdiUPkQgpupag6rm9f1a7ZVMaYndVE3dPXg1D3Fa6VA6zcdwJOAsC6pbWrzkLIL9xRwn4yrqxRUVMg5kNvruLouKV8Fc2mo72MFIlyFkj7cMmiTcQNDNKn33KyrwRWOqeETBU896qgAd2D9+gPdQ9WsPkcyqufDzKzbqcpcHMDNHuDqQmEVvZGePrMLYImwr5GrWkIN7Q60cuwNIGUaBexe7g6Z8+Y1mpjo6HVbLZWBg74qwWqdBIpOGRggBilKCI5bGKCPUBRnkNW2MGjkIaTJacArsh6ch5U5iI6BcdAhy+wueOAelHpN6DvyQhDxhaiyN4CoZlQNnyq8XyP8cwRMDqiYhMAQ/l4a9otbgajSPiI6GAS0XWSMDKSDHMdHDrVY5J7duwusl6mBRmMGoFTjHX0d4zH1SLtpTX+FIOY8gPLJbE+VangaqogAAEgbdB7Sgsmwho1LPhygvhpXbXAd6nWV9M2CrksvorQGg2CzzKWT8D6a+j4W4gribUEVUCWm6YjjQofK3PykSutEfbvM3QpCqQASozihxm69qa5ruaH3XMyqMs6GtshcK9ACg+xGACID+HdzANVzTX2/OwCsnxlCxRq4i420FiJkVnSjeoB3CRd0DQaOKt56HZSOmSVAaS0mdb+lIAJS6YPHHde1icIZDkPqLDzUtc7dBpQKcI3qEBRjV41RS0EqaQ6s/qo+m0FEKqyZPfMJD6/bwwBuaIAnNvA1rAbGSw6MsAwEWTrqH1mLeopD0CsPywJFk9YAoDX1vADkhoXTul8aYPjMLulCr5T0IjEwQAYNvfAY4VgBkO2D1UkOTQQi/4WYWqdHQmVbcpM+x87V9b839Hy70YAXYp8xMpAOctxQG67jQSpBOD0Z13rHKQCDBiAJ7nB1M/qAb5mCSqVMCoDgmm2xhaFKepAD1mqpBIKslrVNjZe8p8/WDunnllNQbgvKN3B1zh1TQRAFHqnShIahD+3pWu2aVykHGQVLevp+fxXaLnPNlgqMtL9F5lIZFQ7ZjXCYSTK7+rlDslBlB2naVTAww9P63tIgcHNQWdUdqHhxY2rUbTTd4y2QTKGkuvn53WqMDzK6KSNxKFdu6PuIVSCNBxVJZmatCX3mdP/XMjcHmLwhFGSEVlSwx8HPrcNcldJuoPQDCmMOIMWwADmiACzCAH6vC1ZJH/jIomAdgHEQAtxPxNGzSVEbTH/BXI8C0mAXj4NRklN/y1oQdISstgHrBRp6ecDk5SAy2aVCBigSmIvrPh94ajQFVO4F8skvqv6JpfW643V17nMRiLb7ujApwEgdAgVLHYBuLDdvWvd/qn6jMTKQDnKsZCIW2SvFVhtU5TNlcJ92AOCxECOvOS9zm9K6KZJtSO2t6ib7FWwoqwC3j17WnLZu0HpGv5tO6WEBhgDL1jSatQE85m5GJdo85NBTDb1IPq3XeMIpj5e5Zz7sHJm7q6LRk3d8/P8nc8s/v0vmQpCnnwmrYdbp6jsfB2Oy04EKExDWBims1kDfkTdU47Sf0YhevqbCqwzGxgbQnX5HcT+JGJQDR1VBhx3FtsXKWgXUaqhH6sC6lOb0OSrzuga1LlRRApGqmVlrJ0R3yxTGUDHbSqlG9gdqeJbbEDpoQck8OAwWgHjvgUFDnnQEFAjl2Cm8A/xcmP8ioIkLSrqgxhBh48yFe6FwEUQdBg4ULQBYaYVsxDhEaFcBfO2qQT4Ah5pSivU4UEVEda/58HsZCGd1SmqJphzgbgLqCQ8q9KwNgOw2ALdhDZaBEqWzoypzoazu++2/horOjOqfzsr65w2GXHix7xgZSAc53GHLInuRbsXzqqASUfAgO+oVxYBkLgwl7suQf+8MwKPKaGSjuKQCI4CoQ7Wp6YxgqHWRW2TGrFZW4eCMqxJsF1RSDQEXchhEuJIRnWsDW++jwJNrQcrkM//2DZm77S593qUVVTCNgr5zp6XPOwcghFIKAMAdfb+hKcCO1HVfTYb0nTeAsiEcQPQDCESGEP5OQpVNBQz0fkON0wFwVVVcFa7uKnD9uGpwDYGkb7iDaAM0JtoP6R5vQ2VltAqK3MwCyME0YqCgViBaDIBsc0BZQlWcRUDDU7nbMhgM42BcNanMGhTIBOW/wHgk3QPVpAbEiWg0CYmNmS2BwdUG4w+q2HqAmzIfjD94tHCNqvF0amUCUqMG6zcHecZNauFTOjLu6A2GgXah1QF6BnCQaoEaFsEK3HMcbqYC79fVuSY4L7E6vHPoMOCA8dxZ1eftdQE8ti+B86iK7bc79lSxnf8Xr7foXumtfvR2+ex8XwXVlowetGAXUNsnVRCsTGjUIU9A5oYaKl1XX3dnERReD+4FGKiPhWqtcEIFbqKlQr3RBubWzYofKQB4PVpQpe+BZPaA+XZnV9eqCcST6TQpBD2QdUidNSO69nFPhVJAZb7AWxJr6nUjIOTIuXMgKpIFhuxBDjRCQg35TlsN6vpQQf2hrK6z70CpLpyPLkRTvIxqojAISGvq+4iE9BqLUF0cqeker61yig26klhsoKVP3T4UD6R0v5GOLgzUoWmW1QD08vpdF4olelCxhilEChbB72FZFxQeWBc+SAhbCtYRhXIGIkOgtw3SRghMiqnciUUhmgi8VAZYOxuA1QRR4BhkF4Y7oUUM4ZImgO4lqufGBSLbHjDzW0+LJRKAOyX70gBn50BadTAGDxIF3AdUg6NRMwsbxqUSzH0exAvMvmyjKrbf9nBSvzZnr5TDADylEkiRsgsEkBt0o7iQlkksQQRpVQXuQkSvkU9qtCMK4eWtRd14uXGdW4H2HpGGbqu5vAqRVE5P39gU5NUB2JcExt1EQhX3bVWNHMzmVWFlgaOoU1FMjgfPNgyB0ZlSAV7tQLl3Xd9lHLzowYzuDX9Z3+VUXAHjKw0VhuM5vW4Y2gUMfFVODlBKZICiogLRp2pXcUQVMGKzeY3yNVc0OlZrqGDuQQQuWtd9msrpnuzFVYnlgUjRjEk5zRScb4rbtkRZ92oXqD9WqqDIoMVJDFKrvYTuBWQwBYPBcXX/DppUWg8hgRUwaKbAoJkBC7UHBg1VsQEju20Ci7UKGh5AxubCPqLQkAPrFwWlD/ccmgYSYVMHKZjQdx4CJyKI6x7yAc9HrO0GBMRh4DfrOKp/zIOUbFLPwoAM1ipERIGqg86MCxXO3q/308gu7iOjaU/BGBlIBzna4YR5e+XD62FoLjuuCj6+S192ratVTk3o0JeI6dvN5dVqzkFj0EZHPdxWoJs2Rt7xLjVeDoNKoCJUG2yA/nHxRS0lrnX1uzkKJRc0OtHdofd3IhBvJIDKvzlUQRUDPqIQtGDpAQdNAoj7BuCRdjdB/v0uIEkEvpQWhNN9aL0BGHfzgaOkCrwqWVNyu/CYClx3txqiDoBDCxldg2kA0nsE+i5A5deYCtcliBrU/KrOAfneeAiii1rMePdn22pMeU01uirQKNedUsUzBo2Vh5OAKatpyw8HSAPb0Pi5C736Biv6jgcBhAlSVB8Pn8uBYdYGpupbQf0AZw9lpuxoiByugjIHI8KAisUgjR8j7liDaEeangNIZqFljQv4pTA4DMMspR71BoeQZgymIK0KISl/WNXP1YnXS6fwvU2oERvO6Fnwh/sXqbcVsLha8DlwzGz3PuvnB4adrvf9qfv9xGjc5zgm4Vt8r07mZSiz3LGiQtw33fCTgEeZHtODVu1ACsHV6gBnQYV9MgNVOkCV32xDGB86ym8v6+ZeLKiyLEEKMFpSoTkB4MtcGgwG1RGWgOaIlU0QkaqqwdoLqdFUn9e1L0C6JJTT561Cisgvq0ALp1SA99MAqq4Cb06gQmk8DZ3KoaR8cajGQQoUdAqEf3hFsUDhSaANAHBot6JrkAEAdedIxS8R0L/maZQv31MFXe6rkT2eBNLUJf2ci6zjRqrShnGIqAIg2+pgAMbBgA7A+y+pp+9BmsyBtj15wMZU07rPQy2IpG0FCg5ohDqs6UFMA+9WGCqkArADBhO6Fybbmg7aCcvcqwGeJwLViz01GDouNEyNqaOX3an7YxX0AIHDh0B/ODxC174IafcWNKYdUJltC/bvADgHomAwhMF4KcDn6LqA3fPnCeUOL30HOE0luC7IdyRR2pdmZj+RRSMD6SDHUpC36F6A191NPUCRoYZW43l9QSmo6upX1RIo9kDRQlphAKH4EJSGZ4A4MVZS5RZkoWdTUp/XBc+8AyzNBvib/oRG0ZY8aKlxuCqyOJBl+nFde3cKwH53qTDshXX97kjqvfQ8EPQglLyoGkPxlt5LKgKKMgKVKMv6ew5ECNyWGnXpFAglAEvefheRCOrary5CU8tJFZpRMAwWob9VaLc+bzr5S5kb87TyLjo8UuZOB8LVVk3n2lBt1UowBqkOKaw8pJza82oAzjeAGT2j5zASqPE9BEB8d1zXdRDSuVYN2PVLet1GDLBidd1bUWi63ShCz8aI7vN4XJ2wJlCEhDuall0cgvMyrfeSqeX1/lqav+lBJV8CIiUTSSJOVDm2dajvfAmifL2ynrlyXq8LDBAWQJGGxSBSB2SqFAZyoFXLoA59zaCYwDNg0KRUVxeMNajQM+BkoueAmggbQv5sMLmPnhr4ZneOeJB+6+OEiVlLJO85rBtCavlGgdK2EVfPq1cF0PKibopeTwVL1FNDKj+mxstERD39Wx0V9DM16JkFaR4IatsSVNn5LVV42ZwK3ERVDZAONEJsL6kHuQhpwS70cWpmgE0c6vEGOajuA3BjoqJCJAbVeAFET8aBuM8yuqrJBRBeUQ1hT1Z0EW4Pqvpd8AwHMZ3zIbTvAdnjIRmoSATMUD2llAixvJ6FDJTtDNqHy1w7pUrC9XQ/98vQVgTSSHEA3AJllJmZOZ4C03uO7pnchF7bjet1ktSENtD9Voa0ViLQvRCaAlwIsKB3gFojXoA0TxialPb0LLU6GuFKQBqlD6jqKET6+gYOYY40o8re1TF9jlwGQpFAGzJV0XVOhYgyQ39usQ2cbHCN1SyAqqkiNKuq2pmAdGlS13kCUq0RoGLoRDWXPAhB5wBgXh/m9brTJT04ycP1DPcW9cz04rqv2mnCZgEtzILug8o+EbgghMQTMkYG0kGOZDGwZOqeaFCpoZusk4RO9sBUXQQa9uhJ+ntF4FoatI6SuaavG7QKoNapngr62lHQdqILVTG+KsEZAKp3ChpKbnWgV09LvU9Sgkng+9gASr8TV4PQ93RNKQtyC0TW6MS4QDJZTd8ic2EwHLfBDw7uUqG0G8L9k1BdtQxkan4aQDRA0ulB9/dxoAMIQRuVRlHByYNFxbtN+YfInBvoO19e1jXoggfupQHf01FjYQqiC2OQlvoNReCAn8zMLAXLGqtALyzoQ+hRFWZXz9xdQ3jmDdBvD3BOlb6m3bNAY5DpABawDakpYDLPtiCSQ5xMgJfrd/XcRKKAkezqO6n7eq77UMFVAlDwzhgYxoATrjvqhA1T6nS2dgDIfaPurRB0VMhMHCZzg0VIl/Z1H/ie8oIlw/p+0w19uBWIcPd2aNI4A51uo1D1NeOqcz8BcrYPRKWR4haZaySgHVRX5dMCVKzVHV2Dxth6+Rl4Q+sjHfL6MSrzf4BjT5n/p791uSVT9wiJGtTHdqqa5nFq6jU3gdAvAUSCkawejAkoSU+mAUfk6v1lJzQse9N2vefdS7rxhjG1/ltQ0r+tvV3mnFU9fAVX8+o+pDg6ZRDCwMINjbsNHCDrJfXgOkBgmCqrQlgGGl5otWV5D5rkRvV5m6CkpwAHk3D1ffjgbVOGqA0YqX5T3+XEJKRpIFphkAqygQpIH0CfHSgCqgPFcAcadm6AXg1jwAnUhnYaIeAYy+d0rp7L6w2aWWPHdpmrRTR65fe2yBylTJJALhqGvRXJ6/NNAV9SqKUKpVGg9AhE4aDALAoUIVHYb7WaGnqer+drvqXP5gEXXCytirsxpzc4HgD9BKR5emAgWQA4LECZ9QOgP4kT5QhQegzVOfBXNKKaAKM/PIRWHgDwLnT1XvLLeoYbnv5eOq3P1oH94kOTxYWhnv8m4EknoWovs0EPgw+yKFHT89GoqYFEvK4r4+sNLr8/sJWP/GRU5v/bHq1W1oK9kq2FiGIi0pC3boBCKUB4PoBu75MAblyM6OfaacACACnfj/6vtkeIQbsAbwvgR2rq8UGmELsZNFIqCFoh3d1ApGuFNHB7gKmfAYoAf6g3s7uunmEbIge9lKYApwr6zivQGXuxBiSi0JQ1EwAfSUmNg0lQTlWoCKsCV5VHTZZCGv24E0SEDyXqEai2TEF60z0CSnVB4GazmqaZbKrwd2E/D6ANRR8qW8JQEr0bmH7zTfY0O1B6XXCP0A8C8/1WSKc1G/qOq+DQJFpqIE0AeeTKNGC7oFm1lfXghIAQ0QVMkxfRtQHKKfN76nCNJdXRWw6rwxAAQ0Aa+KGGE2pcTYCxXA7pXB3A0m2IWACNlyWhMjNo6FnqQml9BNLkeWjsXYsATQU4Bykghaxk9TyMAflmHAo3qCglXdSzfgSQEqcAlU5r2k5BUQ+QQo4nda3KG6C3IDCMHzm/XkZ7/b593X4in9t3jAykgxzZ2bQl947eLGyXzxSheiG3CSxfkF31VT0Yd5kqBaejlvkdN+p3O5D3T6Z1Q5Vn9LCsVnVzD/u6kUPg2SQ7+t3pDFRmgRKsgxezVAAjYqi/13ZVCIeAGDNPmGVgjE6nNCTegl5b+VVowLhdr1EDb7GZBOUEnd63F4BtGppGbgVF3oMqymAO8G6Q8uhDRCq6RVNsPWph0wYqAeAZ6sOa+kCTYH01PpqOGrvVtEYwEhDpGAPy0n4xr9c1s2xO12Z8RRVKZgwiG64qUAeiNgWDIoOyKvhfDRTIHAvUEUhCaqoEINlYVtehsaKfa04DoUxc1zoVUeegvwA91iC6G4Zu9H4RsFmwfuWhGuTZSl4/mAaZlQVc3bJWTcYbYBQP9X1EIVLXjqvsXXAh1e1DmBUqDR3AwM46et0aEJVuhp6N6SZwraV1oasD4PoD8F6uD6m4qspoB0grwxAZKgL28bC2nv/6Iev3ZJ/A4jBGBtJBjqX+jZbo37NhouDtWFgxPk3IC/tL4DmEVdhUoOdQM6rW1ZGw4aNH62ZcuE0FVbcJHtWsHvrEdmCHBUI5wGhbBLhCEhAdG9KXU1Dq7KtyivvwXYiyhDX6bZMg1C2hxmlrJwFG1ds5cpOuaS2jwnWxrUI4FlIDOFtTY9cBnqYGtD7vAyNwCJrVtnrU8RRChDsVXxEa13teAQXdhEq0yRIIdRBqRcBm9IH4qQ7vzSB9vRDRdclWIB9mZqGG7v0lYJu/c0HvewW40XJ9vXa6retFka88aI8+UMQk66poI8Cab4AByUGD0wyUXA0AZ7II0QRvVukiqLgymoFqt5iuVQq68/odoJqA6FMaCBFXBsApFtO9Wne1QKYfVfxXtALULlE1BKhjrwN7PxvR56hDA+AIRE9nIA/lDoCyAQhD61CeFoNrpMDxHgNMk9sHJyCbl7loF/rCgcMfzqijl9mnxVGvTVTxOkYG0kGOTc2upfaCcUVzKrzqDeiPA4DsQhIEMTT8CwOIJgYYi3hev+veBmWbQxWGW8JAB7AL7s8HoDWUpCeAXDBIAvEcKPNl+NiUp59rDlRAhoA/xAnpGnQSatBUliE6BtUfbag1jRyhxuQ8CM1CRQ/4OGCpWpA+PKKvtBA9qO5J1XVv7OhANdOUCr7NwEDtQfRpAJ5cYzqv19ip+34yBl45NH29E7hWSlGoxqtAk1zA6PhZPast6GnYHm6XOTOzZEQN8kG7KnO9rL68TAWUINAdLJriuHp93edRaCQ7XoDKMcDalONgfEPD6RCknL3lvN6LaQomHug7cefBScxACpbacbT0vCaS+u6GOZVjXUiJtYGnKXMLMN8DBUcUKuUyUAAQVQYTa3QghQU+ySZXz/BSAJVjYEi5RT1zMWhTFAdsVm6bOtTuIZoSc6G4puBBAQ80D+/l9Cy0Acsbi6j+caFqL2Z6Dd9ZL2c70HeSxshAOsgxlz7aEnvhYeIEZIzoyyhChVmT+paCN7wZyjbbPehXVtG5WgF4mrz/lLm0QSVQVzd8kASvDVIh/aQK+jQAN7eDYR+t6edqIKiofDcJYfedOQ0XBUDINwYVP31oTBuK6HWrveP1wiGNsgQpNQTa4G1vAVzHMmScGtv1XvIAmh+HVigJSMlEjoAqtooKzTaAPpfmdZ/m2hqtmHBUQHYj+rnHDVXxzkf0u0kg/atCZ/Ys8Posg2JLVIgS0iwAZu/ypEY2h8SMDDUG6YRu/mEHorFwLzko0rgVlGqqruvgAOFoHVoIpevAseNrmjGIQD9F6KdWBwxdJq+XWE3p+k0DGeByCNoo6c9ZtA+8aiFI1U6qIRAFgFUI8HJ9YHhOgHHaqOk5nIW2MUFGv+sArsuHticB6IZbgdqhRGmnrdAiCiggxkoqO/ItwKzFVaamgJNps6PvowLYog7gDcOgGyb2gX20Q6MU2+9kTPYiltqrGsaHkF8H0jwVIAiM5CCyUVfLvAYdBGuQmtoUA3JGoHBPO2pxp6GUuAl8P3no4zYAzEYfWOJ7kI+OQtuTLVnoVwSs3t2d8GwQcs6XoCIkqu+oloX+R5C7LySARdpVwTKEvlD1urqVcfDelyHVVQYnqLBZhUjfhf0CQrNtYIXVdW5larvMTd2lGKTCNITix3TfL7Q0ItWGNPI2T/dpoq7GSw/wJFMrKpjraQCRA15w7yrVvUcHlP5EQ/dHD0qvOyV9vnhUz8MQjAh4S1YvqZyYaEIqHtLuAyAchEyo7YbKrBJQPiThHTdCuoZDYIwfgEOY66mxNjMJsgNwjqs9VZYdUy4eG6h3ms+oIzCogtJvQVQJjDXXV9N2K0SuLauGz/JAv5uHvnVundoo6foVIJw1M60G4aFgrLWA+Cns6v2FpvIyF/GgiTcAsisALTFYv0lIS/ehZcqd8+uv2wViZRojA+kgR2qxa6nGPQqoPquCIA6QjfG0Rpr6UNGUhhB7rKweXxLSPK2oCtckWPUWAWI3MF7igJtoDyD33FdB6qQBgwCRl5ldwOcCXdzzY6oYh0kNV3egAWimqcZQsqqRtSnAKoSg83RyTt95DarE5h2NwG3J6D4I8nosdwMh2uQGsDoBC7C6DDxSBV3TMAg+H5oCZ8JbZG7hGMA5QauLJoTOwwE0eO4Cvw6wu+cmoUXEIjC+lyCC1AZrKKwVnZ04d7YsABEvgV8zYEAnAgDY1nT/NqbUuA2ApTmyApE+CPiM3a6GbGJmu8y5G/SZU6vHyFwVCkYi0G8rRHQWSTV4sw5AFKDcfg569UWAGy2c1P1bCumaVgBm4CbUgO5A651SDygzKrr3p0z3QSSqMrXeVZm/JaZ7NTpQ/FKbGkln1RjaCD2VM1mFAISBa20sC1V7AHyP9vW8xnu69i1oFBzK6v5LenrWy4BjpQxG4ZD11+hQDzcYIwPpIEcj6towdo8xEQKPxfN0U7hQ0dAHgRaA4TOEyFCoDZGSSWD1hvJ4AuIWXRWGLqRlfEjj7TY1NsCxtnEABVpUBdXmvirVlVX1OhzAVA/rVZnrAOurD255uAleKig7f6NqyiIYoseMQ2QIuJZCoLg39xXD0a6pYK4DQ/tkRw2zeQDcDgHjQ83fyePrAAbBzcH6RXQu2dZ9OoC0VK2i3x0sbZc5Ynweq6iS6ENH5hikggdhMKTMzAPMSyQJ6ULoV5YFMsU+nOESIa3hLNUP0XNdBiDuFqAxKIFM6EJkjtj/nbgaOUlTY2gIVAceEM8GoEBzkGIbwJqGZ3SzZqG1ShlK5cYh0twDwHgWANQxeEVgz1iorBGafl73dBoanvdgreqpvMxNFBRsPplVh3UMQOmRVahO6yqv1zZoAO5AVeFsDfjcwNmNQ/TJC22RuUQaBHwejEQoVAk11+u4EKTmaIwMpIMdsa6FYvcc1k5NjYM8lL12XTVyog2N5CTbGmHoTOpm3FDSQ7DQUI8g0lFlnkropu2vgqUfUuURKigupNhRoZQFXE0UGHITOd3crSTwuSyrUZcDQLEldP3C0HOIPEgr6T3nWmqoeFHo/QOtASoRfW+TpgLShyhLv6Dh/pmqvt+gDj3M0mrYdqFHzOKiKsrAID0Hdf6HApFluakWf32g6+xAe4luTHEi4BxbPwzEgpCm6ReBlLCt+77r6O9lITJhZlZIQvS0qAp02NQ9vQh99KJJPcM9SGGH4IxkltQIngypkdOa0neyCgZ5PKHnOpKD6B8Ay72Brn8YZGAOeh322mCEgcMVt7zM9Vs3ypwBR1k+qbip5k0qe/M5VdyZISDAUuowFAFpnc8pLnEOIhleRPdGEugApsHR2wR1NGMpDRe1gLdsNzRaHs/r3phydA26LcV1pqD5MvXtWRpStAgqfuH3Mu3bZG4ITben0uv3Qcsdpdh+NyOTMtsLIFkoQjojDN5OUkv/J3P6uT706gp8vUZsXAXkbA/61ADIMBsGoPUheliCJT0szZC2OIkntCppZ0efbWKgUQfPgWjbUD2b6QlVRP1+XuZWwetNAS3+bFNLdZNNNUoSJTUSV3yNTnQhwjUJoPQAyl4dTykb+lPqlbcSYOUAnmcFKhK9piq2ySw1v4QoZAUq5SDNkAfSz9ZQIxgVCIkvhNT4K0LqrFYi41QVTDYJ1T1N3VftsH7XjUIjTjML5aEEGogObahGSRQIMxNQ2ToL5D5VoCIYzoDAb+t1HVCM1JOqC/gsz9d3ArUm1piElEkfWMsh9OL0wXjJ6p7p+brOGcD9OBC6HsR07fNbIDIc0uvGm4AdravlvqOl72MRCIOLISAChWbkPdDUh49BNDaqFlK7B9jMsD7vsQn9XA8oJeJTKnd6qwD0D+keOhYifzFf31s1BlXeUJ7QWsrLXDapa797cf1+6bRHKbbfyZhORy29F86ln4dKIIgSGLToaG4GnpcOdGKG6GBsoIKlB/n8AVBa9zq6WUIQVWokVVl2O2rkgJyyQ5f1GlEo70xBmrECgOKqA0ZOQxVW0ABmWUiNOBkwuFyNYgzgxKRqmmZIAealBSXMTleNoXpMBVDK00Mfi6ggDWrQmwwwJnUgSWxCE9qUA6DKNOHdIKdQ172bh/YSceCb2gRkebuLGhGJQ4uYUAMY5QDvlkiowD0awvh3QkrRzCzb173lQ9TMz+n9RDqq4MtQ4LEDypizQLPQ8fW8JnK6ZxJ1Xf82NGDtJyi9DAoUwMMbYrqGnQT0EgS5U55SY7TXVzl2KJyHLqSrO4AFLHVO13txgNwyOE3mWmFN6UwCg/dDuvoutwN1he+CMe8CxQqU4xaSuteGId1XoQw42dCqKRVRwHgYqAQiqyrzN0AFZgaiY5S2TAIJrpOqylwVYAHQucSClMrFiX2csBbQOtAYGUgHORKplCXT9yjXMfDQAlB4INetD15WBsreq0Ds5oxDnt5TwUItDjxTQT+kJpTU2w0AlIlVNVRy8Gw3x/RzGVAScTC4ih2N7lTzGor3ptTI2QCA5xA0FA6AJXwA2JHWAE79UA0QNwbRAEqxOSoIkoDX6rd+od8FAOUY9VoFHJsH99IHVnSvq8rOa4LwciBNk4UO5LAuyVV9R8f09UGGA33nlaKmqnYPVPjH8mpULCR0/UpNrmLLAOh2R075ryYjeoh94GpJJPWMrHRgb0HMZwDRpzo1xIaowwT1HNulMms6CS1JoBFyx6nqvUDpfxQioBugk/04dAWOJvUaFBWNQ3ouC9DHblzlpwtFGrN5iNp6uo9uaoGj7FVlbjqhz1aahQKZsr7fYRNoNPp63crMsTIX62uUPwpVhSkC1/chSrWgcrs+0PexMQss96QzOyonclDlGS7pHl/19bqBrb/nDhQ60BgZSAc5Uv07LbUXhiITBrZP6DLf7VBjVSCAA6BrE8KZ7qoKrxS0OOiuqDcbAs8riEEbgD6QgbV1C4VNn2MbdD7PAd4j0wZyO8BDQdraWik4kBXNjXs5SFct6XP0IG0Ugq7pMYh2OONqSA0WyVOCypsdsH5D9Vz7vt5zGpTnAul3qHqK5nW/rBp0p1/S541DCqsAuKQuEHwGYDx7EK3oRDQt3etACwvwhA8Z03UJu1tkbucycIKloFrQzOaTKsSzHqQLqlWdA+WRB3Z9A36pIfDuZMCgtJR+d6Wje6vfBh6fmEY2o8AlFTRV7hShWqIAmI8xwCCFS/qOd0Mez/GIKFKNnBgE733oxRaB1HQGKuVicaiohd/rHg1M1dBGKd7SuUFXZa8PZzhGhFgz6phlPYUPBAPA7kF6ON3SvQEk5haiimkgEW6CvBtLq7PbqaljO+xrlDoBpZppYJVP5tY7TS1IU9MYGUgHOcq9TdbdKwTfBtI1F/g5YoBVoiaP1Trgl+JqhYeAoz8EzVG7EJ3opsHTrwMlPJCL9Qa60Tzokr5xUZ93cVJ/7zaIXKWBIGwMSAPj84qR6BZVueVAOcUAl1BzAGsTgdYPrgrNAQCP74zroe8tgpQDMHe0rgqhCJxWCSAljUAQ4hYHjGLAUiSgA3CEqopmdE3LNd0HAbQfSNSB3NJVpbMyoe8j6d8hc0Wo2ks0gGsprNGeQ5MqhO+MsYE0VdNO7Dsh4tt0NstcFvAou1xVluEsGLJLt8pcMq/7MubpzeRA5LeBgb4ADSST4Pw1AMuxHNWzfhjguOqwL3tNdQRSOej27irweKygkUPfVc/M6eiZW2mprJxvq6Hy61Vdq3RM58K79H3kAIuag/RXmByLaZ0bg2rNlU5efw86G6SnoHIUWjVVo0Be2lenKYDoWDMBZf4NfR8B8AQOE4rrDJVBN7R0TTN9qMDcR2a54NjTGBlIBzsS1XX5sglowFqDlhXteRV8GzZBWASa9lWgN1FmtwqlVoc4RYAcbxckcofgkY6psrxLHQdLDyGlEOh1d/d1cx8KZbReTsPB9boKtPCsCkiDjtc+pC0KcX02Dxz6O7vqZbl9YNf2gAL/Lr2XzpheZDivbm8JSHcGPQJVqzL2gU94Q1p/rw2lzmlgGO/3gJdmVffQBkjj9cAxsDDstRDgHDLAvFyDrunQn60NsKS+pwqhW9fvjgMGxsysH3m4zE1DmfptaX2WMrjhpVXdl30wPJ2NaiwPXa2uLFe2yFwVwg6lMT1zRejzlxvXdXj1kVoltg2yrTevaBQjB4ZFCwDK1Hsu58NFAG9YLmokzO+q8p1I6r7cBUbdkXndH1VwhvLQoX7nopbMrwCXVgZal+Qh4rPS0bPpjkNbG4AKxKN5mVuCo5lPAMxgVZ/Nh8h6AjIT1tL9t5rUdxlt6j4AyKW1AfJA5a55b/26OAOoLoARCoJAV3Q07nfU63XL5XK27T+/ZNm9AL7tQL2dDuADQqZK3+2o4ql0IYQ4AyzIHuBHBnovThXKSqFSKRXTKFUYwun1Cd3wG6FKLNRU9tpMoNKh1dU5Hzzr1TyAbqt6Ly5EwiyjB7IJaYEV03vpAZV/OgxhcuD2MPC2V3cDr0oIiM6gwizk6PvoAu+LD5V3SWBAzgLjdgW8ux4Y3uGGvo8iEEC6AEBt5CB9CBWT7aSej4B643V1/bY19Nlm63oGg3E1Plpx9iO7ZKBmANwMBmp3qM+3AFixldAv9ffCquADAEH3vV/JHHEe5ZtQpbdT8Tc9YK/3cxC5ApqKRFTPXGdS34kPXV3CdZVFQJNlESi0CAOurgvg+ngdejaWdK82++CoRKHFEVRwHgXG1WJYo51dAK9He2qULPn6zuspXdPNdcW7uWGgP4Hii1QADO1AtFnr6Tr3oHAoAQ56CPRUOFKVuQr03wsBy/1sQ4372D6xoFarY0869zVWq9UsmwVD7v+NUQTpIIdXr1t/r43aB+b46R16WHYC4eCqq4fFLeimbQIRWxs4XdyQbtopDxiooa2AA0zaO8f1YJQcCC8vqvTyQttlrkpNT33gPMlrOm18h3qu7QFQ749D2XVLFZvjE4ZGBWSiqMJrACB3ggf0AX+zAUDzBh5pP4A2FOChJQv6HBGDFMWEKoSFKtBHQDuDMPBwxUHHOkvArwUpqApUAQ6AS2s1pgqwUdA1LUBj2i1FVTBB6ziZ80Aitql038xK0DwzCdVGLWCbDwOfTnaDGiVDAJ9U26q0WmDwlmYP098DDrD6ggqtZlbfSRz4lw5bBRZ5iNp04npeCxTNBvzYEAxjbxqiT6DOwkB+Ghvq/TU36PnKL0PlKJxsF9a+uaLX/a+8Pm8N0n393+gZzkJV7BhUYsUDdWgGBeC+AsxVuKxruhoH4PsdAPSf0POVLai+iAAsIAdtd5z2Fv09aAfVBhzmInQJKMyvv5c2RHppjAykgxzL8UXrxO9RaD4IG4Oc/GQWyMWAKXh+WQ9BIqvCJqiqcA2Dx1fpQBn4kXmZ62QAML6o2yUSU+NgPqXh/ixUICyAFRE0FKczOwd8OlVt/BoGD3IZwOsbJlRgpHrQLwuMxNoCaHjqeA+B2chG3QcZCEL0odde0tMoUDhWlTkfvFkfGNCjEK3IgTDsQHXPqgu/B2X03UkgbOzrnhxrqOCLQj86F1Jds9DTMASeuttXCy6Y1AhSc/mhMpeEKi8zs8SUPl8D8DyDpmKdyoDPGDRVsKeHagxNreqzLEME2QeOrUFPlf5gi34uCf3PsrDW0BvZgh70MAPL8zCoHDXAntVdLbSIueo0PQJa9JSb+rltPTX+cmD49Kahf1wNolRFAJFP6bucqUJlcFU/l9mixsvE1rzMQaDOxvpbZK4DnRL6UMzRiGvE5y5of+NGgb16CXredfUMr4BOytysRtPSEjgB0P4mkVdZOV5Vx3E5v16Pdr0Rk/bvZHT9rEX8ewRHEuAKK6bCplbWDVULQ6gW2FL7tarMxat6WrrA5hr2oBXKqkZKkrdCchyq8Vpj6u1EG1qJUgvr4SsAoH1X80idi6p3kgTulmEXctlQ0VDZrgovlNWUhz+A6A4YAlB8aC2wQEIVkGiAGXB3Aii4pIKgWwEPDap2jFoDANV+K6Zr1fP1/iahgW0XcGe7I/rdaWDr9QbQTwneb2Goz9sEr9KFCtFaXtdgBarGcjkFQDvEpGhmt3V07zc7EE0I6TpEQVEkk6oYIy19lgqk8WwGck7QOqIXBzwKcN3kXV2b9OFqGLcDSDnPQXUlFDysALbIEkA/sQpwhEFV5nbMqfFX1tuz4YreS62nH3TG1NHLxKBK+TaVd15Ur5HPqNxJbajK3CFtWHsQHQPoxtCBvmZ+RSNmTgqi2d4WmStAZbCVjpapnqmMjgDOZ2cAXRZSKkCdeSK81OdtAm3Fti7Ip9B6B7gP8oXGyEA6yBHrDy3ev+cF10PA7eOqIF0AJtOeQcuFXep9Bj5wusxAugravbuBfne8rF6WCzin2yLQqwvwAU1P12BrSO9lWwi8eleBjKmOAnE9WGeisa9B1+oukFDlAHhobl6mIoAjAviNzQATbB14WkLAdu6ltbS2UIa2LAN9b00oX+3GASMFEYKxQB9kPK57chlSt4O2fvfwoc6t9oASIaPG+FwN6C0AOJyNANgSlNPinYDSBmqCKGBH0hmNVpqZucBSRyXQYU8N934HRG9Yz5IfggqkIqTxgGo5sUHf8daQKv1GSqNmAzjrdQBQJ9sqd3qH6VlKQOXjypLu86nlqsy5JThL0MV9N2AG3Qq0WwKFnCio3EmG9f46HX3nhbTuIx+KTWoVXYMjoMVRCUh6y4ATW2nqunQimg5OAFM1ZGltFXBOUUejbUWQ73PAXu8B/MKpAmYNshWb4RxCENgiVf3cAHB23j5dFtrDjv2j/pyMkYF0kKOXSJuzF9I/BBbyKng2uQgot7gqhUhOcQRJKA2tblPl4aU1FVcDHEwb+Co8MLC7BAQfqlcUBbDf7eCINHzIsd2iH2wdrmm3EpSYDUFZOn39bn+onshqUYVcZ1XXpdSDijUAm5f9qsxFQJCWoQqjAyHipZpG4NJpFcIRqGbqJ9WDbHX0GisAcv9xSRWHG9Z032RW39tCSveGs0sFLmFHcjW9l4ktusddKGIIx3RNS7MaIZwGL7K1qvfcjaiSNTMbo6gNFBks7VZtdCswLUeJcX9Cn6Xu6b4sghGciqqiaA7U+y/CMaxDiigEveLmA12v2Y7ujyaUSMUc/W4dehhaR881iEobepraa4PidiFV2APtC6Tolqzrc3Sbeq5zBd0bxxyVlznoDGKVnhrKK4sAAciobHOgefgA+ilGoXo2VgNnEoDWjqN77Vj/CJnbBWm83IQacF3o09mAwiFbUUfZBTnRgqh8I7f+nXeAuJTGyEA6yNGsBRYM93oh2bx8proRWjjMQeRlqJa569+i34U8uAf9cQIoP19MqAItldRg6ELPrCaknLKmwqYGTNWRATTnhOaDgM2z3rJ6HfWCVuikVkGZqI1oK1Fd5xpUkyVqQDy5Qa8BnVCsC8zXwRywUoNnvSGkBnV6CB4VsGUW4yfIXC6hQu7QHFBAtPT+5gZ63Sh4hlkAlhehs33rKBWaCSCtHIN17mdVgHeKKkjjgOVrQUuHRl33VRGMpgXYz2Zmbl3PUgo4bPLQN3AaijR2btM9U2+rgZrYoBGfUFsVTxiaS6cmQXa09TyML6kDZ2ngX0urwRsADURKbXQbApuzk1eFNwBW5SqwV/tJfY4IpArj0AOyC1GMmAdptww4okeocVUAjFQDouPtNjR+Bcc2BPjAaEf3ZQNIa6OQpk0CMa4f0fUbGPTzdFRmjYX0bDrQ1DYEUUNnQjdHCCg9uhXVF/6h+nsBkNumMusNzBCRw8EYGUgHObqJkIX3AtW2ysABBKn2IAXlwHXF3/THdVPcBBCVwaoejNQKhDhNCdZun/8PmevAwajHgPm6r4os3aWSTzWkdgw0XTXdAEr9tB6gXkdThW5EFVazqkKuBxVrvVX9bgSYiH1H52YnVGBkAKDoQRTDgIQwu6rCwZ0EBm/ItQ+hnDoMzWW7cV3TsAedu/tqMFT7UJWVVaOuultD9jMA1s9AafIyRBebAIY/FKIBfehzOExUZa5oUOwArN5ZqAI0M4sAxicVheqqOKRHTb3/mY0q7LPL0Lx19/+ROT+qxlA9qen53G4gTqwB+ek0vM8hFFo0wUhvAF1JAag/FqDNRlkVV6IBRKxAjDtoQouOmJ7rWFsjTVGobK3nNb25YVoNrs3QhywP1XND03Nze1v3xqwLdAoLus5Lm/ReStCc15mGSmjok+ZXIOWc0PtrQ/TuhrKucxyigZGQ/t5CCowraCuU3ATR9gSkuSHqddc+OMxuG1IaMEYG0kGO1HDFUnv1PAogfVM1qBzZqUph4RA4pDXgVarp7yWH22VuF0QYuj3dyEUoZw8VIKoEuecB8K9UwioI+hEV/qGyVkPUHaoI080c6QFgtKkCI7Soh94BwrHIEIySsn4XZIh1AZm/Ja3GRgRKUp2Mfq5pinlxYZ0DB5iqAeOzZJoiSgxUOWVcVWwueNEzYLSHHYiORdQAWayo0US4PR+a3waQ3tgNfWTbCU1HpDoa6Qh1gYC0BVVFAeRazKwbUeM2Aq26iqb3EwBhZr2hzNxz0OB4UFc6kKXdEEnLqJE5hMrMDhBFAubWehFdryKokE5RFVQG2nFUcxpR2bldn3cspfIpC21KklD23h6qU5dsQRsVWIOJQL971O163ToAhYdVMDDHVE5MALO8X9H35sfVaIqvakSvl4J3Drx0XqB71xnXfR70gSJgWb8bnoWquCV4H9AYsgsQj1QbqqgdPezREjT7ntcUm9Nav3cj7f0jihwZSAc5ftBfsPhe5cdDCIUisZ4PlRRVnSuuAN8PVActZjQVF4cokEEYteGrAI/FVBA0IHKwC1I/42AQtqDB7rCoz5ELgK6gqZs5AkbYyoqGtRMOGJOQ3g4B0VmQ1bRFv6saMFeGvkZjuvaVFYg0VYCILQv9z5p60yvgkYZA11GvKGvruqxCRC8bVsHXbEDTSMBhGKSMgxwo1LoaZr0wNNMEIsvmMuQ3oeFppXiTzFV7elY3AI/RUg86S5tZqqD7cmIfMKiZ2YoHVtP34ZmTuq7FDnCejeu65jcRhk6N/npYjZIYEPBB7YAtAHNzKqpRqkxI17WZ1mdLdFThOXmVRc2EKuQVIiGFM5xY0c81E9D7r6VRpWMCfb+VNNABdNUxGxQhKgItp0Idvb9OSuVYH4pN3ECd3STcS7SlEVUomLYKVLGuBoB9BCxgZwjOKaSmianeHdN9teqA82zQuuRGPeue6fnYWV0fcey1R2X+v5NxiJe25F4GUhNKuSPQJsItAZszlEM1c3oI8l0ox65BnyoX2Jd3qVDq5MDbgc7iw6ZuKmJaHWyXKQsXVZnXoVy85kDkIKwAwMacHtwBtEcBp83M1wO+eUqfrZPQqEMaOmj/pgSUCHeoUqVqwe4mjVhsLwNeKwGNLsf1OQZAFLfg6XPUoGv9LCjAFRe8sZ4qWUsCWHpVlYkzDwYXcJlE5nRftWO6povQ3Hh2Wj/X3A0RLiBIbYRBmQRcxVZvKj/PDsB+RuqKl5sCUHW7DtVuUA1JlU9N6KVySxpIIVcBI1XeLnObYR/FfYgMR9WwaNXUmJ/YDko1Cfu3rZHNNNCaVIZ5mXMg3VIu6nMAfMks+kuZmneBAyyi0btIDVLnzZv1ujNAu1LX/Zte1b3h5lSvtCH9HR9o6M+BlNgqUMB0gNxyrKnnoZOGtDZ0aFiF5tdxSGG3OyoXoy193sGKyqyVvr6PJjDpb03k1/2/Q9WvMEYG0kGO7u6OhZL3KJFWSptnxhb10HdqQKyXVQE5po609TuqoApQ3p2CNE8H+Egy0DE8t0tDl/0YlPRCyXf3KJmyRRDM01DtVgWMT3eozzZBQg6iSpEOdI9v6VytrIZADCoSFxw99KlVFcK3FPSdtzeoRz8NwYVsVwXkSlz3xjxQJ+T6AMIdKN6luwy8ReGqzAU6ZcEQ8B/AitxNAViyDPQMDWBeh/NBxHjT0F19CZi06+2qzPU1Q2HRDKTTapDHM7OxuBqADSjpn3TVENgBvGUO4Gp6QA3RngPmdqia8iANNV7Qd7Izpt5/ZAnKtruwDmFo69CtytwA0tpxICmqdSFl72kUPeGp4xiM6/tIdfQaYwS6H1f8ZwTsHg+A/b0YRP6BJLUSB3qBef1uENMomgc8Y66j1/AiuqmHvlrt2V3UABiavIaB+LgCEek0VKw2gdID9E+3rWfOg2hRAN3cw4A3bPt63fI+xL1d6H5AY2QgHeSo1BvW2asmvrJDJUEaWHOHtPLLejCqDRUOkFK2LPQDqwGdfLaum7EOhpkBK+0ydMaOAX9QD8pAw1N6MOahDDRShzC+B5U8ACjeDdGiDdNQPgMBnwXAeqX7KvzjMQg7LOsLaQDWxoh4crce+gBaK4yBNwvMPkixUPf12YZ9VSZBAYwwCNl70NTWW1LlmVxWL9qHXnaxXT+TuSWonvOjKtRWW3o+PKisdEFBZyuwglFVJp1lblZ7E5QYxwCY2sloCjYOHrwD4LhoR595OapGzhCiCYllwNqsbJG5KSizjhd1HZYgtW8dNXibTeDTgjLwKjQpHc4Cke0K8blB5CVUlbkYEHd2c2DQuOqE9W/VdfFmIN0K/EG7loASBYoqspvUeWmYepgN4JtKwhoU+2oU91uqfxLQKHjCdO1bwOvVA4qVJjxbpwVVyi2N/KcmoGLaA2MXcKcrIJ+G8Iqa+6Svex5Xpu47fq8G0qWXXmqXXXbZurkjjzzSbr5ZBeue8cEPftCuvvpq27Fjh5VKJTvvvPPsXe96l8Xjdwuxd73rXfaFL3zBbr75ZkskEnbqqafa5ZdfbkceeY+HsLCwYK9//evt+uuvt0ajYUceeaS95S1vsT/+4z8+4GfY3dth0b2iKKG+GhEBebSg8Cx5gkxFoTQ0GVZvZ576ge3UTTYTAQ4VkHsNYIKOAVapGFNhXZ0HwQd8LsUicI/A80bAc+hq1sgSHcA+QAXMAsBlgigwkYPDvAFwXbW0Gk0lT7Ejt3jq3W2DhqehPnjH4PUWJxT4Pt1TgQEtlqwDBpILKVlIptlhgIda7EPZbA4wa54KyBAw5A7TGjpPQhuPGDCCp9v6e7053ae7E9DHDVJVeWCfNzNrQsPkTqDr34XKNug+ZGFITfUc3Zc5YK8uQdq9BU2y6yloNVTXvRXqaeRgAoyhX29SedeDqq4u9PlLQPQ5tUu1WwK60Tt6WWtE9RwSfGACGqFWwTErZTX1E2rpOrcjUP3VBYzUEDIJ4Gx0gd8oBtVzaUhDUXppoakO12RV73kR+u/1E/qOcj09w8Gyvl+3p4qlAP38auCwhiA61gKaiQj0/YvBec021q99F1ra0Pi9R5COPfZY+/a3v732fwcqc/aMT3/60/bGN77RPvrRj9qpp55qt956q1100UUWCoXs/e9/v5mZ/fu//7u9/OUvt4c//OE2GAzszW9+sz3hCU+w3/zmN5ZK3S1YLrzwQqtWq/blL3/ZSqWSffrTn7bzzz/ffvrTn9qJJ554QPffjW8yf29Ok4YKoOq4HnoP3k8W5iJQFj3XgGoIaIMdzushqAGTaRKI4lrAoJoCsORdQEaXgYoQqjrztkPOJA48I0BGF4EoQairB7LcVWOjvqq4ifGstguIpPVd3hpoCjUJ+Juqr4R8FDXodnQuvqhGXRaY19sgWO7cqcI1O5aXuSgAMiea0CetpXNloLJw2lDdA3w43Qld04ipMvaBKqKd13UhRyOSUkXk5VVhedTGA9gBoxuAV8PM4hCZ67Shh5mnv9nP6LrmwMgJQBx6AIIuw+di00CpUNP1ym2AtHZIlcx4Tn/v6HlV3NUQNGXNV2XOXQInMa1zgyw4ifP6uSQwoydBfi5VdH9kS7pXf1XV25vdAud1SeVxAGD93GH6gxPqc1p9VY35/rh+t90F0sW24tPSEV0rfxZAynU1NrLABdesAVs3sI6noBqXXI0G9MGMwr5qkXHv6NoPerp+uyrr32+/8wcC0nYcx6amIM8J44c//KGddtpp9qd/+qdmZrZlyxa74IIL7IYbblj7zDe/+c113/nYxz5mExMT9rOf/czOOOOMtd+5+uqr7RGPeISZmb31rW+1D3zgA/azn/3sgA2kuFO32F7WrpfQUHIoul2/ByH/xrJWhHQi+sHclAqMOpQcx6CbemerKor5eeAjgpRTewB54ahu+ST1COtCD6NxwBZA37BmUg/kUk8PfQ+Ukxt/mMxlgKyw1fmBzA0h154sqeE4jKhgWYXGoxCFtmxU30cmoQqmAZIlDKm4UB7IGTv6e842FSw3FXXuIVHgSwFweHZRjYBeBlJYgBmaPQQavEJDzHIS9ktEDWUPSoSBv9HGj9Bnizf199pdAKOYWTgMbNOQroqUdX+kgfupX1Sl4AIVQSYC0T/ASTlAnLoQgkIBaNvRyUKl4k16vkAf2xKAeCMGXEsQBepBxeVwRfVDYhWA+BA97fXBuYpDo2DoRzyVgubSS/p+c3l1/pZUlFtnWZ9tBboiBIDD6oDs9TO6BmEgOk1C9K4DUa+ZrhpD2wNQVACW7kNmogNVmbGd4ECMqUHTnlInttBWZ7c6ACAhsI4n94lmR8jzgPF7N5Buu+02m5mZsXg8bo961KPsXe96l23axNT+p556qn3yk5+0H//4x/aIRzzC7rzzTvv6179uz3ve8+7192u1u9M9xeI9J/nUU0+1a6+91s455xzL5/P22c9+1rrdrp111ln3+ju9Xs96e5X71v9faXJxsW/xvfTKXEQjDAPgXMhkdOn7s5pWWJgDzhlgue4EQCXg6SHY2AYOi4QeoNsnoKprCFUTrqbJdoZUcUxAWWW3r6nUQQ9IA1uqfGt59U56EE1waiqpGlD6u3Ec+osBsWO7roq7D15vIa+4hHZbf28Q03TkzpIqGB/aLaQ8FZC9qgrX8tx2mcsAdcKRzjF6fxMgqLoaYieiyChwX20IVKPGHAAnJ9RQPnwIjkGgUUMfQLOTNb1Gc17vr0wkrNBXy8zMDeve9/qqLJeB5qMb0e+OQaq7B4YA2X+JVd1HfhIqW6GL+RAir9Fl4NMilmbo6ZfqVGVuENZrDCf194YrKvvDpmvQmYFGwQFgLoHmow9ysZZSedyKHS5zNlDl2weerPBhahQPAogCR9Qo6SdUxmTa+t1GA2hSkkCWCwZ+CTA4q6tqPKcHapyGNoDBCv0tu0t6FuppaLDr6Zp2gWy019DzavGq3t9RsK/2cfT64MDSCAUBSJjf0fjGN75hzWbTjjzySJufn7fLLrvMdu/ebTfeeKNlqJrEzP72b//WXve611kQBDYYDOylL32pXX311fhZ3/ftaU97mlWrVfuP/7iHLbpardqf/Mmf2HXXXWeO41gymbTPfe5z9oQnPOFe75XwUmZmr3v72RaL33O4Yq56d3XoztyARp49KHtNxPXghoBtugnAtAYIljw1OAQMajwCKQBg0i0DX1Ie+uiEPDUiWgkQIuDJ1aoq/GOAHgxDvjwAjFQIWnlETa/Ry+hzOJAqAOiTtaEyKwX8PB4YdWHA1VQhJRaB3l1lwCDElH/QDnHyMrfhUH2X0DPSenO6YULATh5kVAiXgp/LXNYUU7cLKvSywKG0AhGbRB4iHZA+jG4CQHBZDbhoOC9zZmaZSb2f/CpUBwEZqBPoe3cbVZkLgAKBwL7FCWAtBubxMEQEu9AqvttWA27WUcO4kldlOVyASqWCRiLiMSgXb+tzjGE5AoCMoTq1OQ7Cbb6q15jUM5fx1eAKd3RNG4Dd64f0c/mmchk1ATcVikEBBVSE3TlUJ3EpBH3IFlTeRTbqnoz1gNohDZihmK6pC/2WmkC+6wHPXQfoO0IAoegvA2kt6DjgarZ2sN646rU6dsXTXm+1Ws2yWdXPa/fx+zSQ9h3VatU2b95s73//++2FL3yh/P273/2uPfvZz7a3v/3t9shHPtJuv/12e/WrX20vetGL7G1ve5t8/uKLL7ZvfOMb9h//8R82O3tPeP6Vr3yl/fjHP7Z3vvOdViqV7F//9V/tAx/4gH3/+9+3hzzkIXhvFEHauHGjXfTmsy26V+fENjCeJomIIqKCtL8CxhV4w1moQEhAb506lO9OjoESBOOq7QFfUhPcawCq+mAwhAHc6PnqsVQhxVaHRpKRgmr9lq8HKA2h5HRJlY6zrICeCuSyq/E7Zc6AUK400H2QGICh7OdlLhvTqNcKpcxDGt3pQxf2eFWF9RQERepgNCXHIRoI+ft4Xw3MVl2VZ7ig1+hOV2VuwwpUpzQVXzWE8rR8Gig0xjVV5YIxWQfm6tgktBE3s619TacHsIZRIDVMQ8TXC4PBllLx3IUOp6Fl3eeZAkRP6ionJgb6e2MbAEvpKa6uCxGkeAxSMENVyL2B3kvVAHRb0nPoJPU9bQSDprNLPa4skLjWgVSzH+jnogacPVUAWpegyzxEQOMgnyq+yt5mVd9Rra4ya7Wh57+d0fdRgKKZFDR+duLAM5TUCFcirHutAqlWi+VlilLi1H8TOGutmdY1zQFFiBddn4rrtbv2N3/ypj8sA8nM7OEPf7idffbZ9q53vUv+dvrpp9spp5xi733ve9fmPvnJT9qLX/xiazab6zABr3jFK+xLX/qSfe9737OtW+8B4N5xxx122GGH2Y033mjHHnvs2vzZZ59thx12mH3oQx/ar/us1+uWy+XsCS8+0dzoPZt8ANT28ZB6pX2I8LWTUAmUgioWyDPHoPpmAB3qY31N/ZSzmsfN9lUJFg2ECCC8a+RF94FIjEi+oLwnAjiCELSi6OZ1DSaXFL/UCoGHBv2PhnVd+xpElSI9fefuzK16f9B3KdvQ7+YaeuhXgWZ/I1SqVgDpH4fzH43rl12ITPTnoMM3pHgjwN0UiwCOBdjJc5HNMpfpQAPLrp6PHKSCVym1BP3Gei4Y1FE1vCtRwGGY2UxSDdRNwBUWgfXPAslOz4Oosq/r5cbUONga0n1UhurAELQVcgt6HuJQXRVE1aDpJvRcR0zBRa26GhYOpGAtp7LIaUCUIKTGcg+IshwAGWepNyYYdT3AYXaHgP+CdjxNwO7USuA5Alg/uQS0Bqv63UVIL8UXdW7B1d9zCrr/IAhs4ax+dwMwrzeAc8+aepagh7f5YdUDi1C16wK5o18FaAkUGAxy6y/ca/fsby644n4NpN87Bmnv0Ww27Y477rhXTFG73RZgZOT/WeB77LwgCOyVr3ylffGLX7Tvfve764yjPb9hpgDLSCRivg+kD/czWrNHmBO/R7CFAGPhDvRQFaGDbSYPCiqpLzuAbuXDCHSobqpwrRPOoaYGSKKjc7cBx0sXaIZi0BNpCVo4xKvqiXShlHMI7Ku7gSV4CuzL26BPWhUA7YmGrl9uQp+j01UDLpvTUx+BCql4Tecc6KG3AEosCoDn2wtgAANwuAbG3wCUp5dRjzQzpgKyAFED6t1XBSxa3FWjImgB91AbeKkg9dCch47rBUinAaYpAkq7WYLz27xd5szMyr7uhQGQM2brujYVMuKyagSHgW3eddVo7UHviNBmiO609JmXanrmtgITayyizlUM2gpRsDMb0jXop3RvVT11LKJ9iJSAc5WBnl4BpN1bsLe8OQB2JTUd1AO0vxPAOczqNUrQVqgF9AJuAP3KoP4rCU7nLjCG6oBzinYA4F3U8wVsJTZHjfqgWCKX0rMZgrPeDfT99sFa6xDB0UZd5yQYa/syf/ShKwSN36uB9LrXvc7OPfdc27x5s83Nzdkll1xikUjELrjgAjO7uxx/w4YNa9Gkc889197//vfbiSeeuJZie9vb3mbnnnvumqH08pe/3D796U/bl770JctkMrawcLdAyOVylkgk7KijjrLDDjvMXvKSl9j73vc+Gxsbs3/913+166+/3r761a8e8DNEwzFz9hJO/QkVQINV6HETAoENRngYSqoTPnQRB86TXnuLzAFjvfWzAGB1wKCpA2s29HZbBMxVKQ1l/iVIzw30XuLAR5Loq6LtQOpnYw6I2OrAmusCi3lH35EXUolR8dXQS7rQ2qIIQNqWCpFNE1CJAjiM9ECvcQtUysXAMMs19V7cAvDwxKFEGDzNsTFIV0G1S3hV328MhH/qMH3eQyNqGLTBqJha1bOQAQLIyCHAjbSo76Pe1euamfX9qsx121ppN8hpWvYwiK4ll/UeyyXAG0FvLWCGsP6c/t5sSs/mTE73tAfVfIUh9ESE7vH1GUjPhcFQgaiIOwSlGoG0J/BpDV0F+w6h7+Igo+8oB58bJjVS0ilWZa7Z1HvxgQfJC8BpigIhIvHmNaEtE3DWdkEPRF2dc2G/dGkNTNc+HVf5NOzeKHP9hK5zNAXcJADijGa1jU8cMiLxqDrybSCPnPDXR/S6PjD1w/i9Gki7du2yCy64wFZWVmx8fNwe/ehH2//9v//XxsfvFlw7duxYF+l561vfaqFQyN761rfa7t27bXx83M4991x7xzvesfaZPYDtfSvSrrnmGrvooovMdV37+te/bm984xvt3HPPtWazaYcddpj98z//sz3lKU854GfwEj0LEveEZaINFezxkoZbB3nq5q2fm43qi1yBqMgibO5mSUOcG6DTttfV6zqAkXDntEJvc0+/m4K91wHWxRCAleLZqswFkI/s+1qt4QLp4m1h9QzHhsrcDNQyNmeqGMcAo7KxBcD3sCrfYkg/F0tASC+he6ixW583BI3mjgK27mhKBcvJGzS9se32w2RuAWjHhymt7nFXFL9wAqxVJAEeHzR4XnUgzQAGaxz4khaSENWYAIbhZQg5RoAFusSsuw6kBgNIEZfBQN0+r3MbtqpxcBj0Z4z0gGfMVQGwAJiNamu7zE1CAUWfZAx0iXHiwDZtIIzgGhMRNWhC0N7HD+neGgIZqFH6u69zQ0i7L+f0utCX1iZrajRVk0r9sVIDclBogZEDTruaA2F5eB/pRb3GnQAfmIE2JW1IsXcg0+S2dI+7WVhTiPy3gFC2AYUbmUmVCZGens3UCkTvANMUikOE29bLzzB0caDx3w6D9Icy9mCQHv32565LsXVMDRAnqWH7INCoQ5t65qyq0nInwTNfVkMlAY03m13Ft7R8YG5NQhQjpdeoQDjBAYJFFwDKwxXgS3E1WrQdwtBh4JEBR8naLRWGxZiWEg9T6olEgSp/qgKpjECNjXHgFIoG+hyVJqRfoUKnOqXuYhUO+Rikbje1QPJN6DUiEMFOD4CUFAgv4ZZtN0S4whCZdIEZugd9q8aBbDSe1mvMhfVzKQC++sCFkgUDqQ9RDTOzBGBQ41DxEAUA8EoByrEhDZWG8u5CXe8xPqkR1SSsVy8OhFoD3Uervt5zZACePtCGdKAdjxeryhzoMesa8Jul9T2lDVrgwA/GfZXHfcBIBVGNPvehKMWLqyHgtkGFQsopDHZ2BIp13L6uc6OpRv8ypdj6Kt+XG/oc1MQ7Cw3Ku0BDMuEqHUi7QA2dVe/1oFKuUKQqIf1uGNLXua5i77Kz+nClfVowtZs9+5MzLv/DwiD9IY6Mt2DuXuHyMAhNFxp5UhuG6Ap40gPd8NO/0J/zIdy/HaI22ZgetCEYPt0hdDUf6gaNhIA8sqmbe+ipECYFP4AUxwxcI5MCDA2Elwd9ZchuAx4lCo1uB0Y4MTXMDt2iHmSup0ZYktrBAG/WDeAZ5iFK5YAyyaagzQu0W+hDGa2TysucldR7j0GrhkJf5zZWdB90Y6AA8xpNmQAn2iDd1IHS+K1xwLsAHmqQAOwTdCVPJoHR0MyGUPYea0KD4816lrLDR8hcCdA7N3qK92hCVZwDxksJ3nuzD5imqD6fD9HdIASl12PqgPRa6mwMXU1rFwAAPN4HriAwvnvAARbpqPEScjSSm4PWGxUg6QxnAY8GGD8XaBKKADJe7Gj0yfP0XmKAZK7HVXaEoUF5vw4tP+AMpwNqlg7RSkevWx3o4Rz2NNpeCuuzxU1lZQwMwnQcGt0O9P42Q8p4Ka/3vG+DjgihxWGMDKSDHI2pMXP26ukUDqlB0xuoAgA5bBvAg2y6uhlvK6jALdSh0qapkiUFhkq3D60G+rrhQ3U4kFn9XBSqDWrgPbU36b3MeIDX6urBGAL2obKs27k0C6FzqHbp36rCcDqtaz97yLEy14DGlOWwlur3gSyvMweKG1KyQ/DuJgFg0c1oNMsHTisCvjoAuA2WFaDcbmvYvT+r65fK6SaPBRD5W1YB7gJBrvX0GtRHNgWcCOkN+o68gRofngukjlGNapqZRUw98+0lPQ9piE5EgMPGoKR/I9DBVfL6jlsRVUYZaNsTBuqFsYRGMVdCamg3wJCN9qFSsayGFFTM2yLg5Sppve74ip6HUBzkTpUIyXRdSjnAL0LXQa8Kkfq8KuQ2zO2u63Okq3p7fcCTLkxCugqqYZZ+owa6TQHfFBgW1UB1QxGqRKMpNWhagEVzIQbQT6lxGp7I6xyQeUIxqE1FdV+VKVXYA307XL/O7d7+EUWODKSDHIVuxdy9mi4OIBQ6BCKxBhzc29Jg1ZLna8C4DVVYBqmuHnjXDrWEaOlmrPgqrSugVIFU2QZpVchRuOXbo3oySjmoXoJ8fr4AxlVbheZjjz5Z5jYdroZPd/gbmXNM7yUCPDIVOFl3AZu4bValPw6GFNC+mFcA8HBE168fAbwWNAAtA34ym1OgZWYrtGCJ52UuDFQMUztVgFehdYa/oHutBbw+GzMQpUrq+9hhVZlLdFVRbh6DEDBEK8zMfGgD1BnTe+wNVYFuBaLIbWAo2hbdSCfENGqzq6zKaKGqc/ECFGS4ekYmoX9XsQ6NWsHwcSeh5yB1fq7o/hhCBdcKAJkrAIKOAU3FhryuaR04u6JRXSsDMHICIkNdYOnNASVKAEtQBwb/9l3g/IEhVZvUszkNEI9QQYUH4WomSnmZOzSsEf2KaVrrrmVoIZJUDGwBqgBTgDsbJ24SR437/JSu/ZYe0Fa46x3W5r2cabnkfn1qNO51NDu+OXu5RzHYej5s2jhgd+aX9WD4xJANfciiG/X0xUGAV8FDmx2qsebHNOze7eghzUO1VhZKQtodSGHlIE8P9xeJqUdVNKCin1cBvgE6hld+CZVttZv096CjvAeNS8dyei+rYCgXITw/m9H1a9R1XXqQp29Ar7gO9GeaGB4ncw6QjT5iGgC3AxWG9dWqzEWPVK8yDmSZ1bRGbSIR4G6aoa7uuqa1ZX2/+ZzugwT00MpCFdA4VGo2whCZMENQyfgKeP/AW9R2IXU+pUo6vaQK/i5gtD+0qHJnHNpJ7IS2Kb1FVSjLAKZtQ8skM/1cCMreHeBuS0BbjApADyBTY7GoXjcI63PcDl0HCsCuH+4okWhrFQggU2qcNi0vc9sAgG6QDah5+i5LGZ2L1ICctabXWAY8TTqkciwBDvruOzVSuqsNVYUxfW8Rwp2Z4mdbnuqGh0Mr1gEUJwyh6tnR12YepM53u+shD+0/hDL//wmjd/O8DfciikxAv6IhHOblRcDBbNHvZosqlGbBABlANQk40taLqNcxbGk6qF5SYdMCYTM5r8qj2obQEDCCTwN3SwFo8ePQDLZTUEzDoVFox+Hr+i3HlGuFWBczgP+KVvWrq8Be7RTUsChCL7atMypY7kiqAM/EVWiGEmpYHE2stL4KwzTww2QmVSFUWhpF60H0IwZcOgYGYRLwzq0CEO1Byx4XUgDFNNBRQJuHxQREU6AlzjLQBmSA7dzMbADVWiXgpuoDAaTnafTKddXI6YHBu7GhSjAeBycHvP9MFwxPV6NwWWhZ0QV+mUERjFtY1xIwo3tRIOqEyrEycHFNBsD309ffo4heDPp8JSE6kYNm0NZTgHIvDIURBsUcETWuFoF8cxoOySQYorfB+wjlQPZ21ClpQPVnKKMyaxqyH/lp/a7fhvAYVPKm0kAoCw27HXCaUsCK3irp5+rgIE3W1r+j1n7Wpo0MpIMcy/WIRfaKojSgd00nAc1Mj1McQR+YmzcCoNjpa2SoDLwOwxiUzAJB3SCh7VWcuOZb8kM1pKKb1eAqpaBseDv0bNupQikAsLQPfbSmgTtnAKzjC9CrJz2EVg1ARjmcgVx7DA4WAP5SbX3esQFwoxDTJoCgZzPKCzIJIPJgUgVQAqo/MtCPLgP96ObaEPmDppZWVOGVh3vOp6GCaLd6wmMAzHWhxUYHegH2NmjU5ZiahvtrkB426B8VBfJCM7NiVve+BwZ+LgcszRA59CFNFjECBetZX+4CBgwIPXNJiCrXVSZMwTUmQcasevq8oFMtBOzGgaO/lyhUZe6IkK5LAyqzJoCOYQ7wmmlodJusqwFX6UDRh6v350KlZw7SRlFH1z5d1bn6AIwcWNOtgP8chvT3GpCy36jBHUtCheOgTL37gMMrk5e5Sl8PcSGu73zOA1JSqCrOJ0DeURQYmhb3cvu8X+DWojEykA5yOLmURfbyAhqQyh6D/HECQhGJLeoRAAbVBlFN2W2sgkcAvdjC0DdsqaKCtA6KsTANjSkBM1SuqjeRdjTC0AT278SsliYPKnrAt0Gz31xPjY1kjzhsADQLhmgSwrxRqP5IQUXYEQAejADfxyCkhvKhRV1Tr6bPVgrrc3hTYDAAtsgFo6kBcwEAkWMhvT8/qt5nDNJIzRUVOeNUUZeXKQM9btZRr3zDgqYA0sAmHk3q+WgCwLuQY1K5iKe/2czpeiV9ADevwjMntsscBEXMA8WdSW/Re0lD4UEWSBchsrHaV4My56hCzkCqtjDU/dECTEnBVYerC1w3Q3B8plwgrZzUsxQeajUp8ElaJqbv3cnmZW7QBaZ62Jd+U+VdG7osRGN6OGOkljfr+rlRlYvtKmwYKBKIhqFAAaJoyTHVDeMQoV2BgpZYA/B4vbzMTQNo1YXCITcHfHhd/Zwf1X06aK+HVQwg/UxjZCAd5JjZ4psTv+cFOykVkNGyGhvlqJo+RQjZ14EiwAFQ4GBCFVQC3m5qAUghgTq+UFAB1AU8RHhCnzceVYE2DiHT2BF6g7dCC4wViCZkEkAGWFGP3ilAk9KwroHbg/fWgzYAQMSYhXvunAQePTQUvbOqVWIz43p/kwBetTyQedb1Gm1gbc+2ofu2D7wlC6DIwZ2dBvbagQNcS03op9TUfRWCVHUUjJfSBFRMVaGqaKCGdwG4ljZA2jIKncrNzMqAoYl2gOQTyo77EX3mzOyhepEwOBFgtOaXFVe3cU7XqwWGYjzQ87oCRl0HrpuuAqTAIWJXVaBdOEvpNPQwBAb1FrC5u4tALjoGGMQIlNsDwWclBiliwI7moRn5EDCIDsj3XTFgE4d7HsJ1/Zae/2QeSubrUDna0kbLFZ9IYfW6TQCgJ6DnXX6bnsP6OGQwwPlLZUDXAK9aDgqbVsCrKO5DfBwAVQaNkYF0kMOrJy3o3bOMPfCe/Ioevi19qCwAvEHBoCM6RKSabfWeuhDWhtSzRSDc317Ve4kDwDNSViOi2FWhXgcc1vw2vb8WdDQfa8KaQluGhgspuzIoCSjac8I62YfU6OFNXcA0kB/GtuvvxZJVmdsA/Cvthhoqu7pg5EAkJ7ILqAQgTePNANkg5EbcrhoWlbyKje0yY5bdpcZLIqt7qNtW0tT0spYXZ/O6zo2hGjReBfBQaVUmPQPAbVzvudNlHqTxXbo2kUkg/lzSfEYPmp56i9A7Ma/vvQSP5wEztxsAVqkFrMoQVS5A+X6/oo5UFQrvlnZBaxsfGjoXVMYsRRVbOLGSl7kw8JH1xlTBF+vQDxBa6swDJYW/U0NNq0VVrKkIYOiAl27YhaKKQ9T4i/mA8YO0W7KqmYQo9O7rAEayDjxDU2BY9KGLQRaqimseOEiHqHzKDiAzAeX7QUaNMA8clS7omnRUnYVgdv05CjAcrWNkIB3kcFtDc7y9DitsgF4WGslCJVrYoUobVfC5cVUUm8Gw6KvDZxWoqFvxdXPHQnovQD1kw7IecA9gOqvQODdqYGwARioBOeVmXEGusSSEjeEagD83H/hvapBmvB3WYDwDFVzQZypdzctcAojOGgCqjGYh/dUAfAowDKeS0BMJQN9z3Ztlbj4vUzYLYOIotAFpzeoaDNtQAbNFtWwcWjUsA7dMLg6RRMihOJA+pKZygwq0PQAySjMzf1axWA1Iy6Z6+sz1EETXgOvKX9XzPzdUZygFBIH9op65chdSSdDnbyGt/eN+2NCUWLKqxnyipe+z0NF3Eq+BFx/Re/lFVtfKnVc51oampwM4D86MrkEyCY0wgYbAXQGHIaMCZcEgjwdVxXYTpLCp2eFmiOSmwRnq6r0konn9vboahDuBRT5UgH6ULeCqglY3nquORbqj73KioOsSW9HfiwGRpQeA7FxacS7DpfX7ZdCANYYxMpAOcpR93yL+PQc929WFT/c0dB7frMojnFYvawi59kRDf68Ppfoe9J9KdLTkexb4eZaW9QD1AhX05t8gUxMxvb/JrHrRHWAidklmxgA4G9Vn6zq6fnEIyzYgktN31AjLQHVfBYCvdIpSCRWu1F+s2VbCwHQaytQ7+hy7e4BQhBSKP9BKtDEgEe00NWrTBg6VHqR9dgdQ9VhWj3QMQtuJnt7Lzvh2mUv71E0esBmQgvYhpbg8pu98I6QPd0dhnc0s/xs1oIMilMen9B0HnhoR84v6jje1wQv3NOK2IwWsz7t1/VtwvsqBKukIGJ5OQq/hgbwLxoCgsqfKvA4RrlwUutYPIf0NxRIFT8vZW5Da7/5cjZw+VLs6aZWpEWgyXFdfzbYU9F4at+u5yWQ12tE9Uu/51iVV+i5UtiWGKjuAncU6JaU1CTvQxHcZmlDX9F5ikO5PQkrRK6o82TWnaxpA1XOtp3CEzO16BtPQyLi5z3bpQBspGiMD6SDHJjvS3L1LOomh+FDAG1C9cxp6/9RVKJX7EI0BNLdfh87kQ83x+9DkdQnuJQ4NBAthPX1FKPN1o+pRLUFYO7Scl7kUsA6n46DM61WdA0bWDK0LsJ0vg9EUAcxLBqri4p28zOWAyDI1Ae8X2M6HGTVOJ7qPlLl6Uz+3q6uRjkpVrzEFfCRjCTXkHTAYBmVdv0Je92kL1spqKtCSK/p+hxNqZCeXoCWOD+XPgFVodXTu5pbeXyYCoVgzW6ASGqia9JZUg3YnqjI3DpgoDyr35gJlMk+kFMfRKKuRk/b0WTI9ABRXdc8MC9RcWgVPa0kNEC+pBs0wrO94AIz29Qld0+yUqq5kQx290Ao4PqB8o0DPsFLX99EGxyINuLplMA6KFd0vIUh19b8BFYTHqFHsRyGVCUWxPcBhWgkKRuq/lrkACD6LgJuqAk40HIc+gmBQN8IqJ4bABRWFKuAuVPzeFVJHObQPeWQXCnVojAykgxx+fM782D0vM6rn2wbQXLYeQKl5DQypjAq0ADjr22XAJQ1VMAdQFl2v6O85VeijM01VTroZFwAcGs1AE9AyAFpL+rx+Sg/LoKUCww1p37VuhGgSAFvQgC7YUK3RgFByJ1DLogdlvpGeCpZuSb+7EcCrXkqVfsJulLn+1BaZm2rq2td7anS267r2hbx6wvWu3ktkqEZOoQXcVwF41tC6wEtoBdywrRVJqxAxi0ErmWhMo09tCPeXoJS4BtwtZmYxwhHVCfenBkN0VX+z5qtM6EIkspTQvbUCqbOKq5HXbETP8KJXlbk2KPiILqEFc/q5PGB8/LuU8qELDPSNpEZUIsDqX74dGiETzhHILV0gdozOqex1HJUxSU/feftOvT8XSCtrbTXmQ01NQxXGNLIW2qEG5mAWoixDNTbcpt5fsqN7qBUC7NNQ1yU7XZW5yEDvL2iA3E5BahkKMjzAUnbjuqbpMYV4FAETZsPquv92wMijMTKQDnL0NkzYcC9uhzwc+lIXQDkQ0g0Di2zb0UPQWFSyskzvFpnLJgF8vQhSrgUbD9o6eDUA9kI7IAupYdYAFtkmUAR0llXh9RbV06dGrUFTnyMEYElqx5EAwsa6o+tXrsHvhdSwKMLv+VDmm7tLj+BSHng8ukCEEobYPrRl6AOmwQGSztpAFdstd2jE8YiUGsU9kElN4BnqQBl89Ai9v04ZaAMqKvxDQBEQQCOnO1bV0JigQpZAjef0vcAVliiABO0apld1rVtpPdd+G3iLenqTjQg0ah1CU1a4vYWu7rddXYjQgqdXg3YtMyDvtrW0bU8mokailYDSo6UG9HAZIleOrlWlCTxZ0NrChhpljeU1mlXbNy9jZmXANMZKIMdqauQUAScaS4BBWNOIjwdl7x5UrMbGoTweKjOzZd0dmyG9PEzo3tj5n9BaJQOQkQGkBSO6rzrhqszZrJ5rv6KyYzCvRmymCJUD2fXn3xm1GvndjFylY+5eXCDjGX2xIajCWBhCX6klqHxK64usOVCSCqWrvbvUq2xCe4TVVehrVtHfmzhCBUEAkRI/pAJoA0RjmtDWwcvpPQ+gW3asBeDmCHRxB+xDHiI+lTZ4fADInmzrkan4UBoOGI4w4CuGMU1ltMf0/iIAwh0Cbf8CKNk4YEzqCVXaBPq2KnjlwNZ7bEffURL2ZCQGyn03tFYAEGUnAp46SLAGhPFnwajwIUXWSykAmgx5MzO3SZQZul7A/2r9JSCqg4hPHSoGu2XA7kT0vQfAQ9Nq6zXCdcUMriZA8YTyMucBSWotpF5TIqHXHSzod+eBJiXs6Oe8gRoWjqtGcB5AjUTb0KuCcwWl/wPgFGsBKD28rN9tJiBCCDxtHeC0SyT1zKXGVbYVAT4QqkJqb6gOyCo0PK6AU2JhaEIdAs69VZDvdV3AGahmTLZAPnWAIDmk760DvH6+t172ei1wOGGMDKSDHEFxaEH8no2/HThFlsFgKEDV1G1Qnjio6YuM+/raVmog7PtQZdPRjeeDd9cCPo3KMnAygXfSAUv/zj41JFRQYB8w0BlIF6+aPpvX0fsLL6lSrQG53VRZjZccAXYBMB4eQquRZf3cEBiV4456rt3bVcH0tx4uc4kyAHgX7pC5egJ6ou1WxREMNSo3ARiYmG5TW0xrNGvjFuAPagLAuw8AT6CeyIEy6Q1VIbhpfbamr9/N+7rZ5tK6pu69cKZ4UegNBZ3TC0l971HomRUFSyoZUqVVK6hS6AHWpjsArF2qKnMGvGWBC+XngN1pLOr7LGY0bbTsqYwZAg1uakGvsTShe9DpAXygoQZDBbagP6n35zX0zBUT6jiWJvRc9yFaVImqIVAe6hrEVvQaNdPvZmIaWVu5S9PQMxDlmwV6jHhYn3d5oAZmgfbpGOzJquqkMHAouV19IbdowaR1wNGYnlc9ulrQPdRM6Z4MQuudtV4HnEEYIwPpIMeuVdec2D0vPQUtaRJgDFWamrqIQ1WSM9RXVA6DIeCqR9CpQSuEhh6+6Sw0/LxDlUd5AwDnFuAQQIXJFLQu6fU17TZoq7DeDpwYaQDTAqmquVAB0wTPetED0sUepAUcVTq5SSDuBPrqNHQeruf1En5YldPCNgDmpwGrkNV90ILKO1LkLjTQDkGj1tmCKpiOq+uyWNaqk3pUAcZT0FA4AVHD9phayukVvZfkQD/Xc1Uh1PP6wAnAxbWpq62ZpXy1FAszEFG5XdMKsSndH/MDKOXuQosO+Jwfhn0OrWNCsM8D8NbTRb2/DmALI7CPwjtUZgW+RlmaG/ReYsA9lunpmoYdiLZDw95eXJ2X5RBx+0AblTi0H/L0fQygiWpttxoRiYEatksx4AUbg0gitFZKmWLyhuTYJnS/TAKgPeHod2+HiHlhCEUQQOYZqUNqeXW7zGUTKrNmS4on3TF1tMwt15SaJNaF87pPaq8PPQlpjAykgxxZp2yOe4+A70LJvEFjPB/C1QuDqsz1wBreNK+pC3dMP1etKojXhc3dakGjW8iNO8CkTdVfk309kENIxZVrwNzaVM9hCODVRcC3+Lv0c+MlNQ5qcxBiT+n9AR+fxSASEdmtaZlODpqWpqB6ZpfOuS6kFMmIoMjGEnAjQelvLQR5n3n9bm+TKqw7gCtoA/SoyhaOkjnq99aGvnWDu6ArOYD1K77+XgXC7mNAoTFYBuwN0Bq4HWr4w8Z8c5dimMJZ6OnVBwZlAH07gPFxk3qNPhRLJMLk6etae9O697twvrolAOym9J6DhEYxLawRkBTso1BQlbkmELFm+/psA9CLPvSKmw2p41gDJe0sqYG/DE2eq9uhZHxCb6bS0fXLA0YqmFNjowegYgdIHGsAjEtPqROxAlHWBPV2jOk6t8HRC/LArl0BDOJW/VwNml9XocI5C2c9HVecUwIieonC+nXpdkZl/r+T0WwF5uxVfhhdUoXXhQaR7bSmiDIdwGf0VZkvJaHCB7zANnWUhjB5BHiBQsCrMtEET25Ojb8aNLoceqB4fPUSetRMF4ywwkDB5nOwBnN9FTYhT787AdisSEUFSxlwP/0pMHzaephd8tTBwx1C9/cYVEcGEQBkh3RfOUU1WKPQ1wj4DM2ZhG7o0Ku2BgZhHIg7qQy+N6lrNZlSb7Ff198b9PS6xTyA64E6YaK5ReaaPRWJE2EOx4c8VR5BRPd0DdKKkXJe5uIEagfG/W5alWC/qUphLqrr1RuqEgzD+QqD4g5ldQ07QGS7OlTXojhQBe8l9btuUpXlTAvA+WAwdACo3oG2J8t1PcNZiDS3PD10TTBsAzDci9C6yE2pHlguAf7TVGbFq/ougdfRNkxq1DsZAioBwNrNQzHHGDDVVwBLWalBk3bgHBh66tynIfo5hDZFDuCG+jHQewUVUME+xMLeqNXI72b02oV1CtzJQUVDBUL+4CVUTAWuA0ZOEvhSKitQGt7UDVVV58nGW3mZuzWigiAbQCks9IrrwdwAyll7bd3IXahKyoGXWoWqjnAIgHfQ+ydSUWUyP9TnndkMFAHQYLcD2B0PSCHHwFNqQsl2t6gElTbQcHrW1XvJT6kQXg3peysGuteim9VjTs1DyiNQ/Mc08KV4pFDBc80aEJ/WVdC7wD4/ADJUd1kV1iwAbhtjei9tKNOvQKTDzCyUB+HsqIGUHeheyEAboAGA830obhjWoAQ/s13mCinljRosaNQ2gGqtAFquhFoQueroWo9DqrbjQToIlGATeIa6vu431wHVFdXzYH01JjclVXY0obVSYkzXYHpSz1eqq7JjrqfGmtdXgysLXEEZFwgqD1GDptXXtVpt6lr50F8qgNR5DooqmlAcsiEJhg9wvE1W9Dn6G4DQFHi9ktCIe5Cpyly9CoVDrr63TaX1QKdee5Ri+52MikUsvNcyVpZ1UwwhOkEtpcNR3aDxGpWp6sudhN5EHaC2z4FnOFeAXDuEb4c19T4HUFaaBnbjSEVpCLqmwON4Uo2m5rLm6Xc7ei+laT1U0LzcJjcClmqoaxWp6e/Va6oAUzn9rg+ppIEPndThfUQ6IKiAciAK1YcWVqVfcNX7bB2qyn0wVKM9TW3IoEKvAcSiLQh7OVAdOQAKgwK0b3FA8zo13ac7YVnyJTWunJq+j9AEtFHJ6++ZmZUBi2VN4MlqqyJbmtZwnQehORdSoUCTZTWoqOsC19I8tO2YpPRNmwwf9a4aDSgOWdZ0lQ+4ycDR8592gNUb0qONiKZHm25e5gpQNNOE9hR96n47DhxPUd0fTk73UQrYpodAtBsf6volk2oMhYGWIzYLvedc6G/X0N+LeUDOWPuJzHkpABrk9PeOg35v/rgaxVWodp0Erhg3prJoBzTsngQMVw56Cy5E1qd4+2CA0RgZSAc55pMtC8Xu2Rz5OPTHiamwcT31ml2oLGhDR2kvrIcvAzw0TlojLwOo3InuAOULhHJd4B4ZLKiwaUHVHgV3rKSbtFuHSpSMfjkLgj4K/c9WIrpWYajfD4eg47qjQmkaGva2gI+kRjmxmAr/VF+VfteAHBBAlR2I0JBR5wCAn6Jtibg+72QBwNygjFMQsZ4CxVsm/Ay0wTKIFvXCqogGs9CLCYDWPhiibegz1Ynq+9hh0LzPzJJ1VXilhJ6R1gyQ48W36HdDUH0DqYuVKcARQX+sCESa8sDj0/HAYdig773sAC4po8pyNxjpsThgbboKFch2oAIRmMwbPkRAunrW/aiquIdAGf38obovh1D1cQdEmjcBXcQEVGGlIH2YdvVe0uMqO5JpjQYu9e6SuU5XcadJYOEPTO95GIVIeBzaI7X0vRlQz1haI9eTpnMTgZ6PYVuj6NOrYK5sBPoIIFz29+Ei7AGxJY2RgXSQY6brWHivsvsIgGnz0L8nCRGkoKbedWsa2nb4akit+rpReh1V5uOrKqiqkbzM1SAEm8qBJoOoSBfwQVFInQ2GqmCGU8C+2oTqmaZGkBYrWjLvTEK7gI7+3m4AXyYhrTUHTLBuAOW7IMBdANK2oNotmtAQ9q/6uje2RFSZ7IY0QwS8rCjgNWaBKjkJ7MSOo5GT5qpGTltgvPjQdNftQ6UWkJzGNulzJAHknpsEOgCDdwTvo9eHCAEA883MAkiPDmagGrIOzVFrgFEDIsEBlJp3mqrIDCKgztG3yVxsh65hGDCD6bqqhk5Y92p8oPcXAb6fEmCBvBKQZe4EsC88LvUcczYAhnNZZdZySt9Hqa2GnpfVc7ippzIhNw2UCIfoPsjMq9JvQUSlCSndhR3f02tk8jIXB36jcEHfWwKyC/WG7o08wDn6UI3XgDoGIlhNViGkX1SW9WhcjcRNs3re3Jie62WApWTT68k3O9SUEMbIQDrIke80LLJXKf4QSnCHvh7m0LgeAqCrsFxXd952AKYeCt6J11IDZHFKPzcOVUQ9SMtkgdCruaqbuwc5+QC4eOLQVLQf6MGdiQGXEaQZNxypz9v39SCsFqAbuqPrEqloyiMFfeY6IeBGGug1Sg5EIqLAl9RUITyb0+t2ARqzKaVpkApErigVVy7rOmc7+ntHACDbJiDV2ga2cwC0BmNggKTU4Cos6fqtZlQhdMcAMA548UFfFWXgqzKJhIG7w8xqQPY6vAt6ExKEaRxC/H01WgfATBhJqHM1tQSVmWAMTULrnaUGRGMGqoxCgDdyIOqQDfQcroCMyUEPs3gB2s5M6LM1h2pgDkFLO4EaJcDuYHFg0i5MamPvaXBAfEgvOcD7tgPwd0MA0keiqvQ3RHSdd0JVRWdWqwXJ8d4JAPkcUMu3ocDAiekezw/yMtdv6hmuh9XggjZ9Fk/r/fUhEm5llQn5ouqG5X0a4gYeNI+DMTKQDnLE4nPm7NVZ3hmHlARY68R07kOKYzWruycd09cWXVIl2N+gocZSRKV1EFJOplRbLfgekFGWiupl9ft6f02IXDlR4ACBkHMqBj2RgOyxAcBSC/SA5yJ6z+2KCpaxAgB74V0mBvpsqaoKLxf64PWz6uFWQThMQLVQa6AKYagQKUsB7cIAKnli0GF+J7ScmAQm3Sxwad0O6dx0Tz+36Vcq5BIQNqgcrnOJBJCcNvSdh/v6fn3APoXB+Ou1gD7ZzOJArBdzqjLnAAdTaPVInXNVmcf7+swtIAhchmqeVgN6HULKfisQ+q309J0UXDCaIOrY7eo953p6LxnATQZjEH2GyjvXqP0QWMHQ6zDcUjnW8JSt0Kn+XOZ2E3EZ4LXaCTU2esA2nXAVCzToK9C6F4J0GvTLq+3Tc8zMzMbVWRvvqvwcAMdbFBz5PqScG1BtvQkKI4pRNUTdsL7fMapIjKtMXR6osxBZ1nUeT6yXWe3hCIP0uxluxmyvPHcBwum2BTp8r6h17fUVyFxc0nTGwANelaEqsi2AtWlAJMKH8tMGhLAjbd2MgzwAccF7yk4Bx0tcvcXsnN5zEnATUQC+72ir59oIVPj7K3roJ+DARA4FUGAfquKAv8amoct5HMCry0Czf6Q+7/AmSAHm9Lq7FoBMEYyXIuDiJmYU5xDPq3EwgE7Yd0EBUd3VvdsHo4RArp0wYMJuo6pCfUcZaNmxG1o1DKnXHvRNG68TSMosGEIoH5RWAvBPnv1M5jpxVebDnEYxa3lVvk5d+3flS5ByhsbFQZkigvqeFsCYn6zr+c9QZHioSmv3Tn0nU9vUuIpOqOIug0E444HsmITwxB2g9BNQ2QppdwdIQwMIgHpL+myJARDPAp7MAdyPA7ifUKAA6uHPVTekDlVdEwogJ5bU+0t76nH50MsuAUZiE2gDhtAAOA24zkJODbiN0H/TdXRPdmJKHrnrrvXvvNsetRr5nYxsy2xvXr+yqaCK/IpKUlVZxjMU+4UmhXAf42lVZEuLOldoQhf3KQg7tNQbi6+Ah+HrwXUm9A6HUUitzKtiTEL5s9/Tw9wAfphJ4FqabAOIHEjrEiVohAiHyAtDc8mYGhYBADdjSyqosjF952OLVZmbz6oUTiQBO9JTo6Tra2QilITefR0FeM4TzURV7y8aVS91MNDIyRKAVysAVghKqmDi0HW+Ba0GEkNVgEmoKqyDAK9Aj79OgiNIOR/IBQHrVO8BdQDwLbnAjZbu6L5sdwFcXtTztSvQ6MRWkB7bgbXcAbvCqSsNRMvU0+8lt8hcIVB54kJ6rtXQM7cEbUrS0LfST+pe6IGKS2/Q994Kq6FXrKlDuAytUHxH94eTUCOn3dczkoRekX2IyrXSygsWB8MM1IWFoFckke/GOmpsNHuqLyLA7t4iWBz0RFwa6lrl0wD6DusPlgHH2gccawRkfnOfPo5wazhGBtJBjnazYo57z2p3BqosIZNkUeDEsDpgfBxVMukS5LIBkxMHjo3Vxil6L2VIQ0EYNZzTzd0AcrvGL6BSJq2bdgaM+ADSzEAjY40MkUeCQQPBnWJGBX0cqtg6HT2QHQMvH7iR/L6uy/g0NHlsAmt2HqqPoMFmEtrQ+Jv19yJ19TTzbRVy3QnAcEGUpDClz5YCY7KSUvBqCQCecWCa9yAQW4X01xj0YiNOq1pThX8ATNhDwC+5EHUxM/OAOHXV0XUNQTVkChjy62Vdw9YKvOMEGDS7dW+5gL8LHw/4kSWNuC0AmD49UEN7HqJjXXAiikAKWyir8edlqzIXaqnhE4nq3E5HDYsp+NywqgbDDigEaUA/tQWozDwcCH492EeDAAgMQWYFPZ1r+0B/EGgl9DAKxhBAEEk+dSKaxktAU+sENMysdqA1DaTi49Arzgv0DP9qVWVRaEH3bgoqiJ2EXqPmrn+OPtwbjZGBdJCj0t5kkb1aiveh51gCSoejHTV8KiHd3OG7AMQLvaZ2QqiRSBfzGb2/Wk2NtRA0H3Qz6lH5UC7eSUHFCngxXej3tAipwh5EOzIt9Sq9iArDXFTXaujo4QNeQhsOQdlBWquwqteNAkO27VTA8zYAfQdAoHcoKMomNFZNNvUdZYfg9cagy3lTMUgboG1HDgDtk2P63jZs0OsW5lSgdfJqFaehQzFVLtYyun6bd6tQjxTVmIm7YBRXdCOsAgmrmdkQgIRdYEuvQeqnDO9946rut+U+eFeQci5M61mPQfucyJ363lthdV6SdaiKg+hfG/B3jqMYmkEezhxw0fQD1eZQqW+TcLyoI8xCQ+8521UDrgOpWsuoQp4Cfrj2OLRCieo6u0XgvgpBdLylax90NPrcyP1I5mYg5dmO6x6q7NR7yUA0uwEVdbuBWT5bVcMx0QBiYaDWGHbBgYN7WQDiyVAR6DuqEAmrrf+u14FqOhgjA+kghxvyLRK65zD4/SPkM8MFPXyreRVKwzywucYBjwJcIVbWF56bAPp3I44YVaou6ITOshK7tWf0YEQzqlRLEMmpzWsFXCSpazUzVM91ZRLC5HoezWqUa1Yl1gdQoA9Cs7iqh3mQ03Vug9JxoZopBoDWGUgRWUR/LwVOkAc4MQ+AuRNZjXROhSDuDFVnkQmNBsQ9vb9sRdclMgNtKJaAJwgq4Kob1KBJNiEFXdTvplYhmuJAiw3gbkkcoga6mVlj7tcy1+qqcZABY7leBzxaQRVjvq9OxI4eRPBmofqrAeDhnkZZNmdgDSHCaMD0HY9BlVNXjcxKT5W0m4AiDQjWJUzXZREYntvQ3ieU0D0NNpOloVF4GDCNdWBuBz/KlpY0beQGgOuEaEwaGMs744onW7lVLzyXUGxbblWNpnBS5V2/BVWFHWDIdvUM153tMmcljSDX+4B3NZVPCWg4GwWc2CpEA5tJDT4s7tM/bki8TTBGBtJBDm96YP5eh7riqGU+DvZMBVplOL56Ex7ktyM5xZnE8tCsNq0bLwJphQh4mg4o+E59u8zlgUytnVDPsJaBhr0BlCYDdicC7LC9W/S6hSn1oltAf2BpxWY0O3pwC1AK30wA5iWiwjBT0PD31Hbo2bZBn9dp6L10oPImCxZSoqjGi5tVIVyYgJ6BITAEPL2XLXUgvASl0ytCn7llqJ4ZU0Ga8HSfxms614WUljm6D5oQ1bRAPU23psq929aqRzMzf1LfSWIBGMCjqlS9aUhreaDMHcDL9fSs7wDyw4cAz1CpomvdT0CEEcDDbljpJ2Kr6rwMQAlOupCqIWgXRNGiA0gHAddSV/G/FpQgBQitS7ywVvJ2Mifp50yjTxvKVZlLlFXudGrgNEHLn5CXl7nePOD0YpBdWNF9sCOv53qiAEz/Veh1ltX9l0vpO6+n9Sz1m1WZw0FHE8hBa0D3EgCQfgWocQr79EMdQE9IGiMD6SBHOBu18F5l98csqzD1oN9FKqMbNNMGACuUY8bGFDhXr+jngqpugmhWPdc+kAH2mpqPTo0Dz4irXqDXg1AOlNEnEW4O+KqMekCRh0N1GoR545CA7zT0MOeiuqY58D5bcWD1NX221SawmB8CRIeDLTLnTeo1YmDnhQCDNAZVipaC1BRURwIrBPEPWgsaGftw3RpUEMYBHVkcwpmJAB4KWJtDBlV2FSBXBRb4JlTeNIqAMdsIa2pmiaZ+35sEoDA0CzXg5xkfqFcfB3JGa+v9TM+q8pjZqPtj905Cp6rzUiTm8Y5qsg6UbSfzUO1W0HXdNQ/pzIiSW3bbEEWDELcDfESebiMrQMR3patycRDSaiinC9V4RGkVKI1DAE2BzQcDaRkqjSehN1k3L3OprEb5o2Hoazin9+LmQQAAHKHd1si/AbZoA8A5AsBwtoEqpgVcep0qgPUHGs2aggrnaHf9mnpQaU1jZCAd5JjshczdywTuASGiN9AIQwT6FS2kVRtlIT3XWwaBm9ODlvAp1QBezBjwxjiqjLpAKDeASFMMMAgxYOoD3jnrAvg6C1G0MBCTtYGJmBDeWWCgTUF/Jh/YXIsNVWwuGC+5ArRliKlRkpiARqYralD3plVhER+RDwRocUf338wEMCVnVLCEAnXLY0BuGQV6hlJK17QC0ZQlUDDtju6XVF/n/DQYnUDmVwdWzSQwZDshqKgBDJeZWRkY2Ydt/X7QBNwVYMXa09C0sw1EmBPQoiekSmbbPKTno3o2Ietud0ClXKT2C5nrqE1ndXjeaZA7pUk9X922OhbpMb1ICcDNdTAmG0A8GQqrkRNOq/INgbPWcvS7SWi9U4fU9EpW76XYA2qCrMoJF4oloB2lpRKAS+zp/bWg8Xga2jylp/RzDUiD+h0gJd6phvI48BbVWrpWIUgjm+kDF6GbQAveW3UfIT2ArASNkYF0kOPQ6bTF9sIJ3bkTiKtW9VAtQ0fpqZYK8XoYlBGUxUWAgbrtqqIttXRjDBb19wYOcSjphm/N6OaenNNqjR7gklwgEPHB205H9fB1GuCdRNWLPiKpCsZLVmWu66lnE42pEE5l1Htyi3qMZh1d57qnSiyxCsD3McAlLUPTyDiUuIZVuA4hnWtAR5FtQ9Nd6NTqAVDVMU3dDFv6Plxg0u2Sx5dRpVhc0OumE6CcgP03PaP7rw29ZnOLes8O8PWYmQWuOi91OHP1DDQkJgJD8BgSSU0HJ0ApeND2xIFKpSyQd1ZW1eAqQAuMENiJzlAVaBgiFuEwPC8waYeBXmRpoPLTAzqFFLSPGAMuqG5Um7IuAMZvPHmCzgE+sHGIYl7iOY0gxW7RNc3HoGw3A1xVCbgGRPSGQKC5OgnrDI2Md/RVnuTLmlKkPp1ORx0pd6hnaRWsq0RXDbMKZA1CNaCFgEIVy+qzHbIPRrIf7po2b9ExMpAOcvy6ebs5e1VyzEHftf5MXuY2ARajCeDh0pRu0AS4Dp1VFQQ5iAhEJnSTdQdVmXNDKmzqjgrS5pJ+N5kHGncgnuykVfBtiOqhz0U1hdWDpqBZTz3wjK9GSaQF2x5K613AL+XA4+urPWgOVZgBliICfbBCu2H9qiqABsD70omqMISCKQuNa8TRIK3iQLTIgHtouaX7tADL7C4BtgVaSYxBs9pmCHAdEGlys6DE2tDaZ1lvsAvA3J1ZeMFm5nUAxwVYoAAijNkhMHZHVIFmoT1NH0I+3hLsS0/f8SpxrYHBlUhpJLyf0N/rgMPlQ4PdRlxT9j1X5YkPRk7UNOUcAtqQRBEKBYA/zAOHodTVfR6HtDvY9+YAAC+8rM97VF7fZQVIIX2gWPGgbUcuBHAJAPREILq70tL9l3cVYxbuAhUD8a5ETpCpXriq14CizKoLaXfArMWAvyrIQ2oZQvqd5vqzHhB2EcbIQDrIETR2WLAXaWESctnhnnqBxbEtMtcCz6sDHBEeYTsmVIFWgCk4uaobqgcbNABcUqMFncr7KtRX5tX6n5rRDZmCiFlvqApmwVRBJQrq/odqKpSGoEyKJfW2M9ClZKIF3ejzW/ReykBXAPiqOBg0DnRcTwFJ37aIeuDQus8yDZXgUeDh8aCtzSCqgjkCPaAqIIRdiDgalODWAYhchzJ4qmYa+Br1ikM4vQ0VKkOoxnFrutfqSd1rkQrkkcwsGKjxHW5Dl/RVULRFSCVFNApXG2pEYDCAVkMx/b3llu6FKpyHDWB4Ug+ulkFxCJT+DyD9FW7o+a82VN6NQdS2BdQJ3oLKxWFeC2TCXUjZ5/WAxfvQsgawT9Apx+LbAb/UVtLVDvT0i2eANgCi3u6SXrgWVwOzAxHCXlTfeTeukb9BU9cgDjQOBvKkM64RrkRP9+4wBoZtAdjTHY2YjxeBuy0CHFRQ2bpvr2SfLF0YIwPpIIdnjgV7KYxcTgVLtq8bvhpVMGICmgC2gCStD0R4VldsQTiq/YXm0nn9HLAphiHdUmzpgSwDDmYyrWtQ7ughSEPKKQ2NeNu+RpCsqwey422ROQ94kFrQPDg3p2s/cFT5Li5vl7kgp9co1uG70CuuCPibVfB600MVfMsgHDIhNSJqdRWGHoDXJ2vQG+tQ8OSg1UgpDmGqMSA0zOi+KtV1XSLAuNuCaqse9NobAAA1BOXou0CZ1KESyjOYNLNYRlPOlF5y2ypmF8ApaQFgNw7UBn4FiElbarxUDRjUVzTithuwWAt9vb9xIPnMAzdVG6LFziSkeSFz6bRBSVOhIlTKgv9mqTxQDkD0JAKtN9LA6t0GyobuUGVbHGgq2oBfylRUTvShwqwLHkMLshUGUe9QBjBNkTv094DiohRV5yAN76Ph6h4fNzVyEiWVWS1fnRIoILZm7yiZ87oKUTAo3HD30QN9aoYKY2QgHeTo3JmwyF4EN9NQWuvHqQO0/hYw21sPohgJwButpv9T5gYDyG+nVQlOlYDNGfh0FqfVCJvsQxwDOoanfRX0LpAVDjuQggFPxFMMubk1NZoGK9tl7i5wHvKOkjh2oNv7Yrwqc8cGQKrp6zuagN8LQeTFvUUFSy6rD1xcAa4V0zC5BxLNb2oqqTqua5+A3mk56HHQrgIxHqSbmpBGikCqCjJGloWmxZ2IGlcTESBrHWhUszLQdZneqPsg32Nvs9MA6xYibvVDdQ0TwAv2c6i+Mw2KWNuB6M60ntd+H8hjgRxz2FNHKgb956JAghtkIWXXy8tUGoywUoX2h+7zFBRuNHq693c21JGK1oDfLKRr1YOonOvonolmgdEewMMdSLs5Hd1vZYjGRIEIuBHXfZV3VfZm4PcGHXWawokTZK4PkbWwafYjDdeNQ9ujaBwMUSivzxT0ui1g/84vq1HXB6N9WFS9F90n6t3bN6R0L2NkIB3kiGYi6wykZcqdAmlnb7e+oFVoDdDrQclsQr2x/OBsmRtMKC4k7OlmLO/SeylOAsC7DE0jU3qYe139bgGoDqjHqwdU+V4I2iM09KB1+gAABk6M+CqkdPJK+mcAPN5syjOUcsFjhtRPZmdV5trHQDXJLPQDA3fb7+o1ShB9yoLX6wGlxI5VqJ5raxSiPw3uXU8VUQYaemWh4eQUAGQBP20rEAlzktAs2VHjdAcoHb+v9xzpqzJevBdnM92AqG1e19r1oA0L8IdthJ64O6rawDoKbPNJaGBdNgCwruihS2b1/mpJ4DIzvcFVwKOMh6oy117Ud3c7pNjioHxvArB/OAxEm4APXAQAXoEoHxK649IVyLvH9Br1PJCpeoA3BDhfFPByqRoAmQtQkejo/g1DZHLK1/R80wdC1KRaJU5T9/hwUeWsA76431eHppmDKm/gfRuvQeoccFiJcT1HfajkdfepiiOsG42RgXSQY7mTsvBeeVo3poRjMaA+d8dAuDYpVKvXDCe2y1wkDm02PLX+5wJVgssz6nmlhtBCBJpGumH9PRe4gmJdFTaeBzn+phoHgach2HII+lsBliUKjOXNjgrIfk9B7kvgbW8M6SEtA65jMNB3WYTqNHdFFUwuq73ioP2WdaogrCEqspoCtl4o/U2m9f76x6hwLdZVqC+WoCErlD1lARxZ7UNqqf1QmcuM6/3FIE3mwPsAvkAbQnse64NRB5E/M7MOlJB3usBXU4WCgkBfaKMJVUkVfZYgomI7EgIQelTPTXug793tquPThIrQYAVA2h29xl2QgvGAwLQFhrFBv700VKzthkoq11fZEelCiw5PDYtEFBo/g7HrQ7XgODV8DOveisD5SkZ0v+Sg8TCti5MGeTcAqgMwmkLLqhusrMaLC21FIlndG204h9GqfrcVgQo9AOHfCfK4CBQh8b7Kzz6B5vdxMIcENIcxMpAOcqQ2z1hkL6LIANIFMQf4bwa6ocLQVTsY1wOZbKtBU4YSzduiShpWgvTXONxLHXZGBErhx2sqgIaB3vMy9JkLDDxh4DJqAzNyZAD9rVz9vTqUK+chwT0FkbBmVAVVxdXwfCamhz4DQt0Aq+Al9b2tAMYnA+SW6THA2kB36xXgoOnm9QVnIA0ymFPh1YVS4qluVeYCCAN50PfP66uz4GxSrEykDWlauOc+VIilQBENwtCaAiJrDTCozcxWwMiMQOPiFEQTFyFlkuyq0A6g/Ug0pkbJeEyVfgzOV7QGUeChrk0CjOoKGPib/EfL3PamRg7Cad2rE2FonwF6u5vWezksrWtQ9QH/2QOjCVJ2rYxGVPqAX4yGgcQRoqIuRAgDSP0OwLFdBkMgDS2TklG9l0ZLzxIQr1sKDEe3oGvVTKk8BhirBf5xMud3qjIXrmrOOAZr78KZ84j9uqOyd1iBvpXF9eeoT92wYYwMpIMd/artvYw9qAiJOJqmGEa0JL0KncnHCGjpKNYm3QGW4aYywVbBg89DaUa0qodlCMJhR1s/t9QDTiFXhWY2rGu1E9YgHFJl2U6QgtHoXaGhsd8INM6sgdIvLkJqBDBIECCwja4qrKyna9AbgIebAt4XAIwPyuB9JoEQsa8GZhr4jbJQ9RTPAH7G0/0y76goGaxCWgCYqpMBYMd2Qxd74JvKZwGADqmM5k5oXdAHwxbSc5CNMDOzfks1zyT0s2tAO4k84McaU7qREjshkttXw2f1/8/enwdtt5blnfC55nvd8/CM77xnNghsEQe2xNJO2hg7WxOTVAGGSFpNjMSoke4PFUKoitmxK420Vod02hKNFt39VUqTfFbQmNjEEBTaARRhs6d3fObnnsc13Gt9fyC8w/Ejvtvt0OC7qvYf+3rv577XutZ1ndc5HOdxABVB0ZYhM8BDupCRWgBgvAHl/qKje+kCZOaSAkpJ+RUZa7dAADhS2zYF8PBFAOyuQ/2NY9PAMYWjsAMM4z0AIy9A8qPq6fNur3UPDyFDsw3k6adrDYpzRVBYVNPfKKpgUzfUfpaAN0xB8HwPGkbOhopzGsE+dHMNWNcjte+NQn833VbveVIAGBU6VuPR7Xu9WNwrsf2xXPPR9La6b9KDElGhwM8a1GfdUlO1zy/10CogTV6p6gFfwNvtgvr5YAysyks9UBY+kMIBHUATSCHJMSsdNerBvj5bDOrxW64eqo21pvE7oNm0BrVs4kHaIBE9IDD8bVDGvgFt6kldD7YNEKvtQMYesOu2AnBocw8kBM6rUcqGOn8zty1jzlU1rnNIYQdAfJoN1eCGppia2AVK4LoelLNc3+X+EGqPK30f5UyNsA/O/XQG4st1Eg0zawDB0XMHuo7ubwLpHQDd10An8EU7oMUIjNFLKF0s4ITarqhjlkFLdQ6SKXmuYwGU4kuQjpjVwGkCjM9ooPecFiP9vimUtYcQYEIH10MbSgcyCPWefeh2nYIAcBN0w7JcHcfpWdVndIEIuJ/o2vegPd42QY4Dzgs/Vqd44ep+KHWZWg7YtszRzN9RovYkgN6GINLvcys69/1S59mfq2Obl/ou63Vdk9M7MsNpea/E9sdyVd3cPO9mpOGBN7yErrN4ogZtM4RyECjKz9YaKZUQZc0SaP29DuWqWFfyYgPaO9vAEQM8PhGouF+c6/ctl9C2F6gTFq30+yYjiIrqoJO21lJXF6LZw5puhWs3QGQUslneCHiQdgHXAbV2fw7OJLREb0bQYQaGdH9D728NpccG8K+cv6oRmhdplurEAzLK6/p9OYDrAU5m17bUoens6mHsQpNABl/ogzRI0oe26xbsS2DHnl6Flhozq1Qg6wCSEMFY313e1UOrN4XywwFk5rbBoSnV8dls6CEdrPRvG0Ds6qZtGcsguzt0AbO1VGfo/FKDjU9CENGD77sCIN6qo++pvaG2wwFgf5Do/mrMIZPb03mpQ4A5GkDX6SVgeC+UD8sC0ASDDHIP8Dw9CJAKkvIBstcu3MoMMFLxQvd/uwtnXArQDRDCOwRCTt/AlgOOdR1BsqDUcyWF87G4Q+i2gDI8XfccpBd5bdVK88Obmx8CUCuOwMkBRfRK+zEdq2rZqA3M0gUJKm3roh0PdJGtgTSwAs6Le6pGZJKrQRuAMdz21dMfb2sksnR0s9Sr6uQ0AEtV7OuidzN1CD+eA07keVCZB8LGcqGdbaOqbqOmaVRUAGndAlLiNhzJ0GFNjVevAV1AgDc4LDS6Gx+AFIqrc3+S6d82D9RYn4APUYUOHW8CLdsHIJ3zjBr/DEqFHeAYO9vUF+dAYLBu6b0cAxq+bi+VMTOzKeDM1l3dS30gx+xd0f1ag2yCByrFEfDzxOWDMhZAqaEOBKvjQ1hbbcCKQdCtO9isBGb066Wuhc4McCARcNgAhhOanOzAH8lYC/i+CliDBpn/TcBSuse6LqstXTO7cBCUkOWfHUM5vdBZdbu/I2NjcIbWqZ4NAeCXnm/pOz97qt83nquzuwbeog44u0deW8aSlMiv9H30QNJlAuD/mqmnN8+hJn6nXJV7T6z2j+UK5pvm35KGrIawCaCCcJ8HCvA1fdkeqJqvoGxkUD+2QldUxwM8BLTvNkF1fQBg7v1QDfMKOhpWoB/XBCT4pVL/9vkTxa0ctmXIjqbqlLRzfR+1zitlrJjqpl+WoKsHANnuWCMqBzDay6bO86fWqu02DNUp2V2rYdl4QKOnYAWcJyfQHgsA40/s64FVgsDuAeCw3LmOnQKj7UGThJHV6YzG6tBAYtLOPQIM0p46SFsrqFvCvqxmemAt2vo5M7P6WDNkQ6CfiEz35lGgWQcv1vVRS4D1Gfamu62HTAdkGGbAjOyAPTmFubG2BiUzKEOVkPUeV3T/bzVAQiRWHq9yCCLKa92HbThUK1XIWCx0Ie1c1b0+eQi4jIAaImsRWSaU3SADOgVR4BSEvasj6KOPtWpQHKmn0oY91wIh8yNP137cBV09oPQYwTuPgcTVVvq3NeDBmQEth1/o3nKgjlfz1H7aHYK4wQIyGXDdc5Be5HUSz827xZOvLdQY1iP1aJc+eOFwADieGtLlVdhUpgt00dMo0INSzTUoOT1cVYO7Ez0sY80aiORC1JGChIAX6QMfQlT0KHURwUE0B1HQBQCxJsCMPG/qAVo6UJqC97uK9IDfJMHJtc7LFLqeWtABcwJlo5O+RtuLQHFYGaDI2zGQc52BjAgJj0LnjXu/OvxRTR2z+3NdQ13Ifp48ouvq/oo6JNvP6v2lVZ2rEsqWaQfoHlIooWaQnTWzAtb0cKzvuEpZIMjqdeqQsoQuVqemf1vA8z2z0gOvWwWeJsgWdUG7rvGgPltrX9dvG+VfZMi8ChxSsKZb8SUZO4AM0o2JBpiHTZ0rpwPl4FzX70ug/WsE2aJkoQHcGHQXDTouPeDZrRQaFPsbuh+WCWRPtoCMNtF3npt+HwVDfWj6aEN1ivQB+4BPa0B5/mqkc7rTByqLcCRjJfCUjia6jzp30J84q3sO0h/L1Zs45t+i4J0FwEoNTLxBDuUW0MwpYFM1QZB0EoMkSa6OwLoJkhpz/b4r4MF3Qt30c4U+GJHr1lItsa0Aj7LdUuNQtNQBMTBAZaxjDmxcDyjrB1ASa9Q1qhwDdieoqcWg6kExhc4lwLEsgdjR1tq+m4Nau9fR1pYEWNw8oCbwoZuxBLmAFP5201P8zMp5mYwFDd0fAxCXrJ3o+2gB0DcDcLgD+mAx8HVVP6UO0kGuz+ZBBG5mdjhVB7C2dUXG1hBs1EGMtxbq79wHB2gIf+sFkGUBTqYIwNcOHSgAkh98DBzobbVtO6DVNwQB1hSY1tO5Zln86JMytproHkmgycWL9DeiEQGe1VbegFKcA12KZaZrv1bReZnPgcUcPKQ0VuclW4Adm+nniABy0dRsVgrUBOEpUAm0wcYAD5LNQHAa5FHGQKPRHMHZ5UCp1VWbsNoHjUUg0B3ewS2VgRg7XfccpBd5DdO5ebfW11dK2+82tIvtCBwkb6kGrdoArR4AVc8gtVrpqJHzx9BmWYfulBkA4oD8bLulGCmDiDsd6kFb2VCDVjHoLCrUiAxc6CZpQabpEzq0PqeU9X8G9O36kA3IIbU/hNbVYVPndG0apXpQOmsBdqwPmhN5BpmJIZRQgOMpHcF62QZR0EAPxTo4IMNCU+dVF/TGQMw1mwDZG9AOz0Dfzpupc+9AFwvwo9pOXe+5DVw6O5+jzb9RI/pg6OYD2ZTWDjCtQ+dOFIHeW6zzFe/pWB0kSRaf1PkKu3pwjxcK2C8ifV4fRGif6gHmCogdq7libdbgQJdLPabgiLYWOEONI1irTQ0ipqD91FiosxYAeex4CoLC4Ej1HL2/mqP7+hiCoQ4wgg9Bj66Vqd1p5PocTgLCr0Az4YIm3ylRywNn1GoGvGUgiLto6u8GEKxNJmDb4HxMgGKhdfl2W7le3ROr/WO5NoqhBcUtG2QK2J1kpH8IwLQMwA4pRKkt+NtN6NbKQSdtPtBXfhbaOz8KEcaDAxXYBb8M1bJjFwwuZDkzVw+YKqClg9pIxuZgXFuvUeO1fR0oB2agDr7WcotBir0LBnIAEf0EeKRCyBAsT4FRHc5i0v2adQDA6+uaTHuwNqDLjtTaE1dT8VmoEd9+FRiyoeustgtZG0jBOfvqZNdb+rfNtUaaF+fgoEPpIdjQzVCHDKuZWQBM0Bm84x5F64f6ndlASzX5FvBama7BUa7v5MYlyFLVdJ1vAJlqATQf3gVwwgBnll0GWgM4asZdzRYvDTLrcx1zQXojek7XTB/2cBekPEIPspNbkJEGh7yIoaszUyzVoqLzN04B5g4Z5EUEJey54g3Duc7zNNb9nyS6rnxo4Dl2dU63oXu2gAaexVyfIwLBaW8A3akA5o6hPDyZtvVvQd9yNr3dPmUgS0PXPQfpRV7p8dwK/+YBOWlruOmVOnZu0paxBWgYBQ0F4i0zPdzCh9TYZPvqlKwvqvH6OCiD9oC1dB8Uspqg7Vb5lC5ubwMwDYDNSlb6tyE4nSV06KyB8K4Dxn81gfZY0FNrghOWxcAjtYR5gTT+VlUzZqd1jYWX2wAEBzHIZQ/KEft6KG4ArsPO6HPkdaA1mIMhTdQZ34DScjvSNXSj1OeYLfQwbjb1XlogMto/0jk96oA6fQmp/Zne3xcvNXqf1QBxb2YN088O4CCbRjqHZxvAlwYEiytglk9BFd6BzrE2aFINgFzUh2xi8RDo3p3oYd6ARpAa7MM5dHCWp4BfhIArqqlNCKBd/BgycM0xANChq9CDNvX1OWj9h2Aj6EMpqfpRGcsmQKALXFp1Krtd/7iMNYEKI4HqQu1Znb8IOkxXpT7b9qHur1lV198KAlvH1b9d7Ok55Tka0FhD7WLlBLrsOlfgc7oO7tzpBE+g656D9CKvSXzOvFuUgT0A8QYTfdmHNQDgALt2Z6ULeVnXenkKTTppQ7E7k5EuMlCkshW03nUKHRs3taR4sgsZLtBOi6/pId3dUUNVCXQO0lIXeDQDnbkckvFtkBDY1QPe7+vvxqDhc6at720FOlgucLc8CjiC/VzTRftAGQXZZbMalF+giyqH7EkxUkfFBQySAZ6kmEHp8Vj/tgO+hgeHzhK6LZ+HQzYCQPAcSrK1rZGMpadq1P/vAOQq4OA1MzsTQMmkosDZADqpzNQB2W7oHA7q0PAAzQMbAHheFHrwRDA3s6462hFgSlIImqa+zuEcyrLuJszhAsgAoUvMATqFBPjXbK6bZB9Knq0dkKfoQBAGPxHCXlr5kO0EzJAPDogL2olDKKcvgJKiBX3vC+jQI0rE+ZQUH3Rfu5DxKaC0F6xUP3J5HXBTUOkwsu/Av9Q4q3vdvQaBN+CmjiZ3aLGB5iJd9xykF3mNz43NDW++pOZaD+Si0BdWAXtRmEb6KXWiAGZ0DS2fYxBMdTNNOecXgZxxCNtqrg5IZ67ssE4B+JEayQDog5QDyJQ09Z43HMBSQUt/PNSIJcogJT7QuUru13uJIAr049+SsaAJvEqZOj4BcK1cAoHis5A2Hp9ekbHBHGQoOrquRqneX8vX580najT9mq6X+ZG+j/QEymnQpWhtdaS2s7aMNUp9b+5SsxrnoA0+BmAzcHRaG8RIa6BHZWbmeQpwq1X1fs5u6LvbAu1EDxzeFWhGQVOclXUoV5V6QIUgIJyD8ny1pgZqDE7deAZs6SFkwoBJvwa4PwewLFXortqG+4vO6LM9+7Q+WwZ6heWh2piwqfc8m0Dr/xq0DiPdh+NTINWFjHSZqmMbrjQIW8K7HMM8j+eQjV1qYDsD59kdAcanrkFAGQK/HpB+eqk6SMCPbAmpCVASINW5f34Ma+2O47G4O//onoP0Yi9n0TInu+kgAR+aub4OhqCcbA3QOtrQtu2p35ax+lodmrCtm2AbIpECtLUCwC9FzZGMLeq6hC6abpZhpJs+AXr/IeBvnKFmro6h2y0/UgMeQ01+XVen04UD1OnrznWb6mxMoHPEP4BMItS9HQCWxk0QAD4AYlHAa+y09ICpXdUxEgw/AIB8CuWSItGOxGPQAqyCdsF1V7UFm4C9sba+j2YTlNTnenBYTR3W8THoTG3ps9231sO45RIAzGyrq4FAs6Jt5VcO9X3mkWZttiEmqUZ6QPlwSA9A986HbiMfyJ/iAPBQcDRQHmwJxJoT6GKrTnQtHEL2xAXMGyRezQe5lSrIt1x6hc7f7x6D4wht3+lQ7TGJzkyBnTXqq6TOZqHrvAa8QCemY/0FTAJki0pgh28t9V7G1K0JRJaHCyh/TcGm3knEaGbFDEDfGUhiAW1Iu6Gfi0rI1MHaJYcruOP2irvjibznIL3Y6yFbW3CLqOGhry/77BoOPGjLb2yop988vCJjRwHUnkFUtFipk1PAhmwu9XPrYCRjbtCWMYNIzjLdfLW+3t+aVEUDNWgjIIBrgwPXAtR32IEOrqUaqmsAZDx3DCnxZ3X+KnU1kHlDD8AVRPQrKBWk16DbLdDTc70xkrHZFeieyxQrswYZgAqkJq/D2jhnSpOwA5phg54ar0aoc9+DwKADqfiNUJ9j+2F952fcL5Wx9iO6rmKQAMohgHCfZs6UBnTfDaoa0NwH/pUPpe69TLOsSfOKjO2GIEUBwN4l0IasoRW+7sENzoC6gtroe8AoCQ1CE2LIBm6vYqKfa0Pb+6KuY84AmioA5/iwq2vhxo6uVX+kzu7GEIhOM7BtFSXQvQ4dsONMv8+BDGh1MZKxvqOZ1/JQ7d0MMsOWgeMD8le2CTYa0jvuFf2YAb+edTR10zad+xFk0ZfADxcCvrdoKfY2uXH7vi7z0nCh3nHdc5Be5DXNd8x3bk7jWSBsJHnxypZGVMtSjc2gBrxKwHzbcYHunqKTTegEgnrs7+S6eNrQzROPAMSXq8HIOoBl2VdeoG6qmYNTT+/leWgDfQS0egagUVelzido774BCrExZA1iUIBPgQL/zk4KM7M6SANkTTUEM0hNzqCkmAG4eQ06eJVNNZD1LQCqZ/qOCHC7dPT+/mz3URl7FIClZ6Bdvh7q52bA5D4BJ6ANe2FVAqC9oo5GCAeM+zIGaZ8ksD4AO1Gv6/PNHtT5eqSijmIMvDHPDfS9/wYAcc8AcNvv6FpICn2fa8hENqGMkkHrdTcAfCWUahzIHJRN7f5ajdQRHa0BjgC+WtaAjB50YY1ONdt2BVgIqfsph8xGLdd90wfhef9E1/QcuvZOIqWKsSkIzpbgWbj6zg0KGAYdejYBPAewuxePANYTHD2g9bORQ7xv0D07AfA6iSWDvJTld9iJvDADbNud15+og/QP/+E/tHe+8523jT3yyCP21FNPfc6/efe7323vec977Nq1a7axsWF/9a/+VXvyySet8nub7cknn7Sf/dmftaeeesriOLbHH3/cfviHf9geeeSR277nV3/1V+0Hf/AH7cMf/rB5nmePPfaY/eIv/qLFMbPmfq5r5+zCglvZqUe6WeKqHvrgQ1gLBBPjoi1jV1v62kpfjeYEOncqphto7arzsgEpZ68F6VHoXggPIcUOfCnW1Q00yfRv6wnIMrT1gIcmB+s2oaQImTWiFxjvjmRsSiSEM+hcdPWdr9rANwWH+aCixn8Nfnc71XKQcxY6fk4VQGlAsDjv69qIAz2wOtAl1vUVe1MB58WH4n+10INo6Ws2pa2+pHlLaNkOdCEAl6elE8gMnQVhWYOTzcyAvNrcuq6FVgXYVGf6zJVM938JzQ2NQNfvK+/XtfBwoX/77EoXUgW6Z0vgSxtWNftXhdL5CHjQPFhvA8BDTgb6uydQxhuONUswBiqHyVV1zALAqIwAyrxYgCi4Qbdgoc73EWQnFjeAsBFA7rYAqQygirCQFAbg0J/ougKmCLMmDBJmhGjMh/C3G9D+kxHgCDYnKCVYBYD0W3CuQKesVe5wmj4fHCQzs5e97GX2H/7Df/js//v+576l973vffbWt77VfuInfsIef/xxe/rpp+1Nb3qTOY5j73rXu8zM7D/9p/9kb37zm+1Lv/RLLc9z+4Ef+AH72q/9WvvEJz7xWQ6QX/3VX7Wv+7qvs+///u+3H/uxHzPf9+1jH/uYuS4sht/nqs+rFt6ixbYKVVsrhcMyTCDFCdH/CGgyGhDlLpYQPvmAX4CsYuZA9AmbbwFioaSRG0O6egEg4+BERUDrkHJOIj24N2Bf9EPNyk2A0boD6eUmZG2SFchGLGAzQ4Yw9PR95F3Aa1TVaNbGuoYywJg9VypJZ+8TAKR/qC1jD4Py+bmaZnzcM0A2OleHYQKdXrvQqZl7Ggk/n+pBFAI9Qw8Ewjahq6jh634bgwzNGdBMgEqwUWXZzGx4qniqha9rsA88Lwbg/LTU9RYBZqjbGMnYDBb6c9CVtAHB0BQIDIdn9ftuXFWCxdhRJ2d4rS1jH57oXK3AxsSQESDwMGVyDiq/K2M1oAiJgcB0DBHrGIAqdSAwXUGbug8Zswy09mwEwUsdHJBc8aSWw1nZgHMAMoTmQioHCG8NGOitC+ekB04JaCJSVcvpgZ7fGfiNEJymHOYUxMMtvWMOoDGBrj9xB8n3fdvZAZAmXB/60IfsK7/yK+0Nb3iDmZldunTJXv/619uHP/zhz37mF37hF277m5/8yZ+0ra0t+43f+A37qq/6KjMz+97v/V77e3/v79lb3/rWz37uzgzT3V7D3oMW3CK9UD0G+QGIgJY9NeIpEPU5c8g+tQCYmmvUAVAla090hY6r6oBMS6UIKKFjpQ18EmMgRPNAHLGEtuYlnCUJZLPCUA9pN4O0O/Alma+HxGig782JYAL3yACNZGgCju34WOe+7CmuZhd4hi6eUQP0pctXydjypfobF4Esr9gGAwRp7aCv7y07BubbDTXCB0t1qFsdfZdnId+fbeoEXi61bJmDUvkG4Ng84GlaAZtuBuzO/nMETzZb3afOkHtAHrnOa7sFYwNwqiGQWgFTddXRv13O9Zmvb6mN6cx1HupQcjqzq3/7iQM9oA6PdF83fMhcl4BbW+hzTIA/zA9Asw2wdv0udC9m2mSQAqaxAiBtB4RQ50D9ke/D/roEUR10GhtwMhkJlB9DW9cYHBqKikGT06DZxICF30B023INbKtr/Y0IKBaCVNdpBvQsCXTALnagwSgDktPq7fdcpkx/cOf1J+4gPfPMM3bmzBmrVCr2mte8xp588km7cEHT+mZmjz/+uP3Mz/yMfeQjH7Ev+7Ivs+eff97+3b/7d/bGN77xc37/ePzpF9ftftqYHR8f24c//GH75m/+Znv88cftueees5e85CX2Qz/0Q/ba1772c35PkiSW3FK7nvxe2jKfl+bcQpaYQaRatPSFYajags0CwoWLRLsSdiFydfYgigFMU3LS1p8t4DDP9TlGOahbQzTRBT26aa5O2Go8krFtALSPAWjpr8BpAofrWg1S3QONdhonQILZ0He0c04P0AfOqkHrtRXA68I8pwDc9mf6vNuAIzihIKul+ykD5tsWrL8xyJ5stdsyFoLul1OosR6BmrwLBnwHqlrnF7DWgL/GBexYAiWAVayL40EoD626EL2b2XgP+IPgOwvgRptBqXZRA4cBAKz5dSAX7EEmEkgDfWDSdxxdNFsAiB3M1MYkY3UYpv5Ixk6Bkbnp6IEcdvU5fOA/mE+03loHjFR0Vd/7NNQAs5ICgSZAdyoDdQRqhJvcgC5baF4BGi+WGDiEJgOQW8pitakNEI1egvZk4UHXY1UTBxfO6Rp6tHdJvw86K/f2da0tAe/aAXby5ku/QsYST9fL81d+Q8Zml2+fgyIv7spBcsqyvEtGgD/86/3vf7/NZjN75JFH7ODgwN75znfa3t6effzjH7dGgwWQfvRHf9Te8pa3WFmWlue5fcd3fIe95z3vwc8WRWHf8A3fYKPRyD74wQ+amdmv/dqv2Wte8xrrdrv2T//pP7XHHnvM/uW//Jf2z/7ZP7OPf/zj9tBDD+F3EV7KzOwv/v1vvy2D1HA0DW3Q9lqHstvaQPcGAIqNLTAE13S+Moj4Fj09tNJDYFUGhuzqXB2VIWSQ1nBYxi7omaQgFtrT303AQFaf0zmFhgarglJ0B9K399U0c1AHwGPcUyOydoA2YK5R9MJRR6pbAhcMEKedzDULdDHUQ2INQsagymAZMDQvq2r8G6uXy9gk1pLYhgetySM1wmvI7mwBGSpsBVsAg7QLWddKTddpBh1ExMbcqen7nYFAsZnZEMSbe6ZzUwN82z6UklbXIRMBVAlWV6ckASenD2WepQskiSc6X3tAi2Cx2rY01u8bQAa07KvjuFeDjCU4ZpQJn0HguHT1d+MJMEanaihK2HNVKMUvUl2DhweAZQEm6HgKmfCWOi/zHISpfZ0/t66/274CemXn9J7zCmSfnlebcOlhnfw/86g2HQwh6fX0M2qzEiC8tSrQs9QB4jECihXIOCaF7o80uX2vl3lhww9dt/F4bE1SV/+960/UQbrzGo1GdvHiRXvXu95l3/qt3yr//oEPfMBe97rX2T/6R//IvvzLv9yeffZZ++7v/m779m//dnv7298un/87f+fv2Pvf/3774Ac/aOfOfRr78Jky3fd///fbP/7H//izn33FK15h/91/99/Zk08+ifdGGaTz58/b33zHt1tYuWkkJpAEiiDtmUGU4N5ZJzXGWEwKXdxQHbERUMGuoctuDG3vWaxs3etEn2MGHVIxiAWugXSt6Wqa4Etquhz9OgirVoFbaq0plUZNDW4/1TkdXlbQp7sJh3kEjhSUKKMECC+htX4CSVwXSntbgToCdTjsjqFsVIODPJjp/JGsTQHt2TF0iSyX0D0DZdVqBbS7YK2tlrqgO6C71N1Vx+AaAHPXQINRm8Kh2IMD37siY2Zm87ECo+dNze66IG2RrYHOItdnPh3rIVOBzEEXugifmujaIl50H4CEz0LZc7cCTOsjIAjcJayiHvB9YP6LViMZS3PKFgFmqFSH4XSq78ibQwAHlBnOoQbL/UQB98O5zksGnbf9tb6P1QLKt01dg+oymXnU6ZWqwzWDMuMmdEc2gE6lhOAvA9qayRqyqSFQSgD/1w3olFusISM9Age4ofN335bec/WOYCHPcvvPP/+rv6+D9CdeYrv1arfb9vDDD9uzzwJwzcze/va32xvf+Eb7tm/7NjMze/nLX27z+dz+1t/6W/aDP/iDt4Gs/+7f/bv28z//8/Yrv/Irn3WOzMx2dz99wL30pbcDhB999FG7dk2BhJ+5oiiyKFKj0Yl3LLqlXfWsjeQz/Uhf7BG0qXsOZE/ubE80s2JTD1AvAoK1pdaK/US/bxcikWXr1TI2XOhCHk70cItbaiDDUO9vFenz/pepHhyvivSQuL9Qw9fYBeI+0APagjKP7Wr56whIzfp7+rxzkNk4CyZt1VHj0DpVY9iagEMNQo2nuT7vFuKBVdRysaF/W4Dj6AJVxBE42SvQlDoHIO0BMF9vLQH/5UFXEYgRr/pAiXBGn8OZjmRsH8pX167rPW86nFXurjWjEoAG3wmInnoJUAzMdJ0/0ntYxgpwLJ66DAKiwJ3zYcjg9QqQ/AHCwQVwcXXa2mix8gHzlrdl7KJBwAU8OdNT3a/zXT26KofK6r+9o7+bAFSgAbJMJx3FvG0WWp57mavBwdjTZzuFmg4Fxeu+urHXhuqY5WA/CzhXbA2O7UU1FPU6kIju63MkiQbUUaEBZnNDnZw5rL/oBMhoAftYNvVzMWhZTkBT8k7ll3UKZwBc/69ykGazmT333HOfE1O0WCyk08zzPv2gn0mElWVp3/Vd32U/93M/Zx/4wAfsvvtuP/guXbpkZ86csU996vZI7+mnn7a/8Bf+wgu+573iyMJb2mlniTolYamHQu/lAJYGqFKe60KOB5ABAfwCaMtiu/0SOGcKkKLY9hXLsnsnRamZDWJQ5AYwYjyEskdNn+1T0I55ZaW52seLL5Kxi9Dh6vc0UzKDTp5GAQfCRT2cyomSwv32WJ2S0XO6KR+KQHj0pZpyrkFGCgTIbQ01fq8NLfgrwEOAplQZt2WsBxkHZwnA1xIyk3Vd5M/21QxlJxrNuo6uteFED44NkHlYgeM42tY1GR2qwaXmCTOzeRcMNtBo1J/VA28GWdE00nlNwYkbg67Zw1DqLnLthvRAX2UFjPZtVxcXxD02hAx3CZ1FFwD3F0BmbQlO/za8pzHIBYVwgK7rOlcVoE6pNPT+tvpKiLrK9ftWAHhuQMOIWwCoH/ZScFbfR+Osfi4/0bV2COz6jVDXmgOSOvvHGvxB3G0ZaFkmK83ynZzoO5oAzullHT1rkrN6f8mplvY2Kro2io7Oy42j0e2fAewnXX+iDtJb3vIWe+KJJ+zixYu2v79v73jHO8zzPHv9619vZmZ/42/8DTt79uxny15PPPGEvetd77Iv/uIv/myJ7e1vf7s98cQTn3WU3vzmN9v73vc++zf/5t9Yo9Gww8NPH8KtVsviODbHcex/+B/+B3vHO95hr3zlK+2xxx6zn/qpn7KnnnrK/tW/+lcv+BnicNfCW0oi3UvAwQL6OKWr2ahxSyOC2Qoo18FDPlvRQ/Wkrh7SpKmGtD7WQ2bWaMsYdYn1si+WMW+mILkhZK7GoQIA0wVwQa30gImhBPP/QCZn/wE9GR8b6uZr1gFcG2hU6eaXZGzd1Xt5Wf0V+rc7wLh7qPXyVV8zdS2DrNxM39v2A3DIjjU7Zm3AogG43t+HTsMZKLMDZrCcEyu6vsshSE4ULci2gU6XB1I3Y1edRKcNzOtz8JrgkE0WJDBhduJCI0NDs03d+kjGCtO9DjGJ1a/pXG91dC3s19QZbUDZ82Fgc7+x0Hey3gb8UgVERaHcX4MurAAwNKPNtozFoQYW+UQzXJ0QWNDhddYqoP1V6mEe5BokTrtqizaAQCiHbOBxANQuFIhC9/E5Rx8kNM3KHZ7XtfoAMPgvrwC9CJSwxkCqm0X6uRwIVl0g6U07+o7OJlodcsHO1oBk0nE1KM6ALykASMEDd3CH5YVn3Hpx+/Un6iDduHHDXv/611u/37fNzU177Wtfa7/2a79mm5ufTutfu3bttozR2972NnMcx972trfZ3t6ebW5u2hNPPGE/9EM/9NnPfAaw/dVf/dW3/dZ73/tee9Ob3mRmZt/zPd9jq9XKvvd7v9cGg4G98pWvtF/6pV+yBx7QFO3vdz27OTX/lvLHo4Ear0ZbpzkFIb+HB1AuAI6iDDZGdAT4pVwN+xzwC3XIEsQpRPUbujGClR5uwUwjL3eoxrUyGsnYdAGbGRyQBByGRlcPwecPdA6GK2BzPq/39wpgyG1u6UFEPChVD8oWQChnO/ocRwC0/uVTjXBDT9fLY0dg5Jb6HIWnc7qEduUVZDpmxOHzvJanSwClBxdBEgdgGHXAOZwAG3YMpKkVEOwlxt3aCPTygNBw2mYaEjfQ974c6LyCxrN14HeiDPQAL0J2gliQxyBqCw0Kl32957j7mIyFG3ogrwHI3DzSwygELp4pcMzFcH81kH9ZA5HgOtL9tbmrcz+bAVi6OpKxANrJNpYgLptoFr0EjrIceLx8R52h7Jpm20Dv3CogEB0D6WoC3a7nfA2Um6V+bgHZ+0NX32UEpcIkAtA34E4HuXaKV471vfWaeu5BbGWHECj7U91bozuyStkKUmNw/b8KpP35dE0mE2u1WvZ9//L/Y1H1psW61lMHpAddMF0fCPimegCUI/0+qmUv2nqAtiCrdAqpxSBVJ6Lw9G+TGHRvMgLY6pLaWKjxT+CAynw1IuPnQIgX2Mn3KnoShaCxRlLOdQAtVoAX5FHA7jy0rb/bSKA9GzSbWrA2ohRS8Ut9R5eBZflaXz+XRwCaT0Yy9rFTHet56hS/5Hxbxlrg8JfALTMHQUwHuryWULZIwIHrAJ5kmcPaBa6VSqnOwmSszzsDp93MrLatJ1lloaVGdwTltLZ+X6Wt770JXay5p/ezhoaMZQlM9aCxFt8PGR+gHq8u9Dm2gck8XQN8AADUNdAGWQNmKIUsQb4G2aO6/q0fKDbGqekenuRAJTAGfigAVQew3hZA42BVzYDMB/Ac0MhQHbdlzM11z+0BvKEDjZCbFcggAfXHsqIB1wrOnw7skRrcy/BU34cPpKSLGlBUgIJNOAfme6BTyO9w/larzP7JD/yrzy+Q9ufjlVUzc2/pqDo3VKN7+rwaUq+jqfg2qLgvoKX6LKg9r4BEy4N0cAW6P+Zr3QQJrIwgB9KwGUhvBGowAhABLVu60+JDENO9CGDOY91o2xDaVFt6L8ST40T6jkpwSp7x1CG8caiOwEMd/d0L0K98uAbRWIOMDzjes8lIxlpdNSxV4HiZ+Oo0fcPuYzK2qmsZz52rAapCpsmb6u+GVZ0D904EpZlBA6EdZRpAnKxBPw7IFRPTCPeo39b7g7n6oipIOpjZGHAcJajWWwfwFB60+Z/ofR9BptSDjrW4A2WPhtqT9gzYun1d59NMMyUDX0HLh9CZ2YYW9yaw0hddfXctR/f68k6ZCDPLoAmiN1DntB9o2sGPdC/54ND4ETRLBJAOdLUseAqZnNj0HTU7sJcAZz2u6LvsEfvEZShDtzQDWoCNblX0Xlor/d28oVigBBzRk77eS2UHMLrgcKVd4A7b0XfUHKgtD0Hi6OgOmZKUFBHguucgvcirsU6scst7uwGlqchT19eZ6thopTIMbk8NexCTTo0a5hK6RM434OTZ0N+YJIpbATFvS4F2frSAzgzoVPKXwAa4o58DSgyLdxWQvXUEpHUzNf6nDpTsgNW3DVF5qP6R5RM1GJ9s63McRIBpSPRvtwHrEdwHJRQQtazM1Qh722qUFrE+22gNJVRgcidm+H3QP4o64PgAJ1gBjvL1qTp6QBZtjqeGbroA7N0NPTw7EDlWANRbXcKhaGYt4Ao6jLQ0EEMDQI0cQNPsxA4Iea6OgWst1mzCLnR6jkDWxSoK4q86WjL1oOX7wlldW6NUs0U3euqobMNj7NfU2ViD9lwIuoFPAW5t2QKMVB8OR19tkQPdnwWUBbdWbf0cyJQ4VRC1hjWYtEAKCbBoGejl+ffps3UaYI/BiZiG4NgGaitdKLHvuG0ZazWAYmWl76M1hprirj5bu6ULpoC9mQC/1pk7KicrYheH656D9CKvy9nAwltSeiG0MSbQUuhvAvM1SHlcgO4Ui4EFFcCXG3VQYu6rMVwTtgNwNTlE4UGkmz4Blr/ifkh7guOTHkCb9EwN5Dk49CegYeT4+rubUwDIn+jBMQWh1rMXIUIDxtjsmn7fYKXvIwXOmBSoHe4D3qKYSPVIwqamB9YO0FEURMgHa7djul4wWwlCpkcw96KTZGbxSOeqUlWjdgTUE0Ffo+OH4HBamEa9OdS+9gAQbGYWwEFRAMA2AyAuNcZVfMBdAXN7GqpTfQZoNJagB9gKR3p/a9CF9PQ9rSGD9ylfnYgY9IK2oev0GAIQb66OXifUY2oE3pUPsjONsdqJAGhD6hD9FZCV98GJXULjSwG4KXeqv+GW0JQC+mcuyNVk4Mxvg3RAHeg7DOgAfAi8c+Ba2pnr2CgE9QtoTmrNoInkEZ2/1kQ3yHiqCYTaGQheIOtld5DCOhB40HXPQXqRV71oWXiLmGIIYLXJEsj79hTNHwPuZ7zUg7EW6yatL/T7Zp5ulnWmr7yoPiVjQV1T2B6k09enmnkJQo2KVifQVg7f51X1nrtTjT7HfahRA4/HV9ShE+2lujm6rvKbzPbUGRoA2LcCbLinm2oInjnRzTxMoCwAKuKXn9N5eUVD536jAEoJB9hLAZ8SpepsbEBX5gwMbuNQjaE/BSkJmD9/BQc0dKftwzoIsrb+KbT5eonOVeNU17i/1rmf1KG0bGYhAGdrYHg/CWSFZ1r6nctSy5lRCkzhF+DQD/XwWDvAV1VVSorWEIDRVX2fLtAgJ6BGX7o6L8vWSMbaGXCZ2RUZG2egUZcBuNnXtVr39J6jQPfIEPQeV0DYCvKRFm/oc6xDIDWEBoWIMDRH+rthE/ZwqI73GtbfGPjcfHBeVkCxUEbqjE+oCrECNvGh/q63oRPoL6EiEmvD1Fam63kyVIfaAdzUcusODBJ1TsB1z0F6kZc3W5l/CytucqrGeXel05yfhS4x0IHKZrox3CGUgyq6uCNI86bQFRf1dUEdZ9BxsQL9M9iQEYAb3bPqINV8JZnbOgOaaFDmGdcABL2vWbk1cUY9r5u5qOkm7ULZMpiqwWhvqbHehcan+zd0To+h+/CpQ8V6zCEougFK77OBPls91bnaBv6QJTRxrodqlJKl/u0KZF4yXzM06xPNTPTbIGAJnWgupOzjSVs/tyYxUsW2LUHV3S2BlyrkLrYVtLes+noA1KsAlnZ1/08qgKvxQTut1Gh9HcF+gCB5OVcnrIDsRAsyIMT3kwPOJEw1Q7MFzSEu3N9J85L+BmQ7KxBcVUGrbwVlRr8ALMumrukONA+EHXA6fa279yC7k9OhDGXyZR2yRTW1HVGuG7YA/KIXgvFoQ+n8FAhNwXEsQCdtBffsQWm0aOpeql3W34hAIqaAGDucA8Y00bmqp7c7xcsFBz13XvccpBd55X7D3FsWQjnTxTOHDbk81gPAO1DjmhbqvFy/pot7sqV/G0Ppgrobo7oam3MgUrrb0A256OhCXp4fydiDc7WGJ8EnZOyTl9UAzYa6MzJot63M1Rhubus8339BAfJ5rPNccZ+RsZf29P0eQPt+AZ0UETgCrbZmHF+d6ueuNzUSXg01u7Aeq8G4fKr3/Pz2FRmrPaPEguddjbadC8DaDJxH4RT0BkH6ZXOsZqi/DR2OIxDTrIBC+lqDhZqnWarMg+wnZERGJWux1UEbKin0kHbOqmNx8hRwcVXV4+qf0bVwDsqZVtF9cwR4r06iGaRsqkHTHEDLK3AoWz3o+oMS+wSSBD40jIA+tIXEepzoOt8G52Cjo+s3b+izVefq5GTQTRaA/mERAC5pDvQspa7fFmTMh3WAAED5tQHH97oE++TCmgRh7zbI8RTQRLIFItTPArdcI9f7q44AAxeDkoOvdjGBLsUWSA0VKz0H3MYdTvv8bqRq7zlIL/rajCpWuUWCZLXUVPcN6ESrFLr5khrgF6Ar6Rzgah6KH5OxKrzeGslsnAI+AOrl8za0/iYAjARuj9+Gjpou4CtaDUhNe3rgVaHNdwqM21sBCMSC0+TEwJd0Q//2Ywv93Y0EHAGQxXDKkYxtjvXAOr2kv3E/aB0NO1CnHygmpCTVdF+Nde2qHhL7W9CGvK+/69G6ykDvCUqPM6BYaEOmsx4DcKer73ICc5DWdV9GoI01WKmjAckKMzNLgFx0AlQEBjyTHrDcR9AdtAV0+GkVDvM9nYfOtv7wCgDxa2B6cUCY2gIoaw2BDLSuGaRNaIzwa+rAbQA3WhWIcRPAQ5XAl9YAZvPDRN/xHMgtY1AJ6IOzBokmO0wABqFVfLsOPE2hqwD5SqFrI4OsYVJoFjIc67OlgOvKodxHOoK20v1V7wB+aaXPNm2C0+7pxFSALNcjhxDGCDvmpLc3HZXQrUrXPQfpRV5Hh3sW3qJovarrbqkAqZl/qAYtqml0ArJrFvs6eAzefzdT45WCZtYo1k0VAJPul5z7Whl77D4tk9F1aB+Vsd89/F0ZW691cd93/8tk7PHgq+/qd+/2ggY9+7FUGcGt0C3zybU6ZucWepg84OshvdzRtbGxUoORBFDegNbfKUTWY9DkaoKeWlqDluhSy2QbkKnzgYXXuoBLgGxWGxiyJ0OQdHFBOHPxWzLWSnR/pMBmPZurE7uZamZyVgDmwszy+/U7e0D5sL/WA+V8RddHs6OR/iLTkljT2jJWvwjcPkP9vj5gcirAcr0KQE4GeLzyRJ/tHDgqcUvf3WSsWT2vC2LQflvHWrqOUggEDqHTcDSDdvuW2sDmCISka7rnKiAX5MG+Tga6NmqXdO7Thc5Bs6mB8nwJ2pNAYRA7Glj0HQCMu/reroGHcACyUXasz3sWND7PgNB1ARikOmTbKoWej6sERMYjEJxu3F52y4Ftn657DtKLvC41z1olvrnwTyLtrpif6oGXO1q+GYHUw4kBBmkANdu+boLzbSD5akMqtKcb7UHo3DlIfkfGdiCdvmMqIbJjj+nYjo79SV3AcW1vffRLZOzfF0pQ/5EPfUjGjq+3ZewyiB3HUz0AzQPK2Loagnasn+t09J3HIKNQg3bqVlMdldlEnaFFoIZvN4DS8kDXkJtotmIS6eHkBIrDCkI1wu4aSoDwvD4ouLegcpaazosHmU4zs8lY9+sBYNle4ihlRnBWnS5qPK4OdP5bgJextUbcLhxkLcg++1O1HYuGzvWZAy2tTM8A+AzIRZcDdSzcpgYMzQIyltBt2ISa3RJK3cczIMatq/10fZ2/flvfUQW62Fxg4W7EOvftKvAHjT8pYy1P38dsqY57CF3K3gKkd3qAr4R3mRMvFZSiHMjKJTAHzxa6wXaBQb7lQkMANBgNYdn7qWKa1r7a1OwO4fZsdS+D9MdyxdWZxdWbG6610A15BtqdD5vq6QfgbHSBSbcCGzf01fFZzhWXFAJb71lISWaghbMGDrxfP/w1GXtFRxfohei/0T/+f/n1fx/+lIw9BxIdC+AP6Vf0nV/YUocmelRxXfW5riEP6PMXUNYqp4B8BaqIKmQ6+0T6CaXCZqIO/yjRdToC5PYm9LfXTUsKQQadRhD1GmAVqrnO/Xiu7ygC/bhlokbdSbnGtuzqHr4velTGuuBsANWVnWzo55ou8PiEOgZYeosMytoBBGEzzTR1XNAIrGvJbgJQgdZK3+espqebN9N5JSLRGkjlpBW95/FC11YOh3mt0LVwdqm/u4TfXahPZ+ZqU4C31vvbBSKvEXST9XNd+3FfncTxUn+jgO7UlgG1BqgJrIDjbRd4mnJ4b0PAtgbg8ruwUBeg43YIuN0dKNktO5oRDWE9b3q3H14LWBd03XOQXuRVD3yLg5vT6AGOwIWU7v1dzSA9s6+L4mSq9fxwD3AE4HG3d/UA6I6B/BC4Lpo7UN/eB8JBKMD/ItS3u9V3y9jDTb3nl5/7dhnjS41hAmW863v6HMMpbKoMTqyWGrT/BqRfJl19jn1glh6fqMFdDSB6B4kYp6K/kQBIuw48I1vQ/nw60XdeZEAol+lvlCBr4wJu2IcybTLTw32xbMtYCFpsjbV+3wCAyM/N1RH1gIV3DBgTwruMfdZt6oCu4U5FMwI5OEhrX+/xPjoACr3HY3CgfSLqrAI+aHRd7wXWrw8HfF7oQbsJz5ZONWNW3dd92KnQGoRGFZCJ8aAs4wBDfq+mGbhxFbJFS+AyC9UhbE7VcZyA9lz9QN/v1Y6u6RKA4IShGZJu3SEAmQGsX6yA0HTRlrE64PnKRNfarAsUIZc1C9wg1YYc1imUbnsAfUpH0I1HTPMgL5Xb7e88d6C5A657DtKLvLxibP4t/YfuIVCfA0pzPlajdM7T0sUJRB3Ti8CJs6X12fNk7NXuWXwA0diz0GraUcPS7OuGrF3Q54DmIHt+oE7i/3P0XTKWHkCrMxwcrToIU0Ib6CbU2ueBOrbdkRqlvaaWsC7dD+DGpwHX4T8tYzmAtFcO6Kn1QY/uUI2wC1Tf0DFr1RDy1ZTp2NdnOyraMhYBn1MHDG4OnSg5OD6B6YI5hs6gCAKDTk3XSx3aegceOGvZwzLWrHI6Pr9f53oGJIndY30BORzwQwikkqo6JVVotx+DCG1ZwCkDRIKrHOYV6DFWgPs5OtJ90zkCCACAcw9XIxlb95W3zAO7GLZBJBtK0zPoimtmui5XQEabgHxLNNfPbRy2ZWxvoI7FBsAlooba7Tp0FZvpO3K21G5nDmBbN3QSdqZQLoXy8qqlKbP6EDLXD4FQMJSga11d9zWQb6kYdLHmgEFq69+ufQ2AR3fgyZbZvRLbH8s1H3atWN3cNHUPFhl4B36q2Ziaq8bB39DUapZrtDM4gIzPRBcBOVxJoYbeBZK0elsX90PnvlzGXvnyL9O/dbW13kwP1f/y3P9Pxk6XwOo9BKr8E40wBqVultOeHsiXKroVbjhqWKpzLR/s/SoASy+B5ESq8iiXidphpe+3UQO5hVfqWgM7ajbT70uO1TmIoQPr5Iwa9eAQnFNgBE+g3OwN9KBsw144gRKA0ySnAgwdcPM8BRIb20BA6O3o++1DmcvMLLuqB/IQGICvzYCjDGpsLuyHxql+3wqwZ5nX1s9BJmIB4r7NmuI44q6+4zzW+bo40z2XnYEMck2/LwJNv2AX3slZDUoKYDwHM2bLij5vAHvpUkfX2xT2q5PAeuuqI/Uo6ELmgF9yQq0Q3JhAOTK4JGOnQGeRArP8fechOoXO21Wk62qR6Pw5ADOowBrqVD8lY9UVYGpL0AKF7CyVpScABWmc6Nj2HSLZ8+Reie2P5RpmS1vekoIfuurl7gIuZAqcJwPgsHDAk66SACO0gc8vAGvxHCK5YzhVc+giaGi248v/wjfrb+i3fY5LsSxbW18hY7/+X/6FjBUgXZBOQc4kVIO7C12Azw4UfH3xJTpX5UAzUlnxnIwNL2uZoXlWsVk7LXUOnh5rxDw0tf4XboBOUgs4d6BVd7jWQ2ILeOxiiKxjT+dlPlIOJQcO/A7QC4xiPSScYCRjPvB6TQB7s67o+43bGm0H0Mp+AVizjwB7Z2bWOdLPJoBLigDknQMprA+ElLmvDPmrK/pOzpJkO2CVDFjG85U6suNQF8N9cM56FyEbM7wiYzX/koz521r+WgLJ5HIG4texZmPrkFlzaorxa4X6vDEEhKuq7q+gpXY7AwHrcU0DwrSp9ukqSH7U4bzYjYCMtqGB46zQ73MOgO/LAaqIqf7tRlczSIeOviOD7GJjonM/hGXqz7U814Ln6C/VfqZAwjxuAI1Levt7W8D303XPQXqRV1KtmHNLF1t/X52N/VwPlATwD0FbO+CyVFPY4VSzSgcApktB1+gAOgsefkA9+E1PjcgDj/wZGfvlpz4oY34bqA4CvRcfnL/DtR469Ud1AwE23IK2joVLzdCsDwEg39VD7OljPSQu+Tp/LV8PNs/Vd1m7oof0GdCyug4tqBHQ9p+2dW0sDvUwOQbD4gO5XQHdTK1T4JY5p/fXAwHbmqlR76f6HNW1/m0SqCO1mqu5OgMAz8ugpO6tdV52OsDQXgHjX7IWW94DosjOJRlbjHSdr+s6h2eAqiMMNIvRBt2wJRxarabO13KiB1661O87U+o7CVJd+14BIH73S2WsHULWOwW2ftiH7Yrajmilh+Cwrc/boIaHNgghQ7aTTsd1DealAlxGATmnxLEFpT2QiCkr+n1TOOSzVDOgyXnodoPMSwRl7SzQd34GynhZoNmiQa6BfA3UGMpSndMJiC+vQAg62tfvq7W04291RwNUkt0Tq/1jufaTuYW3IFQX4EmHdT0UdoHS2jE43KB+3K/rZqkAjf0c+Ft2E93MzkAjkbQGYrCXf1HGovs0q9QFwGh7S8uHL+09LmN0zba0A+4nkv9Nxp55VnmVGolGMWsw6lXITtQn4Ozua6ZusaljtbaODUBMdxRrxvEiMCVfz0C8daDfNwEhzh5wadVn0ObbaMvYfAkH4CEIUm3qYTcCcruagdzKSoOF0vR9hNA4MJupI3om1Oi93ADg5j40QEAmNoCmAzOzXk+zhLUTfb4q6KQ1A/3Ow6W+z+FYX167AjhHEPJNM93X7Q0dm9fhOaCZYwpCtysIDnpACjkHcH4TtFpaCxDnPQf7FZzqzQDwVWd0HTUreoDGPQ1Uao7+RghRGGCRbQ5zv5rqXNWXuq+hCm3Zdb2/yyPdN7FBcAWl1uqmvqMwAnsCHYmtQrP31R1dpz3AieWgZ7SCoPMQ2FkjkJyqXAK+tAlQRfi3ZytLH8BpcN1zkF7k1dyfW3RLh4F7VhdK4elGu9HUsRi4JOxYnY16DVLigMTNTA8yL1fvfwmg1hnQBjw3BQbV39KFvLEeyVgaavYkrb1fxg6hXTyFDXnfVKN6v6slu2ugQ9TdBTVvYNK9L1OCyhycoQWUKEoAllZHUObpA85pRx2LEbyjy2q7bOMlen/V2UjG1u22jB2MrsiYB4D2RaTObmY6dmOs5SEPMENBXddkCE5sfAqipckrZeyxmgYBXa322eQCgLmBSLUPZRAzswPoSqwDiB+Sa2ZAA1EJNSjpQLdmCS3feaY/kgIQP4LmENISOwUx3Uamjl6v0EaLWghyJi3NhM1B6sUCfbaKp3bRcaHjr6HOxhpYpDMXutPW6rwEPjQt9KGjLtD14Wa6r11oaAkqaqN3oGe+DpicM5H+xgJ4rpYAmk9WAHLfULtTByzgXqZ/24USZa0JhK0lZPQXoHnn6/OehoBL9KGzsgtyVXfgSYvyHgbpj+V66aXzFt9SYktg4usdXSinV3RRPJ/qoRpU9YA/OQF8ELSBpo5u+lNiWoUIowZCtx3TlOlkpQb8ylrLfXsLjax7INS4qY9mxUqfYw78NxYSeFg/Fzg69ykgAD91op/bgOxOBlnD4UAPuyjVjUuY6sVY73k9hsOupcbh6ACYanOdv0eWei8XLiorejHTg/wUSh7n1xqVP7YLTM4TwBHUQZ0eDrGZAagXOIrakJ298ZA63l6gmaY1ZCbOAUmnmZkbqlM4n6nznQAmal3qvAZAtrkABfOsCwLRwDmVJcCxE+redAF7VoFstg9kivO6kqmuoXTugXwGJJ8sgPRJAt24zctwwANVRw7l/vWzum+yJuxXOB1PAmg1n6pdnIOKgWtKsQCcq1Z6es/XFvC7QLvgXNI9UoQ69x1H7zmMwREFrqUHIZD3HbXl1Y7eSwJlvBnQx/gV/b5ZT5320ad0AmdNtZX1+263qe70noP0x3K1N+dWvSW9vfQVeFg3NZovPasL/lFPI7SjpXZILU81k5ODt16ZaLQYXRjJ2OlaU+zpUqNKki6xGOrR0G47AjzKZgs0gmDdNgF8uV7osx3EuvkaO20ZI3jARqmlmiGoUfuOfq4EKYQa4D8mAIzueGqArsZqHPZGcKBCR+KFUv92tw4RX0dxXe5cjU0y0OdogdTFKtJD8ShTJ6eoqgPyqcUV/V0ACXslZDWAmTtqqWGu+nrgVyBz0gIQ+XgBMipm1oTmhqAKXGHgsAU14NuAIGIHzsU8gg7Opc7/BNTPG3Uoj0bAuwW4ySLVdeSvNUvoevq5DByuGtAfJAFghsZqFFZtyOotwdE+go6/bV1be56+ywnoPQbAu9UH3FQJtBLuNdCjiyHDBXQWwJJgbWDrTkkb5KUv0d/o6zw3FlDWDsGZ3AT+MPhcqcvZUlP76cS6hhxPbVvnir7f89s6McdrXePt0e3e+BQY1um65yC9yKvVmFvtFuBeIwKYPgBTFzFwWAC/hHnq/TsbunGjRH9jCE5TMgAV5/xj+n25diUVYPhmJSw0MKRnQj18S2CqDXY0PZ9MdRP4EN6dga6kxXNQogSwpAtYoCaUQTxXMyVupPe3gMOpBdRDUyi/vKTUZ9v5Cp2XRV/n9BLU7v2z+sOLhZYtJ66G9E6hGZ/eCAD319Won27r+3geZBQWfTWuaUeDip0z6hgM23ovJ5kexmtgaO5CpiPJtHS7tWAtthQOQS+l7kD9zv4YtMQiwD9ByW9W1WxYtdC1Wk3h+05AsR3A12vI0F7PRjI2AobyTcAgbj+g69IznYPBVN9dDDQQ/ksBL9MHgH1D788f6QGaD/U0T7qv1u9zdc/1runvEpP+qq2/sT3UNTQEId7ggbZ+DpjvvUv6ORf0LVshYNHA0bNC9+uZJWSpTtS5Ou5pxiyvQyC/BKJiCE77gdbJqZDQ9CCw3bh9Tn2oNtB1z0F6kddW8KjVw5uGe7nWN0YMtNTuCJlV27mqB/d1D4T2Vrr5AmBQdkGmJIJOjxzq/ouGGrSWo5vZdYC3KNTPbUCn0ikYeg+ics/T8kbkgd5Wpo5jWagRdoHjJVrrpq85UEKNRjJWgXLQGuwPaTutwPm7AZIzyUyNV3hOcVMhZAPWM83ubM7UGRoA23EfwJeDQJ/j2lANZAHcNzvgSC093SBrENitRPq7Y+At8iq6nk+PdF96AHI/grjFzKxd1+xup6Upn6sL9YKJB60FenGLGORH9vQ3DqBj9fpaW+FXkIqoHAFTuA8EfBXo5gMZm8lIdfQOQSrnQgUcKWg/Xz2iNjD4mL67VQeCnOUV/du6fq5oakY13VOnfwodkt0WkB+6iudxQKh1CXxT94302UYTDV7CUIOc2kCdPxecxKkDJXvgzEhGejb8DsTEdcDU1oEoMhxDssBty9iwrfdyDrBPJLfkAPP96vD2+5vdyyD98VyTwdjWtwCLQ+j+yqDuHx6pkauBTlIBuAS/owejzSCSq2m048BidBqvkLEcotkLIEUxB8dnUdHf6OZqCFKgwN8F/NJBomXL7Q1wQFyg2Xd0Xkqg4y9B2HMX8EYuqJwnPchsAD9PdaLPewrftwU0BL1AN/06VGM9PwBGZZAGWEPZx0x1xPxMy7lDyBAeTMHhqup7c0HpfbQATE3clrGkomvDUmKQ1oMjuwb8RD3Npl4r9V6Ikd7MrAZyKFcuq0ldAC3C1lQdGg86906hi62+o/f9HLAknoDcTQ0kRA6gJNkYqbPmFOp4Og9CQAOg29ZCHd4ZAPC8hwAPOQcBcBB+LRJ1LE7A0V6egFRTCN2aQE1QhZb+BHR2INFknTPqhFWgaWGa6F6qLnWtJbCF+0DjMgNs68FY94gLwYvb1WDSW+n3nU1B6xCkbjyQLlrEei9bS3WkZqDtFhZqt2sggnwjvr1KMnMgyQDXPQfpRV6X86VVb8HmnM4BNAopyRA6FXJY8Oc60M46UyMy7+qmykLdLKuxLtBKrE6dkyhxYgYAu7qnnkB3pM8734X2UyA/gz1qvqdGOANQerX+chlbrPVvXSCUbEL0NN0AYG+o0Sd0whtkv+1qTQfPDdU4XK5B1gtqdt2mOiCLY/2+8VqzbZWWGv/DTHXE9kCqxQUHKa6rKUkgmxpNAGPigGEGYsztI/3dZVsPxbqrjl4Imb/A03mug+ZdGzIdZmapq4fbxY6umaMxkG22dW9WUz3MayAXsk51rl8S67y+Bt7JZVMncwLYLtfV9z7p6zs5eAqkULZ1vqa52qcFsNe/BrpsXVfLyxbrc/iwv5wpZMIhs76GjrA1dHqFsG8yCByXgCNMjkGLERpVrAaB8lzvpQKA8RgCLsvVzloLSHChzb9IdGwNWdvlZf2+q8B8H8L9uYnCFg5Bo86DTuMSMsP1pTZVhHu3v/Nw8TnSwndc9xykF3lNB7uWL2++zAKUjudNXcgz0FjKBnq45SDu5wDTagmstAYRXx3EG6l0EU5B+yfQRZVeBHKxjkYYeaSRa7zShdxpKaDQXarxPwAgngWa7ehAZOiOdA6CBjh/qTqT81IP1e0LahyePtGxrbHOXxI+ImN+qp+rB/o+gKHfiqYa+qVzRcbiSA1uu6LR2A5wZJkPJdlZW8YiX2+w9zB0JEFHSbmp76gKZR8PeJXiY8XP1c/pHiygJfo40L11AsBtM7N6ruaz0hzpPUIGqjXTPQcVWKsAP9ewAzpfhYKR44U6868CTMl+E7As5VMyVs5A+BVKbKM+HLRNtW1rJaC3BRD4re7XsWFf1+/GHLpna2oD0zpoxU3AtlWAUBI4drZr+rf7QLDoQIC5C6SQ3kzXpX9e174LWe9hpn/bgXJumescLBIilARW6ing50D8dQkEqxlglbyH9V52C3Uml9BZ3XD1d6eQJQ3D29f4HKAXdN1zkF7klUUH5lduOjuFAUkaGFIXcAkp6Cm5M90EfgO0uirqrdeBG8UBRtYc6Np3eurV+2DCZ2DQvA60CINKblABYUXw7AsHSnEbwLWiPqdFS92k7S8CYC8EcseJZl6qC3XMTgHnUIf0/PmL4AwBcWec6GFe6ennDqGsmk51/T3u6VzlWwr+j0Djrw1ikPkDQHUAmKuTIy0P7UyAffosyOTA4RT40FGXqENd3VJDf0y6a6bPtpNp6cZd6TowM5uACPXOUu/x7Bkg5Sv0sOxCh9T1hu7X3kr30gQcqRLwMhNgHo9NA5rFTMsUYzjM29BR13hY53Uz0EP6qK14r1lD92Z6Q53gSVXXzMzXQ/URkBqyVNdH5qptOwHqhHQbcESA4Y+AZHJc6LwcXAJcF5BM9oDCoAb8S41EnUQPsu3TBTT61CAzFIFCQ6BjJZB5bQBbRAABAABJREFUbgIBbLsFxI5XQTPU1XuJQ7W9JWTREkgqHN8BUVgCZIGuew7Si7zC8KKFt4C058C624g1s+FN9HPbDtSPwRDUmpAeXEGmpE3tpwos7bU10l+aLuQ5yHb0NtoyVs2A4KSqn2vFQJ8PQLy8p8+xBcKURpwnVQUeTxIACIF3tT0YyVgV0rzXGiAHU4WINAD9KCDzCxdqgObHemDV1krS1ysU51C9BBEflBmqkNoPyURABrPdUGM4BTmNbk/nbwiZHCd7TMaiQtdfFkE50tdsSg/uZXKseysDtuhODCyTZtaZgyCpB+XbRA/p6YOajfkEYN7qh/p9MbAWj8CJ8IG2oXoEzgG0modNcAp1GVkT+JxyIFOcQYbW3b0kYxdL0CG8AOXlrtrKi1uKpWwAUeR0rL/7O5k6axFQiQAHqfWBq2ozBZsFuMkB2Nn1WX22Lkh0JNC4Ma3rPly6OrZzCUpxZVuGmmt9tglkbasTtYF9IBst1pB9BhLhMtEArp4BJUIfoBvQRFLecT6WkKCg656D9CKvURHZ6pYutUaoKWw/VGPoV0FNGcpuDQC/LhYjGUtzXXikVxRvA8B7qQtqDeBQt6ufG411CQUBtNEugBOnC51KkMlxoA00BdmJ0DSaqEME6S0A0+CrYYbMOcTaZt2xGtd5B8D6pRqlK+B0ppkalo2uAlV3N9UodaB1PQKD5pquyRmYgxtzkKsA5+oAMkh1wIQ8A2WGBmRd3UI7oQa5/m010XWfgUI69azMQfvMO9QMRmiQmjSzOQwHK9D5A+BsnwhHhzp2AhphBYCWnQXgb7b0nXgN6P4ClvYQyijnIQgrgNbAurr2l5keZAG09PcA02hVEMT9lD7vyTO6l/ZqwPHU0f21bugh3ct0XobVkYzVs7aMBcCkHZrupR343QGUX+cgxxHt6FrbgXXVBRLHAPZNGirutASogNV17iMfMmYpBAZjdbxdKO0Vvs7LHJzxRltteeiBDdy83XbMZ+Dtw3XPQXqRV9ycWFy7+UI8OOHDumZUUmj9z0FEcWZqHLbaUGcGsFo1BZAccBmNm7ohnRjwI6HeS7WuqdAaZGiWxFQ7BqK4mh76EUQdK8AbzAEfsMygRAmhcAjZgPmmZicSANwvAfi6XOj3LdpqmC1TR6UJ3Thhobia8Vy159JCjdcGlGRT0ICaAOniOgI2XBAeHg3UeVll6uQYzLMzhvJwS6P3+lk1V7VIDeSRqQPnQ1wQwevw6romh4BFMzPbgBLHuqVr5vhU12/9shr7kxK6EufQvQjYjmZTnaYFODlOqWurAt1kWVXnetQEBxWOkOxAJ5a+rw52YhxD5soB+o5XgUxJCSSfpT7c6ATs0xQEmHeAT2cPghdPHbODNWTMFprNboIclAHPlXOs9rMBe31+Xsegp8c2OnombQOY+/KOrtMllKtLyNTtQrCQLpX6o+oBHQ3gcUeZOk3DLZ2rXQDzucvb78UFZ5+uew7Si7zOxGetGt/cmN5QX9gMMjRFrNkO71AXQK2tKdhwrh5ycALq1pFmDnYXalwfqagh6EPUHNQuyVj9UO9vBsK08YameZOBOhbruS7c/rY+Wwqt8KGjczoN9eAYBCCiCo1K4VLvuXsIIorQsXK6C0KXLoCvUwDSdyGbVeghezLTw3wAGaQSMlJQybSkr4bvcP3bMjYCh9Vp6/eVwNe1hPIGJJrssWSkg3taOhtuKgtvh/TGIAu53NDfmDbgcAL8h5nZCN77bKH3eARA0mMAGVdBKDcC4dcEKIqP+/q56lTXW7etnxtDN995aM28Dpg8d1cP+DmA2psz3eurC9CJmqvzHQNeaw26hjVw3OubIGeUAX9VrrZjPge5kAKyIiAeXgAmjFAv1ydA9zK8ImN+6ytlbFmqwzU81bnqQYbQvabr76in89cFhuwWwAKGoIpQgjbeHAyFV0LQXjwsY7Wq2rawps97APFM7Q6tuKUHDJNw3ZWD1IVSyH/tchzHfvM3f9MuXlTx0C+0ay/cssotnEFxoMarEUJXQqyLuwjUay5v6IFcQKtkCVFCfalaU0dQbplCua8G+lgnoB5/cD+0kK4g2jnQjrXS143R8XST7n9MMxF9YIcNAFA8TvTZCmD1XgGXSW8Khh6aBXemQNgI5JvBWrdbk0qK4DjOuurkdEDKYxFoZDhKgMkZMHCR6W88fVnnNKpq2aIK5UNojrS8Ae/N1/u7Otf721oBoB06fuhWDJzT6yCjUlI5raDCqtmz13Q/nEwVZ7YHwO0UsiIJSG+0oHS56QBOB7jHvFR/IwQsy6uBB2nW0XnYAAHrNTgvO9vQcdkCDbgBZLgS/b7Y1W68NWRelltA7DoBodYDIMtd69wfrPRemmud+8m+Oly+r4HZOAddPdhz7briDStTEH6OAZcIzSGTpZ41WU8dhG6igWMKDQrPGGgTnlG7nfn63urgtGcgEeOfBWxWqcLUxUhtbw0wYbtnbn9vs+gPEaQ9Go3s3e9+t7VagLi/4yrL0r7zO7/T1uu7u4HP92tZDq0sb0adK0+jwE9C9JokGgGtgfOkexFKZ/Da3LVGNlVQRL7U1HeYu7pAZyAX4PTUKHWBy6ixqwdZBlwXg6UapcMYZDs6GmVljjoH65nenzdUB6m6VCcROn/tImjANaBkN3C1X/lkoOugB513IVAxZIWCghd7aqhKwFcFa5BbAB92P1WDNs10nsfQAeNUdF42EwBkAsdLpa3r7zBXBxjoa6zj6eEUrwE1u1SgegzMufMGkNZ9AsQ0oQPLzGwVaLlguQBG5qoebpWFOp4psLk7ICC670FZG/bwWRAVroO2zTUISmyukcC5XSjBNiH1Wqq2I1GYVBrqzDdAJ216DdTZE91L830F9jahjN+HY+wEMn/HAFBuj/R9HCXahDPK1JmsOYAJXY9kLE/U8VlAt+DsWO3dzv1qn866yg+XAhzhOgCXD3x1roJtXWsuZcJSdRJbF6FTttbW7wN5KW/6CRnzG2pnDRjpTxe3O/xzwPbRddcltte97nW2tcWijXde3/Vd33W3X/t5fw3diUXuzcmubwPwEzzpNvBV1AAbM3d0zqvrK/q3NYhIF2pwhyPgSwFsQb0JSoPAQwNNBNY/UedlI9ZDtQ/K58d93UCtCbSGxno4EdDEB7bpSqKbbxnqHDwLGlruSI3wvAVivwQ2vaLP8TyU4qzUaDsK1QnLJvocewCWbECUVfXB4E7UkW+HwJC7q4Y+WAFe46zOQQ1IP08HkHFYaPbTh7Lq1NGMTVHX9ecDls/mGqQkUB5ajQCkY2YLCEA8UByvQVfd2lXD3pxDIADZxHMdvcftCEg5XTXv/To8C2QJCmgEuQLZjmICPEi+HtKtDV2r23M94H93DPw8E/3dNNSDOzmE/ZoD0eFA7c7eDrCdH6s9nnR0bQXHIMQL4tJxphWVIlCbGjT1DNkBioUo0nXgjtWJbYANvA6yTDkoEZwBrc3VXO/ZD9v6fXB/c1fPpBPY/42+rpc6BE11CE7nE90zz98RVKxIFR2uu3KQioLFGj/XNYWSwxfqtVOa3RqoJQWIXQJ1/AyE18KZGs3Gph4AFXhtPoGHu9CGvNYDful+SsYOm3rodyGrRP096RT0gIBzJltBW3mukaYH6vHRgR46HojGLgOQFTmG9QwkiVCZshuAAHwIgpHaRN9vDvpMLeA88qBeugRBVwcc6rM1cMwm8GxAFOetdV5uAGg52tdul81cHflJHzJSUFoKoaQQJDoHz3ZAXmZXtefqTS0BXO5DNuXoioxVtvQd+V1da2ZmDmQJmmtgHneAlTrSv63OIBvb0XWUdjR4GYAzlCVqT2Kg/jha6p671GzLWL8DGa6OzuudyulmZlXAvIzg0E/BtpUAlq4vdM1ksH6rk9+UsRs7UA7q62G+R8iSK/psXSg9+m2QTOroPDe6xKuk5+cJBC9h0ZaxXl2/7zKQOLaWQGHQUBvtTHUPV1Ndf1FF5+BgoO8oGWoWeA7Z5wNg8G6WOvfeUtfGtRI06ia3/24CPFB03QNpv+grN7ultbIJzRXZWjdk67p6sIuLbRmL1jBW6o/kIGqZTyBL1VNvvQlGsw3pVgfApqR/BkLx9jSUAAOarCP9vmfmyvdTGWopwy01I9AJ1ctZ7+qmSur6jjZ1f9vDJ/q7ZgBAB9r+uQuilvDeBrne37Sic99NoS0cyDwXsM0nx5r9iM/oPbcaIOkAgpjZNpQyT0CZHbAPnqPO0CrRuQog2RZDdic6VmO9BAqNylmdg21XyyXTHeZBqk51bZWBzvX9oM5eb6jTdUWXry1N12Uz1jXoD4C5eVvfXXWk7+TSgzpfMwD7flmsQZOb6ma/AgSBrQfAdpQgYH0CIrkAXncAePwIsKA/C8DySwONaC719ZD+FHAZOSBZs5lCoNfV9dYDgcYjIDXMNnVd9SB9EoDCQDIGhwt4rgqiuNhv628Adqzc1TkNAB/oO9DdG+he8qpqaHeg+7AELO9sob/bAoLknTtwBkv/DxGkfef10z/90/bP//k/t8uXL9uv/uqv2sWLF+3d73633XffffaN3/iNf5Cv/Ly9/GnbguLmS5q39TPNfRBCvA8ckJoePEWqm8oHfok5MUbXNRJJAhBbPIBuqDqkiIkkMdOodwBcN7H/cRlLV2AMC+AjcS/JWPQolJJKiLKgdbUH8ghdyJKWS1CPjzU7cQqyHcsregACHtvGAB4GUnTze/p9JDXSgO6jyQqcYui8mcBBtK7pOuiCRlUVcMyjTV1rAXTAhQC4N1Cdb2b6HGGph1gGUfRFEPvM51CigHK4D4BxM7McEksRrMERkIaGgA/yXd0PG7BqYgCV9V4B7OvkuF/QKHwHyo/XYz2MFtBR6y2+SMbqdd0jS8jgWU8DpJOZOhZrKMWP1vpsow19T9WFHubpQO1iVNPfcACoXgch3gyCyfVYnYMAmOpjcCbd6w/ImN/V7+sBBccaNBu9OpAzAqWEuwOiwCDpRDDHTdD9C7dBVihVMs9+oevAAZJOeG1WiXX+diFYG+/cXonJgQKDrhfsIL3nPe+xf/AP/oF9z/d8j/3QD/3QZ8HY7Xbb3v3ud/+pc5DS831zb2ER9kd6ah1e1ENmtqebKpjqBqqHajS34DzZWelh/nSsJ20VuuLipUaVyyPAwTTg0Er02VqVkYyNh3rwxJk+SASb3gccTBNI9VwAFDd9NQSzEMotpnNQQjS2qivgdjmHrsI6ZFnaei/pGgwpiDw2QTFhAXIG3hAYwUM9JBIAZO+CoxKR6m4TMlzxSMY2oGuv0tVosQXZxU3IKvVXYHChfFC0wXOZqWPQOR7JmOvq+6AsmpnZwNd3XHHV2UiAeyiEdvaXtnVvdgIFS+em6yiHYrcHa7prpCsHBLVt/dwInMz9RLGAbkU5u2pQhj4FBfjJOZ0DZw8Au1B2613WbNYxHJYBEPcuW2qfCL806Y5kbOGBXQTHpwDy2HgCXHUlaGO2dJ5XgJFcwdLf3APx27pmciau/vFFUECINyBbnKtDkwPe7QScoR7gFwNw4GytDlwFbP4McKzVOzK7zuzuXJ8X7CD92I/9mP3v//v/bn/pL/0l+yf/5J98dvzVr361veUtb3mhX/d5fxV7gRW1W17IUEFjbktfdqOixqEExrYctLVmDVCobuvhsT3Vg5soAq5C5sBAxwkqhVYDLpjSdOOGIMBKNRN/C4QkgVBulaqRK3pqgKZ9tcxdIGfMN4meHjASU3U22tDPXkDkD13NyPRdA7LRKmiYbUA3UwrsyS8DRuDuGQC+j9VALgaqHxcA3sWF8sbEU6xCBnIBcUXnYA2kmm4AWB5wYpswf82WvqMTV/+2oj9hGWiumZmFe7pH/LOgsRjqb7tQ0ikh6593dG92QO8iN828+sbYqTsvSFiaC3xaS+gwXUOmKQHG6Nr9uvi34JfTAYjLvgRqqzN9J4eXAPgO/mAB/R1deO8rEJxtggMc9qGjFvCfJchGrcF+Lvs6pxVwbP1ddVi3R20Zq7VGMpaWgOEs1KkDFSBzPqk41tzR97aoa3Bf671Kv3BHM44JlNgrkLl2gPTTqeizNe/QmfOB5JWuF+wgXb582b74i79YxqMosvn87up6X0hXvVjarZ248w6QAcL+9mHqtzf18D3zRbpzSRB3cKAr2QWn5PpYo97INPKq19SrP/+gjrVDja73BxphjOb6HO0alGocaMfe1bm6tKHPVia6wXugMv9spnOwsafRSQHlm8KHlmPozOgO9IDpBfq8GWDCAsAWZTlojkEL+CY4Gw4A0AeX1YicASO8No00E7AtK4O8e0UP7QbMaQfKm0NHwdJNYCxPt/R9dD4JApaBrt1NT9f9BrTa+3Mmijw4q4fls1U9LKtDzZo96uozb0G2+GSoUclV6Oq82AB9tkCDtXGg+2vitmUsBa4bfSNmAYi4TGeAr4T4aLKGDq6K1mr9XN97ew40JKD2HoP4bbWnQo4uZLPdDEhcoYRt54HOAlikJwv1zA5BvMiDjCXg2c2eg0B0rUHJEKQ31iRDBRWH+Q1QfADAeAuakyKQtcmOgF3/OZAu6QA+EDCmIyB2jRu6/2P/9nvxwz/kNv/PXPfdd5999KMfFRLIX/iFX7BHH330hX7d5/3luB1zbolEzwRw4CUQZfnQZrjS1/HcVSiJgfxApf1JGVv7GrHsrECDa0O9+vs042zBKRwUVTWkW1ACeABAd/Mb+n1wRliyCdYVaANuDHRT9Qd6f2FbjdIYOgi3K3qATqEc0ZwCAaSvJZ1FRZ2I05VuZiBPtoSMXF+L8iStMmlekbH7mmqEbwAz97yujtQmyIVswosbpxCBtyErV4eIGfSZXg4K3Nem+rxxT393E4zmCg6JAk6iIxD7NDPLgCn8fiCuDLoK/D6CjqthrtiTGKQUqnCoLsFRaUMWcwWYxg0ot9ZrOoc5gIJjcCibgAEL4f58EGoNTPnSpgU4Q+f0Ob7sRJ+3uAFSI00FuZ94GiA1IHEImGo7Wej72D+F1v+K7tcUVAwc0AbpjfVmbkCm7hpQf7gVXb9zwCB2J3o2BKZrN2zqejkdw99e1YCwBwDqJUirLBeQgfch++yrHcugzX9cv32dLmZ/RBmkv//3/769+c1vttVqZWVZ2kc+8hH7P/6P/8OefPJJ+/Ef//EX+nWf99dufmrVW0Q0q7CBKlB+yFKQ2TjSz7VcOBiBbG+SKRV9EKi3HgMRWwJlntEQFNt3oEOqos+Rj9UQuIDibZ9qJuc5kAsg1ZzBDAwQ4I2A786yQA/9VkcN5GiuGb3lUo1SDzA5B4EatATwX40ldImAdloNGIvTps6fbxodn12qIzA7hbLbJT10Hh6DcQUHOKwDjmgJ73KpzzHw9HkdwC+NJ3p/60SNZg8ciOOV5j9iyPYm0GnUrigQ2cys4ipxXQldk3NfnyWu6iHTM80wzAEHY5DFnCS6XxcgIbIAwHkD2OaXUNZOoay1hsPXC3RNF/QcuR7mR7OR3p8HrPQhEEACGeUa8l4JkBoG0PF7GQSxu5fB7kCnl9PUtX8KYsvpDaC9AJLEeUP38AbQmtSa+i6PqxqYFUt9lyPIqDY2FVNbH+tvzKCzZGMOzulEv28x0/PCAVjKbh8oKgCQm660BFi/o6PO/aNq8/+2b/s2i+PY3va2t9lisbA3vOENdubMGftf/pf/xV73ute90K/7vL9G4YYlt4CIp8SGfQZafICoajjXQ2a7qid8A7S6lokusjp0TeQNNQRtANguT/Re9ma6mXeAqba1UOMwg01wBK31tQpQE1CbL3AFzdbgSoFgb5FfkbFTRyPXoAIcQOcgsrmm76OEiNnbBkHXQ/3cADIWD2Rq5IKJHorTSAGywY4+xw6UMicgP3KYKSg9yC7JmDNTp3Mcq9PpAudO40ANX78NCuSAE7kEWnanIBGxfQpBiqPliCKFrFKuBtfM7Easc1itKEdUNVEpijVE0hnQd3hQkjRoqqhB2nG2UOegEQLL8FjHVg2g/gAQr1soYeN8qnNN4PeZp47KoqprZv8GZBgrahMyEMROoIMzXKrtmAN+sWH6t4saUFIAs3zFg1JrDplIoDrIqMUdIApLCFQSCA6GIyCeBMxaExjjs2ehKQXIaIu1Ohz74KyFNQBaa8xp9Zo+7zTW50iB93QX4CGTO+AIDmRw6XpBDlKe5/a+973P/vyf//P2zd/8zbZYLGw2m901w/YX4hX6kUW31DcLSF2OQKDvgtpMazpQXxqrcTgGKnXCL9gFALBOAJAdA5gT8ssNAG4uYGPkAEbsAT/P8QQ2ZKpGczbVgyyI2jLWjPX7iOisbKjTecbUIUwKyGIsAJdU1/dRyaAjEcoRdj9kFyDyz8eQEgYwcjtUR3QAJbvcGclYBTpqfKBxsC7IXwC4tg2ZhCVQIqw2IaIH9l/rQzu1B7pa0SUZu9LUjEhrCMSnIAqcQonHzGwHOndWM33HWa7PDMT3Bn9qBWC7jnd0rjdP1AafgFBzttYM13nQrisXWpqeZuo8NrZJOgYCwqnO/5ava6sCeKjrAHwfQoa2XujeXNMRBxn9ItDJn82hqxMwXJbpGvSAq2oR6bvMEpBHWt+d4HkPujUX4By8aqEBUgKZ8PFUs89hoWdIDPxGmxWdl/5Q5z4AHOFeCNkcwnpBUNcOQSYLpL3md9jjBWDY6HpBDpLv+/Yd3/Ed9slPfhrvUq1WrVqlttE/PdfDm77Vb+GAcKCrA/YySjO4MdROobNtB1K6fQC6RqDOXo9BORk0c3wg/kqgVDADMrU5MDwD353VK2o0r4XQvt9QkCtl7J0FGBvQeypzPZ2oM5CM4dYpQFVd/b4FRJ8riIDyhc5pHcDSxRqA9BB5DbvAjQLtURmUVV1oCy8iwO5AdqwWAZUFLIMI2msrAMgM2nqYrCBz0jA1/itvJGN1ALlm4HAV1DH1PCsDHILjGYNYaJABt08MmK2hjtVbegCUh1DW9hQrUm3ouvQOYS1AViQApz+dAaHkvu6bM2QnYH+tprqm/YV+rr6h878GyodGS9fHAWjwlaAIsAb26vNrtW1TwMG06urQuCt9H3XQ6aw31clJWtBsMtI1NI/02c5luh8mEESM6uoM+Q0FnoYwf9X5SH8DSvF1cC8KCJAerUBndV/X/boG+wM6Uf2Kzr0f3b4v/eKPqMT2ZV/2ZfZbv/VbAtL+03pFjcCiW8pWCXRcRF1Ik7f14FmDBEYcair0akc36bmZLhQPnOQxRErLEal+6wLy4QtLYGndHetzZKEar4EHv1GoISgcHat1oTUc8C2tUCPrmatzb22NmGuQvXOhzJNDt0s31XtZ5tBxUYd7GWqkPvWBWPCCGoxdOMtTwAw06uroFTAvSygFlcdAzggt28VKnZw+ZOq2CmgfB/K9R1Y6z9dG+n1TCCCyrtqrTqSGdPIRGbKyRZoTZq0qyNiAxmJR6Oe8gR4oW57u4UWq72kbNNHmcVvGptB9553Vd+yPQJcPzo9grs9RJSB4ABxAl4HVG0pEKxDEjcYa5GRtvcE+SDpVdoCks9D5qy5AuBgEpyFesHJPnzev6nMEkWbW+gC/iHKQBhoCGUOuQdiR6T0frgC4Heqa7gz0fQAFlQWACt28CLAKCF4CXzOODoD1N7pQO4POYL+i5w/UUizKb//bNUgt0fWCHaTv/M7vtO/7vu+zGzdu2Jd8yZdYrXb7C3nFK5Qp8wv5yuLYsupNAzN3NCKoLtUQ50e6wTuOLgCQU7JzACh0ACSbQNltDViRNXTj9Nsa3bm5Lm4kWATelyXIHhS+ZoYeCXUOSugSKWAO+sAcnHfV8XETEOcdqcHIgTI2mbZl7BSYw+tQGnFmOn8jGIt8/Y02kFF6x1p6vFoBx3ush0QBRIWVUucvBSK2Kujl1eqAkQjUOX10DnQAgFUaT1St/WpFD2P/Ph3rLIEnbKlyNcMJgMhBIiKGjjozs0PotCkAn1EFkPzY030YrvR+tg/1MJ9ASdIZ6b3s1jQKX9wY6d+aOgew1W0N2MIQbMwISvHuhq6ZUwL7j+EATXSdd8ARJQb1SgIZpBHgF32oeXqQzQbST/OhRByN9GOhHubrfX1vWyN93oMmpCshWIsW+j4eBFmNY0iE16ALuJ1CxSFUt6FFPA6uzv2cMv8p6JeeVefqNAGm9Ine3yHgl+LK7TjCDIIMupyyLKH48bkv1wXNH8exsizNcZzPMmt/oV+TycRarZb95uX3W6N504tZT0fy2aICHQgZvCAgdlxe1EWbjtVhCODwGDR0ge4AgPIQpAuWOURePowFwEcEEh0lAJ4N9KjOzgHnNNPnTaHMUwA+yMZAQgat8CtXS0RLKG+AHJ2t9JattlKH9XSlG7fu6+9GQLDm9NVTTqGLZVo+pfeSajfeHIzmDMpQ9REIKPeAuwU4rXYd0IUCPboNyBouH4UM4Rx04UoVWk4LbZdfLUC4uQVBAGg7ZdTbbWbz0UgH68CqDg6004Cxa7qX4khfSg9I+cZtfU+zXXi+U53rFIKNFZScOlCK80ea4R4Een+VOsgAmWq7Ef1JCWzuNV/vzweA/SQATCM4cLWp2uMk1OdwgN/IK0Y6BnQvs7nu68ZSg4gSAMTXN6BjDaBeR6AVVwPweg809IqJBhGrQPfSmQ19DjeD/eWBQwiUN/M1yLfA57wtLQtG19W5ugawlDK+fV8v5yv73m98p43HY2sC5clnrj8QUeS96+bVclbWuEUWYQKQrG1oo623QHjvnG6MpY1k7EECc8f6wxetLWNZR7+PcByZ6f3VIXm5ApbhzFUQ9KAKwGNI1S5q+rtHAHLvHoIMSKKZuuCsouFnFWiPByfHBWZZFyQOWiN9NqJMhWYXa7gayk3BWI+gxu/76iQ6DXWGZsu2jI1XwGkDpaRmT+fKBdLKIlZTsgZ9lBTwH5dB2HfrUI3mSReyi0tdB84JgLPa6pxmqR7Q1tBTZwLt42ZmQQskRIDTKS/UYHtDAOx6CuwtoavzqKr3swsl8doz+swelOJmzZGMxbCmvRvQNVVXMkrvnO7rOjzHFSjBOuCgbre0w7Q60XUJFSKbhmp70wnoLuawlwCgnIIuXA6akl7ZlrHIUwMwWen9eZDJ3T7WdbkAUeudBETBZ2qN8o6OFU111jY8dURHB4BFC4H5OoLgHniLYthfnqNn0mihvxu4On81sOXrO8mQV8Qfr9cLdpCuXr1qjz/+uPl3APHyPLcPfehDf+qwSRudl1izedMQbYLshBl1+elbrEM6uA7dWlSSMIjCKd0RmALxArgXMyAQAmKyHIQuh1UocYAT1pvpxuiO4KA9B51BW3qA1kaKVSARs941MEoArs93ADvi6lgOJcosVicHqqXmJ9BCvq176KyjxuYIup7AttoIEmtVANyGwLK+LPSuAb5gc2BUL6HkGUI5ophqFPhsDppNfT0kMmCQtoegbAGt7PMWkJcCr9J2yRGmm8MhU9UAchrp/ndAD7BXU7JXG7Zl6AwwlB8v9FkqgR7mJ9BhttrXe2nVgX/tQWgYgXNmMtL3WULXZPe8ri3Q+rW0UKHrwYbeswdYoO6J2pgBYL0yV526+RK+D5wmp6UlsSNX56oOvzsBOoDpTB3lhyBbFMDcex0og6Zqt6ExWM50M7M5lPYdIICFCrvNm3pOxVT96EHGEcrX0QGoCZRKQzBq6vkzHdxuJ5ZA9UDXC3aQvuZrvsYODg6ktX88HtvXfM3X/Kkpsd28vN/77zMXtEUj1SFMfQROjoEzRBpLyPZLTg7pSsEJCqR1tz/np681lLq64AyV4ISlVTX01C9UX0Kq24UUO7QqVSDzsobOy3oNSDDX6jQtoYuliIEzZqgGMoOSZ5C9RL/P03veuI8UwzU7Vk51Xhq7kAlraFSeOlqOTFNdB56vWaqL4IyXjjovUV/XfRnr+22cARX2EzgRZiBdAiSiGRjwtq/390ooI8+g+9DMbFmFLy3USZ8BZ5ddAGf+ROch3oGSKQj0elCSWCZqi+4D0H0cjGRsXlPHogIMzw68khYwnk9ruh86B3p/pFc4B9xPCZ2ytTYoz0/0UJ2mus6LTN/xWRBvHgIXVATST1uFzjNATK1YQgPK+oqMlXCsLKCkmAJEoUzbMpZAyTM6BVvp6v1FwGkVTyF9l0KwS7ReFcjAR8ChNFPnb3CqUkgraP5p3yFQHEInM10v2EH6DNbozqvf7wtg+0/H5f7ef5+5yJje7bxAaQDwC4ZZKnKu6F4IT0FuCdE3QJsqGKoTU0OVQjp4CTiCc3Xd9CvokFrCWABs3eRMAjGvJYXWt6tj6LxJ1KkzAIwaZNamAdAQZHozIZQyJyDyenGu62UBSuCrTOdgNdFDogIA77AE7ptc19Wir797AFiFVwG54h7oIjnHOleLqjqEgKk219Xf9WEfnYHnsDp03hTqrJmZVaBV3wc+i00jokkIaJowrxOVbxpPdR/WHtBSV+0ZfceTOWReoCzYBOLUXWghtzas/S5AAFI44SHYmO8CKz1gEEcrzVKtgVrjKTBt+SF0EAKGbr4AmoRMA8wZdBq279Mmgxz4eZwYOu9W+n4nR9rQMmirU9KMoQvQ1/tbbgMWrQOyNmC31zCnAIuz9aa6FyeQucpB3BFgRLZoQABcf6mMtWp6g+UdIPzy7pRG7t5B+qZv+iYz+zQg+01vepNFt2Q71uu1/fZv/7Y9/vjjd/t1X0DX83a740AlRsrQkJMD7JGmTLVmhAN7JYzR1b7Lz1FGSg0uoW02wTHb9HXzHYFTFxh0hMCv+vC5NcwpSRKuAQjqwTsad9RABr4etH04FLszaumHrie4w9mJ/kYVOv6SLmTWAGvTgnd5LlJj/TzoYC0hRTCDTsO8AxE4YAv2wKMhTlt/Ww9eH/pJTmH+zoHcx7kxYDOqsDpA2seJKZtq5tNegpKkjdXJ7OcagPRSfeYQ7ifeVGcoPdFDIQDaCxKcHUFGau3pfPU76vhEsNfz6zoHS6iENqDrrAQuuNpKx+oQ5ex9Uj/3sg0NIiYXdI9UoIwagu/nJfq31zyd5ytDsJ8BlOyhtG8OODkb6lmcAeUABwLCJVQwAqBnSQELeJRq4Nhrq9sQem0ZS2Bjx3DE+Zd1/YXQROJAw0jU0rMwOQbqiTsgD0twfum6awep1fq00SnL0hqNhsXxzUURhqF9xVd8hX37t3/73X7dF9B1zrDf8rYL3GbM5HAqXy/1mtnhgjQ+ZF6MiB3xc3TPlI7RDZ6DVEajDr3E6EzqQRuD47iESGQGQME6ZGPckjioAIcB81yCoxeCjMooAY4skAtpeLotU3AwA0fXXVKHjj8QUO1HkA0ELpgCsEAGQOt6XTM+qxK4kVLtipnDPAcBtBLPNJ1+vq5rvFOHkjaN4X5TJyDDvWWWDdTI9pu6HxqANwphTS8ge3XU1705O4IDCjKRQVWf+VpXD+6dTL0XB4SVh0AuWhvqfiVwbgas1AsHGLJhuXkg9ttfPixj/jbQH5xAuR941SaRvvdhQ/dIlTKRuySOrIHy3NE9MgO9wi5gmkbQMbmE7soQuqOnQKp51lM74XjqlJy4mvk7BmzbOlEsUDoFOMJaMbCjptqdaKTPtpHrPlxAh+MMOLLuPLtWd4kEumsH6b3vfa+ZmV26dMne8pa3/Cktp9G1sNtLbFSuovIXYZUIH0QkdUiFBWNqWAz5H+heaGnQvcA9L4DJFOgA/BM1GIh92gSnKdE5iMHxiaF9PwexWnL0poD/ysHJqUXAzAvZhQbMlQts3ctEM3UlEGPWAW/gAWGoQdQLagu2AnbZSQZtyHM92Bor1YBbgMhSFcLySgCdSyDYGa216yyD/OIg1fvrQmlpBgzXS1/f0Sa1xZjZM6E66dVr0KLtgPOd6yE4f07zO9dTzRZFru7DKARmfhkxWwK55QE4ZrO+Bi8XIABJe/q3y3KkY+cABzdXBxp8Ejs9gM7Mle7NoqLrN2qr3clbbRlrQfdcraZz1djWd5mChFDyCSh5tnQ/bECXXTXR93seqrynp5AZApqx+xtqjw9ddZB+t6/wgWCutqgN3bNFT0uK/hGsyUy1Cg0wUutC9+sRYL0qUMGIR8BctHX7+3Xyu3N9XjAPktmnO9Y+8IEP2HPPPWdveMMbrNFo2P7+vjWbTavXKQPwhXd9hgdpPP7/WrN56+RrKYQzL+Tk0OeoxEb4IJp3WgSE06EMGJlXKliBcjoAZ7fA8RnuQVbE14OjDjxSBhmVKeAI6MmKE7U2C9DQo8xQA3xJwifOgewxGgEmBEpYa+ClKS5qbroG0ecEgLSzQg2LD9145dP63lzInkyhKXMAbeG0Sv2O/sYlALk3AyhvtqAcOVCHJgJwfT7RwGWcgbp6qvNXW9AeNIPkn008KCHm+t6vTcE5CNQB6fWg5DfXeVh5ukdCIK2NKEAC7pyoqfeSgEbg88Dtsz//qIwNV4/JWB1Kdi5ocDWhCNsEZffynHpXwYYu1hC0yYazkYyda+nnoAnLikwdn/C8vt/6c5DNeomul+yG2sojwD6NloBZgzMkhCAiBfkRq+oaOgKc6PZQ57QCElZZcknGChBVf/S8fl92CDQYdciSRjrPEyjP+dnta205X9l3fN0fAQ/S1atX7eu+7uvs2rVrliSJ/bf/7X9rjUbDfviHf9iSJLF//s//+Qv9ys/rK537lno3F2DoauRgsaYVGQtEIG1yfKg0RWy/UPgnUTTMKtHvqkE7matRise6wY+vtGWsOKPOUJRrV1e2rffnUHPfXB2BBIDl64beX900RWy5psmfBZ6Rs6CkvjOCyHqtGYJ5EwCyYy0VZB/SsXGmB9tiSzd7UtF7XgAni9cDckAoC6R1/dvqqi1jzaYarw7IbkyqaiD3rgCYeH8kYzOwbYtTnavhCUhsTABwOwWx6RUTRW5HQCHhQ0br7EjGkpU6L3NwzkooIVpbHbt2AqLRwGGzhmxdPNXf+J0DOPCqsBYaaouK4jEZ60LJeRbp81aqAJaugfakD9k/0OALMnVOm6QpB1x11z4FDM+gBzar6zynT+k8t8DR7n9Mhswt1TkoQZh60YF1CV3kNVinFSCj7S/UqDaAvG19Vu3OsAsadSc6961EO6v3Sj27JgE4u6l+LogUI1XbUzs7qd/+fcvFH5EW23d/93fbq1/9avvYxz5mvd7NTf6X//JffsEYpH/4D/+hvfOd77xt7JFHHrGnntLW1s9c7373u+0973mPXbt2zTY2Nuyv/tW/ak8++aRVfu8QePLJJ+1nf/Zn7amnnrI4ju3xxx+3H/7hH7ZHHnlEvqssS/v6r/96+4Vf+AX7uZ/7OftLf+kvvaD7NzObpHMr05ubfzME8jm8oLyUk0MDmRyfSlNUYqP8yd1FHVVIXS7gNypA7DgAKKj/MpAfARqCGchEhPtqbM4B4Dm/rot+AfwrvVLnZRo9ofeSqdMUnKohXfr6bLMGKGg7Gn6uJ2qA+rGmqRzI2mTQPe6neugHpWbMYijC16EFfNZRTpaXgOL9ZXCeQ7jBPcB/BAM1zDMH1ksNNLkK/Y3LY2ipgWbQBNrvF6k6Lu7noC7Zh+/0gWgy3H+ZjHUAn9U7r+s8D6DbCFrSXSixXU7VsZgAUNivQVkbOtuKUOe/l+jaSs5pSScZ69rqwLz2F9q1twi0LONe0KDJBTuWT3WvH3mAZdlRu9PtqSMwnuiROVnqmBvqwb2Z6vudBtA9S5wU4BBOB/q8D0DjAXAIWwBQAR/WmsF+9Qsgy0zVli8rasdOj9QuVjIIhlb6fnMgj1ylmnxYVPV9RHdk6nPiXIDrBTtI//k//2f70Ic+ZOEdWIJLly7Z3h6nov9r18te9jL7D//hP9y8ISCr+sz1vve9z9761rfaT/zET9jjjz9uTz/9tL3pTW8yx3HsXe96l5mZ/af/9J/szW9+s33pl36p5XluP/ADP2Bf+7Vfa5/4xCcEN/Xud78bKQteyDVdnJrd0sVQmWvU0SB8KAHJVpD2rEPNlniQQDMHhW8IboR9RDpWJQME2SffBeBcpO81Aa2eGajWt9f6uf5C5+CkBorSQ72/ARR/lh2Nduaga+RU9DmWZ4DIcgTlwxZgpJaQdt8ATNNC52VdQvdHAl4TtNEnNXUi3FijNgewCjc21IBvBbpexpCtIFLSMG/L2P1g1BdrIPiD8sEjj+k7Ohjp2pjMQYz4ARAZxXK4WTTTNeM0NTioekBICfiMPmC7kqre41VwXqYr6HwESoUIyGiPY4UF7MD5cdB6SMaapvIUrZmWgxuw3o57sH4X6uCXfWhuAMJbBxpLfChvNiJ9x8NM39Epid8C6W9rU7/PXeuzJa7OQQBZvtTVvR421Dk9A1klW+g6by50TYLaknUhgCvn+ryrTR2bA7Gjv6mOaAxM7v3rIxlrDHUB7odqK7u+2p06ZCZXxe17JoUziq4X7CAVRYFkkDdu3LBG4/fr5oIb8H3b2aFuK70+9KEP2Vd+5VfaG97wBjP7tFP2+te/3j784Q9/9jO/8Au/cNvf/ORP/qRtbW3Zb/zGb9hXfdVXfXb8ox/9qP3P//P/bL/+679uu7vUXn9310b0oDVv6QgKSfk7vEJ/qUPEyzInVUH4HFC9G2j6GFDqg8NtXMYDRXkwkGd93X2XAcs9A72yXlM3Qb+m6y0DQsR2CGWoDdBYAqmM+kLfm0+tDm3QWCp0AusdnWcPyn3LKpV+oMMk1TnNwRmqABi+EoBhAUbgwRpI6xZ6GA/39CB/voQ5hfdmTTWaQaBrLe9pZiKaAbsuwOI8X+3J+V39YA5OXTVXx3tSEo+RWbWiB3fqK1jVoNMGZAiRUyzwdS3soBK5rssc1sw80y7C7dXT+nVdXR/3LTXTdwJcRk4FpC1ideC6EPhMoHzYWAEB5FirDAk0Dq2H6iBFqR7wRUP3YTMGTBjQi0yvKbg5B2ppt6LrPIYCQQi0AS7R4QGD/xRAkstI19VWBHQgnlLFBE1w7gv925OxZg2rvwnYJ9BiHIKO4CmUD4NIJ6EAh78KmfDwjmAtcO/O9XnBDtLXfu3X2rvf/W77F//iX5jZp3mRZrOZveMd77Cv//qvf6FfZ88884ydOXPGKpWKveY1r7Enn3zSLlxQPhYzs8cff9x+5md+xj7ykY/Yl33Zl9nzzz9v/+7f/Tt74xvf+Dm/fzz+9Avudm8egIvFwt7whjfY//q//q937ZwlSWJJcvPlTiaf3ijz8sTc8qZBaPXBePXUycnHOvU+EMUZ6UotgCG7BicFdDlZm8p4VI8FpwSMcEB6asABEo50424GV2Rs8Kw6qzEQojWquvlOXTVAbTiItiHKOlpCd9Ua0sGFGsP1GLJAgJtIoTvNBSK2BUTClUAdwi7QKfjg+HhTNerPgmFuAUXACPLzkESzTcA52VqftxuB3tsmiFUCn1ADhEfHYOg9aCbwXdARg7XrBCr3AV3cZmZWLKGdHcS8LQJ8YB3ap8GBTsAZOg+8Vq4PemWwh49hnXsrzQxlEKxRoPKSldrPKRzw4y19juVA/9ZfjGRs4rb1b6E5JBzrHln1wGGAbtLOGDKvKYiHQ4kynpFdBLbpROfUz9Te5R3gaWvopqsF+i5TEIhu5LpOA2AnJ8b4NNPfnQE4vFkD5+USEMCO1badaelvXAIs32QAmDqQFYlMg6vqHSoGgIrA6wV3sd24ccP+/J//81aWpT3zzDP26le/2p555hnb2NiwX/mVXxEJkv/a9f73v99ms5k98sgjdnBwYO985zttb2/PPv7xj3/ObNSP/uiP2lve8hYry9LyPLfv+I7vsPe85z342aIo7Bu+4RtsNBrZBz/4wc+O/+2//bdtvV7bj//4j5vZp5283w+DRHgpM7Nf/sgHbuvc60Du0t0eydhmT7FKEfhCDrQ7FhsaPaXQtx2DwfURCA4XAPaW4JRYX7FdV8bEUAz6bIeaSiZw3ktqcOi40A+cQoYGSrZFAO32gH3yoNW8OKP19w3Aa00g23ZKwqqljkGSyo676vz5p2owdiBDcx189nZNHRoPhDNPgV/Hha0ZQTlnswIltpo6SNkhaHc1NWvjh5oNXIL0QwcSpx6wEzugNxbPYa3VmHY3IweLSs7gsA2hXB3M4dCvqeMTguODGWmIe2axZmMoZPKxe5Yu6gDSbxzmeuhnIPWyd6DrN4M5XcIBF0B2fLzQvTkHB38WqS1agnMwuKzz4pra8o1dkIOB9xYdAV6TUvouNEbE6mwsoOPXm0E2ewOCMBccfmgimQNx52gB9jMAkXYo989KfUceBOPeSOeqgO+rQDZw447pm08X9k2PvO737WL7A7f5/5//5/9pv/3bv22z2cxe9apX2Td/8zffRh75B7lGo5FdvHjR3vWud9m3fuu3yr9/4AMfsNe97nX2j/7RP7Iv//Ivt2effda++7u/277927/d3v72t8vn/87f+Tv2/ve/3z74wQ/auXOfrrP/23/7b+37vu/77Ld+67c+69jcjYNEGaTz58/bx49/3hrNm8aX2kDP9HRegBHeCgCchZCuLkGYZ50DJwuAaa0EHSIPAJmQXvZBC2fh6Ga+OgFGa2CMrZXESq1kgM1QD8HaUA3QATinG67+7gy4eLpAVlgFwzIEuYUEQJ81IhqCMuO4C1kq/Zg5QB45h+bD2kq/L+yq8RpBqnt2qnO6GervXuuqQblvqHd9f6yeVLGtpbgFYNHSXA2k46vxp2YCkqH0TTN/BXgQLjofn4u6hEpdIOtgQE4DDlKMFBwgbUMNGXM94HPIZvloowHUDhxgKUTmc+Ba60B5PodgbQhrhjTHxoCHXIFw6UaowV8G2YnRoe7X4b6+96dA02/c1Xl2a/o+HDC9BWDyetABG8Nv1EE0tjbVNfRcDnioc6CXCQ1BM9D3mKRqx3ah8WXS1O5jD3AVZVPXc/VADRmt0nWiWLkR8IRdBwhF9Q7tudVsYT/w33zLH36bv9mncUN//a//9T/In/5Xr3a7bQ8//LA9+yy0XJvZ29/+dnvjG99o3/Zt32ZmZi9/+cttPp/b3/pbf8t+8Ad/0NxbDMLf/bt/137+53/efuVXfuWzzpGZ2S//8i/bc889Z+12+7bv/it/5a/Yn/kzf8Y+8IEP4G9HUXSbvMpnrvPRjjVvEdab7ozkMzlMcwAdXM4aHJ8TAIhuaBRY3QMjvgthVkUzfC5ghjKQTEnr6rwkR2pEzoefkrHLJbAOd/TguDBXhtwI2rHHIC5bn2uUul8F4dc9yGYB4HkNkdza0Q2eTNUALTZ1021sQnbiRJ9jBRIinqPHfrijczoDMs8FsPCWhUZZhKmJ2nrPXwH4gKyjv5uDR7gGwHM1h446EI1d5jovEfC0WK5/S0zka5D7iAtoH3f0wDIzi4HQ77Cu76QGc91wNeuQIrO33mNIzN6QZfVH4GpjDAvfl2hQkgGguAHuKCReLAGnzu9A4wY4nRsQMmRdaL4A/rD5ZR17GjIgDmQdYg8INIHmwy7qe+vk6iSegUxYGqs9XgPreDNSO5aAf35mBRnzOcgUbQHmCsgTy56ujZM5BBtAM1E7px2JOaw1N9egooSOupqvzl9rpmXa6lWgj7mjG3yBPH96/YEcpP39ffvgBz9ox8fHVhS3HzZ/7+/9vT/IV5qZ2Ww2s+eee+5zYooWi8VtTpCZmfd7fC6fSYSVZWnf9V3fZT/3cz9nH/jAB+y++243RG9961s/62B95nr5y19uP/IjP2JPPKGt3r//5dmt0xhDl8MKOm1yoIn3Y0gvk/hgChitB8HyAdbGgESLjPA+gBHbRGRZV5C2M9RldXYAIHIAoKc1jUivAX/QFNLpdWi3jSb6HC2oRozgYDws1Rh2Q3VsF1Du60E3XgRwt3gXHNsTdRiakO0I4eAdmnY9bgKWogoHVnYR2IQB/1FC6oqqoCtfvw/oV8wgk7DchKgSWK4xu+Pr4R5Sadkn7jD92xj2gpnZAajWe+CBNED93EzbuxMoVy3nGgxtkY4UyERMgdvHp7IigNrzQOcrBaQwBXrhUOcr6QBPE+CrPF/3/+KabthnQfZkAiSkJWQTrK3PVoMs1QXgZHocgOAudNT54DiOc80QFv5Ixzxowd9TW37DU0el0oZgjbQxD3Vsmeh+fXC3DZ+DLDAQNhaBViu8RM+uGqQNQ2jDn4fAzdVQ52/3VRB0Lm4/R8vp3YGQXrCD9JM/+ZP2t//237YwDK3X693WJu84zgtykN7ylrfYE088YRcvXrT9/X17xzveYZ7n2etf/3ozM/sbf+Nv2NmzZ+3JJ580M7MnnnjC3vWud9kXf/EXf7bE9va3v92eeOKJzzpKb37zm+1973uf/Zt/82+s0WjY4eGnDUyr1bI4jm1nZweB2RcuXBBn6m6u3NaW34Ix8GGz1A3YwKBcQBcZIAvb8Ek4PIjK+C5lRe5DQkm9FpF2xRR1PTjyljqOS9ANag4VMNpaq7Fpd9URKKH9OYPW8BOgdogB7LsBmbUulDLqc/2NNfirIah5N33QNQISRwLclsCrUoGESqOpz7HogHQJlFB8iOiTGqyNmXpI4MNaAkFAAY0DMbLKw4KGMqjVR/C39H0kl0SUFxxtcu+rZg4SxKjpd1YTdQ6CCEgNAbvjTvSAyjeBpgJkIpYLkOMhHAysrTDUUtwQHJWMeHfg1Y1Wl2TsOphKN9PfLaE1vLLWeznf0L10ydO10AEQtOXQTUpFcV/3TQz2JCbKEYAjTB7UdfUQBE09sOUUEnum3ZYpgK/3oDzsQIOzD2vSgeAlAIcwr6kD7AJ+LhypXQzawM0HQU6vd/v9zaDpha4X7CC9/e1vt3/wD/6Bff/3f79kc17odePGDXv9619v/X7fNjc37bWvfa392q/9mm1uftozvnbt2m2/8ba3vc0cx7G3ve1ttre3Z5ubm/bEE0/YD/3QD332M58BbH/1V3/1bb/13ve+1970pje9qPuly7fS/NucCdI/I1NK0TAZbPJ0SfKDHBrCSNDfUiSt73Z0MpKxeaFRQtLVjQEqBVYHQ5X3gWK+p/dcgnxGdwksyHU99M9NRjI2H2qkPlhe0t8FQ1CDTop8pe93MCDaZ/2+Nbyj4201DlsgL+E0ILvQAcFecBgouTNHIDKIUEL5NQADOQeTU0HUFZWbIHMKIE3eM2Cr+vDEFfjdGskHmRkIMJuj7524mtrFSMYCIA0tO3oaedA9F3haVlhCOWgw1cNos6pzcwgU5VGmmaGyAVIe0DU1gFbzI2BVn/chOwlrIUvV3t0HjQzn2jpG5ZUOkupCdnKuzqQP7Nr0t5vwHEsYawIWbROJgNUpHkAG8xxStsAFkj8XQfFhCc9GkP4RuGYBjLlw/vgxEGPGmtiYQSbWmUMH3B0ZvfldltheMEi71+vZRz7yEXvgAc0c/Gm6bmqx/aI1m7c6NlBHyYGpFsoAHL2Sk0NdNfTC6fvIEGgU87z9roxFUD4cQF29hN/dhZJiPASdrwJAy0B/kIHe1mQEulU9nb+i0M8VrmauujaSsXWgWcbSV+fAgzmYQAmlC+f78poayEkMGlUV/ePTCuDToNTqzXWdRmuQHwA23BVwSznHUM4Fu9yBzrYcDvIYosC9lTqEwRzI/FztgKvAAe3D2g2BQqMF/DVmZv2mjqcHOv9tyKh4oR4KZQo6WkDV0TgHRKwQXA1AjPcEQLfngVgv8PVzCeDbdvDgJpulzuSwgCARyoKn0MzRq+q6bMAcBAh8v1s1AZJgohYAAvEDpACdfrLRVJKlv4U9RxUHvAiMRsHG3Z0XL+aiVEEK80f4pRU8Rwn3dza5fa4mk4ntbu3+4Xex/Y//4/9o3W7X3vrWt76QP/uCu246SP/xDgeJFg9tNDIid6uTRpvl7ugVhnZZBwFQ6EP++2QEmRwAlbjQUl0QSHME2CwQ58yBdr4OwN6mr7+7AgbaNnxuCgDg5YluyKsxJKyhTdU6msJdwhx0T6DWDoLPtZi+DxwGKiXBswVQjvCg7FaSjAocEgnknwLTcmQJLdFNcPhdyBCugMuIIHUTwAytU2BZX+meAdiZeTkdYmZeXfdNNgPyPtjrGcxXBfhv7s/0HtMSMs0rIPQLARBb18NgG7J6W6gVSWVK+hzZJyr0EOUIHVb0u2QrCUxP2Uk69DUDd7dwhLvX0CSJKDgvgN/MIqouUJCtGRUzDf7uVn9zCE5JB+zOH/alyFYzB1wpF/bWCtZG9451NZ1M7OHWH4GDtF6v7S/+xb9oy+XSXv7yl1twhwL1ZyQ/vtCvmw7SL1vzNowHbCCyDQh/gCwQrPcU2ujnPY3QFsDw3Aaw5EGuN1PW9BCsz8AZqoOKOCzkEXn/uRogHwjCfHAs2jCBp4lO9GwC7LqxGpZpXTsnz4Chdwt1VCbQTkLA/CwfyZjTAIoFMJrNGcwz2OA0hQ44HzpMYKkdJhqNNSHz4kDXSerrc5So56froAoOVwTGepypIasEmiHIMDrW342gZHdAWK/Pgcdr0yAICEfQ+ThL9L43ALeSAZfM2VzXoBvqoR9DFD5DwLmut110DqgUT4cLOQdXYIwyc+Rc0RjdH5GB6vNGWIJtwxhd5KyRw3W3GSS6F/ocOWb0OcLRUjCumaY5ZNtOgbaihfaYLro/6DSETxUwLx6cK0t4tsi0JP7cHdm22WRir21d+sNv83/yySftF3/xFz8r/nonSPtP25Vb3fJbDIJ/pC9xWOrGPZ1Cyt+FyLcKtPNglMpUF7LTBk0qWHjTBYCCU3W4lg3dfJlBpwIcMgSJm/taConAaJaw/dbwHEuIshqbGhmWiRq0Dhj1bKoHwgi4fTIoHzogx9MDRvAUDp1JrsZ1VRnJ2ABwImGlLWNNF7JyMmK2Fen+9eB9LH0qq+razcAYusDrMwWHZgZrqBsoMLcAE1bCu3Qgk0CHZwhli2009GYhrMsZcN00IbNRB8sbgKO4CQftCDi7PLhHKOxjftuHOTwGVAlZ9zE4/XMAI3eWuuJCIDocQxKoAgze0HBpxA9FjjY7L/Q5kGCBJhy+qPxFu44O57uFWhA2jp6Nqgu6OmokMg7QjQiejYI6Eg82gC2UsHYdWJMhMc2j3dEGnq07nNgY349eLziD1Ol07Ed+5Ef+SADPn0/XZzJIv/6bP2P1+s3FMSna8tlVAhIJoAPVOA8ZFYiUHFA6z0B3qQ20+KmjIHIXlJjdCpQ94KCtZiBgCwJZORAntuDQIuK5BRgRFzbLBOZqDYR3FbskYysQjW2CanXhaiZnGamxqZ6CblisR8wYsjtLIPhshyAhUOppMphrdqxbB+mNQJ2cUQHttsDgW+aQhfR1jdNxEIDjQ/meOhDZhb4C7nOIP3OI6Ctg6HO4Q9LaanyOksIhHh6U0dL7mUCGsQeHWwxuySjRtPIzsJfo+bxIHd4RCLVSwJAC9DGGwy1fghQKkSRmes+bMZR+AKM2iygTpnainmuAtF6flzHPAcmKTNd5nIIT2wFy0Tk4XEAoyY4UeX90TNPO0XfZx7KbZk+HS3XCRtBRF8GabEJGag1riKhiKgvN3g+qRACrDmEF9n8C85cmt+/V6WRqX7T14B9+BimKIvvKr/zKF/pnX7DXR3erVr0Fg9SrQgs5vLAEDMsYooQ61IrXJFMAUWWeg05VoJicdU036SbkfPaBtLICrcThQg3LDkQx40A3/RQ+lyAAXX+3A5+7Bq3rS5jTyhqAzBDmezMAeAKD9wFpDEPraiNWg5YhsFTXRn+pTmLUUKfuGNZfbQg1XiDurAJh6Az4g+5H8Ko6XBPAjnXWUMqMqPQIgGU4OChzRRXtFZi/FHAdhNYw446cMbRPj+Fz4QkwUG/q3AxND/Nn4Zx1IGoewb0YsEMndQ2kUM4EEmlZovuGuuPnaw1UEoAAnAz1sFqA01of63tPgPIhouzkjko1bVO9GvQUO5BPILvdqan9TBGODA4DPS9xZvj6bMfUOZa3ZawPmZwhKALMZrqHAX1hU6CoKEoNLMbgYC6Bgy6bQ1AM1QDK+6VgP73odgd4Fv0R8SB993d/t/3Yj/2Y/eiP/ugL/dMvzKtamFVvGpMMujU8wPhUACjcgEN/mQBmI9eNsYZVuwr0ICvAoA1PdBkMdzWi6mxS1KvP26pSfVsNZA6b9Bx0ASZg5JRg3mwO0VgdHK4KRFTjuno0R9TlVFcnLIX3G0K5NAaMWfDMJRmrb2gaP21oOTIAMkofosBuQw3QqqPZCj/XeSlATd4Dh6ueQXdaoGty7etvrGEdtCDL52PEDPp2cBD1wZQSxNVDh5rEnM1COIwoC9RIoO3d1/V2ivgMitb18MjhAG2CdR/Xoaw4A9FTEm8NIQu31qg+BpK/ELJZfaArIIehVUDHqquAZxcEXe9kUDYzK6AN/LiE/ZBdkbEplLpbie7XITixKdinsAChZlc/91imNnW6VifM8zTb9ilQDnAb+hvVVD+3bura7xf6t7MZPLCvmfUO0K5UXXXG3QO9l+JUz5pJU9dpH/jmqndw7s1nd1die8EO0kc+8hH75V/+Zfv5n/95e9nLXiYg7Z/92Z99oV/5eX3VsolVbxH0rEPpzPf1IHMgxT4HIx55IxkLoraMgZyVDaFsXQZQvtkFADCcCRlkfAoAllJ2bAXRbAadIycQ61MH3H3U+QSR13Pg5NAhZqkamyAkwPhIxoYT/Y0c/raz0s28AJB2AJi1fKUp8fQQDruWGtxVpt+XQTBbOnrYTRx1skNguT68rkYpbKhzH0CW5NTX363BgToA3FkLxkooidUgI1pClmRiH5Wxz2UmA8AgZYDtCCJ1pDYiPbifBnzLJchObJKz4eu9jKG055ETDMzNYQve3TFQV9RGMjYDxfZ1CuKt0GC2Ttsy1k+BygFIYYdQDgqAXd8HhvfwSPumvG3IRA414IoK3Q9FTd/bPAVgeVc/twW4vwOIDTJY+0epUo6sq/p+vbWuoaMZ4H5KkCQB/rXdHWjS8F8mY3aogfIhMPMPQJ3gTKn2szuA8jXQn6Tz2/d6RorFcL1gB6ndbts3fdM3vdA/+4K96sdjq93CQHra0oOx4qgxXEGk71c1Wk9DdQ7GYCCJwLAKEfei1N8NchA4hQ1ZB2M9WKhTl6R6L2eqmoKdh3owHsOSfAkcZCdQa6eYYAecphFkHdYhdfyQsrhuyHpXJ2t+ovd3vaKHRODoetmAAzUDzpigAd1RhDsZwMG21tbkoKXr4Nxa8yynkMKu7KqzG7sa9RK/kUclKHCKSYMshgyBAxkfKlUTuR3RJDifo0eHRGhHEBz44JCTFEXPPgG/oe84Q21HXf0dcOZHwOA/BUqPaK57btYAEH+i6zIGothlqI7FYqXzVx/pXKWe2o4R8f1AOShzdJ03EnUiogKoTvahBAv7dQiZNct0rkBgwHprXYVhHeSMAA858qFZZwBZuROwO/drsBvDWlsu9V2ejHT/z0K1MTXAZt5oAVFkAJUJoPk4qutvXAz0nd9fV+dqecdemEInOF0vGKR97/r09RmQ9k9/5J9ZtX7zgPSgrGA7QDEPu8Wbq3FYpPq5OYjmbg3UyM12dIPn4EglAFCuxDrWBb6PJlHlw6FVA2etCn87gTEfDtAGOE0h8gLpdXiiUcyNBHAw5+6OdC3CA1mf93AImcSRllqizZGMhSc6p9O2Poe/0idu1dWpW3l6sIWE4QDcyQoU4b0UxCUbYDTBydlZAstyHcDmpE4PL9gpoIQCbeYd6LYaAm6q6DMx3hDkOCq5TliNsnB1KIlDVFumuqZHiysy5mwBI7ujzt4RBAx7IDQaQelneQSAfSithhugsZarI3AMMIO8CoSyUz2icmDNj+CwbCXA9N+EFvK2DJk30jlwCoUA+BAkdtq6Ds7B+/VX+sPTciRjk6Y6wOVQ95cT6fOmnq4/p3e/jNUge+8AmW89Ik0+xcrNNjUjSlqlCwhVxsMr+ruBZtFbjtqJqKZZ0vyOgGs2mdlXtr7yDx+kfe+6/XruaGqVWw6WdaBOzk5KhG1tHRsDKBDI44qKbsgrHmQiQFtnx9XN4kVwAACYNvN1Qy4zNZo1MFSMNoCuOFiSPnEKQaQ/hhLl0rRDYrWpzxsMIHNwpBFQCJIfVUiJ9wuNUjfgXRrw+PhAAbH04G8BS1G09DCZDNRoRlB+HULnYgTOS62v5apVXf+WAJ5bjq6rgxq05fehHAkdTn0oVY2n6gR4bX2/B6AUUt/Rv03HxNRi5o/UyZxCp9IAAOdnb+gcToHzyM2g1HVOf6NM4YUOQDi3R5Qe+qckcZde0u+r9fVePGC0Hyz1YGyDTuIC+MjWjjr4jZIA9vo+jqGr2A51XVKgZ4BTiQAPVYVyn53qOtrPde496NYcljr5tQUEwFPI3gHr+2KiTrY71AxXdEYdpPPbbRl7NNCxHGz5xyDobBVqU+uwj2JH7/llnVfq58C5Skw/d/3g9iaG9ZQoCPS6KwfpVa96lf3H//gfrdMhci69Xvva19r/9X/9X3b27N1yRnz+Xlv1yOL6TSOxAAkMW6gRSRLNJjRjPcgOgXenA2nPiq+gxRKi+gSUxYNSjfCAskrVR2XMCt3026ByTgDqPXByGlC+IRmFArhC2qZAZiYrAxFFEM4Ff9DsBKRLZvremoEayMNZW8YS2IEYzzh6OE2BXycc6NwHFejhGug7d6AjbAKdMoOaZhKp3dt11Lm6HgOYez6SMYBmWH2o9iQoqdynMzg71vVcz0DO4Hk9OOYNIiwwA6iNNRe6aPaPdW5OAIQe2G/L2CLTyHzq6TOvoXM0dNWxW2f6jtdOW8aWK92vyYGumTzQtVCvaFaUjqNorcHaIFKutUqqtm3l6FkUX9YSUbWuc5UAsDfbB3LbqtreNhyZHdjEhadzsF/oPoxBXqaM1Y5lCCrWTTIdQwa5B4HtNf3b2UTt2LMOdNTeB230bT0bWqmW3ecddWhWgWbqj/f0d4/679e/vQEB3DnoDLwDMzIPOei587orB+mjH/2ofexjH7Nu9+4oxj/60Y9akhBh1RfetV8dWqV68yW16rB4gPxsPtLNkkJ6vu1DBbQEnaRCDanb0tbfBWQYHBAp7FaB1dfV76tAZ9YnlzoHWwAOD3xdIxNw/hxQgDcoFfSHkM3q6ObbStQZGm5D1HsZiB3X6nTug3baRkUdi2FDDVBnrpt5ScSYEwC5BppeznIdy2tXdAxKlO1cnYP1GOgegKDyzFoNc3NDD8DZHFrKQfD0BHikRhWd57yp97f3FOQrd/X9dhog33Kka2M8YFsWhNB1BuXvMNB3lw/18PDbulaHXTgYR6DLByXdAkqwSaY2PANvtLaGshY4xlNYb+MxdJOBHM9JW+faA8C4LaCsVYWW9Jdp+/4GNLQ416Bc3QBgOXBGVUC+peHqvhmA3uNsrfs/WOnzHoP8UAzZRQ+c3R7kJPIxdEKf0bVWBymfuX9Jxq6c6jo4Of1/ZKyTqZNY7YGOYwDRUFXfeQVKe5371SnuHev7WNVHt/0/HEd43XWJ7c/+2T9rdwtX+tPEqF1feFa5hUzvcKSb774E2icDNRgDwESke2ogVx1tcu9Ah1kDouYl5M59OBjbdQVQj0Pt9Mh9PRDqUOMfASmcN9XltwHZp8lIx27AAV/vAB4KMiXXiKdlqHOVQBbIgQ4z5zzw4YDxSoF1+FoBBGuhfi4A5zlYaYQ731D23xYQ2VXHerAdA3N4NdHPNevgTIKIWR86ZZYVUCAHbqnths59sAbagASclF3IrM1gbSx0/U2A+NSpcTp+utDMRmWqRjza3pWx+i6Ub4DhPRzob0SJZk+mZ/T5ihWUUXLgjToAKgcQR25AZ1EG7bNRQ7MEvRL4vjqXZOzo9OMyVm3oHqlMdR25DbWf14HsMdmFDlMP3tFCD/MsUXt3BMRPcaJzvwkZ/RE4ept9cIZc/dsYfEkPSo8JdInmZ3S/1lx14HpHug6WpyA/EsG+buqaLPsQdAIk4+IFnYMvqn+1jMWg2pY2VHvuk3dmZwFHSdddOUiXL4PA6e9znTtHNOhfeJcbZLcBsx9sqQtfWUAttqKRHBGnHYNR2oX2+KoDat4ABHUSHcvnesA/XV6Rse2pHpagIGAOcAVlu8AE7Wskco1kVDI9LHcBsDe7AYrh0O3WHWhkmDS0U2YAnW1bqR5iV5dqDBeQ6vaa+rcudEK5bX0fnfKlMhaDI5oCo/pyDNnAQn9jCJxbQUwyADovQ+iO3PSgbWehB1EEkXUOh10aqVEvpupodOdtGSvXAE6GslR7pQdRZUEEf2anLV2rBTCe+yBgWy50DTqlroUAyEpvQDm4flnHmiAdM4EM1w5gpHzAL01SYK9u6Dramj0gY5mv++sE1tFmoplwf6yH4CEIK1cLCPQmIIgN1Br+AsSQUhBgBocrhM7lxVoJVr0FsfpDdgwydWkPZFTm6uzWwSkOOmqPqyAvNXJ0PZ8ANGvdUqd9Bniyzb7ajqyhfsEmOGuEbrg2/L9lLK2DyDhkbGfL24OmOYD86borB+niRX3Z965PX83RtsXZTWNSAKP1dlUX440l8PPCAVBb6ZgLnQ9rT5dUC+gFbkDEXW0CNQG0CF+p6IHnAwapA1mg5gwI27aUNCzN1DiMoctmeqKbtAvMf4TnGSwh2jnSeanHuj0AYmIXy7aMzXuwAQF4HKa6XpaHD8tYegaEX/sjGUsARFo0tYTlACYs39BIrlpCBJ7o921m6uTM2pr+tqU6AckpKNbPgH8FuiiTUyhlLkYy5gLeyIeyRQSiz+sDkrUwKwDbtQBT6QOPT7Cnh9usCzi4lh4oZ+e6ZspjKFOE+ht+BvecAfVHFRTqIau0BWzuh1BK9l11CDuwl/Iu4G/mOqnbgEuMh7pWswTmudD7W9baMtYD8PUY+M1aQNmSzABXsQndc9d0H47AMascq+1Iu+o09QG2EFCHc1XXZLTUTOI8hyAMNNuqFbVPp8BH1AUpqXjz1ToGv9Gc6r1cBgkbP9cGGUvu+NxdIoDudbG9yGscZ5be0u4bQNvhR6ENvNrQTd8Dx2KzqQslAU20rFSHYV5RC7QJNAQboO12oyQOG83GtBdqHKoFgDld/VxaaqnQgc4sb6mG4BTO3hng3tyZPocHyvM7Mfyuo9tjlIDOHIAvkyPAyxBTeqQZlXZdn+NME/iwjnUSvKbeX5Lo3K/G+n0bLV0vM+APWrlaQhmt1bk6ezySMf8UMomAIR+vIHSFklh2SQ+Y7AZkCGJgOwfwtLfWgzzYJdV5swuAODi82tbv3IV28Ybu9damrtUZlGqXUG51W+Dg99QB3MoBfC0jZgt4n13IWIyr0CzRAjmJQ+gcBVZvW2p5xCv0NxYewAcgG2OeZtsrYVvHCn22BcypzdUGfgI4u3ogIdQ90nU0jdVu26naz+b9gDecAu1FH7LFTQ1E5yvAXEEXawLQCHek95yd1fmrQAZzAeoOB5d/R8ZaFWgcAjhHPtO1MYSOv6S8PXu/gE5huu45SC/yqjzoW+UWTv9uTV/sPFADmQMvS3CiGzLsjHSMylDAbb8BYO4qcApdm+sh3fI15bw51d+YlCA/4MFzzCBj1r0kQ0GqjkXNUSdxPdYIKGtByzHkiFeejh0AhiuDLrEeRJCnEC2SWnsaQ5ODp79bq4DeG/CCeEBQmfn6LhsLUNquaLvtBPBp6y5Q/gO/zv2llkGGUOJdtPT+FiD9kkx0XbkeZOA0ILWspWs3W2t5s4Sm3F3w1lIoR5qZOVlbxjbrcFD0waluA04TqCa2Y53/cFOf5U4xTjOzFLqc3IbupeBAnabjCLq1tkBMewWBAGQxZhtqF5O5/m4NWK4njn6fB051G/CBSQbCuYDnyaC7157Ve16vgYbEAYcQyCOPXMjGHOnaWEEWOHlO56ADrPkelB7LSLOBUOiwcKoO9XoGAttgxno5ZJ9ASoZoAkchlLAXahM2z79GxnYuKFt3G4JY9w5Ct9ldEkXec5Be5HU+Nqvdsk6dALocQIcsgqijGlOpQQ3uCJTTS5BSKMAZSvtAfpjrAd+C0tkhRMyJr59LQhLdVWKyKL2iXwgkf7VdLXs0AaTtfAy0yToaKSxABmA60t/dhPIXULzYxiYcHKmCTRfQsbZO1YBfBsxaJQamX5BXL6Fjre3q/bmZ/u26omvIAQfE9XRd7bW0LFgFrp8NaK8F0mFbAi4uA2fBb4PT5Ogab0IFatEFwegGAMH7DNLOgdi1BYcv6fylh7p+c+jqOgckRVNgRh7nmk3MAVvkzfQgK4FBudtRGzMBzplsrQcyLGmLoazt5nr8HEKpsEVZKg/EYMd6LydD0OCb6TueV9Ux60HX5PIUgj/gaXILmD8oZfa6UCpMoGw8HslYH3gmvHOaRSvBgasCl940UEdlA7TT0hnY1AK6t3Ndz8tSHdHmQu3TPADuphvq+BwCPnDnJQAEn97+t/PpHyIG6d71ua9ouLboFlJFkP6xChjx9ZEeUFcDrY1nNXWaoAJjIKNjS2DNzjrqRCRAyhVAWasOmz4rIXNFMiqRUgRMDDrbgMEwgA4zW2mqdhoBXgbad3ugC9UsQYsNcJtlTY1hDArpcagOTT1VRzmFDM3Y17+dQ9p4CNFxDIZ0P9T3VoFo2xtqdmcJztCZta6XwakenlXIIAUDAA5Tuq2jhnQX6BkMDp19eL/TQp2USgTluUP925ME0hVmttnSEvEICGCDK/q3vg9ehPdyGTr6lM7r0gGaCuCr2tgATicHuioCYB7+lH7fJuxrO9U1U4Fnm3b1XrogP+JCxjwF4sQcBGKdtTqdOxvqYNYrkB2DbOAMSBybLchcg2yPAayicqyNJRNoppoEgINbqmPW8fQ3nh1qZni50r3eBFhAEzI+V6AFv7XWJIBfB4cG5Jb6Z4HIcq2/EdegnD5SW+TsayD661C5vbPatwQnj64X7CB9y7d8i33rt36rfdVXfdUL/dMvyMs9Ls1d3EytxA1YKBNIU1Yh9XsE5QyQJOl3QKgVeDdsPZIhHwC2vQxKNQCIXZ6oYa61gfV1Be3ToEPWB17Hegi4JOLJmOjYItUopnJZMQj9UOd0owFdGCDAWD1ty9juQo1SH+RW5jWI7sY6z60ZCLBCR9gSGKP7gLXJM+hiSdV4VULVAquYHoBXCn2XRV8PkwPInKcxdJ0A/mPnCDq/4HOngNHxIdPhZ3rojK/rXpg7etOTkFTbzA6AUbjW147f6hyCjakeFMV9H9SxAFTSt4FrKdQ1mMEa9KDTK5loBL9ugUwR6HEs6iCjMoeszUXg+5oCyWepdrEBQNxyBESnbV0zffBtHehirZQavBiQOK4CKMW5asjiEHh8dnTtT5sQwAGQfrah97KY6VlzArI2Z7rQTToB8lLI1MUzKNM2AQxfheAeRLINOpwj0AKcQGNO8oDe87oPoHnA1J7eQVG08iHYgusFO0jj8dj+3J/7c3bx4kX7m3/zb9q3fMu3/KlgzP5c17V1avH65kuvQmcMdA7bfKobzd/SzRKBMGB9CLsegLhzwAetN0nkVUF3Dmh/zTzQZhiBPAJ4+mvI+KwAzD2GkiI0FtlkR7M20UJ/t1LVcstFSDkD9MkG+2o0G94VGbva07nPQR4lvqqH73wGi+OsroM2ZKlsBozqIzUsx0s1pEMgstyEUtdRAiWZFHAYoXaOLJcjGTsBnENY6g/n59QY7gEgswusyFuQPu9D43AVyEaLXXX0FgB8NTOrlep8ZxAIDF1YXK2RDHnAtG6wR4ItwLIcqrNXQKdXHRo3Siit5lDGW3rQWu/p4ZbBkib71JuDBx1qpu8QuJsqNaAwqemzbU9BX8z0MLcaOOSpAqNBGtMWG9AxchnsYk3nNIZ2e5eIYg/0QAc/1B4Ggs8F0DP40IG5BgHl4oyeA3FT39t4rvfnntW1UQF+KCJizTdBwPYqYMKg6eCEuqjvLIOCDBddL9hB+tf/+l/bycmJ/fRP/7T91E/9lL3jHe+wP/fn/px967d+q33jN36jBaDM+4V8jaqhrao3LcJAs9XWqABILgQAK9TLI6gLXwVZB8hIWmMBpHensKtmapTmkT5IHQB7s4lGY8+D959egMjrk7qZk7ka0mt6e7YN5a8HofaYQcvs/IZu+rINmJBE52oPpAtcSOkGG7oPjqAE6ICEiJuoU9eArq4VZBcywCU1TbMLFWDDftrXdVXUr8jY8ljnJYeSvgc4MVvrQd6A6HN1VV9w1QMW6GfaMnatSxw5+rm8A+3eR1AqhE4eM7NyT/EZCcxhDKK99SqsN8iuZZ6uj5UmWa0VgXyGo+tjUdEMV5G2ZawWgjgqcHYlR8pbVO3pQVacqD1ZQpcYQO1sB8h3i1TBcdc8wO7Bob8Z6jqaAr+RU9Puqo731TLmz9S+u4B99KG1fr5oy1gB2Z3yQfg+FwSKgQKiOVbnJVkD6DsHqIALzSvkyA80AC5AAWEB1BP5GhojrgD2DlyL4rxmP1dzNcj1ye3roJgDWhwup7xbeuzPcf3mb/6mvfe977Uf//Eft3q9bn/9r/91+87v/E576CFt1/xCuiaTibVaLfuxf/VjFt+C0q7u6ssZgq7RErAYxEPTcNWIZOA0OTFwFAHFvIUa7cwhvTwExycCYK+f6POuc2BQhtT+slA81NRXQ9BJNUP5YEWXbRV4geYQzpag/dPO9bCsACGfwRxM4UAIS/XqClfnftwg2Ridv1YARg4EYkvoNHTm+rvlQg1aHficAPpgh6A9N5zrGlpVwYDv6eemsHaBfsX8QtekV6qhW8302YJY158HLTXrCbzzalvHzCxqAp4PSqE1Uy6jrQoAWBfqfKdttQnbLSDWA84zd6mf2wTR43lPD8YFNHhkc32OqK3lpVakB54P5b417KWqAzp/YAMd6ERNoRwUAlB96YLjDoS81TYQgW4CHmo6gu9r61ihwUE+1+fNfJDKAMhaXgC7Nig03AA+oqhQZ3cTdP9Ocj1r2gC5agCOdegBxmzd1nspFUd0ZUJNGvouCR0YRdDmv3H7TSfz1P7pn/1xG4/H1myi+qWZvUiQ9sHBgf3SL/2S/dIv/ZJ5nmdf//Vfb7/zO79jL33pS+1/+p/+J/ve7/3eF/P1nxfXgTe1indzYxaQQXIzCIugA+ZwqIvxkquG4AjkEBIgNXQgs+F5atSXAEJdQZ25Y1pGqRWahi4BQ5OFQGQJnEeP1nSuylTnau6rMTwAo3kx0HmZA2P0HHDg7lqfrQr1fOcIOEq24XmBnNEdgwfS0GcbhVCSHQO/FuA15i2wri5kHCZqWNIcOtsAvf7gtopVhqAfV3bApEG55PpZNZCrgToQl6GTJwZG+hVQCQwK4PCqK5DW3WAm7fBIHc9tWB8rAJdfBxmGDnR1Rb6W8dwI1sJM99IQBF3Bj7L1NXXSw45mrtoDwJTAXC8a0IkK7P/pZdCFBAqDGWCBNlYjGUuq+rwhaE+2OqC3B2vV5vpsIWRewkT312lVnRwHOnQzwInOazq2hizLBvBUDE6hbDxSj2YQAmM82J0iBUmsiq77xNezYT7Sd74agv0EBzgBoeUYdD+9bc1m34BGhJ1h+/a/g/OXrhfsIGVZZv/23/5be+9732v//t//e3vFK15h3/M932NveMMbPuuJ/dzP/Zz99//9f/+nwkE6jZcWxjc3YSPXRdsa6wHQvKBRbgRdXc8f6MueAjg3XqrRnNZ0kbXnIGoJZYFaX3FJAZBn1IFrKd6E9CW01nqwIUuoDVeh7TXx9G8fBebbYyI6BHX2FsASBqBBPgcQggPt4l5dN+4CorvoSCO5CWSQzl/X9XIEjA2UwSBISN0DTEOsGYIQKBEunoLeE5BHFg44ejUoC0bqLFShLTMOATcBwFci/VzF6vhUMsAqTXX+5sDrY2bmQvkrgEwJcHJaY6LvMwVyvLSh+zpe6OE7mqvtONvWtZVDN98k1rXQBWD5URecnFydpg5ITFyF5gG7qM+2nACB5hrAcT11aFag/TcFSYlGrtmOylLf2wjEjN09zYqsofO2PICSXfQpGfMh25YctmUMmkntCsgjBfB9BiDoAmzMeKXZ3doBlL8AclwCaWWvCtUPqlYA/UkvAPoIaMA8hGaOOnSDr9e32+P1HxUGaXd314qisNe//vX2kY98xB577DH5zNd8zddYu91+oV/9eXnVw/y2lF4QaIZmcVYX2aQOwpRT3WjHpUav9QaUWxyIgNaQOoRunkVFD8ZLaz3gt0od88E4eBNdtI4DCxJSXAV0JRlgrs4C+eZ1wGH0wLnqOrr5VgBADyrAH7Kj97L5nBrw05VmLMYhkLjV1aFurvQ3Vl3dqgFgM4ItcEACqOcDfsGtarnETSG7uKnvKAb2uElTnYAmtD+7e2og800wrr4enufA8Q4K3R8ktLpc6uF+qQVMxFsMFxj8jjp2Q+C/qgLdhl+BzqwtoF441Ocbg3huVBnJ2BXQ5fIqOlYHAsMB8JXMSj0Z/RWkqbeAGw0O6dYNWm9qY1o1zVgcHgIeLRjJ2LajGek9KE1HEQQWIFZLEizJGrrdTPeIC05nAWMH4CQGMUEALsnYeAqcdpAJ7wA7+RiCxCmIRkfAQu0CpUcO2nP7c2C0b4KkS6ZzUICeokG5tBjruZc2bl/jKZ1HcL1gB+lHfuRH7K/9tb9mlQoDF83M2u32H0jg9vPxOjN93uJbmE+Xji68o2N9YUkJRq7QTX9+BS2VFXWuRrDwnJXWlAlR/NK6gngDYOsmwGNZqnGdQRdBAzICq1hT0+HZtowtoaPGgBb/AuAmSigfDuqgjbUBVAdrLeksTvTZrkODWaXQ+Wt3ADsGDkMIHFQzT3+kBaWMEEDuaQk4MVJmnwGjOhjILFSDu4axKmSGZiNda+fP6UE08HT+qmPdW7mjB/4UOqac+UjG2mDDvELfedEHkT8zq79GP7v9u5rWuwGkl1NX1/7QdL48aHqpO7oGJ1BKjlZ6306k73MJ4r5pT50hNwX6CXjvp0O9lxbYO3re1hKoKzI9S64B0eFurmPXGiMZi+BwdOsqsDsHTJjzFJAzAkVIErVlbJJrEAbym1atg5AxZNvHfdB7u6F2LK0DJQpknwuQM7KJZtF8cPjn+/q5ear30oSGhUPQJY2giakCZ1KDsvygH7m8o8SWAnEpXS/YQXrjG9/4Qv/kC/oauHOr3KKNtgQcAWVZgjHUqJvQKg0p9tUMCMxiPXicbd3gu3Xl5+hF4EhtXpGhZKAbKAXtqs5MHQEXuCmapR766wl0NIW6gUoAh6crdTDrIAC6gCTVrAUlzyOd5yBR4zqHUku/pYfiuTUYL9BnG7b1czspGLkESiiBavz5wF9jFcAbrDRSz/bA8a7r/a0r8M7bAK51lFH9GKJo0gccxYCRKvVeLgLvk7PS0tJ4W9dasVR+tzEA+M3Mit/VAzmGE69V16xDsa/rtwZAuGGoZa08UuelkgDbNCWQXZ2HJXRcOtCCn6yAYwvWfu6rQxNVIWMOwcsp4Kc9T23q7hoAyhAgDcBxjAG7MzwCvAxQjnQhUzIvdK5SwBvOIWAADWUrhpp97h2rHfNASiaDTNOVTL2h+r7asXYPunspwwWiwLaCRhWQpllDCbqYQMm+DioGLvDwQVap0gb9wqu3fy5dMXXHndc9Ju0XeYXP1yy8BV0/PgcimyV089RhwQND7gREGf2WLtCdU/XgKyBcSviAPAXGbcgMbcRPydgaxEf3m+qEdVe6aNfQZePkeoB2oF0089QoFR09kE9OFDPgA19SCRst2NG5XwSKZcmhc7F1Qw/PJUTRQQFs2FB+TTyd+xUA81uALVqDvhV1EPobsA6oE6VUIzyFNhufIshwJGMRHO7jHPT3ANqGtCIgfzHYhg64vpaWDdTGzwQsVjvP9B2n0UjGqI35vg2guIA5XOWXZKxm+k6gamzXar8rY62prq0pEMUGQ3XcAQJmgQct/SOd12SuwdqGqzbrBvA+bRq0NJYaCMxq6l1lwLtzBED1M21ilNS9NGrovSyGGqhUEgB4d0BypgOH+UDtyWCkjsrOCsrkXc0Cdwa6rsDntMVVfd6UCI170D3b0zWZrUD3E8rkvS5I58xAfmSidsxvQvCyr1nN/uT2dZ8BjIGuew7Si7yGZWBReXPBVP4LCGU6UGtvqnEdQ9mjA1IZDrQIO8B/4wI+Y2rqNPlwwDuazLI+dKyUoNzdDJ6VsWhH72+0gEMrhY4hyAxtphoVpVU1XtOeRmMlrPoIhGnTSH/XBzHiaq6h+mQNERpwgKwbug6cHDIOsW765hokU87o/Q1B/8y/DhpmACJdbwJH1lIzTb1tIO5L9TkOCigPg5BpBeQbdiIog5ZAfLoFfGKZrnFvXx2zNYjIpgM4Uc1svQNZAmBN8Tz9navQcbmcjWQsBIi9P9Pf7UEmwl19iYwd1EAqI4Hy1xY0X6Rq22JwQCrQgZRDRuUqOENNkN5wAUfogjhy9CnNCtTOA3M76Ecu+4AJA6xSAKXuEJx5pBKAJsDqqc5fvNR7mYJW3NVIGyM6OTgR0N23nAErNXHfraH8NdD97wCmrgIvc5Xp+mvN1Nl9GZRfh1tq7xrZq2TMPaN7/XD79veWLFb27+VTet1zkF7k1U+uWejcnMbRUl/iuVgP0DEA2JoJ4C6ozAMR7eqMLsbWSJWOowDKeJ8AYosAUqEb0EUEAXwFUrrjXBdtAsKgZyfqlCQABD0GtezRQg1ko60ZHwMNrgWUtcIKRBmQeclXmnXYAPB1QZpeC10vEWinFTU1wjHwXNWgvDQ+0gOwCySJY2DrDsFEVGs6LwFRT8x07CIo084jXc8hkK2MfXUWcshCEMO4m2tWs9UEeQ7AL1w/z6RyUQZ6UYAZvAJORAQg3g1wtAcQ+PggK/QJR7MYZU+dRx9EqDeb+n1dwHHloWaBpgtdb6kLhy8IYvfaegiuR2o71tDCtQRZjOg8rI9UM9JhcUXGrA+ZMA++DySOykD3+gwyubFW8awDHXW93kv0g+unZah/Tu37NaDCSJ/RtVbAukqBsmUMUIE5rN1WVR+uQrQGgdqxABQkKie6Tneh+WJeA8oGmPv77iCovTsltnsO0ou+DsZL829Jp7pzjRyey+FAabRl7AgizQjYV1sQ0J490EMmgExOe6X3F8eQn4e0e77SseUccCFNULeG1uTeBMDrQLpoFXA2IO3+kOn91U40K+JCJmI2hWxbAV1nDrD/AuN2Ce3PUzjYPOBBKitqRHaXen974ISNr0FtvQSnrgKZCZC/cUlrb3xFxiawhtxA10EJDNJVIHaLB1C+cgFftQEM48fqLDRjnYMq6MyNuzp/SQg6XWY26qth3wetrl3owlzsq4meJ7qHZ5BpHnhKwVEH7rEYsIp5pAfZuK/vpH4A5J3ABF/G6qBC8tQuQAPK0RDKy1Vlr04TfU/FSp/jBEqP4eQ3Zex0S9fb7GH9W+86dJMB+/ck0fXRXUEnFfBu7YFjYbTnLrxUxsqpBmaty3ov5YYGB4uqBmu9BWSfoeEmHwERI6g29DrqXhAl4+mhfl/ogGxUrED6BpD57v7/2fvTWNvWszwbfEY/+3bN1e5m7bOPz3FPF2xsmo+KEpOUylEqoFKMgLIKwkdkEAnhBwFbYBFyhBQ5UaQP158AP5AVpYGCIkAiUmUIoUsMGNycdp/drnau2Xejrx/GPnvv+3Iw7Ir98WkNybL367nmHOMd7/u8T3M/953qWisbk0cHIDNG16WD9ITXatow/yFx1r5p1JaB55sCo2h/S0txB101DruQ5t2G2m52oU7JaAsyQ3Nd3MU+EBjGwNYN0V3d140266jVdCJI949UviFaaqQ/AKLDItB7vg0q0zXI+EQFpPHvgi7XnhobP4KozdXoKQfVauD8s06ha+j5KXAFgRhTCXpPNfer9f6GakiXQEoaAqFaBmCgDFi4u8DJsljq/TVCNf71hhrNEniVlkMoFT57KGOeTqktXM1SPQDNwHOQUTAzG8YgaZJq2YPkFWJgr87XgLUDfrNoqvth2da18Op9vW8PkNs9EBUdNyDLOtQ1vYrUnnSADuQuZIEXhMOE8u22C0HYVD935gGbe6J2p3ukazq/r2ur8mW615OZOjQBYIGICj4I9H3EwIZ9el/nZQsY4+elas54B+pk5yHUX+8C5xZkhl0Qob4OXbvXWvq7LzvgJC70vNhv6PqDBkKr+LdlbAyExlf6GjgKg7f3hQmIXDpIT3jVRg3zw9cMhwOGam9Pp/kpAKblDXWGxhtdeLfLiYzdOdHUdHugB0ALwG8bByj/ZxpxT6Z64B2sgBtpTzcaOSABNRJU1MgVrhrhs1Cft9jVXVUH+ZHCUxBpMNBOvjUAwWvAKbSEiMU3/d2oo5mhRqzWZjiALNpVnYNsBIDslpYUiwv9XAayHV0gtzRg165vAxEj4NMCAGl7TTWQcQjs7pB1rQHIvdqC8gsQh6eeOi4ZCIWuASPRAJ0uMzNoTrUV3ONiCpkIOECp8biT630Pa8/KmDcEzqktxZRsIMO4gIxlNgbx0UyfI9aYzkaOrqOgAO6cCbSzQ0fYCXAZBQ2dvz501FWf0b3emGvWa0SSPzNdH+2VlqGiM2Bx7EOzTqS/Oz/WxXoMKbiJKeYqgIzjMoXyJgQ0LWiPj65DA8++vssldIC9CpmcC5CNae/qKp+sdU6DXbVj0xGUQSO955cvdE4H0aPPsV4D6yRclw7SE143W9sWhq8tNh/ap/d7eriFVXVUAmgD3YKIe7ClqcZ70HqZQMdKmuthbqAAfT7SpXExBoZScBgGQFpZAWLHOUQd7fFEf8N0kx4BX0p0rMY1GmhGyjL93fEDILwcqOGbrsDRm01krFaFqKimh10admRsstR7dsBhyIA80oP6e9rVd96Cg8gAz7O+olnIkxbU+A3odUFJvQAQfpBqJDwFuYBiR9dVcUtLI3Ng9Q4gm+J09R3trjRIuTcH5LCZrR2ghmhD6t4D/T7A5BjwjN3baBZjDeDc0NWDJznvyFgAnYo5YN5G0BZXK0GoGbRLVrm+z1qi5dElkFHWE7VZPTgEw6Z+rphAtvMYuknbgHkbQYYbmNZfgez9U31dRxsou0N/jKXbmmVpL4HWBDKqfqn7tdvRZ0tCwOl19azJhmp3urGuSbeh+3AG+nFdoIVpbeB9AEnvwvSsqYf6bM0+YB9XanfuPlatiLP/STxIl9ejV+Wp1KKH2Gl7W/oSLza6QPegmwdJ4foa3c2BJn0H2GtXEGmWEF6fA2h519QwVwBkvGMgdLnU571dgEzBUg1Lr3yLjOXQ/nGtAq2hu/q898YadXhgbPYgHeDEmsavNvVAqANhI4l99qECX+3p57rg/Pk+dBBOdCyH0mhKrfUobgoZGkfXVUcrlDYqNVsxA4WIDrDwzgDgfRs6q9Z/BKSprt5MBjI0/lwdMyoLNul9ABeZmdkaOm3yc3UiNgmUFeGg/eRC13l9Ww+KwbHOzdwFgV4gZ/VyMPmefl8NsIo5HL7OFPCVpUb/E1OnrgWHdOro385m+u6eed0NGTsA2EIKWMXJsTaqvAw4sU2pDOo3IAtU+pp9TqAp5W6gDsMh8AJR1+PGVxtTaeu7JGC0xQpU7410TQ4zdcxqvt7fxtM17kEloZzrvSwgsUb2vYRy5DSHzs+PQ6kMSueVpx4NfMrVZZv/F+Xa3mpapfbawg9SqPG3QN06U0OwASMOSSCrDnRBjTKNpGPI2qygw6S3hrLbuS7uAURttVj/NgU9ui3g06kD54z50MXm3ZaxC5AVGUIHV17q3LeBxn7i6KavpnrPW9A9F/RAJHOsztW8VNB8fq7rIPC0btFoqbH2t9X4Z8Chkg3IGdJ1sEjB2b0HRGxQituAyPD8vgJuXwGOnAy0k0bgPFeh22oGLfhzeB/9in5fE0oFZ0cTHSsYr1AHor7Ktq63EuZmAxQNWwXQO9wCrNK2Zp+iXDN4JTQFLECvLITMRsPXZ14WHf3dGmg7TnX9QpOorR0NzGaZ2oQGUGGcTkGQdEuzAlsllMSe1vVh0GzyUqZgeDCLdh0igbyr7/yNxO11oZCCaVf3dT6H5wAWeVqpM6ANSTZABwDyQ5OmOirLFJpmAIC+3VOHMAfnb2eptnILOvQyyNRtQdDevq6LbfkYMeYquARpf1Eutx6Z+5CD1FrqonUdjXaCvi7aQQKEdFDOsEwXVAc6uFZAxGiBGpsMAM+Dp9V4jSAaW+V6QDWgevB0B+QzAIOQj9UoLd+geCN3rkt3AKt5CtmTAurvAYB9pfPBzD657sjY/I81O/a0qcM1uALinDWdrGlPs3f1kbITt9b6uUlL76+A1uTpAsqg0KU0AYDsvTONwDeB/q23AemCQjNN6UjLL+5AD8oFCLJm0BUXhrqGJqUa1xlE7zFkcfolcNqYWXUbcDqJOoBAAG4hZATWDT207s9hz02gbXtb77EHXUk90Jqr1EDvLYWM9Jj2q/7GXlsdgUWg37dxNQC5CtQEYaoTeAMwQwHwDJ1f1X3oD3UdNUEC4y3AS/fHkHh4CQgl64Bbix8AYeOOOnUrAOZ7gPEjvdVprPfS9qATEjypalP3zXQO2ayROu1VX23RNhxn1yog2wOZRK+rmbpmCIkBIORcvwySRBeP7rf1ivf049elg/SEV7fXtWr9tQ1XQpdIE9SywxBKbIUu5MUC2Ii7AMQDanY/AaMEXCsl8NUYCDAeVPX7Fhfq6XuDj8nYsqJOTlTqvPgdIJmba3o+z9QRDaCjpg5SFBkwILcAmlVtQes0CArX36B/XHfVORjHaujHICHgHOshMcr1Xl5YqEELrkKIO1YnbAiO3gwkXWoQk5YT6EgCKY+tumILipp+Lo70OTLgtMrqQEYJUKoVBAthCtHsAjIOQG9hwAhsZnZ0Doa4prQS5ulJUS/0mQm3Ugl1HsIt/VxjDSLU0El5Fuha3QOKgJbpAdICyhGrAu4HqDB8sDFbW+oEhwkI7EI2azgF7bm+zsvkRf1cB1TmcwikzqBbsH5bhmwb5uVeHZyIGjjkY3US25k6B51In2P4lD5HE6hTnIWug+0C1nQEYroAzD+AZ5uBSPscYBonI80Wuz0N+KP7IPAMJcog1PVSQBIg7TzqsGZQCaDr0kF6wiuZdMx7qFtnOwRcCHjSxBXihboAejf1+5ylOgxA+mq5qTH0gCLrzXXdLEfAGB1B+bCTaRllBfXdFrR3DuFAJqeuA1mRfA7dFSdAuritxnUQqKPijPUgqgFHUdPRUsZ8rSRuY9BY6wLZ4+6uvstyplmIcaBZyL0barzWIO40Aj2ljATpgOR0BeKt91x1IvYA0J7d1vlbQYYgOoDs3V04xFLg3AGcTRXweAbZgHwMAUkFtM9ajEGKoYTlAJ4qh2Co0gH6iYn+hrOjzugqgTY9aI+vASoYsNw2AkLEFPAjuz0AHkNDRh2yp05Fn4PIpj3gHivASSyBk+0BtMfPavrAZ4lmQKmhdn2ua8ut6bPVQOR5uwqdwRUg8/ShXB3r/i+3dN/cBNmoiQN0JUYcZYBVXEMDSl3LaZVA56DZekbGOpCp34ckQKUFmME68LRlAMzfUTu2KtT5iUaPZq6KDPYQXJcO0hNeny5XFj0kLzCr6SYIToBfAhaejbV2X+j5aZUtXTw3QerBoDvAC/V3/yjTzdwGZ2gDzpXXhoX8KY0cNlV1Ihq5RuALwBvEoK0FdFOWtvWegxMgbGwAISK0d/srPcTWLTW4PuCckvGhjvlA239VN+oCUNAB1OkNNMxyyMpdvarPe20XulMydXKOp5oS71+AcndFHWr/zXoo5iDIOjnT54AEl1Xv6lprN6B1GpzdOeDxWtCNcwLA660Q1p+ZTUI9ALoQqETAl5SeA0C5MpExf6yZ1y6IosXglHThMHfhb6cbsB1QunSABb2SqD05csD566shqyYabIyAL6kCZfxsV3/DqevejMD1yRIAN+vPWu0G0DsstRxMEhgp4HRGwGUUpBCYebr/fXBeVsAz1AIOOv8KlPZAjC3OofoBztUu8Jb1QcjY21N70oQsUA+0nxJ7g4wt+jrPzgQ6W03vJW08ei8OlNfpunSQnvDaryVWqb822SlsPuAqNCcA1tIRyAqAvtgzUUfGKmtNU9VAvHEE3jXqfcLGpW7nGgjdzq+DEngBEUaon/MycOqausHXFTU2DQewGSD2OyvVGg729LA7czRt3B2rUY+mExm7DozMRaCfO72jk1/PoYPwCvBmAQ9SBiR98YU6IEkPsBmJZhwycIoL0PNqNfSec+hwqu8dylgfrNDwjv7t+svV4I5XwIc1AWV74A6zGuUNQCRTE39mZgaawtaa6/rYOgecyU1dl8u5zmGrAaB7dyJjAZCGtnLNbFgFiCdBid33IL1T0fd+J1HjtuVA9rmqunBFV+flBgh77wEQ/ALoNs6BVsLtwDr39Xc30I1biUGUdQAYLiDaXbhQij+G7i9gXj+rawapC/dc+JBdhMxQM9TncBt6f0/5OlaF82zdVSen64LzUgGhcFhXeV9/N8kUvN6sglQTSI3UAZbScB59v8sAWmzhunSQnvBy06q5D+EWEugsGEOppguGrwKotgNXHYsdKJ1NgEwxmelCdgG46TX04DkFZGlken/U6uz0IVMCZQF/o5t+6kNZINGNVgU81BpayK0Fwp4Qyc2Aa2l7A4alo5s5qKtRT+DZcsB/7UF79mIDmAto+MsAc1UFyuh6TccK4AqZ5roOZj394SvQ3ZcbYGCqAOolMDfguhrAwt1KQHLC10PndF87A91AW7GHgEvqrDQj5YeQxjWzDfBVTZv6nWdv1jHwMc3qulanDV1b3S6Q/AGQvAmCpB5kSl7ZhmAI2rubEJgdAo/P0IFOPked1m6mz+HmwCwNNCkbAK9fySAjBQS1NUedoaAPB3dT92E2I7JSyORsFGtzel3560Jo6nnGV3xastZ78V3dXxF0GvYAc9kFeEMPRHwNmKp7pdq2eB/s9lTtSbunzxFmIGFV6Pet55+WsdJVF2YJskJl9dE5KP3LEtsX5VpVR1Y8pEMVnr5VPrPp6kK5VdWN0YCupG2Ixj5dVVbVhwVzP/d9LRDTdNQANaEEYBlgn+AAbQa60E6ApdQBMOcKsAX+hRqvOaScwTaYQWo1yrU0NVurcVhBatpJCCQBQGFoNY0ACxSZOlxTXw/zZJ+IDnW9hAk4a5uJft9a37lXBUqJnjpS7gaU3lNdLzGkus0DMV2A8wS7On81AGTHCXTU1L9GxnYhI+JAtN2MtaPOb0P7cwUEj80s2SiIdw0dQ46jjlSrC4dCqov6wRSyp6Bh5qa6tvSYNRu09W8bK33vVQh8Wh2g0Qh1DqogNArnMTogJZTTU8BwNaCsPS81+xcD75MD7ft+UzORDjgWPgD7195ExlYJYG020LQA720OgfJVX9/RvcWhjB0Cs3wTSrcZlIdndT1/DhbqbARQ2qsDW3wNuKWcC11D92vAGQf+Swjl4XlCHYTQ2Tp6NCPlQBcvXZcO0hNebq9jbuM1Y1fxbslnSnAi0hnQ5++Caj3U0BtrNV6Tii6KixmUl1IFKBagB3SSabS+BWnPQaFGqQpOxBHo0WW3dAPND0BMd6V/e/wpyI5BO/AaHLMWdD54wES+AbxMABifLuy1IeCDirG+36KhuDPnAbRYl/rempkazRK2NHED3odMSX0ERg6wBdUDPRQT4EYaE80E4ERKeG+jJXAHwf5wN38sY42FHrxroKjogRCsF+qc5qFmcc3MorY6PrsJ6KnBO/Gmuo46QOnRCBQDVoJmnldXhyseA7eXryD0oqHrrQYlp4up/q1b0Xd8sKOHbw/asSdQKhwDT1MJkjVJW21RuND724ds1lFdM/BBCmXGFLpEDyGDdAKkpuBgdvZ1rlrADl0/VYMyb6qdfepAf9eBMtQJMJY3IXNVmaqzNolIKByaTcaa3Vl0NdNcWeh5dmWp+/oUEPxOAdpukKWagxzM+DEZmjU3psp16SA94dWqlVatv3YYekBS1z0GWZECwMMgJ1GudUHl0PLp1qCbZwE16lQ/N3N1QdWbExkLIXKYLvVzr8A9r4Bhze+CBMsYWpMXwKcDMhH5GCLh22r4llu6+bZMf+Me1KmnpxCxAIYrnAI7LKhg18/1ME/AoV4D0WEImZzqSCO+ZVvX1bCiBvwaSM4YgP8bJyB0uaOHzk5TD7YZzFUy0nnuAMasPtFMzhCydwWIc1bhwM8BfB21QSsOcFhmZuOavs/7QArZnum67PU6+oXgMNSAhyoD2oBkoSUdL9IDNAy/QsZubm7r94HsTKcN4GsgmY0X0EHRg8zVEOAIQCvxDGQEMyCF3d2DDjjQZ9uK9X0GBazzNwCQ/khB2hmUg6wOIGgg2oXkky0P1XG/Dq31CVAiVBqQpYJgfDLUs2ED2cp8T3+3Drp6rw61hL0FmKYmlDyLuTry5z6URlv6vA6U+xttte/1xqM2YQmZQLouHaQnvALbPFI4WS30JaZAOJivOvpdjmZtmqaRks31+5apMi0fQZlnBhIH9TWIrea6gZIlHIxnaqgqoRqW3g3duNlSP7cEssxGpL+7D6XCNXBbRLv6uTtQV78ABykD7EMI3SkxiCM6K6jJQ9fUCLJKQQwsxhBZZ5AVSQDQmsQQtZVAFOmrs7Gc6vtY7YCCex8A8kDtUBsD/itWxzuF97aeA89VXQ/jt2wr1uPa018uY1egJHtsmgGefj4zCQfUW0I9KAj4/YVeSidr1oDShQtdOadw39sggTMxlffZNgB4f4HX79/5TzL28VuflDEX6AVugI+e1XQWZkvdc5s/1veRQedT1dOy+yrSdZT+PujggQNdgzV4BgD+s2PdS1ugTXYdqEkWkA0s4P3OAWoxG+g5UGlA58FGg7A2NKDkVWCvDzV7Z0toEgIca0EdppCFLFc61gh1/mb5RMYiO3zk34ldYpC+KFdamPkPrSsXwHTrAMoFQGUadDUKjFPdfBs4LHcTbaNPNmocWudaa0/bymWUTTVab0Hk4PUB2Ffp6PflekgkoFGV9TTFsAXdeFOgIfAiAA9OoAsw0YzZK8DM3Yr1c/cg9RtXIPIKoL14oX/rQ2bjGJjN9yDg2TI19PcgC9GpqxFZQVkr8fXAqoLmXc17vYxNwdEbNDWir1fVKaYSTxd4i44BSNta6N/+/lKd8fuv/HsZe+uuzt/r69ptVbeOjJmZfRxEXv8I+K++HP/6C7uAd9gM+GXo0p1uFoBTuA1jT3K97fq7ZOxP4JbPJ8oOb0e6X9cJAPbhYEyAY6F5VW3vAJo00o3O1swjzKXuh2ahv9Ht6Zu7ugdA6yMQZQZtsmJX7ecKzpUaMKdeP9PJr9dBrqYDmohASrw+AYerop9LiLAVxLQ92MOZHoU27Ojc35pDptnvyNjOY2SZCZT66Lp0kJ7wmgwz22xeW+TLKZSNAC5ZiTU1uBkD02qknxuEuhjvV9Qw16CMsngjMFQea/dHCFTv4wl0tkBKfJPr36YjMGgRgKChG2d0Ajinhm7SvqPPO2/p951napTyqn5uVurzFs9PZMyHrsKopY7tAZCkxdv6bG+D88o/0Pe75elzbN9WLIAL95dfU2coHqljEVc00iwu1FC1AQNXdAFYDp2BV6Es9YYtYOZ+LAo0M/ude5qZWC2Uzdp7pSNjfwilr2lvImNvug4cVGb2ZZC16UNWzyA7aXB4/P/7gmrml+x6y56W9v7kBJDbsA/vwllW3ei767ahO+0VEJc91O9rQ3DQAWLMGDrv1h5AI0Bj7UZVMWvFvtpeZ67ZmAZkn4M6UH8Ab5EH9mR0Sx2pByRPBhiuLroN0NLvaxA7gYaANnRq1oAN+w40zdR7etPrJQiZtx89p9ZAw0DXpYP0hFe727fqQ1iLFtDEOzm0RUMLdP9UD6gpCBze7mp0Enb1YHQSyBYBNiaKdIPXmiCwGwDAFhTqLYG26ECjxU6sh8QEdMPiGA6YUCOHV1eahk5inedsH0Dzns6VN9PUfrALPE1AfjYDKYRNayJjb+9BGeSK8qA0QMKmt1Hg9s2vUhK3o40e5Cl0eiwgAxcSSeIVwIm9qt/nQak1aUF0DIb5v/x3jd53u38gYw3dWrYPchqbLvAbgcL8OPm4jN26A5kOM/NBmfxTAx3cjkFrLoLyjU1kLAb6iaXpexoDDGZ0rl16zhAkMABEF0CXUxxBWQs4tnIorVZAAd7P9fuGoWaur7c0U5cCuWVZ6D2PbkIzAsj2pPtaGu0CjcMeOMXNUJ2hRaLPsYCmj95cM/9/mKotas2hcxSqEA0IiieA8YlXen9LyPIBDZLVA91LTahWQPXQJt6bZWxm+i5zoCkaAA7Th6YPki4p54+uobKgQEavSwfpCa/1IrTyoZR3HdLf8ZWJjKXQYdYGwFkn1FzjBDpt9qAMsITOkQhEKB1olVxAKnQFLdB5Au3TpeIXrnh6IJwB+28bJETMVyNXcdWpy4AEb+qCQwhOSbx5Rf+2A7IY0IZcvaPOaQ0ELJeero2XgOAzONMMyMDUoF3rH+r9XVHj8LpCD/jSVSNct78qYwYA5ZXp+3jlym0Z+2+v6kHpA3mcA3ImhwAOb5b6fevloYxdONBq7ytVxH6mnytAKsSaDOhcAibKm2pk/ip0Kq5Bf6hz8JT+Bjg+JRCEtgDzsrMHHEVTvZcT0NELcyDbA26qCEhXl3u617O52oRkrbatmuq+rpa6pvM+zCmQ4FZAOSCDfbNzrgfmoqtj8VIDuP9+oi8p9aAU5wNbPwSxS2hyGUNmbddXx3uR6vsIWypT5PT1Xa67L8uYOwfdzy3QSavoO5oWWsbrLzTodCe6NqKO7gWbg5wRdNluIECvtR+1O47L7PiPX5cO0hNernNkrvPaZM+ANTsFToxeoUY3aenBcw7AtPYcIvO1bqAo0w1egMhrY1szUlWIIJ99SvEZg0gjryU4Pn/4R78jYwaZtaSuzkafuitAzNTZhw4zvRVb6b41577O/W6qEdp9EC4t26DqvtITqwkCoKOVHtyzqyCw21fjegasuYsX1BkaQrv9LrQwx0ByOBqpwe3UdQ2tSYMQIv8dIGgbXNc2+mB8W8buz9TwRalm9A6r+i6rpc7VPFXnOah2ZGyTsCyBH+vh2wKx23t1/R0PZB1e+v+qw1AC4/kCQMv9I+WDCpqaGYq7Otd+quv3BOa1ChIzDSjfrh+AcDZgVM5h31SO9HMLR0tONQjCdiGoSyPQFwNx3osWOCrQCh4nt2XM65CGGXCeuXroJ0sgJt1Rh2vjgbTKFdANBBHaZlX3XLYCnrZz0Has6vtogBMWNHQvuEFHxkogQ63vANmrqeB5awAZMxc620zneeex5oQlZEPpunSQnvAqys/857NXOVRnw23pInsZ2hjrwChqFV0UaQtoA1xNp3sz8JJhM/sA52xDGe8MIr5PjnQh+yA/Ujb0OQ6y52XMKQAzcA0Qe8DFcfRp7UBa5sC/NAF5lAgya8dqMCpAsWBQV193dANuQfZuG/Toju9B2fKclLv1Y72uPm+YgOPdgQhypmtjCp1aixgkE2rqtH/ZtjrAyxowoN9Rj/Virg5cbQZ4MqAcSN+qAcmgpg6rU+g7unuhk7r4PLa06uu7m29BKekcVMhN13TRUTuxhKyNa5o5mDsagCQ1wK20QMx0AQEciJ6uQfh1vVIeqm6gz3Hi6vy/DgKQFOgiepDUa4W61xt7kMUATM5oos5LdEedjSYIdi8gwxXuQJdtC/QoofN2Bc7QAtBjN0F4OIVqRWoQrAGX3m4DSD8B5zRHulEIVOB325D1ngBWqWIa/L0Fysip+yYZK6A8lxTADzd59HPFDJqL4Lp0kJ7wmlWuWfxQ3beSAGtxWzfpNrBSrwvNJuxmeigEbSjjQbTjticylp+AtlOpXWz3bhEbrjpmEWgJlbAhzw2ijoVGqWmmB8wK2vcDYMNew2GyBG4pH1phwwyizwa0A1cARwAcJc8CXUHX0b89B12j63AgFCEYUmAifnAfJGKaIM651AOhFWqGsBJqtmIOJI7JDMg8IePjQov64kLfW6UD5eGVrsllFSLmT+uBdRoo1qPTVwMeQXeft6FDwmwGgq4XJ+pQFvCecgAUO2t1+uu+zkPXFHuWuzr/MRCsegs9fHdAJX0CB7Lf0XmtArnoGpjbQ6IXAEX1PWBQX6da/j7ydK486JRtnWi5OgKi2OyKbrrKUO+ltQ/vLYHOZSjF+eUfytgAAr2nIRu7PNI9Mgb+pRZI73gNdXadugbFNxq6r2eFnl0Dl6hEoGMtUmzWdcCsLjINkB4Uuk6TUhUkCiinuyHcS+/R8mHuf2FMkZcO0hNetWbDKs2HHCSIlKL7eihMSx3bhpJJqwXaRC/p4VZNoaMBhEuLQg+8JhjrDWBPpmvNUmUr/b7OWg3pAHiBJqAllmYKjCSD4QE9/Qnw+a1NS4ALwLxcaavB2L2q83IEEcsaOls+AUy6z8L3Tdea3Rku9Z3PgcuoCviAZaafi2bEIq0ligBKHi1PP7fMoc3XB22nUtfpi7qELNnoGsoczWCuYmBKB4drA4f7UwB8nYCAbQcyiSMoaZuZtSGbsA2/XQJItgZMxrOKlgb6d+GZF+ogGfDzNCEQIIXd+QQI/YAXqHFbHYFpTw9VINe2aA1rBqSGTs8UB1PuAz/PWgOu+oU6UrNA5y+cQqPFETSH9HXtVwt1aFqpOnr3ILu42IJ2Mih/9yqaRatCU8rrJ5p5aYLd8YBE2D3R93tS1zW0aoOmE5BvtiK9l1sGGpCmNuEYggDq+wzAbvuunnFVU8xV47F5cYFKga4vqYP0Yz/2Y/bBD37wkbFnn33Wnn9eSy+fvf7Fv/gX9uEPf9ju3r1rW1tb9i3f8i323HPPWeVPd+Vzzz1nP//zP2/PP/+8VatVe+c732k/+ZM/ac8++6yZmY1GI/vRH/1R+0//6T/Z3bt3bTAY2N/+23/bfvzHf9zatBj+jMtbH5n3ULmsvtEU4sjXU+Gqo4txEUNK975u3N4JsKn11BHIoFxQAu9OBK3ra2CbfiXTTRpBxDIb6ecCTzuzUhA9pFTYXVfHGkAnT1HB+q5utaKrRuRBCcDIiT5HzVNjmDTVySHF6xdf0fsLgYNmDc6GgbjsaF/H6pCtnFyAHh1044CvZl85UK/z69+grclxEzQD76kx3IKsTQFyC9mJOk3xWMfau7run9lWZyg+0XuZnKlkytmJToJXsoPkVQBnAkY87ukzb178Mv3CmQKP/7imB89VALoTmXO/qWWeXcCK1LZ0rE1s7hEIjULZuAC80V0gDbx3T5/XPH3e6qvqTI7aut6mJ3rP1R3gbtuHYy9RxycgIC/oC97taVakBtIlZ6D/Vduos3HHNNO0FepaS/u6ryMIGGq52oneVf2+DbCJb+ea3UlKXWxHQNmyjR2YYNuAQ63R1Hu5NdfnuFvXNbTzCuArH8PKLgHwTdeXPIP0pje9yX7913/9c//2wZv87PWRj3zEfuiHfsh++qd/2t75znfaiy++aO9973vNcRz70Ic+ZGZmv/Ebv2Hve9/77Ku/+qstyzL74R/+YXvXu95ln/rUp6xer9vR0ZEdHR3ZP/tn/8ze+MY32p07d+x7vud77OjoyP7dv/t3f+77nw/vPiIGOlpP5DN1Tw+jTwCL7NUKYBUm6ume1HVB5SPIKgHeI0k0ejoBEOkcxAer0CVyAv2Yjgft4qZO73XoA70PRJsGxI5raK0tR9By3NW5au8CTUIfgMyJGodTIBUJWxBFOzov/iFIsEw7MtaF8ri7o8/2AFJmsxVE213dU1Ng654Aqeb0WOfqE0eKn+neBEHX4P8iQ+NTNWjFxW393QAicEDXNz6pf3v0CQWqu1UNDIqZHjDEeDR2uIttCPQOlfqhjG3OQXOwppmSCLBsT0M2ofNWZc1vu2/Xvw3V2bsHeLRjkJ144Uw/NwPnr7MHXZgRlPumwL+20j3SDJSEtHxKbdHeCho3gFbNnWt2dzjW99bzgEqgoTbmDjTcHLYhQNrV9fbVkECCypQlUCocAqi4nOgh79Qh4ALH9v5Mg4M4ASmUmgYgZaB2Ymuh68CDTt4ugOtbgDd6Acq0HeA32s7g/nb0HZ09xvHmAv6Qri+5g+T7vu3uaqRD12//9m/b137t19q3fuu3mpnZ4eGhvec977Hf+73f+9xnfu3Xfu2Rv/nZn/1Z297eto997GP2Dd/wDfbmN7/Z/v2/f41V9+bNm/YTP/ET9m3f9m2WZdn/0EGja/uiYZWH0qTZAroS6nowDhw9UO44cICC1lS60gOqAriVyZl+XwvYjYeg4xSDblhR1UU7BjoJPwKBXQDO3QG9NwOK+eWF/m0LOvQceHdNaOndDPRvKwmQBoL0S1DTaLGdQ9YAMrhFTY1wb6CO7eII9Io2ik9r7ChocZXpD1+A+jsBIxsA4L830KxNChQBt27LkEUJlGTH0H3o65rMAkjPL/T+hnDuxl0w9Kk+xzUgQ200QboASmRmZp8GMDJ0Y5sLXVMGUgdVwBHNgHiyeUfvJ7hQr/q/A1ZxO1MXsNrQeTgByZrgTPf/8BZoz3n6jqe5ls7PoRuq8CGrBEB8Fxj3G0N4Ty3NDLkztRNDALT7UwC0A0bqhQKkXyBQ3jT1Xm7sKDYu3ahUTjPS8+IEaC8yyNRdgY7f047ukTLQ9ZecAxgeNAjPAZfUBMyq1T4hQ2tHv28Ftry6AwLlAEvxoQrhnD/63hzIltH1JXeQXnrpJdvf37dKpWLveMc77LnnnrNr1yAaNbN3vvOd9nM/93P2+7//+/a2t73Nbt26Zb/yK79i3/7t3/55v386/Yyh7fWg//6hz7Rarf+hcxTHscXxa57ubPaZze16iXnea5FQAWDf4EV4Gdd0YzwFHRwBaEPddwGTc6rZnSqk3Y8eAL8upINXI8iUALlgH7pELhJNcfo9AOKCE59CVNleg6NS0XmOInAcHY2ero2BpDPQMsoaDJ/Fiv/YtIDEEbq6/Ff1cAoKNRg1yEwYAIIfTHQN5R39XNfX9ecDE/kYVOKLVNfktAJyECFE9BAF9s+0PBQGen+bhc6pU9W1cRVKMpttXQfjYygZHekh8XxP5y+psJZa+2X9bLYBTFRVn68KZcWwr2XoWQKZA+BqCgbq2OWAu7pl6mhvwAlzIABxobNtXmgXa8XVNdP0Nau3BD7Z/Jo6KtdArPpspXbn1NNsgrvSHxkAadQaus6ammy3+hwA2dBN2trV7NOxA8EfMMtvg7zU2QSIGNd6Dvi+ngPPOzpXyQyoMNa6Tu8DrvPKSvdmY1ft8QWUI6OROokxdPzGEGhYrHNVCfSDPWi06D376N+GpJoNl1OWJdQ0vjjXr/7qr9pisbBnn33Wjo+P7YMf/KA9ePDAPvGJT1gTlI/NzP7lv/yX9oM/+INWlqVlWWbf8z3fYx/+8Ifxs0VR2N/6W3/LJpOJ/dZv/RZ+Zjgc2ld91VfZt33bt9lP/MRPfN57JbyUmdmPfvDvWeWh9E0EUWlUh6wNpFbLEhTvZ1rimCYaDftQo+72NV09TjXKWh8p99A9IJlcUVcHgFKzTA/fdge6g4D51l/ppgpBv8vf0sOk9pRaqhr0aPdyYG4FWYFaonN6AsK0I2jL3YfuvgQEYuegKh1Aqauo6P2lFRCwdNTQu9D6X1Z1rmagAbeqqmM7HEK6MgOSTtCja7b0+xrn4BRP1ZCuUl2TxZauqx0o3dZdPXRqW/ocM9CFcoEM1cxsGyLkRajvZAI4sxsulH4A6nSy0FKID4DdAFJpLmhrpSCLcdZUJ8JJQN0eRK0r0E2WHus7acJanQMeJXchqqvpc1QXmiklOoAVyAoVQA+96qrDmgJO52pDX9IVHyAFDnBsubo3R6Ze2NZVnZeioufhApymiwlkXohttAsNMi6UyaA7dS/Vz80LdSMKgBm0wo6MBU29P+qeK4BHbm9X91b/rq7deO/Rd7mcLe1dh9/0ueTI57u+pA7S49dkMrHr16/bhz70IfvO7/xO+f8/+tGP2t/9u3/X/sk/+Sf29re/3V5++WX7/u//fvt7f+/v2Qc+8AH5/N//+3/ffvVXf9V+67d+y66AfMNsNrO//tf/uvV6PfulX/olC4LP71VSBunq1av2A//P/6tF1df+brnoyN+6/kTG6sDFU3Y0Db0N7y46UKfp7lSj5ruf1ENhAVgMG4I8CoBue3VgoAZW3yqAZNuAS0q6+rk3gn7PYV//tgplmQCwSiVwy2ziiYytTvV5E2g1TUE9dBXre6uZRpA5SLNnICQ7BYHYEu5vdKYHm9/RLFURaRkvzYD8EMjolnA4BU1NYd+GkuK1Qt/v3rZmfFajZ/V3m/q3/bGuDR+yY7eArbcR6xpfgR7aXqRBxTu+BpTPzSwAHcKXfld/ZxNoe3IAjuIUOvzW25qNLSe39YNQwj6f6gE1Bud7XtF5qIHT34cD6n6kh+U+BDlOHTrHIEBaLYEktQrIsMpEhgLo4AqAvb4LxQQflH2b0MiwWqsBOGgCOzTQvWSQGE560CxxAbayqp+rV3XTNUsdW4MMSAEkjjFkcj1X13MIGKRaA9jTTyDYgCM2qIEu2rlyfTUoAzfX9bKp6f3VH6O8WC1W9v/42v/7n+kgfclLbA9fnU7HnnnmGXv5ZQUwmpl94AMfsG//9m+37/qu7zIzs7e85S22XC7tu7/7u+1HfuRHzHVfW0Tf+73fa7/8y79sv/mbv4nO0Xw+t7/xN/6GNZtN+4Vf+IX/oXNkZhZFkUURLPoyN+8hUdN1TUtiTRD3XOx1ZGwDgOfmSg32AbQoxkD2mB1q2/DTLfXWt94KoRfxwYCBDOGAupdB2zYYryZQIgRttV6ghGIXwGibTjRKHUBmIyPujLYapRXgdI6merA9GGnXiXOiz+bDEstdBR7XQOuo0dQ11GuBxhc4SKtMO6auNvRA9V3NVgQVfb8XHT0knIkaqtzVzMutQo3hHMo+0VD5a26DbMwC9mQDAGBzKAVXoGtv0tb38ZvHLCzbGOieu/Z/0vX7OuCXWZzr+xxsg2DyvYn+bU1/49WVOq1DR/dhBDACypTOexpwjVwtj3q+Oj7zHeiQgtJKVtEgormlTmdQqOdYI66bvv6tH6tty+pQlgVsZhuyMUVF7cRJpu/32kptzAoaZJxE7y861ncZQykp3oOyNiSLFgu1J4OBfp8LWE/CXBHe9STVeTm4ovZ4CkFJ95au51WoUIY01N9oluqYVcDfmi0eDTQ2S1Lm1et/Vw7SYrGwV1555fNiilar1SNOkJmZ533mBX42EVaWpX3f932f/cIv/IJ99KMftRs3lBNhNpvZN33TN1kURfZLv/RLn6MI+ItcxxcTCyoPTeMQoo4DwAyd6eJxYzUYkwP9vjv3dMGnW4cydpCqc1AFBu/JWjfGsoCOulvQgt/Xg2wObfTNEYCgC33e5B5glYB4MpuqEa7BAerB3w7aaqioHDEL1dkAyhPbgRbXBay79EJ/l0jrzud6sC1P9XmLGCLNWzqnfdAhI/LNCCKvAFp6X4GyqoEMQA+yEOtP6WHSe0aDijDRua8E+rd+qYddP9W1OwGW8AD0spYjnb9pwg5S87Zm8F6E2rkLHXntKmTDQKJnnkCbOpTJcpCo34Kxkw5oBGbqDPU2EHABzUewo8+bjvTZmsDZlXoqrNwAaZAmTb8PLOFL0E70QV9srXtuslT80m2AIwR9oJCAbNHttdrKg3Ci3wet8C7oasYRCJmP9X0cAJayCw5NBPpxeaTg8G6m8xf31FF+ioJiwMo1dLvaeg/A+hd6Jju5PlsZaYZ1Ck7xovfoO9qEX1jh7EvqIP3gD/6gvfvd77br16/b0dGR/eiP/qh5nmfvec97zMzsO77jO+zg4MCee+45MzN797vfbR/60IfsK77iKz5XYvvABz5g7373uz/nKL3vfe+zj3zkI/aLv/iL1mw27eTkMxPYbretWq3abDazd73rXbZareznfu7nbDabfQ5wPRgMPvc9X/B1GplFrx0ENYj0fd23dg6kd0VVX+x6qdHTvQ60/i6AqXqjm+p56Gg4A0oIJ9PnuDrVuYEOZqsd6+euDPR32wcdGcum+jnPB+4WSJPPofMuhqjDTfTAmt37pIytU41OJnXoxoOOCGcDEiegDbJsdmSsGuvYGjIEGZB5em11SpYAlmwAjiCoaKmwmYChB1b0NRyKwTVdHPvQxLD+lP5u4Os6CLsgkrl8i4zdBIf/fArSCoXyOc26sF6OuM3/tAlRPWQnvJk6/YsxYIbqoDUF2nBW1bkZAai64ugmeQrEWy3Q+yuBImQz1UOwaGg2MW7pvewM9J3kMwD7gnJACnsubEAGIND1salp9SAHItsoVkel0wMwNzDzb+AYrQ50/o58/Y3WHOSMruv7nQHQuhVrEHECRLZUDRhkSqpZC9UuukDZ6B/replV1cn2oCSeex29v5namADwUAXox60CwFKtQD+u9ujcexD40fUldZDu379v73nPe+zi4sIGg4F93dd9nf3u7/6uDQafefF37959JGP0/ve/3xzHsfe///324MEDGwwG9u53v/sRcPVnAdvf+I3f+Mhv/czP/Iy9973vtT/4gz/4HC3A008//chnXn31VTs8PPxzPUN+UTX3IYB0vNSFcgKqy7uQDk5CXSj5iS6AfSCetIEa5ritkdJuAiKPB7qQr4zV8CWv13t+cwKK4bFiXqZwqNaXkNnYAM1+TzezM1Vjs9HHtcEJzJULHE8AUHavQgvHSqPKaKZdl76v6yAZQ9ZmDhE9iK0aZGOoTdEhzBB0p603wBk10q64UU/fRwvGTk4h8v+43l9SU0PfAZ20RqT37IJUS+SAziFw2hS7wFnk6MHrOZBV8pgoErDX5s1AAgO6g5LXa/bJS4Ao1nS/Djzdczt1oIYAgsB+rE7Thel6a1f0HYNOsxW+zn/UBtqLVzTrMHY1gNss9He3YE03IYgYQ8dfXOj37Xtq2xaxrsHzjZZbVx5gs0AGCBgg7BhsVgZUDAaqCC3o4FpDuZRK4ulSA5BNU3F/56GuyRFgJHdGt2XM1vp9axBQr8AZRwSVzgDeJQQGi1Qd4Ks13ddHj+E0NskX5iD97wqk/Zfpms1m1m637X/9Z++z8CF+oAyAZDXISl0DSYgwB62utn7uAmQ2ait1kHzADDlgHFqRLhY30VRyUFGDe25AiAgEi8FGn83bghLRQg+jJIG5gkhpNtcxao/tgARGuE0st6BQ3VCjNO/q86ZHOi+rlb6PMZDC9Xr6vAGUCucwRo5UCdmiEFTnMx/0txw1VMNcf3er0OcoAIviNSB6H+ta84BNvASh1U6o7+0IuJYaAEC/04AuO/CJWznxGJkdA/fLHmjw+b5mqoKroGvW0TXTOezIWAEZrQvA2rWB1yo70e+j/bUEzEu+gOzJWO0O6a65wCxfzfXoqQPlSLHUQ3q4VNqAAg7zbk3HVkBX0grUEd30dV6uALfXbUAe+6H+bgW4llYOZEoWulbXQFeyDc0SayjZJSXwB+UaRDiQpQ5qujebUwiAl2rfW12dv3VTP9fIoGFppfMcOED2Co0SG4CqbD2ml7debuwfftM/+csF0v7LeL1ydmrBQyW2QaFpzzgAICOAWfah/t6KdFH0IYqZOfq73aou7hnQ3Z8Xen/dXDfpDJyh/Z4eZKvoDTK2AGB5cWsiY9NSDaTnA6keOJOupwd8DZywFRigLAQNqEgPfR+yYykISVpXD5PKRu/vBmgYTedq5ObATtyt6ufKc3XQx0AAFwAuJrinn5tCqaVeha4u4G5pnEIrtvqSlm40g7Fc6oEF3IW2BNmIegQda0C61Yfv26krpsF1FE9mZjbIoSzTARoDaHc2KMFEUEqOgdRwehWi+lwj6SVkhqyre71Gih8Xes9HITh6W3rA14Eo0l3oIehVNdOUzHTfhNt6WD410LV6D+gnLjJ1BFqg7fipjq7fw5XO350QtM72tRQPvoGFkClZ5foc/r5ukiZ0nc7BnrShdNT3dQ4uPF0HAXRRn06gYWoX4BIAwg9Bp68V6fudrXXPVQu1i0WhCzWFhowc2NPvZI9u9nj5l0CL7f8I19n62LyH0rjrhW76NoBL6zf1kH5loWno2mYiYx0Q8gRxZvs0KXL3daN1a/q7d4EJdp8EcVdqmBtN3fTnDY1iLkL13MNYN64PjOArAH2vgJBvHWhnVrTSDTRdqeHbrk5krDlRQ5ADn076qpYFTx09PGtn6hD6C43kPCCyOwfSuhIoAhqebnPHg44VQMO2XX1vq0IN+JScgDowfVN2sQNCq51Pydg80a7MbcjYtoHYcd7QufeBHyox3atRm5PstSaUfgCY2ikmMtaogkMDfDrWgO4qKENtTOfregOA/YnaHe8pdbgWBzoWL/T7chALBZo2awNosLbSEnuxAwzqUFpdg4DwAajWg79l/pYOvh3KS22gHNnEuv8LKD2GVc1iZMCn1QOqEw/A+nXowly7wIMGGWkf2oCrsNdroAXa6EDJ7gJ46aCcltzVOZ0B1GIMDSO1MWg2Aph3BXxYG6hv+o9BXxLAM9F16SA94dWyvvkPlTXmu7rIStBYSgqoMwOOqO3/FRlbp7AjRzrmdzXiqwOHhYGjstPWTZBBye7uWKO77kKNfwJEYg7ovRUtIAhz9F6cnkYdYxDnrVPLPHQQufc0UzerT2Rs04ISKojptjqHMtaeAqX+tv7umb428+eKabJQnZcYsjs58M304ZDYEMDzVOfPG6gTUU3VyLVBYyk/BNqFtjp/8xeBQTpS5ypu6D4a1p6WsX7ZkbElOKI3a3poH59QKdOseq733QG+n/UW8GmlExlrAD6jf6xZjAVkclttPfAcIGL0Q30+B3BOS+jMvAnZzjHQd0SZrsEqdHNcJJBVAgplHzBIHmh6VSFL3YaOPwMppFas3xcCj9Skoe+oB2WeBEg141ApW/wL1aj0Et1zWQDO0AQ6IYFraZOrQWlA0Fk0gIA4UAf4PAS6l211Ja4BR9ESFAY2D2CN1zVzFUL2OYYHdiFj7oWPriEv+0vQxfZ/hCvwx49IlDwN2K+wrgfKMAdW5Qm8WEfTin6gC8ptaHr0CjBaZz11XjYOqNafqHHYVNUZqgLvzmSjzkse62buznQOpiAxMZnrc3QB19XdBecKZDEu1iC2+pQeYi6w4TZAdHMJGZp7uWIkkkKfYzeF7pRU7yUGoPC8AC4YIJ6rA1FcSeRx0EUFEASrQQZuBXxYyzVkU14Fvax9CAzeqhmf7lAN/XgCnZ9Vnec1ZAPrgNfaROpcVSErZ2YWlPrMp4E6Bw0QBo6gGSG/r5nhwa5+bg+65yoVKF2Aw3sB+KDcbssYiauM7VDG9g3wdwPIdgD/TesZErXW974517G3dnSdD6A9/uwY1huA5gvAYdY9dSZvuPob2VM691mmz3tnrut8DvfiAlN65B7K2PIa2FnIYO6Fau+KmTo+47ludsqS7gX6zrsjKAWXGvwlpa6NWhuwsgtw2guAUEC8X2aQQX4MCpKAE0XXpYP0hFfbuWbBQ2n+OrSkjjPdpJVQo88BMHA5oNWzSlXN2y50s2RXABQ40ch8A+TaEXBd2IUeUKAjaU2o8V+4SvyV93VjdEq9vwExPEN7cQhU1fVSI6W70Fp7z4VuN6BOeLFQB+5gpN+33wXdqi4At4/1bwPA8/gVKAECuV1BXYDgYLpNNerNsd7LpKqYqww01rr7ei8x0BBAE6BNhsAj1dC98NJadevCnq6DK+Bkn091TjeQudqqqnHdaeocmJmtIbE0gexOSeWHhR5Q/Qgyw6CS7nhaunCB0TpMobkBAjivDsBo08BnF9jha6Y2gQhWQ8g6luA0xQTwbun3vTDVNfhionxaUQ9KRFCWaaT6vL1Ind0K6NZtwTsfA9P/BLJtVZBCmUPpvBcBP1yiQXEMzlXhqB3LwHn2rkBZtaPPO/u0PtuDALCAW/p967vqdFoMvEohZA0P1TG7WKpto+JZe/2oQxR/Yf7RpYP0pJcbmj0M00hr+nr2gIF2ZeAMzaDlE4ji2i3F1SSQxbgYqrFpb+lmTl5QB+QceJDyfej0AtzEHPBvy1dB2LNQZ4g4e1wQYBwOddPnE/1dL1DjujWFLUTZol1goAUW7npVfyMHMrrOWo1cFEELOBjDxULXRgy6VQ3gw0kq+n4bwPRrwM1VhcyVH+vY6A6QDR5OdAy4vvYaAPoGYGn9UN8HCRm34dGsoe/39FwdjeNM98yDC9CXMbMVsNLvVnVvzjZKiNiCjsF5C8oeps5ZC7rO6vc1q3w91FPAaYNjvFQakqxUZ2jjkdyFDNkQHJ824Go8cK4WUMaHSpfNdvWgnYEDMjrTtdX2dQ1eBSG3O0DsOr+lczB5Xm8w29KAy6mr/ax2NLC90dT1NvKUgiMGNvGp+qHmJfrO6zX4jQi4tKCb2e0BpAAwjdUMzrOWft8CAOi3oLrQBnxguAt2ca1/29961HZsQKOTrksH6QkvZ3FmzkMlkV0gCHRhwWcg5LmuaeRQuUIRgd5HBXgd1qCjM4PUYjQA/agLPWW8WH84BoN2+scAkmvD4VuD5QcO19EZ6JpBVN4BwrtKrptqDdJOnqubahJrlLo8gKgcsCgGzmmawzxf0/SdS7w72xq1pVM1aLfBONTrWqY9TvV320C5G3p64Peuq5Grg9hvA/iXCl/f0bWmrvEt6BzbTEDi24cxEIyNQFdvd6AH9DUAkcbnEPWa2csQhY4TDYb6UFrZgPiwe65rxgGW/5ULnXKFOsEvAQvyHrBhX+Q6N3XgN3NAqNVAoqcKAUMLgpxTyDCemIJzwxo4dXB0Faaf2+uoY3G61HX+W69oA0AE4ObdfSjBwmE+TnReGj3gLcvUGL0MnV5NcED8pjpwPVeDiGWpjtQpNNIcAkh7DozlTcA5nXZ0H67uQ9bwis7BtYXaxaKj6/583ZGxDLjDypbey8h51G7HOWDT4Lp0kJ7wuhZuWfRQOjDd19XTBIfGB4LAIWQEKoUa7CrwgkAW1TbQpdM4Bt0lAEZPoR04hJLTOFFjfRf0sZqQ2Wil+hz5EBS+QXk6DtSZPD3Tg8xf6fNmbQA37gGPD7TRb0FNcQJZvgZ0BhZ7iv/qtQETAnO6ACPcrOgceMBEPIWOnyq0x1cvQMKipvcyOgE+IvDar+wDN08XANmAm7ARGP8Sng2SO7UNzB+kOkJw6p6GdMXZFrPr56nO/yDVbrKpo4eqB5mhdaJOoVfVsoI/VQfkHOgnIuCcmaTEtKyZtLiujnHqAS8YlGUb9/Q3Xh3ovIaJrsF++DEZ29R1zaTgNC2g/HWaAwt3pllH39VMzgLA3H+UaZn3+kj3+tN9wOSdQPa5VGeeKEzKHZVCAYUTa0Fy3IN6ErX+j6HTEPpA7AKCkh1H5yq9oXNfA56wUQP48Mhp90G3EvgUdiDDevzYT+TlpYP0RbnK9q6VlddWUQi6Rsuqvoyipym+dtiRMW+omyqA9v01HGQBsHAvtvSwPLrQ8kO9r0tj8apq9YQQLbZhgxcVaBFeQkZlASldIFgMu/q3zpaWCpJcDVVnX583XGpGxcuAT6cGvE/QgpunKl0yWXVkbJjq+7hqemAFBBQj6YKOOmH7gTpXKbSKX0CXmL/W333dPpR42hqBn4z1N0oofzWprAINBqOafi66AAZpKFGW0AEzBsHKZaJG3QHCSzOz1HRuOv5XyFgX+IhehQPgItGOpvka6tUEBIeManWl6+gOsMgDi5dlEz0Zt9WHsMZNENi9gMAMSFzLjWZ3Smh7L3Y0A5pA+XCvUMdnUXy5jFkDsnwDbao4f1XveQCYUOf16syPoLkhvgUZae9tMpaDs1bAHvGgWcKDbGXNAY4i4Llbe7dlzEn0b7d8depWY8jUQxkZm+s3msndqUA3KPj2s7E6z62qOuM79ui+XpMyAVyXDtITXjd6G6tWX4skX1hClHUEqsZNIPmrAk+OB2RvwEbcneqrHFeBlRr0dlrn6qzNmvobOSjAOxHod0GEMS11QY5Boy7sa9ah5eumH2b6fd0BKIZDC/4KjKsPrdxTKG+UiTrAuamx2UC3YA/Kh9ECOF4CKKsegHYfCC4O5roOZgt1IsquzssAKBGWhTr3dxY6f2mhIPxapFHvKWRO74GDWevpPW9B6cwDPFQDFNeLqzp/nZGu8fM2cJaBAKiZWW2ha2GxBqAriB6/CVjQzwBAPT4HgG2qhwcoUdgtoHfIl7o+hkB78eaWOtWfhuaGxlgP/atgO4j0vd7Ve1nDs1VO9P52QYds1tT1cR/mZTVRZ6gCivebGyCZAgS/fqCHdHAGXaJQ1hoDLr/Sh6y3Aw+y1PMirUIpGTQg72TqnEaBenUkxB2X+mwulAXrgF+qqrkzDyodOUi/hDNda9dNbf7adA01H+v49ctLosgvylWtbFmt+pqB/+prelgmUDqbb9Ri+KEalqxUg+2Fmikp4UApZmrYt8CHPwY27Fu3gOQLuo2CLfVy5pCadh2N7ra3FFvUgRbmTazL9OqJHqozECntVwGg3AJCyS39jZ3hRMamEI1FNd1snVy/zwdcQjPVOZgHoGQPqekMyq/z+UTGiACy5QPLeqFllQykX3LQ6RqmaiB3U82IdLvP6L2kWh5akeO4BfW0fR1b+bp26w/gcKKsBoigTs7V4JqZtT1dCynwSwXABG+5GvsSDtrrsTraGaTDbsfQnQp4SB+c6hBEqF9c699GwH/j3VInbBhpRiBeA1RgrfP65QPAxl3X76sAQ/YA2ruvB2p7b4NY7cs7EEyarsEDADy7ps7Gxbbu4ZXpWt0Fp9jd6DwTl94Kyoz7S11D64napz5gW4OVOlxzcIATT99RfQXrrwGs6JHOaQjzTOXDErL3fl0z9RWAKKSPNaqkAHuh69JBesJrFi4tfah3tmG6ULZDNXLkSZ8AWDV29ABtlJpVWr+kG8MH5ekigR+GNL4HHQPtmy/I2AIOxmpM7MYajbkBcC1BC9zagHEbjEMVWH178UsytoRIJAA+og2UNysHakhLkD2ogPxIOoaMRaTvDc4wmwGz+cABjA9ok0XOm2Vsp6IGtwuaYZ1rCppNIEOzAfD/OZBHulNdGz2Q5+lBsFBMNNweR7quGuCPpOAQ1rf1njeuroOtGqD6zSxtQvCyBF0ukJOYg1xQBRzZUwdoqSe6thwoK9aGWpo6cnXPeRt1VKog25PPQO0dUlc1APY+1day1l/9W++VMR+4jC7u/qaMFWPAYYJw8TZg3raBOfwrTctatyEzPE41iHhxrHY776udqENjTulDYAucVt0GyNoUukdG9gcyFkWgqwnPm4Bj0TdVBLgA6gQH8HwpZLNJxXe2UIPXB6zcGrJZOdBgWKi2LYonj/5dzNxmj1+XYrV/weuzYrU/8M//rkUPtS7vRaCj1dCDLAUUfQxdBAVkAp1cD6hFWw8jfwbgN1fHtg8UP5Lf0lPmOFbHLCz0eSeuGvUxkPf1piBICnjdfKXPNgP8Bwm1dqG9+KIHhwmIZEJjGzqdCTjFRROwCj3QJjuFDMFGD+kuHJ77r1fDd/0c1OjrAMg+1jkN9kArijqmgo6MRT09eKvAtbKELNrxWDMie5DGDzpqDCulHkTH4FRcg8aBBpACTUo9FGGqzMxsQGJu0MiwXKuJdYGWY88HxXbolLs31DXYAFX4EZCvr8/+RMbu+pD1CnWua6nOoQ8lnQy6yZKqrn2IcWwbHPxWW3/j2lWlTrgCQq0DwGZaFRzexpfpmCkg+7+darZovoKSYhVA0I6WnIO67psbEFDPY+hiNRB0BYLKKohpAy+mTaDDlCBwFVf3SD1VhysE6pQM1hooWNkih0C5osFaN78tY6sjALkHj2bvlvOl/a03/p1Lsdr/2dcyu7D0ITzMnRhYUGcaxQBdkkXwNkYVNUoLiO6iI42us5Yu+NMCVLWPNLI5d3TVHkDEbclE7+9Vvb89eLgppLXbQOxYg5b0vQs9BFctNeoXdDDOgPivqmVLv6W4GqAtMg/wAdMzNZDtY+jaSzRDGFc12j7vAb8RyLyUTTX+X+Pq+rt4nc59moLjCK3YteptGTNo417EEOWDSOSzFcCsRfq5CXD43ITuzb8C9N/3Af+VxIpF2a1D2W0H8v1mFoKOXhXKwQ4QmCaZPt+DY2i0iPXdNWuQeT0HyYW6rg8SVm1AOXhRKu6PSPlmI+jM0rPcGjlACqBt+6iiczWEAMRA088d6Jze3ugCcSFoatc/LWMeEF42dtQ5uAY8XuFK1+Ckpfe3C2z4J3OgRIn0XbrgsC58wN+cKbwhg5LzdhOCkl3Q2oOzwRmrgx501fHIody8cPWeb2T6u6fQ9NHxQC8P8EW1x5oYnM0lBumLcgXVroUPZZBc0D+aVPQQ/DS45jeW0A0FacVq2pGxYUXr2/OZGlIHorvbgLuorHRpjDb6uw7YrgyU56dH+n0VINrzAp2De7AxKgDm7u5BeQP0tqJpR8bcOaAlaxBZAIi3chtIDYEV2duCyKamhiCCer57Dp1BTS2JOcBiflSAgjvgNRzQU8rHekgknt5zuII5gPZ9p6IReKsF2ay5trwPQezzIgOdw5k6OfsVPYiOPHVIzo40Em7fZybtYFvnYVTovCalOq0eGPGE9AUBL1Nfgv7ZDV37z8R6mF8Ag3pjqWWji3v6fcuazkPP1KGp5ergN3oa5FR3NSgJ4o6MmWnWqwMcYMclNA+sVXXgGZj7ABy4s6reS3lb/9bfAv4qKLunUI68G+hYmev3FSe6zmMoaxctnftbieJ0roCmpIEgdgmZoRV01ywjXZPhK+rEtvdAy9LXtTGFDtNGTwOaYqFn3H5X39H5Y+s0g0wlXZcO0hNeZ2HDgui1l+6DkxOCt1rbAXmFIy1hDddAtgdMXc0m8JYc6WGeN/VQCGM9QIeuHtJDwOl0oCxQBep9A3Vw6wGhF3STJTVgDp9BlwMQcnqTjv7GY/VoM7N2ATgCiO6iFbTMNzQizaoAKM70XpKhznNYV+Nw85q+t8MFCGJCl40BWNKFw8TugzN+qnUawu4URD0BJeMqcOkAxZOtlzqn84beX8vX8lU8VnD4nzQ7+iMrnb89UAyfeIBzMLPijmZU7ji6ZhYNdey8Dchx5PrudqATNQKyR7ure2S609G/haxDMFb6julMD6N5qY7slX0tG/UXQN4JmojzTLFF61z/tjnSQ3W60jW4NdPn6A00C/xqXztv9xZqx67AWrVAbeUM+MMqgQZX1VS/7/wC2LUTfb8L4DKq7gJlw1id2Gsg2HteAYxkrIG8Cw6w42h2rDPSteuBe+FAtcIxEN2GZp05CBlHua6r+KQjY8VjYukF4J7ounSQnvB6ZmfXKg/llO+/AppoHaCiPwMtIeAKGgDnTLLQTfoqREUHb9BDZj3SVG1ObdYZ8e7oUOroAt3p6QcnwBIOjPW2dQhp8rHWnldn6kyO55omX6XQebcB6ZeZGv9UA1xLAEFdMc12+ACq3gfsWL6vB+oYMC8PAKezruvheQidWWtfD7EuAC1BBs/yQz101uAMLW/p/SVwoMbACZQeASncFhi+I9A5BPbv+x/XvZU31NFL2zp23lanabVWZ8bMLJvpIdjr6D22gRQy6Wj2b3Sq33drpo0Rmy19UU8nz8rY4lW1E08d6Fr9clgLO9A9m8L+d9r6HFcP1d51G/pO7k6A6yoD7qZQbeoElAO2gPW92Gj2LnL0vYd7HRk7j9Q5iEBCyJ3IkKXQUPDgXNdBPwMAdQMcFReaG450vayhFP/8EgwtQDxSD2SoQg30XGgSahe6ONpgJ1qFnkkj0N/zQl3jzQ3IMgEFxLihtmh782iAnoLYOV2XDtITXtdmG6tlrx2aPgBip0s9pG+CTs3MV+dlfqQLfrXRQ7W/AzIb53rwRJA5WJYTGatBFsMt9HMVD5yrXI3S+r46FsdTNRgbKhUCQ+4yAAbqvoLNm0AA2QGepiDV543H6qw1gZyx01SD4eX6HDEAgC/0PDAPREFnUGo9h+hpCIDD+kIPmCkIdtZ9/dsI5LLngEsqKqALVwcJgWM1fPenIE1zDBgk0J5avqTs6fEMgpQRMDlf10xCB1ilG4FiOMzMlld1Hh4AZ1e60nmIIG3WBZt9e6D7a2+kIN6LTDM+8QqyekMNuNpXdV12ofy1B87QYQOIXeFUOano/moaZNaHIK2yBjt2T21MAdis56/o3L9lCoSSaz1UoVfCEliDrSqwSA8hg9wBPE+ga5VwXfMZkGX2gSpipnspmmvmKqur/dyU6jW1YgD5Adh8Cd2fIVCOvFroOZDTvTxQXFcCGprJjga7ByvIKj92PGbZF+b6XDpIT3jtdHpWfyiDFDd0Su++DGleYE67AdmONIKykaOZg3iikeuioQ6IBzIlAaTxgwd6L0WuB+i0A62/QNjWAdzUYFsN7uvepMyy/RtqrMeJHkR/ePu3ZWx5oXPQXAAge6CGYNWGNtpcN98yh7LliW76GeA/QkhhT8FgRMdqmEddfbbyVc3azBsdGRuDEdmDVPwFpOznwJTsefobu6Awn7n63k5TNXx1IBZsAQFcOdX1l9YUS+G19NlK6GJ7BbKL1oVSi5k1IEsfXOgzJxX9zqQKHX4LPWSAjcHuhmpPqtAuXoPGiAwYvMMCHPwESBKHOq+fONY28HBbn62+UbuzzPQlN5pAWnlN7VMGGJ9squ9zB8pa+UrlYAIosXngDEWO7q8xHKOxqcO6DV1dQ2iMmAMv1V4BfF8jtdGgsmEeiPNWTqEMGgB9TEcd0UYA+xrEzU/qukEiR+8lgtblZQsgAKHaRXekG+SlrTfo3z5WGl0F8PxwXTpIT3itzs0ezhB6NYjQroPWGWSG7gJTdWukhn2ag3gmpDjdWDdz7mrU4c31njc18OpBMydc6/fNJmqUFhBl1XM1wr9/63dk7Mv6+rvXD9Vg/JXbmi36b/Ab1tFU/Aqik1mp780pNMOQhVDm6aiRqwLu5D5klVrgiGbAH9KLNXp//TM696ORGvo1aGhdgL6dQfnVA+2+NYBmbyUaHbumvxE0dQ68HMDrQDa4gWxWx/R9bAb6Pobnuj8yYDGPgefGzGxzRR2GAvZwkWt2ohLqfvAaej8baLcHdR+bmAYbrbdAQ8arQAp7pCWn/pGu812QKWqDrmHyx7ouw1K/L9mBQ3Cp64OaPnLAnrWGen8nmc79DkhgOED6aeBUuyHYVKBdSKAp4BQEk7MZ8FwB4PkEStOtltr8MCEVA/3bs41mcjshCGeD83IKxK4T2NcxiG6XQBXjX4EOR5g/Ayd71tb9v+gqtu36Y52BpQNrD65LB+kJr6h2bpXaQ1psgLvYB+dlBaW4JdCHLjw9FBoAHowd6CyANlpnrRvS39F7iaBd2QCMWAJfQWNxW8YWAG7e7KpxHRyp9Y//o2KL7Ou/Wob2QCByMFXDd3KixnoOdfq5D7xPkDaYngFgfKzp/voQ9N521AA1oPRQz/X7xqYlouMLzbJsoFtrDFIjGbAO73t6fyl0aloFWs+BaC8C8rhd6JQ7diYytrqia9wrvkrGqoEa8HwDwK5rOgeLqhrmTcRM2q8zvZ91C/igoPTjQpfYFMgAnZnOzc0DjerzIxV5Pf4TxSXt7el+rW30PU1AJ9GF8nJK9bQWNIz4egiGI5C2gcwBaDJbUajj+GIK6RN47WEA+3UFrP5nwC0V6PoYJvq5LqjGtlK15adAEQK9MOZBd99yBiBo4LnzINAD7WY7B666NpTdkrXumw50W853QHYHmiB2lmq3PQ+ClxzKeMAn2IC5CqqPLqIARL3punSQnvBKlq75DzlFNV+95ppBCyRENsfQ/DUExfuFaQYp34BOVapGrgklwGyiNeW8o5s574BMAYDdhmtgpS6A9flEF/dyoFG5gR7Yf/jd/5eMJRBBZqC3lQHmKqtrBL4NQWUVBDu7oRr6ylt0rDNUB2QMkeFmpPc32dJ5efM26C5VlTV7Dgf5XXByTk9BQuRID47tnv7uSaxGs9/SOdgyXVfTuR4wO3V1/voA8GwM1HkhEdl5HdrlG9DYAHI6Hnf52ylkNpsr3a/jNRB1NtRp9aD76ypoJx4/UKfJgxJ20NBg6FPg6zU8XQvXt/SdNKE8QiK0Z6neczWBEhvod6VgswxoPhLo5A2hNTxMda3GA5DygQaZCThru6k6Zv2N3t/JXdjrdQgwIWO5JGoHILKdhMBp56mNdgw0AwGQfQ349aD50E6nICW10Q8+kwBXXUWd8WSh+wiw+hbWdfGGc/X0/KaWfZePZWLXC2AphevSQXrCq9auPoJBSoDr4gSYViuQNvYLXbT5iRqMDmzwGKQGdoE40YOMQBswL3mhTtOImJEhVTt9nT7v4p6ueOdE52rT1tPozpVDGXvqWB2uYlcdgdMudMCAFErFVVzHeksP2sVY38dWCBscWlInLR0LIRJOoGT31L4avq+AjqsoUq/Oz6FD7yW9lztzfbbeAMp9YPheNwA8BMzzAhiBg7b+LTGHRzOItuFwHz3Qw7h6AEzpYxChhYDEbUz0c2bmpvD3gOPKWrqOLqDdeQ9I/l6ALHA7UnxLuwuR/lzL0JVEM7mZq8/xSg4lIoj+fcDk2EYP7gxwZtvA2dVNFIA+DPTdNYGEtLZ7KGMLTx38AKSGYk9tarkCMk/oJksbOqdxAAz+4PjUIGvoLfWAzxKdq2YX0kAP9Nk2QLexBOzT7RicBiAiDzK1EwEg2u9CAOz21LkvVtDFBuSqxR5gC2tqt4s/AAqDxyRi1mugEofr0kF6wsu1hrkPpTC9qi7GHnAZJS3oEkm0iy15gy74t+0CNxIcFGlLjc3TIHtyezqRsaMT/d0DyMvOQY66cqKGvg6A2HOYq4sj3RgXwDD86YoapUGuY29wNRPRBuZm0i5MF4AnAUD7WzoKChwXgNOJJjJ2YPqOetd0W774ih4wf7TW590/UAfzqboa/92OHmzPALh2Ogd5CUjjW13XcxVa8BMfhH2hy9N2df7mHV1/bVcPk2hP12Sw1GwW0SSMIYPhgdK7mdncBUFSYBkevqpr+qZ229t0rc6tC5mXeAWO+1KdoS2Y1jrwAy4h8BlCE4mBc+tW4UeaoON2BxjBQZ4m9l6WsbOeYpoGwMjcDD4uY85a16rb0uz9Ako66RLYuqGkmBQaqPj39Xf3+zqnJydaDaidgcwGAO6PR0AoudGAsGoanC483devTmTIsmNdMHXAJc631fEJlh0ZS9f63toXhNcCoDpo5yRAJRAXkB1/zJanEMDSdekgPeE17nmPdK55jnasRF1IG9/RBZC1ddH2gPX55Zf15TZA4NDp60b7b2CAgoUequEa6sI1fbbeQI1D1QcunkQzUgd1PUxCwMtkG90Yo3Odg/hCN/MEMCH7sMGdDsgP3HyrjBmwNMdwfj61q4fdItf2YnetDus80Jbeg3foQek/gDZpoIAYA2tsY19LivURkODdV6O+Cr9Cf9fRA2EMPDf5DoC0AWjtgkhz4apj8CLw9XQhOlwFunZzwNlYVX/j/C5E6ma2AbqIJrQ7v6EGuKbnwSWvQUYVunRCIDC1rr6n+wHoMy4hw1XVeSBx1AtShQf5jA7UZaZNfY57I7U7bqj7q/a8HqrzBhAOtnQdlUv92xI6s5wCuIIAPhBsoJwObNNZV526MRBeuhXd6wvATV6AHIzrTeD7ZMgWCXjjQLpqXXUs6hW1CS6U7LaAeqIGGeQpdOjdvQZZ5ak+78ePIfAu1E5Ebcjsuo+tU/fSQfqiXOXSrHwIwX98BgfAth4Uy7oeyM6LaviCLTVeWU0N33oFzK3nGl3HECEHEE1EUA6aA/nZbKKRwxIMZGcBqvXQAWMHQExmQFo3gMjrf1EnbMvR59ib3dafPfw/y9iNm2qo7jzQZ/uTF3TsLbC1HkD2bnSkmJykoRmpqAkA9LpGhu26zsEMwNeffKDR8bKuzzsBR8/vqaE6murYBFppr81AY8l0Xhxozw7d23ovHcAbAW7nzgIY0EHZ3t3o5wh7Z2bWDiBbBH3WIyjbDSPIwuW6znevgNo7CH6uMnWuwo7e3wzUbwdNnS8P9M/aByDAPNV9HUGWpdfQ70sKddJJ6/BiF8qHp7r/rwFuze+oYzwHvcegDSKvwM+1gnKaVXQNOnO1CQ7g4Dag01mBTsi9QG10O9B1dX4GDUHAURa6ei/BRN/vrFBHz/EBFgCaUzNgAl5c1XvpAWa1DyXKAvyeuw8g2B3qXDmPvd8MiEbpunSQnvAaZ45tstcclhDwCtESokDIYvhXNBWfgp6VzYBRGFKX564ebiMg6trZ6OFWgKffByboCpTJ7o3hkKh0ZOxvfNnXy5iN1GH4nQvt0Bn0NAoMT6E8d/8lGQverB1wrW19H//941rfPoeDY7urTuLv3AFw7Z2O3t8W0BAAB1X8J0qC6YOGXrj7xzI2B2DpJNO/vbu5JWMBYB8y4PrZd3StDXb0fdQhM5EvdP4qID+wcUHENwBOsBqQVsIcVKDFaQ0En/maHaTAAV4mAKtWoAzVAxwXYJtt0AKPYaZOcARmIol0XlsNOMx9XfuTUJ2DnVz35hAwSOlA1/QJkFYOIDuWAzgc6JIsGOq8fHqq+3Wn35GxKkjHEPnuwoF1uYBW+CoQp8JYCjqYJa3pmtq2JNRs2wyc8fYNHZs5wLg91ncebesCbKfEH6bPNgbmmVGg7/IAgt0AiDGXFdgMvgZ1XlvfByhJ2fgxEEWOoAr4yS/oU5fX572qF2urPWRAz3b1AK1eQLToaibHmXdkLAUjt8h18eQb/Y31aqK/W6qhOttSY9NNdGN8CsDmt6eQlvV1g9dvaRr6X93/iIytjxSHtdLA0DptLcUtofMBNCjtl1/4RRnr/Sc4aIH8zKkACU0C8hQ9PeD3ACDfBQ6VCIjYXMgCpYcTGduKtYut1pEhqwE2o97WrE2xrwfglCj/oVq131Sn7hT+tt8A2ZO+HlgxgJi3l+BIlXogLOF91EGd3mlq1FtCidfMrHIL5C4gys3y23qPYJ83QLCaznSdB6B0Hi/1C0vozIxDddayid5LFACTOTijy2Noc0pApijTZxtCd28EjRsGYOl8T/8W5NnMLnSu9qCcvrynwcGsovv1HBzWa6/qWl0BVYcPBKbmKuThPATiWchcJTDPt8FurydqGH2Y+20K2lcdGSsOdA7ITtgMSssLkPy5qu98Pdd1WgMM7L6vUkgpdB83h486z2mZmSo26nXpID3hNQ9cyx6q9e+M1UFyVrCZfeDn2egrG4MxDEHM0AW3eZ5BdxV0LzSOdBn8NyA1a670d9tv0N/Yvaen5ehAD6j1Hylfyt2busHbKQC8hxqBlyXIHnhAzlYCp9BMPakKAG4r0LnUandkbHeqf9s+hG7Bha6X1IdtCazeEbTlz3Zuy5jjwryQFhPV5YF4rtfTuZoCDut8DWSPoCO2gt9IIuAJmoLEAbSyNyH63PH1nQfAMbYFWluzYUfGzMxmsT7LGA6ykacHowt8ZNvRl8vYMXR/OQmUZXxdWzFI4ITwjiPgkomLjowtQUw7NzjISg0izlOd19pKHV6/AhlL6HbLU3DSl/reV8A2fwz2M4WuvQxE1py1BnqntdfJmAF42ChZHEF3JTDudz8FWa+qpm1mHX1H5UL3YZHqOn2pARp6QAobAmN5egqR6ACycg907jc14G4DsswVlBR74MIksJ6HxaP3nBeXJbYvyvXy+Miih9paSyAD6wNPTgbdBj7gLnzQ4Grva4RcbulY61SzMZ2OOirFTBfLNnSnPUxn8Nmrmilgd95QAzkEjpK9r1RgXwgZlelCy2Sztc7VBlqYowQcONhoBeADFsDm7DY1qixBo64OYPP4vkZ81aehdRrwopML/Y1VRefPL9Ww0OEZgOjuuqVGrgq4jvrLGi3Wd9TIeSAGO4eSnQMYuH0of72hqd83zlTI+AS4qpZAq7GpqhMWLADkvoH6lZntAYNhdtTRMWC0jgoNkO4DLqK/DazgwCg+DUBYFbIE6VL/9ghoFgADbclKT/gw1nfyEjhNAWSBDDLSQ18bGdYZCAAD2Bx8OttUYK939XcTD/ivliDBtNY9PIbUVQFakcmevqOtjTr9TWDrnl8DZ3wOjkoOzPzAfRel+n1dKD060PyzACR4BGLEFSi711v6fsuqrsk6ZJ8gWWxRoc/hL/X9Fo9lU+NNYp/Qr9Pv+gI+c3n9D6537LpWewg0XYeOlWyohvQMgvXqOYAHgRBtCEJVdeC6sBSyNif6t0vIsrg94FABXJIDRv3+UA3G8PRFGZuuAKs007naQMtnCfpRjq8lhXWoRm4CAMCdlW76I+ia2od22w5wUG2gGyoyraHHx2/S+zPQXYoBVwOt2BGQQm6NoQ25A+n+lwA3ASWFRQX4ks5Bbbyt66pxpvd8flX3zAV0xcWlHiZFALpwV+Cdg9PpQ9brGLTi+sBBZWY2P9XfufG0ljNqdZC2ATB4paUHyjkQBC5IJb3U97lMFY8WQF9Ef9ORMZdayOGdJDVdb72Rrt+sqs7BCKppVWC090EC46IOGosj3ZsplADXrh76NWj79vaABAjkltK+Pls+08CiCoSSZVXv5R7Bb6CC1Wl2dAxKYpMqBCXAkL1oQ+CTaFbJA8LLuK1rdw9wYtOW7nW3AD1FCHbXAOZugqZhd0vthPdYRt9zLokivyhXIyusnr32gmeg3F2t6ebbyUCk8AC8daDPD0/BYVgD4HRP/zaBbh73VMdqpjiiB5CezxZ6QN1vqYF0HughswJCuQJwJn5fD/jlGHA6UJqq73VkrAnlpat7es9f09IDsApp46NjYNd9Wp8tBdC8c09J/86Af6XVAiK7tjolOXUawaGYmWYX2/u6JpNwImMpCB57uzovt0tw2kGMtAvdW5UIRIGhWyjeKIZjArxKz7o6L0BzZc9AK/sahJHNzKJcHZ9wqeXMvADh55sA2vqUOgfdSL24Ksj7tAudh/lGfxfotCwBpvBZCaUzoP5olPCeajpfwJFotarO9dKDAC5X8HWzpmtmloP+YQ26hamLzdXMxgRa6moLkIiCFvydCmg7DoFywAMmaOhYcwvNlM6q+n05yMFkgDvNt8CJzTsytg7VFm1a+s4HsdroeEvXs1Nq3mZYPC1jjbraiQiwnusQJE5KPUfrg0fXS4KANb0uHaQnvFZ+YOa/ZnzDY33ZGaTyh1Cnr8XQmQU6B0NQYiel4xCcnGSpjpQL4MsLAIIXb1QjMrinBuiluwp4vNXqyFhOIL5c72Uz1k4P378tY23QTrvS1bnf39bnKECN/kVI6c6hU65nWtO5+3F1hg6u6KEz9vVArdS0bOFApB509G+7gL/Zr+vznoD6u2VqWHwC/1aAmgC6n/ugXn4BIr4rD0RtIcCrHmupFaAU9kYoz0VQ9r0HuLPmkTokNXDgzMy22/os+UT3w6vgoNb/u5ZHC5j/EWXIgFjvfgJt1iVQFsQQXOmf2uG+rrcHp6DiDqKikyaUYLb0OZZTKMtANjZrqnOwALHlstDgalEAg/dcX8iDOnBaQfPKErr7ahN9lzFgizr6MYMqqM0NMvql4o0CkAZJuro3W8eaWc8i/ZxVIFsMjRtdR9d4DbBZcwMMLDBuN0ByxofOz1Gua6jVgDQkCNFuHmO4Tz2IFOC6dJCe8OqmhdUf6s9d70/kM7c36qiMABS4C7X2ADJDAZCp1Vt6WG5WmnYPenp/EUQ7dejgikagrbMBssJD3VS9TwLHRlc3QT+DGn8KqXNTpwk0Cu3eQn/3YqGGvglRkTXVOejH+rclZA0iYBM++6Qa/962jrVBSyyE7FOxvC1jKZB5noBKfA9kRcoe8LRA54gHh+zUVQOehVRu1mxAdaLv9wLAyeONvssyg9pDHQwzHMZDoK3w26AzBSByM7MXIGMRdw9lbDOEUqOvGbx5AMCfsa5L4Ae0rA6dYxAgAYzQ1jUdHJ7rmg72dU3PActiU8g0L6FDCryDZUfXR3IBzhA4rTnIsmzXQUS5q3suB2qSyX0g1axp1hY6+i1wQA7qNmjPXdP3W4VMqV8DewzqBACbtI3SqlnV0xIgUXMZ8meqLVpuoCMRAhWvo/ecgSO19jRz1YZsm0HH36GrkzB7TAg+AWeLrksH6QmvO+HAquFrmz+ekQwIKBhXYJMWIOsAzksHlIgBt2kD4GSJd/T7VtBKXAJRJAhy2/YeMAe7+rxnN9SRak0hTQ5YKg8wXE5TDVCtpos+gRr68ArgKzoyZE2I0I40OWZ96IaCLL7lEKWugWE4BOmHBERtnRAizRw65U507s931HgVr0L7rg86U3BgtcBoxhWwrpl+bg5g0zjT91af66TmTX2OSawZszDXudoGbyHu6h58cAr8EWZ2OgUnvTqRsXpLncc1YFTqwBUWA8nfbAsOHmIjB/D70NHsZJAAgzeAjAEqYg3oqc7HIFa7Bfilvjob8bHSVCwLLWXubHTPzYCI1UyDtQT4iHxwfFrER+TqnAZPA0QB2u1rvs4BsLMYYJYtgozvFDJNbdg3KYDm/Zn+iLOltuhmT9dpeKxzkKQ690PY/mlHzxqAYVkNiIVdgIQ1gUD32NVM4voxUH96iUH64lz+pmqB+9riDUABOr/QF9YpNe1519VozCs7MtaGQ4vUB06gMrAfAFDw6kQ/mOjhsQJSIbcJkaurZcGbAHh8AFmCpyGCD96oB8LRSH93CoryO7DEzwELMLivBuMEugq9Hf3bYksNxsDV51hP1Yj4d3WDh1BOS9aQuVrowTFf6VyNr2qJovGS3t8ZoGZrVXCkQqX3//8AsWMDyAFLABhvoP+5CoR8VZiXxQiyVKk6AQeQOZmCg7n9LGQNmhCWm1kdwKpuDM7y8lDGzrvAMpxqhnYBrMVVhY9YPQE8HzijVejqynJ1vn0ohVbnuhaSTPeICweyLfS9L0BEuYR3vOXoPQfeoYzdhP06AjmYdlPnxevCGuxBELuG0g9gBg2ywAsIIiIoL1VBMqVS1XPFgezJCppDbAGyR8AzVBkAPcsIWNZBpmgFuKlgBRxewUTGyhBIwa6pY+ZMdZ7PTDOd1ygwaDxqE5LFJVHkF+fqTczqry1eb6KbNO7pok2gNt4FvhrSuHITjVyXhRqW7QiMEvCHOJkWxzfAHufvQ1QE9L/bU8DVAAP1YV/v7xjKI+MF4ANA/yioAXgYDORfh2hxeV+dl35TjdLqFDIWQPU7r+vh29nvyFjk6BxcQOYlD/TQJzmIURe4hyLQUxsAi3EX2ovv6vsYhTq2BRnRsgpGk1jlHYhmAUvlbXSurkGFbQrdc8lEf2MbDqdOqlmDbdI4MLMpMM29CEmMzZYa9sNMHbs1AGwPqJQE7MZ5TdeCu9LMV5ZrZL4w7foJxiBFkUFjBLTHz/dICkV/dw9KbE6h67wKJRMHiD/zOhB3Qnl0k0G5r633t4IymdfSvbnnK9VJtNH3UUnVCWtCJ2p3G+SWgL5jtZzI2DOOnjUryPIvb0IAXAU6C2Be78MaaoNsjwVAcnyiz7GGLpJrEOyWB3quLCEbuEg6MnZQPDqnG6odwnXpID3h5Y5r5j6kcr0KNKqPa+qAHLu6CYoMOosgMi9gU3kAoRk5ExkrgXStsgGcwwgyYQCqnsIh2IH0fAzP6/bVCN+MnpWxuxdQZgDD3GpA2jSAvCxgWZpv1Hu+f6zz3APnpQHObr/zZTLWqWhkOK0CL4gpGDk70cNutq8NAS0AuV4DFewHM0ipQNv74k1AETBRr4SMv+/q2NxRQ7peq+HzZzpXWQSdMleBmuCO3l/o67w4E72Xg4mu53PAxZmZ2Zt0j+wmShqYnujvrHZv6z0CD80oAAwYcCO5IKIKVEtWbetarZ1OZKwBOJgJdC8uEp2DjqfiqA0oadRqOteThmYnGqn+RrsFWl0g/AzTZ+uxZupckBqKEhBvBm6fKnSxNZZ6L1lT7cnGOZSxYwhoKqXey/W22tT0BnQ4QhAxgAaFuEIOsL63SfpJGUMn1tH36+3oHt5eQLMElEt92IYNoHtxU33p8+6j79cDOhm6Lh2kJ7xeXKwseqjjq4AUdjKdyFiYalsuEJTaDBiyw5WulGJXX7gLbdb9U+DxAPHb0AMG1TmAKk2N1w4cRjnw8wQgIOXX4AAFVuUa1N+HY32ODLIsBYAbPeiuGEJ77AQwJtlAD/jzlfI+DYCdfGusmY1w2ZGxUY+Arzr3pzA2aWmJrQraTjZTgxZCK3w00b8d1/Tg2EDmpQ7G0AX26jW06kLm3Gr3dL+VRPoZ6PeFcEDfr+i9tKFRwszsYK57bt7Ug+xOT+ehBDsB1WWrAzg3WEGQA/7uUR3wHkNQo6/rPU+3gNEeSFc7sJfaqVJXVEG/i3htXpeoPI3X0ncyNX22IgLBbggIBx1w1qBsmYCz24IYbFmDTKSrYHO/hNJeXddWFbKsRLsQgdTILnQQtm5pgFQ8pe/jLnCZRcA63oaMTx5NZKweqsO1geaEdlMdmt4JiBtDKW5S6h7uehrEni8ezeKuQcGArksH6QmviZ9YGLz24sI5AIVhE8xCYIy9D5xHUHtOuuDV39HFHRwC4BTKUAYtqZYBEywInIYTEI2sa2o1BU6hYjzR77sPpcddKD0CJ8v8CpzmE02TDyr6HH6mkcgBYAYCoK9Jz9VQjYDZbQoZwpNU53kTAiv1RC14BLxPO5mWppZjNZAjAIzXIGorgVKiCPR90BoqgOfq3p4e0MFC/7Z+pgfvtA5lN2CGziALFMP6W8z0ZS6GoKR+FTwXM5uCQv0qUWO/BRnVNpS/wz6wPoMMnAvrw+9CFgO6ugwEYmc76mx89Vj3TdWA4iIF/qC2vqd5fl3GVsDn5FYmMjYIdC91QSunWahj5q8g6wXkuxcNXdPVEsDhR7oPvQjsDmje+WMNLJZzBfBXgDQqhKarKnQQTgH0HYOT3fk0ZL2b+n1zyAxf6eocBIXajuON/m0fskoG72i1pWtyXarDdQBNOIu62qy95aN7eAXQBrouHaQnvLKbTXMf6oYJobV+Dt5qOdYFmj+jL21tIIQKm6C9B/psdWClvQoO11gXWThUA+kDtsNAaHC1UYPRhZbPDXTjTG4DxfwIFNLben/pfQX2NW7r/Y3eAOXDNehblXp/K1/LByVkqepLSKc3gUemoxFfBzIEfg6HMZAfxsBl4kGOvXcBbLjziYzNoLNy4etvDBp6IMRwcAxABiAyPTwtAqdiCmKuQG/RbuucVkAbLwVR4CX00K8IdGxmu9BGvwudj+fQidpI9R4LEBCuQNnTLfW9R3cA7F/Xde4e6uG2D11sBZBbLkDa5kpb57UHXbbncNDOwZx4gCmpNQCgDFIEh46u85Oe3t9gAxIYdzR48ZrAM5aqczq8AxnQJvBpAWGwDxTv/lJtYBpD5n9HcZjLiZYouyAAPN/tyFh9rs0XW6ZQgWCha60F9qkJHZglaBUuoGs3HgNfUve2jI2h9Ojcge7o1qNO2JqI2+C6dJCe8CrHsZUPebH3Gho9ZV0ApgJL68yBzoKqHrTtBage9tXjdk90U3kgnBsCr03Wg26eHLAiDY2Awio4egBALVfqbOwOgOQrBV6gBmiOnYPEyZfrRttAOa1zoAdHGKnB6I6AXgAkRKb7OvfRGoSCA838LXLYvNACbsCbFXUBv3CsTraBUzfrQx83lHgDKHlGFcg4LHVtLKYgGhso5moFHEoh4F0qFUix3waS0waAUaCj7tBRkzh+kdPxIeAzDBxFa0NmCKRjKqHeN3SLWxuwJxkESBGUursJyDoAl1Tb19RVPtdSbQhs3eB32h7Qlu96uq+dvjov2Uon4XWQiLgAPbCbrt7MMZAfxvO3yVg00kz4BeD1fQgsXHLW9GPWyHT/F8CQHy41K1Ke6p47AJuQQie0P9XfyHKgRKjoHMxHOgkZNLTMAYPo3QNOMOBQqrcA/xWTU6PftwRaHSd9bJ1CNYSuSwfpCa9hf2zBQxtzF2rj4CBbBqnG9jE4FjM1zrW6vrZwogfyEjoaWm09zNe5Zl4yU6NeL3TBx54evhOIDCukOtGEkkl5qGMdIKjM1GDUurrRBhFIfjivl7FkDrIRpYKglwM9zAvA0Fiih1gMNA5X62qUtmuari5CjXAXHWAYB995fA2ylaEeRLvHajSmkMKYAzt5DuXDa5ASTwEMG48hKu9AGRQUvjunQPewp6WMxgSEZWOYU6imZa7Os5nZy0BnsYCDpzXVQ2a7qfsmXKlhb0IXZr7SefVA484ALzeO9OD2gY/sNDyUsVYFnGoDkWxo6Qc9Z2tAWWZ1pvMS1NSAvrwFWVYoG4dAo9FrayZst6PPtqiprQzP1J5Ue7qXuj3dI2uNt2wKXacVX23REehlWk3PmjrxpYEDHEfqAKdTXX+tVO1YY6qZqw3gsNZQxSoTfd5mTdfu3UxL55tA93AAZfcUyIGTxwKkDUAl6Lp0kJ7wum4HFtlrRj+lIvAKeIs6d2Us82CzBLoAFtAV09kHUrMqlDOGb5SxINfvI1Bl3u/o5wJdjPUYUvtQripAhNa7qic8CTA6xFECyuJrAArv13R3FMBsHgc6B/VCy0EFMCr7of7GzUOdqx2QAZhCGrp09OB4GrIdxQ1oAb8DquRVvb+JLg3rAo3DEjz+edaRsUoI3hr87bqhjqgPbbjeQp/jHIDWY/tKGXP7ethV17rfhqHuy+KUsk9mF4U6SAHgZQYg63B4HSQcZnpwV3bU4ToAgsUVlOyyFBzoPXUKgXrInFKzRVlH56EDGak5lACre2oT6g4Ek7keyDNX90NjT+9lBaVCe3tHhjLI+C7OYP87+j4m0CwRj/VvkzO1vW5P91ySIKOsDPV2gZrkzisyVnOhkQa6ulYJZANj9eBiiP3WAVAngDpBI4ammb7e37QBfEnQqb0PgPEzcLKHQI1Tf+HRd+4STgWuSwfpCa90cWruw0h6eGHxdkfGCqhHr12Idib6m5VdUKiGjbsNKexkS1d8ZaM/kq2g5HQB5HE7UOqCDjgXSoDpUiPrANrU69t6f01Hy323Av3dnTM1SncW4EjtqKHvA4FeG5zYKXAAOaE6NE1QJW8cAmg+hm0JpdtgV8eiqTpI0wMwwo4eJt1MjcY50CSAv2+9HFL7b4VM2Kka+hQomh1gBK4EgIsbg5o3KLM328r1k61BzmCtugwrwNmYmb3R1y6nAFqlO8C3FEDWcXETSFLbxPejjucERJ6f2oA8ReVNMtYLAGALGKQMZDum4PC2YB3VINtZgLxPPdDvu2q6r9em66gNn1sVamO8ArBn25pBWgIJYZgBnQU0N5yCvqCz6MhYOtDfPQJNvq/tKBzhDyDLPzxTZ7zvqnO6DwFS6upvBBEEu+ubMtYBOuws0Xe0gQxmcqHB0AB066YXul78if7ulYZ+bvFYOT2H8jpdlw7Sk17ZntlDxGPVbTVy0Vw3aQyguzfA63gA4d0yVkOwtda/zRMtTfVDII/bBt0gaP13O5AFSiBVWwWdHyBnPHxVD5i6p3OVTDRrE2/podod6txPgbupdkU7b3Y8PWDaoLE2rmnk37wGGxxq401gZE40YWFhT39j5amhaiz1AAyXarzCgT5bACDIvKlrqLvSA6ELhCSLvt5z61S/zwHuqyowwydrtZCNFYA5+5DdIXGsAnhaGgpATVdAQDphvEK5o/trAPQJ6QNwmq7owdjfAQJYIEmtTvRAvgndgc0emPdEM5YLaNXfBgcVmtMsAGZ5A06cDRxIPhzwuenv9kBGZWW6poG4wq64wH8ArA0uQCOyif5utQNMoL7a6Hagz3bh6D0fA9t04ug6/+j5b8tY2VA7dja9LWO9QvfrBhz5tqfvMqJYDXB25ULnxYOuuK3bOvnrQ/3bRaTrtFLRvbkF/R3Lu/reWtGj72NFKtdwXTpIT3hF9VOL6q9FeauziXym21YjXoE66aRU56C5gBbXUiPfAMoPC6hbN4AxNjnTDbSXAK8SRCJOHQBWoUa9r4JYXFxVi/t6R3/3DFiVq5C+rYGgq99QQ7U1AWBpCniZcCJjbQcAlEDSV/N0a9XOgW8K+FeGKz0kdtf6wQRKig0A/zeP9dkuXD3cgypgWyq6hrzGbRm72tJ5jhrqKI9BgiWANH4KWoAzcIoPZ8AJtNQvLHPg3Mr1wEquEDEelG7MrJNoabCAjE91T614OlaenM62HrRXSt0Pq31oMgAdwvFKD57Dvj7fHJyDKmT1mhu1T+ZS+ZE00dQxJo2wADJSKZABxq4GdTcgKCG3aQWfCwq1qd1qR/8WJCo2K8Co+bremsdQ3gTnagW0C38C+KDJidrU1QaaNNq6hgYd0OQDuRA31/dWjvS9rfqAbcsgKHla14sL+NRBAPg+IPpeAGgw1SPOsseIMTOPqTsevy4dpCe8iknbiod0y2ot3SyzCAxBFdo2T4DNFWqx9QVoE8Hh0Y/h9C31lXf2AHTb0s9Vx/q5DNLawevUiLz+SDMC5zkw6R7qRnOA78dbqhHpX1Ujcg5dQKRGH64hWoSU+AWURm2gDmYPHK4+MJbfC/UGe6G+8wZIyZQzyEh5ICVTV9DnPpRLLIdsILATV0H+Iig0Q5A2NFuZZ4CVa+nz7gL4cmP6u5UqROA5ZGy7Gn3uucC1BLidXTjEzMyiVI14ZXEoY6mrCsc5BAKVoTqUQUvX1gCyu3PQgNsB5nbP9IDaBocmhiyQVYDJ/AIykUDRUIvUAUkBQB3sAcdORce68BxzyFJ5ppkIM10fGTRQpJHOXztRW5RtU/ZJP9d6o3oCkwVkLB9o8PKVsF2PoJuROvnyIwD/w1zlbf1cAVQWBp2yNaCyKB1dGwPAp56DwzqDc2UyA0Z1EFoPu7ov14NH13MGndZ0XTpIT3i1+g2r1F/brMMFZEoguq6NIPXbUyPinkD7/h6Q8kG3Sx1o+40OeMDz9ICKHjr1zfPUrT8fQiRX18+9daAGtxtpzakLm7nV0I27gvT8tK43fQ4yAONzNVQuaOhdzfQddWJ9H22IjlPg5/FyPUw6EWhFASFnywccC+ia9UIFZK6XaoS9JXSYASCz7kELPgBp70J5qL+rn9uBA3UN77KV6DpwAa8x7upaSwwAy4UeigegVbiB8rCZWXWgB1S+BjbiWA/k4kCdvajo6I/AeluDo7gF2L0cSlgLOHhycBiqMDYBbq+8CxkBcDZqoKZdaDXYDDquSBrIgIncgaxoDYSQx5jN0msbZJ6ypmaBqiBM24PEGnCQWssDVmpg8E+hIeNGTQOQ9L6+t1mszvjpK7ofMijt7T0Lpf28o3/rA+dRpoHZnVL3TA0oEcIhSJI4kMFsfFqGVpFCNzz//mP/vmzz/6Jco8bEooeIzKo1fYl7Cz0UZoDj6IFsx2xLjY2XA7cPMNrmVeAeaWg5KOyBLg9oZvmBlvFc6Na4MdBD2gOdtArgCHKIJnpg6LtwgI7hb0fQ9uoD3b37rL4jH1pNq1BRDEA8lPiNcsjGxJApmQDviweK4bU6ZGOg3XYKuozOQn8X1AysKDVfXUD7eDrTH7kGh1g30rExvMsInNgUsl45AEqaa91b6QbkL5b6juJrQAcAB6WZWWkaNQdVwGdU1UHNwYFeunqP9VCDnAwChg04NDWI/rvW0d81feYJdBEmTWgiAZuFh4pLcwh0APDHLhCTFtApkIKWXQbM8s067HVwOuM1CKEWOqcFAMvPTtS2FVAGdaDzbly/LWN10ME7J2qXVLOQ6RCoIsBpT4HzaPUJtfmjG1ARGem77MH+osaS0RQy4TEEysC5NampNE28VsfxYvboubcG/CZdlw7SE16O+7I5DzEabyC6Hl0AmyuVM6pqlJ6FSKTMAdwIbLM1AFUWEz1oi7lu+sgHodYEFKWhMyts6LI6AHLLfFcdvbqBvAeofk/gQCCDuwvRYgUO6Q7EkJmvBmiVQumxoYagB4DiB5FyKBFuwvE0G+D11FmbQ8dkFUo3oaPGphECOagHWC8Yy6ENudFRB70GOBbiw+l21AnLQE9trgkC7JgsQDC6SkrloWZOI8AvbYNU0GcuYtgmkwolXejC+kLNcROVyGEOIXuytj+RsQsAQW/B/QXAcp3YRMbiFXQlVijrCFklmNMVOUOmmYgNdVKGqnkZnAImL9NANAenyQN7MupMZOw0UtvROgaRYWC0HzfBJkBXYQzEqW4LeN8O9J6nQMrUgJLz+Qa6dhdKL9Cuq2N2BvhU50Ln2V+rfW+0OzI2awHn0YkG/L2KYv7qjy21Fcj/0HXpID3h1X/FtcpDRGbTPpRRZnpAUWq663dkbL2Gei+k/AvQ2ykD/b5mXTeQoz6TLaAN/Kyui7u3C5pjYzUsORjXYKQbPIo08noFyoc9cBL9mv7teAIA1FydsPYG/hbueQ+EM9v31QAFDTXgh82OjJ2UcFAm+o5aiWYXpk39Ww9EXkMo42VAAJmbGiA/hMVR1XLkUQ6iuwk0GEDrNMArbJUA+/cSyn11IMbrQIs6AJF9dCBAKw7v0MxfQfRSAcM7JuZ7cpCAghoyoAR4NvuUjPimTOZzCDYqUCKqrQFvGEMptAOUI8A2vQ3zOofM3Dm0fHvA0r5JFeQegN6eU+jBXQK3HL3ii0Ln78X7mn3evKx2cQ1BRLKEvUnSGyAKfpFqQN2HpeEuJ/obIFfTBgkrm0FprwqwhYuOjFVykNMBGaC4qmstvqKfqwTAyQQl8bCrvzsZQ4eoM3nk3+Ulk/YX5xqeLCyqvmZMqktieIVW83tqCJYgotoEdeaiCfggEO2bOFrkd0CxfTTTRbZbwq56nK7dzGIgwQthgy+buuCDRH9jBKRrHhxu5w7oco0h6wAUC2FTQbMNwLJEkJ2YAb5qDo7oIUT56SmULQlk2IZS3I4+W/8OMGRDx1XdU2fN9fSAqbmgPQdA1QgINN25Hvg74EyewtkengIYpVSgpXMN8Him6fQZ4I3IxYlgXVWg68nFbI+ZAcOzpQD+7FO0CoC+iUbmSQL7awsY7aHcF22g/Aj4lvxCHd4MaCVSmAeQXbPtBhy0EOhFBTjQE9DRqut+vbqr724JnEezhc796EyzrGOQ3nkx1cB2Co77CoDqZQNwZxmUCkFTzgUG7zZg41Iof8cgZJwfA3Ei+EdVgAX0gEy1BTxDtYbuuQFod44OAHu7AUwYBM8hOEiUkg6h3c1/LGD1y8sS2xfliiuhlQ+1Qq9LdUCaS3X15wVEGADiNTBUGTCjzgEoXL2l6fQHHd0sGZRq5pmmKfvApxH8EXCU7OgGbwz1kC4ggs/hgModALSCdEQOwPdNCM8LlP9W1Q2+gN1xsq3v4/pkImPn0M6+B3wz+Y5aqrr7oozde1WNzQBqqDsTrclT5LoCR6rs6oEFXH427uuzla66IEWkkf8MlMqvtZ/XH4G2/O5KD7s50Cn0MnBIoGvUXM0GGHAMmXEXmwF/k1FWCZwcAxJSgzJPONP5il+ErAPcyvm1joy15zoPmxl0dQEupNIAh/AAMs13db3NUn2fVwPA0LTU4R1BQ0YKOpN5pg5DDmzn/Qhwf6CAkJawpgs1Hn5bM9KWT2SoBKznbKTzHI7UfuZ1qEzA65isISsPcAloILZqRe37stS1fy3V39j1dY2Xjr639qs6f7M5OIlLyPzNOjKWEHHvPmS9HtMWWRFFOFyXDtITXosX+hZEr23+0FP8wygD9ei+evprIA0MQLwVuA9tCeWWsNBF4N7TjZZC9OmvIBvTgs3XUANUBz2qVxw9ECLIMOwk+nBV4KsZ1ToytgDjUK7UEgQbfd7F+uMyVgGQ8dVAjYgBV1VwVedgBoe5M/mkjB1XFM/jp3qYvzhUA3RnrGWB6wMobwInk90HSZwrOlfuqKN/u6Vj0an+bRio4RsBaWoVKBHGpyDwCor16waIZB5rGj8JgE7B1004XhPWyOx2W387AbbCxUyd716k+8uDbNgCgMLFTNdWowaZDXCGAhBCTiBz4MAJGkA3VAsi/TZkmh3A/S0d6ESbaCnZQLF9tFbvoA1+aNwHvBHMSw4YxOugp/bJsTrfoaMBzTAGnUkg8w1LkB+J4X2c6P2Nm9B40IE59aBjbaJ7KYLS+XZFz4v7kTryw5E+2+4Y2LoBozvL9ftc4q+qgMZioft6Gwg+l4+1YHurvwQlth/7sR+zD37wg4+MPfvss/b88xBR/un1L/7Fv7APf/jDdvfuXdva2rJv+ZZvseeee84qf/oin3vuOfv5n/95e/75561ardo73/lO+8mf/El79tlnP/cdm83G/tE/+kf2r//1v7Y4ju2bvumb7Kd+6qdsZ0cn+8+6cn9h7kOkYOumIkm3Il0U06m+xF14Z0uIMCpwAJQ7UJYhcjxgw/agKtDI9KBYgjHcrMAqQfkggU4v21YH6b9CR+/NQLNPW/f1MFkDaWBcaO1+NgCZjWPtNPKBj6hyX8eKpjrA7jGQefbUMMdVILds6uG5AmfND4G2v6sR34tLKL809QDsAMZsA/CZ5k3gr4FOqHvQPRMdqBH2HODrmoFTNwX6g0D32/KItAX1dxdj/dy5o3O/gO4ZM7PWpCNjsw1xbOm8nkOnoiV6kOVtkLZoqzOU9KEkCY7U6ETXEQmX9q6CYwHR+isQEB74uqbDqT7HiwWxqgM1yRyMggc4s5Z+Xz7Ud5xlQC7og17h76m9q4a6BuczfR87OQS2YAOrwJ1yAevFr+pebzsKUVg3NYA7vA9M6a7ahPVa2+MvfL3nlyu6XrYB4H1aBf09wM9VQdjbIZLjpgaObSAlNqCUiB8roSb5XxIepDe96U3267/+65/7tw+kgJ+9PvKRj9gP/dAP2U//9E/bO9/5TnvxxRftve99rzmOYx/60IfMzOw3fuM37H3ve5999Vd/tWVZZj/8wz9s73rXu+xTn/qU1eufKWv9w3/4D+0//If/YP/23/5ba7fb9r3f+732d/7O37H/+l//65/7/hfzAwseAtVehxbjOQDCxlADngNjtB/BQol1IYepGgICQW/akE6/p4Z0Gqj3XwMQrwuAcReMobWB+RrOiLeu1FBV62r8Z03943NgVc3awPAMuOOXZ9rtUtvSw+4CDJoPBvwZV+cqgQN+G4wXSResgHW8nuuc1ivqsEbABZUmaoQn8H5Xb9L3MU9AZypX4xW5utbKl3R/kO5Xva4HZQmAl/U5CMaCY1uHMzYF418AWc0wIfC02WatWb0KHLQldH+2oclg3VWsTdqGztECGJnP9N1la9XWmvT1vXcX+swna+hEy/VAbvhQYlvoO7kFTmYNtCdX0JARQmatAExOAWRG/oKcEh0bghBqv6t2LAAgfQ+6tZq1Q/2+uX5fBhm97m5HxhpddSLGhT7Hzh0NVJy2zulJpvb9/OQFGRtUNWnwV4DF3IXqwtpXRwWa+6xB3aAZCAUn+rypP5Gx/Eyz6DuDR9/bsvxLwqTt+77t7gI3OFy//du/bV/7tV9r3/qt32pmZoeHh/ae97zHfu/3fu9zn/m1X/u1R/7mZ3/2Z217e9s+9rGP2Td8wzfYdDq1f/Wv/pV95CMfsb/6V/+qmZn9zM/8jL3hDW+w3/3d37Wv+Zqv+XPd/+vfFjyiMxYlb5XP7G40yvLtzTKWxpoydftQ304UzOnCYXk01QW6XIFMQQCCjhs1kIuRev8HQLQ6gwi3da4bN4j0d7vQAWMjjRIqhRrrA0cP6dsn+rvQRW83b+ihfzYFTA5wy6x8PRDu1/RBsqWOvexoNLYBzNpgDGl34ApxQOIgeINucxdOk2dqkK040fV3ker7vQ5Yj3kF+KGgyyaFQ+JerF1ZDQ8wIRtdzw5EkM4DWM9AtOkVaovShq4NM7MqYOhOgdRwfaElouUpYCcKyCbmCqa3CPATVaDv2NaDpwNioUMAxG9N1bmah7r/N5GuVQ8O5KegbXsHGO1PQUfvFNreK0CdsgIiLwdYxyvgXG0NgPYCxFuvQhl6XgFyUFgb7aZmCIfbAHg+AZLZI93D/UDHRk/pvnanWtbuhUDtstE990pP329jB+YKCD6jM/0cUPjZxtc5iOaKn90t9Y8rawDrg1j1+KXHMEhr8NTg+pI7SC+99JLt7+9bpVKxd7zjHfbcc8/ZtWta7jAze+c732k/93M/Z7//+79vb3vb2+zWrVv2K7/yK/bt3/7tn/f7p3+qYdPrfcaof+xjH7M0Te2v/bW/9rnPvP71r7dr167Z7/zO7/y5HaQbB2dWfYglOj+BLqyWGkgXQIsxdS8Bk24Kh3Q21L+9tj3RzwFHSTRVZ+PoKY0qnwXHp4AFWpuqQYtqmtnIl2owVlAOKkFfLMmBHbahWaBGAp13QHM7cfWeC3AEYgDhJ55qcl0N1fn7dEPLQauZ3t85ZFQSkELxgQrKAa2t6m8DQd0BML5DW/6iohmuNrBrr1JltD0NNPp0iYYA+JJS0KPKgem7cqrvDTqJrbHSZ3uQ694Ku5Bt22IepD3g5wmhFLLZPCtjnYqu6WtAehnA2JTSYQEceMA8XvE1E9GEsRjU2W+A83KygqweRP8tcJZto3ieXqG2srXRY+oEcAF7DcBXQpYlAhHf2Nc12JuqQzhTX8PeCOXlY1CyH0KHWTWBBoCeZk+jDjiTd/Sdr6Frr78zkbH8JXW8G4Atug56anaq79wHVdtaDzLcwK6/SjQjOovUzs6mkEHy1BFdAKRl8NiZlEHXN11fUgfp7W9/u/3sz/6sPfvss3Z8fGwf/OAH7eu//uvtE5/4hDWhlvqt3/qtNhwO7eu+7uusLEvLssy+53u+x374h38Yv78oCvsH/+Af2Nd+7dfam9/8mYzNycmJhWFonU7nkc/u7OzYyQlHimZmcRxb/BCYdDb7zAHjBqfmhq9N/tYOtJOk4OWONA0YruCQbkG56hZkVEJogQSCugDSnvGbdBk8Y3CYQ1t0DJo2FTA2oQf6UcDx4oK9qOTqqERtnef9BhzIoBE2g2VfBXzFSU0NZDYGyn/okKK3cSPp6GAXavfAFXQG6eViR9frrKefO4G/rcz1d9euOk0t0Adza5oRXezq5xoQLtahrDIGhux2pu+3Am3SeV/fWwHgWmeqa3Lb0YOo39KDLZ2wWO0ZZK+yc9A6hNJ5CM7yvKmOtgvt8T3okKxDVnSe6Ny4r+gczmNoyx8ATgfKZJVcv6/S+mMZKxO155UC5g+654Zt/Y1dYKqeAdC63VR7twYuqL1U30cEvfDzKgRmkLmamGaG94DfbBHpvRQ9mGdwpA46eoasABdXH4JMEWhtnnjaAbtagaAzAMYhAWd5oPd8CzTbvFyD+xpklazQHyGqDpLOWTz2p2sPHHa4vqQO0t/8m3/zc//7rW99q7397W+369ev27/5N//GvvM7v1M+/9GPftT+6T/9p/ZTP/VT9va3v91efvll+/7v/3778R//cfvABz4gn3/f+95nn/jEJ+y3fuu3nvhen3vuOQGUm5nt3p5ZrfbaNKaeHloF6DM5gEGwlkZe0Qkgt0GJeTUHvgqQtlh09fv6pq2XCZQKorUeKFs9Nf5tT0sFC+B4MUfvr+VBJxWox+fQxVIAWVl9owayDd1LfglA1RoYcMhmXeRq5HahLbfc6PMeL6GDA+rjeQZ0BRMtBx1k0OJaQKcRPEd9B6gEQHtqDQatMwfw/w5ItThQBpkB3sXTZ3MbIM8B7OnZAx1LMs2SVNrqAJ9A5z9ATD5zPxWdr56j970u1KG8iMHxTHW+AuDiOomgjHIBZSNwvn3IYhgAXTuFrrcjcDYuYqBZyNWObVZaxjuG91k50wxIA/R9WtBkABUYG0+Bly5WTFO01mdrAft/CzTvEhf0FCv6bIs2UCwAGW12DB2OLbUTDvB91Rb6t5GvYw96gP8CTF11oU7iFPiIXgR7Z4B97C0UFlBCl/IcsJ5pDISm0AV4ADygjxNue6weJNeXvMT28NXpdOyZZ56xl1/WUomZ2Qc+8AH79m//dvuu7/ouMzN7y1veYsvl0r77u7/bfuRHfsTch4juvvd7v9d++Zd/2X7zN3/Trlx5bcPu7u5akiQ2mUweySKdnp7+D7FQ//gf/2P7gR/4gc/9ezab2dWrV20+P7H8ocjWBYDiZg4p7J46EQ6wSNdGagydFJTAAbTsQBfBwVAP87iuhvQqiNB6sYJIF3MilNTva0CLsAvsy0EAoodA8pJV9W8boQIoy6Ye5tRy7ACxY0Ylj0DfbzcF8DooWWdbimkooFxVyXVbbh2ocT0Zq1O3HOv8veX1avzHS7AQR5D9hNQEsVJ7JMsy0TlIIIuWNKl1Wu9vHev7cCPQPgNcXL2r91yeATYLJAjmi4l+oZm54Jz5NWiVdtWujGCd14CHxgUcoa10z6WQQV486MhYDtqO5msmog5OcAnlmwpkbU6hYSSDbFELhNcaHZ2DAuQ4nocydBO04ooZBJNAIJQ5uj5G0LjhwTuKXLWVnSlobU50/lZQil/E6pQ4Q52r+bYGnRUgEf4TuL/FbR1br9TZiCP9nA92sbHU59iPdP5yoF3wADNUjPWc6kH34SrSeT5bqj2eP4ap3fxlwSA9fC0WC3vllVc+L6ZotVo94gSZmXl/utjLsvzcf3/f932f/cIv/IJ99KMftRs3Hj2UvuqrvsqCILD//J//s33zN3+zmZm98MILdvfuXXvHO97xee8tiiKLoC6a3A/Meygar4C+0HVoSU2mkG6N1bimDf2+YAIEi46miBs1zfiMIXOwB6n4UzBAFTD087UaoMVcn20wB0bmAThrczVU6UgNS9D+ChkroA7udvR3axFkriDiq9V0M9dBOy0OJjK2SSBbdKrvKOjowdGN9PvaILrpfLkatNNz3fgvd2TIQuBDbI4BTzKHyLAC5dcuSHQE0KkVAO7H0xvMhhpAtBoa+edwaIc1fUcTIN/rtwGvtdIDYXwVsr1mFhJoNNRAIAVyzC1X52u10oMx3dd3nEEmIr+t5YxKDbKTHeDnKhUjFQzVFvmpBnoZALedUhdX5MD6NbVPCyhOewFIFwEL9yvuRMZuAJtzFIM8DTjk80CxsA5gchzA1Z1NNThdAA8S+FtWDfVvz0B37RQCzPVE52VpUEkAOgug67PmHLqjYV21AZTuF9DhfA6ZtQAwfpAx8wAnGmQdGZu29V3WO48Gti5gEun6kjpIP/iDP2jvfve77fr163Z0dGQ/+qM/ap7n2Xve8x4zM/uO7/gOOzg4sOeee87MzN797nfbhz70IfuKr/iKz5XYPvCBD9i73/3uzzlK73vf++wjH/mI/eIv/qI1m83P4Yra7bZVq1Vrt9v2nd/5nfYDP/AD1uv1rNVq2fd93/fZO97xjj83QNvMLD5tmxs+VGIDkq8xeLkN4G/JHf3bpKlGaV6AuJ8HrLSkzznU350CedcUyONOIm0D3YcId+6p03Q/UMfHgXb2+kIPneZXAtM3YBA64MCWKZDlAVD97rYaue1jPXxjOCtDcGIdcA6cvCNjOy/qb/g39MA6TdSg+TNdB26mRvPOH+k8d8FBGrxOjVJ5dSJjxRo6Az1NnSqwaWUAAFUPSURBVPt0mIAml4EmVxt0xFYVNcIhfF8FnNi9UA39CIyk4+pebcUsS+CmWpr2Jlr2iLcBdwVlnnZXxzZLkAsBoeE6kJUW27oWXOAKuyj0+c5aUHIq4YBqAgUCBAduomtmA0zkOUhbbKAz8+oCiCxBHmlWTmQMhAhsCnu4AMcnAPLdCmjtdaEUV+6qc3A/0vk7+mO9F0hSWxADf1CmWWovAZknR9e5X4I6gQc2ELr2FnV9jhqQA2d0Jq31b8OartPjKXT8NScyFi0A8/vY/tj8ZXCQ7t+/b+95z3vs4uLCBoOBfd3XfZ397u/+rg0Gn8mR371795GM0fvf/35zHMfe//7324MHD2wwGNi73/1u+4mf+InPfebDH/6wmZl94zd+4yO/9TM/8zP23ve+18zM/vk//+fmuq598zd/8yNEkX+R6+64blHwmuFwtwAfABiG5lxb0iuvA/mHEzUi1b5+bgGdaH3oGIgBhFoBLZzmRiPu2uJQfxcMQT0A3SBgzQ6h08PfUaO0ARxWCO27rwK1RQMyZlPogPFT3Qr1PWJfVmMznOpclWvgUGmpITjrAs/Vmaar+1XFB7gBYCTuqNMUAWFoBZTPK2fQ8QPz3Ip1ovv+G2UsMSDaA36dJYDDF8AXWNzTDEtQqBHevqHfNzvpyFgPyj7jmjop/ucBLFQ8zTCk1wCTA2Z2BZnX+UJxSUFD14zzijoRMyAVSyCCr9b0wNuC4KV0gNXb1fJyBp2oLpAkelvQWLLUvVkCeDiogEcD5JZhCszNPZCdAbtYB864HDIvS2ge8MC5upXoHpm8DNxDNbDRTSCKdIC1HegAoqqSLNfBtqVAaLo1U1vkbUPTQVXnNAKGfMdVB641UyenrOvZFaYaAO9A9+EurKF5FbByjz1vBtg5upyyBLfx8vozr9lsZu12277jf32nhQ9lkIjziszrNhBFrjsgcDhV49Vdqvdf9vRQyNaaM70GmkOrgS4oH4Rzl1MgRHPBiEBLb/1QnbDKWA19bdqRsUUDcBNAAJdDS3rR1O8LgOn3qq8cIImjL+kIiNMM6tkxGFe3qkZ9PdOMXhtKOssHgK9a6js6gVLr7U+qM+RCZ9vBDXWGOg0QHgYckQclwH4VIlzg11pWQLkbyAub8D4aIK0wi3Uf7YLe4NrVZ/NX+reNLhvTApobxrv6zN5S311WQkY11vsJe2qel4DJqwHHVuHAWq2CyDPpH7b10NqBrBI1WiRQci4rAOI/1b+dQYa2MYYsGmideY7aiT8E5++wBAZ6ADc7wC03ravjcwv4NvIXIDvW1M8tSQ7qRO2s31DnxTXdD0uQ3lkB3CZNNTh4fa6OT2sbhGRd1encygGOsKV7fQwdifYyYG9B324HtABXG10w41Sf43E3Z7OK7Yf+3v9m0+nUWi3SX/zM9b8rDNJfxivqNS18qJulAinJ6JxUyCGjAkKZAchOrGNK/eqCr2VqXCfQ0bSAklMObf4DwIqcQ4trFOj9+Q80mgWZNCS3y0twzKCDY8fTA+tBqkbuILwtY+VMUxYxYFT6sf5ttFGHNbmgjhW96gd66Iwe70k1s4YDyuJAC9GuQmboTWqsR2N1qJ+P9V6oINaBUkuvAsDcjRKfnoO2U3ihe2YJ7eMFdBquM2DrztVJ+RTo720B6/36aSDkQ9IGMy/SqPn0Qj/bfEr3V3mkjkq1pu8uAm6qMtA5HAaaYRysNQvUhwxNvK17KQjA7gyB4w32etgEdniQVgpOdSwG4dy1o2urDKF8CzxZu4BVmkBJMYKgrujp757egzR1qTvbh4zeyoBiZaJrurMFygYA0o5NcWJhpmdICJi1dgmKAM2rMuZBM8HVADKEQF6aAiNvd6XfF0AQG4Ke30vQUQe6tNaCDn7nMaD6uvjC8kKXDtITXp1saNFDKcz2HHSSQmhdz3WjBVUFQYdHalzXACjuzSAVD0r2lY7eX7bRFdU1xcGsK2DkgCukVcChBXwuSzDCKal+Q7fLyVIPk6ylx3my1g15C0AIBeChQhDdzfb0HZVAGJg3NCoKMqjTQ/YpHWoqfpkCqJLKggAc3oqUFG4FPEhnoFpfL3TMr75dxiYbfecbyFaWQOI2AwfYhf2xgY6p84rOaQcUyJ1CjfUq1NLowUqdtcIFkiEzSwHkt1+Fd/IAQvhtKAOckkA0gKrBiXgKJGY2u7ofxtBEEoAYbHyh2acWtHIXAB5OpwA2jzXgOiX4UuOmjPXPobwMWmJzYOFvLbXTq73RH75PSeqNdmGtAN+Wxvp9LqyjTQxi3wHwAr2i66AN0I0EgsSKAXBbvw7Pn7MEAi5HW0JT4G5aAEZq5dyWsb4P8je7+n2tMagsxB/T+4Mz6X5NbXTnsSykB/gyui4dpCe8zn2zh3gibVJoKzzACCzJ1FC5M1205dO6eDrA7TFcK9dK4cBmBoPWg3T6aK7RyYYyQy2950UJgoRATx9R3b+t3/fpY53A9jW9l9Oh/u42RG3HQH5W5MBLE6jVjE4hizHXzTyNdE6dE7BUG2BeroMeVaQGdzIEqzTRe06gVX/tQkQ604PoDghxvhirw3UT1njkHcpYUdfnyLfUWfOAJyxsAvs8cCidJ8A7lOjB0Qe5mk+kanCbPotY9xzdmzvQqUSNG+17GvpGUH6oA1t6PwDNxrZG/8mFHm5BW53CqNKRsQJEtz1w0uO2YinTJeB+ZpouvnYF8AhARHVcA5A8JKkqqdqTALTdxsVExgawfkPglrs1BCjDSrO7xW0SnAVSUxAez4Fl3T8C2+vdlrEjAM1HlAeGSoffBkmcVO9vDRxFHmRkOqBBGK70+zrAkbUAUkjgPbYHANYPY3DqHvt3FkPQAtelg/SEV/XsvkUPqaqvr0HqLlKv2eYAYAXC3nylRmmZ64JKICJI19DlVOgGmgNBWH0LMEOpMq0mp3pYkhbO1NPN98BR5yA910kIIXOQf0xr1EkNyBQTnas1yKNsEo0W/T5sj3vqcNUABB3SO9rRew5yfd5r8H2dhf7tflfndNwCR8/R52gB2+zNHdURnJgeTguQfgiATbEDQdoITra6r5mJdamfi4ATzFuC89L/ar2/GOQMMnBmXKAm8EAPzcwmbWh7dzSqrwItx7gJcwhhuAcq6cuVHr4dYBk/6ICMzVods2GsTn9lrmsrakL2dKT3HACnWLCl73gO3LHxEjBSYw3WVqAKH4RaJt9Aif0MuH1qL4HIc6TPtrdR+/78StflCBxtD6pzg5E6L3dBu69yXR3gLNR7bkIdfx3pXNUKLb9mvjK5j8GRuGH6Lt058BWAkzOEcqQH58AGuo/rwJE1BymZFgQBvcdKnh68M7ouHaQnvIoz1/KHeBxmQzUORz3Q0YIoqwbU8cfQwZWd6996gAvJTBdU2NLNEoIisp1Bvnrz6zJE6duUWuHB+4cmNtsB2p3ZCnAhPTKQes9O2ZGxWhu4qvqggwdq9Lal5a9iDZicC3VU/I46Zi8Bs/SwMpGxDUR8f7zU391OXpKx+8BztddWR3nZATV5cF5aQz2gC4hSXwVh1CWslyupGquap4fT7RvqkDRA2f6a6eeG0NW7BselmkATQwiL0swKYL5+AMSfXlOdkquA8TtY6uG76kMXJtAneCsgOvTVsaiFgAV0JjLmgr7YFDKl+QmU00GDq7yr9+KB2Op9KLe2NnqYGziy93P9XBzqOqoBOPwuOPO1FvBNgVMdB7oP6w1oCgB7dwzOZEMx0NYAcP0KOMp6ULLfhLo3I2BPX5/pOvXr+rnbUMJubenvdqARobEEImXQAkx9PbscX23vLjDXV4i49zGZF2pSoevSQXrC6z9/em3eQyrjDujPJM4fyVgOuBrPB90wSCW31dG361Dq2kKyR/3bc0BLV6AdD+TUrL0HzgukebtNAHNDdLLMNSNQvaIGaAqt5ucAg663gaws1WzMq/fUOWgXuknrAB62mhrrBfQuxkCS5szVYDzf15fe39E5vQmGeXGujlkdoqw00zJUa6jlktm23ssYDs8+kMdVUlD2bOn3OfC8cQA4sQVEn7W3yNgprINkpO838gADB3I1zQaUjMxsAJH0Atb+YKjrowK8QC9BCftgBOSCLXCa7OP6uWNdg5NIn6+ALOZsR9/J4lj/9myuz7E1AbB5TQ/fZQBdjrH+7cr0EHwAQrwNYKAnyS0XshPgR1kKWKVoCY6tqzZrDvtmd6Nz4HnqvPjgPHdHOs9zCCIiyGpWwTFrBNDBeUO/b1ODBp6llrC6c6gawNzHke4ZHzC1VwFnN4bM37StjSBuFbp/No+OxSDnRNelg/SE18vNyaO1UUg6GGy+BugkpbCgQnCQ5i/r4TF8WhcelGItUyfcSoqKavogLijZT0GS4B488Ao6ENogEHsIqfPNVBczNPJRRtdmMzWGg7oelrtwSCwg9Ttvd2SsNtVMQuJCiaKEwwkEe6+Vyq+zda6GNPM1qsxaOqe7cEoMATBeQpZ8OwXdNeAFioCo8CKCyBqymiAzZ0sgZ9xdAPfNsTp6LhCGdoBh+Hyhh0SeAfYG+GbMzM6bOteD+3o/tYq+uwsg1vPgHrMaiBknE/3d9E0yNl2D/Ehb/7YHgs52V+dmfqxrtV6Hbq2GBiA5EJ1u7oCOXgLcVEBMWDjqtC6qHRmrhNrZOmvpuqxmsBbgN+p9dYYqE82UNAnsDxQBRQhlXggS19CC73iALK/qbzSBJXwDPGj1GgQlWtQwD3B/1odSFzh6Ocg8tcfq/F34Wi4txvou/RjwWtB12niMk8ndXDpIX5zLtUcdJHBATLUbbUGdw9CyGENJYr4FJbuhjjWIr2YLQLIppFshA5Lu6HLpXqhzEEKqqXT0FBwDxbwD7dgeUBNknm6gHDq4DiAqzxLomoINE7i6ce8CqWGto4YlAhkAF3ik3NuApUrVeF1Al9JgoQdMtQkyGyhQDGSZS+gWbKqX7Xa1BhCc6/0NS2Ver/aA+wbodTMA19YqOlezBMovEPn7HpBHjoHrK9HDbkH1YTPbb+ie2wAv2AsD3UtdOKBWmX5uSGnbOgCFwe6cAzi8ek8NzwwEp91A1354FYgdL4AodqM25tQA2wUZuD5wmdUNnsPVeckBt3bUVkxYsdTPgeKPOZCNmQOEIm9owNWFLOtsDPhFF9ZqRcuR5JNkIAbbBT6nOYhpGwytQUfUruj8tSFgnW10AfbBpt6Hrtj1oe7h/fhPZOwcMtIhrPtbdd2DvfDRTNMa5L/ounSQnvSqVMz8h0psmvG3cgM5zgp4sKAhZQC+tNua3TlaQKdMqpFIDHiPPFJD310B/Tt0hKUgFhp4GnZs9aAT7VQ9wuJYD+TONTB84Ph40BV3TrprC41sZtD6nwDAKh+AI3WmB5YHJImVLqRorug9v/oA2tQBY/LCWg0pEQFeAVbqFVAikPp79LyujYumgpZDaEevJgDwfqCWPmuA9QfJieOVzvMtAOYfOi/KWFTV+Yub+n1FAiRzAEQ2Mzt5AEKZTT0YX+fomskyahfX75vBSQZURjYDVfigrt1Vmw60pFc161Up9DCaKfbVhkDe12jrXAcQHKQgHZOC0Gi9qnN6tFIakvpcMwyHAPxZ90AOZjSRsfBlvb9kRx2zod/R74OmmWtQ+VmZZppXgMkJgQ7AX+keOQPHOwI6kPz0UG/mXAOaiq9Z2wfg1DULXc9rIHGtutC5rP6lnXqQfXagm3GlZ8gY6BTKxwL+DTQS0XXpID3h5dVa5jyUCcmW4PiAyJ45gGT2Aevgwys60Jp81APQInBnHPp66M+gFjdP1aDt9sFBghRxfKyLdj2GEhbgeeIbkDLTPWo1iByaYUfGhqAsPoIW8kYHWKkHIEYK0gCZAVYhBCxarAdyZ6nvsg8HTHKgc3VjranJSqQZgrwLHSEX+i5fnUxkrITl1x3pgZokhzoGDNQJ4M5q99SJrYKu1rEDWbS5fq4BrNkFlEFapTryRzMNKjKQ3TAzq0KGZg/W1t2l3ncbMEgtEMgLgXiyB/Iq6Rrwhuf6jldt4KvqAl4OqESi7Lbe3xZ0ts11r/uABQSdW3sA4GvbAl04Vw/z+RSAvSlI78TqOC43Hf1dcBwzwENdK0AcFYDRSxChHl6A5EcMgthNKGVCYJtDidKpqBNWgpjuJ0HZwAMC4n0XNNYS7bKbzLRNcTQCNnZIIARAPLvIwKGGQGOnp+98VD66B+OEg57Hr0sH6Qmv3D37TJntTy//DfqZCBbeMgHiDeAKqhNfQ6bGsFrXRXETShLTWA1zAESWb4Auh4s6GNwzqNODgnYOPa4+4CHWr8IhkUBU9Ho98GYltAMPdaO1OyDsCe2nrwdSuClIagR9cAi7OjaZqyO6uqqbfh8kRBbnGlXeL3ROd+o6VyVkF0+ratC6IYCq10BACKjPArilskwj9dkI9AbrgBPb0jkAai6r1PVQfDHUdfo6ACf70GnoZWrU1zFrsRWFOi+3Qt2bM8hy7QJHzE3QhIhWahNy4KaqQEZ61lYPpISOvEqga8F8KO1VVW+vVarDVQcNruSevs+iorZou67rw5noMbWZQ1YESt1pqWmvGfAbeTkEjnVNvTYGoKs31AhumulYAUFn1lR7dwLZDR+ki0DhxAooR07WYFMn+rwNYNcPmmpPZi40RgAGKXtaz7in/1CGbA0ElZsdtScXQInQBLjEx2fA0D5/9P5SUv+F69JBesJrb6tq7kNK4QnJvVd0Jfeg9T+E1wHC6dYG9dvSAXJGwJmsIBorQS5kEmu6Ois+LWM1qGXnVWDrhtSvD2SZ4RWQ94B68eoBkDiW+rt+DYCCkO6PutDt5gNFPziOCWBovGN14PYS7bioFh0ZszmMeZrFcEB4dAadPNlAHWU31uj4CLps8m19tjqwZgcGgqdt/b7GnjqERCK4doCbB9j8VqW+375PTp0eEquxrrUYpCnPahMZMzPzM3UiwMW0gx1YM6egJQhBxLQD3F7AZbRDIONSxzbQ2RoFmkmLwfGsX+j9rUOd13PAnuxW9XkbUPoZgf5ZAYzlpa+ZnGSjNjWFJgPPdE4dwBsmuc7zOeCrykSfIyyALuKqPtsOgFbvgqRO80jfZb2lYysISrpARxH31GHdgPB4AI78GnBOSaS/Yf9Ff+O0AaTEPd0f1bu6ToHX1e6CQsPFRN/l6WPZ+wJkuOi6dJCe8KoO1/ZwudTz9eAudc1arA6yRaA/E0MpCdQarDaF32114HO6wattMA7QZl2fqGMRQiSX7kE7+0wN2nQFKvNAk+D6alzXHT2KiMOm09N7uQPU5t49jTRdEGoNuoBBALbZog+dFJCxWB0DT0tD56VX1XLa/YY6TfeGmiHYA0MPeo7WcHWutqFXdwlllTmob/trBX3GIMgabXT+ylTXpOepwW3noO0GJZ7zhjp1TTic8oau57NRR8bMzOzBRIamkEFePdD5D3wilNW11YKyewqg2xcgQ3YVmPTbIANUnai8x9AHxsFdEPWEEnYDGhmWc11Hk4bOQQFOut8AGpJA9+uVOUjCAEHodAsA45A9aUAG+eJU78WtA64OMj7hSO3nERBZVqE0fQSyUTEQiw42IK1UVcfRBTFyH0qFM2jW8YFmYjYEElzg66pEmgb2AfYxBcbL2Z2OjN13IUtKGp+P7YXPOEh/diebUz4uc3t5fUHXbDazdrtt1/5vZg/r4A0ByBjDvj0E7HUOJQRKBFY60E0G2RPCngRA218dQeu1ByRpu3owjhK96fwusHBD2SMER2qd6Of8mTpNOWwC4J0zOGeROqEBmLC0BsrsEwUob3ahjRZwMDZSxyeCcmkL1BY3kKVaEW1uRct4+3M1wiugP8g6+rwRqI0X0LIddXXh++fgGDR1roKpHtrnvjqxQaLrdAUdjt0QOrVCOHihk/SFIz0U7230kDUzg4qzEY601tL7bgBDeQk4omYInFPQ8zEBSoUEyul1YDyvZ9B+DuSnS8IHRZrBc2Fi6lM4LEGqJazre6pWIDvpapYlmGkQUQB4/Ry6xIoYJHqABsLP9F36E52/8Zb+7hjKX3UoZS7AQBVdfZebhfKWbSDYyEP9XNPV+7sJdApeExw46AI0eDbLAGRW1YDmfKLBVX+uJ98n2rpnkgUQaAJI23kM11VmpS3/S2rT6dRaLbDVn/27SwfpL3Z9zkH6G49isIlHEAIRi0e6ULq7kJ04BnI8YDU73AdRy1w3QXIG5aVGR8YuoKzV9iYyVkBmlXQAo5reXxrqByPAy6zb+rktKCXVJjqnF7BJqwD/8gH/lY2g9HNN87w1Uoa+C8DXSJ/jShdEWWHua7GujVOYq+ZGHeXZnpZL+5CtsHtwIHT1BTtDfbbTFUR8QNkAEmSW1XTuvRk4YeB8AHEwMhbD1JsDrw38LUs+T8NLDxwkSBwYVDMNEiUGyTADqiWDKpkBWbeBsLs1oERMzMPLRD+XtyBLDZxTjYW+qCEUK5Zzfe9BC7h4IDvmQoekD/vVc4BMEToP5kAe6XX1b1vQrVWBzGsFKBucrr7MxFNjNIwB09hRJ31rAU4scJSlcAD5MLY3UNvmFaDJOQHVhlz/ttpX58WF4Mq70CzpECR26guw70tYay39XL3z6JyWaWnL//fi0kH6n3V91kHqvmvH3Ie62EYFRNLA+gp73mqQFZkCSr9V00O114NFkWvkVQTQ4q5NHVbtg4FMQRdqBl1dILbYG6pRegDMvMA7aR4ELOBzAve3Gdh5rCtPSWwVOgNbkNPLTvSmkxwkGODgDnsakbaAOsEHcsBEX6VdEIEmZU+A52YDzgE0TBk0thh0JhsQVRtwuFkML8SF7Df97iMdEp+9AEgPiQQDlQeDhkRzwTEzMwN1HyvhdnBhQlYZBOoNaJWMKFyasEd8CNag0ctq0CXqgPNH8p6UtV3D7zq09vOOjGWgJlABAeBZqS+lDrxA4VKzzylI77gd/b6sBGD0BpymDjiY4LC6wNPkRjAGDNk1wGbFlK6ETKILnvK5q5spgo7kN+xpV+dWqn/7ey+oxNEKZEX8Up+tCnbC1zjPCtivG6Ce8TKdl/FjsV+ZmW1+y/5MB+kSg/SE13peN+chS7QPYeVyBHwwpt51HwzfELTYzsHIXTyvY4WpcaDzBLL9ZhekxQanJZVx7+gmOL4K5pUOPPo+yujSGFw+fB+UxvF3N8CDlEHGLKNTn9geqPwSq5dzD14bsOzbuqNj5DlGUGdcUfYEHC6SKaDGgewTMEYZFvhbF36DHDMkYR2AMwTrihK7OYWG0NFPGRszw7kGwXYrYM81gZsqm+gYDBngsS2E5hAfhK5BtxTBrwB5sRpVTJSOyKAp0SbAtB43JjLmLaDDDNrjq0vgLZsCfxiAgn1YhERn4c/hgSsQcYEtcmASCsDzFKAv1nUVz1NAgHRR6hx0IIrwHWjVh1b4BUj5DF8E7bQKScmoR1Pt6twHc52X41TnOb4NUAswoDVIK09hXz9OMF7mBoJEel06SE94bW5smT3keQ9dPWWawIzshIoVcWDxBFfAupaKBYrhbw24HpyOntxlhbQewNJTPQPo6e3N4B1ACcaqagjMB/Q6HYzk6JHtokMQDmQDx4fGQKzdQPEDfb+4ptsNCIGtgJLTGlKOgLO0DdxzDGUVI/oIB7ooH4D11+XHTjZlkCBzUpAjBUsDx8jKgVWDLm5eB7B0QanBzMxIzmlNnwUHi5o0aG7aFWhnj0GiAw5zkNuySFVsUB4pXWpKcAkNFCGAc91d3RC1jXqTRU0P0MJXm1VUoaMJFlwA5KLLhWb0+9aRMQfyYwlk0R2QJEpX+htdrWpb0NJ7PiVxbkcNXhVEtw9AIzAt9KWnQ/X6T++r4QkgO76B9XwXsjbLM2V7BL/MgKrOYsrkVsCgkEwW2DuyqY8nDaFxG6/LEttf8Ppsic3ee8MsfO2NdADkuYYX5m5pWi+60EU2WcCquCBlRQgDd+FUoIUBhsWASsDWcBqRkBZxTFBXDGWBZpAey2EOQGfOqapxKFPN7kBzD26+CkwL4P/IL7M18KVsA5jlLNeajgM6NOXTUCMi5wAOXoBhIEkfksvSGIVV1E1AaRvKEFJGbwJjZEghE4Pril4Syf2Q4wJlt887To47OGKgpGIgiWgWUL0K/jjURR1m6rx0A+jcg5JJx9MaUQZkqhuQYYnWgCOCiVkDv1kVqCFsrvc8hrkCAn/CBFsA7yOHNUNmtgrvNwXR6Ax0HLtwLy2oZQaAzZpANjsGp44OfiCHtwKc8SXtVwj+ggU47fDeCjIeExImhd/9AkviLiyXCAK49LFXVOZm+R9fltj+p1+NZWZO8tpm8IGo7+pSLenyQkF3Q+j0sm044Pf1+3pLXYwXwGFhE1i0WOqCOk9KLLdgMVbwt5ShoVrBNuwCTz/nrnReChDnDGADVUjfbheyJ9DVYZn+xhp8usEcsAUH+n6b+UTGdgGbkaRQlAcA+nJLx/xYv898/V0gbTaAnfF6AbkAdErglaOjQo4ZfR/dHzku5ExS1osyLJ+HKNIWoApPnfBUlq3qWnDW0NkGrdywHSyHzyU9BdieAjLdB/b/FPA88anudR9MQsPT5xjBOvfmunGGZ+oMtcj5hrA+hXfswlwtQJ4iBdJKh8wYrMv+VZ2/OpixpApqApn+yBHw+OAegWy2LUHfEmgI2lDyNGj+sYF+LgWxX7QJ0B2J4FGYFwOpFgo0XMh6VwDX9bjvV5Ycbz1+XWaQ/oLXZzNI7W/yzHnoFPYpmqCOixhaNGkFrKDTC7q/FiR0OwBOoRW0kIKsgAshFQFQy3OQJLiihg86ji3ydDCGtnKbQHoHhFotAI4SIHsk1fqSQn8oUbpgQzzIZlVg91WaHRnrARCmAAdzGqqDdDaG2sgIvIManNBAvmewrrCgTxbjC80WgZ+HjgrcngMEYCUBVakugEh/Ap7AQQllHzOzklLDFZhD+BkHULwlHNIBHIIelOcJwFpASSyC7s/6fchsXgdnCDqGgJrKwgTEh6kDEbJUAQCKG6YlLAeUvROQb8kBeLwG2xYA11ITSDoJvO66lGfQ3zifwMcQ1Q92DDZJM9Yy6LQCnhSsXwdAZuWnvqBbeaRi8tofk8cKXGbgUOclDFZhTgMQ546hC7gBckaNR41+mZa2+o9/dhfbZQbpCS+v03iESTsAEdX6UKn8M2grnW6UY6cNh/kGWkhD0K4pIJTOICdZ9bSusKnpD5cjOPGAi8c91bxsBKyv7V0tC6YroJ2HNvq4OZGxAriCigJOWmDfbECJYgOpoRB0q1YvaI0/BbzMfDqRMehwtSKEl94FZ4hSCVRWHYHxqlHmD6w/UUNTP9MFAW3A2QVqAhtABAkEcNxOBhb88Xy6mdkhjAEQ1IC0rgQhXjMzq8LBQ+edD0K+IXC1UFAC510A0foCJE68UxAVhVronMJ6+N1sBR2rMP2JD84fHFoGnGcpRCBjaEV1KUDaAFapA5+DeCsEfOXU1AHZBeD70egLC8IIuxeCvSuHujY6FQgOgP6kDl1iS0+97NKgHvl6tRPtjS7o6YYcCni/LeiEJgiFB4LHVRCcXejn3Lou1LCt97c7fNRWFllhryJI8tHrMoP0F7w+m0EK/86jmJbdRIu7IwgqPWDIrY5AZA8sVQEgue6E+nd1gc4BnJsBjsAHgUMPUqvOCjIWgAvxwXhdB12uBSFLm7qQF2e6cU8ILd2kMpkOuYibAOArRNsp4USgDdm6MFcQlRtFVEDcZ2AcsFec/IoGUE+UIB7swwkIgFuD1mQCRLgVYCcn4wrEnTGUaexMsyTtPT3YckhhLDv6dSW0nPkbqgua9SHzmjpwj0Qa6IHTlAIZaKLvuA64NX+hHnl4RffDBej8VUHgNAGwL63LFFr8uokKyY6BNRsJpoCZm1ouHchEVsHhWgG3RgSZqxygAhVIyxebif4GKCCA72wZAK19AjKDtM2yrvuwBU5dDjY/AWK6akfndA4lRQ9yKB5o3lWgwyD39EwKlrqem1Ar3FCjRfKyjDmJLoSrB7o/dh47u9I4t//4v/3RZQbpf/Y1mDnmPlRiu7NWxyeoQ510qofMKThDJXjhIWAVih3g8ZgD8R+UtepKQGvDsWZ3HGgl3gFF84sXQIvpBghOfrlm1mZnipuYnoGKs6+btFFRqxSP9dBPARBVUBUFNMJSX99bA0gwo0jXwbipoasHjOUpSKsgKh2kVawGTpMD6axTkLVpqYVsNPW9LeD+3LH+bqsO9+zqvMSOGteM9AIINbCroKFpAI7oEMqMUG4Gzj/zHXofZgvocqqvdU2nSyUaC68qv8x6CQcZqML7gGBd7WpAMwf26qKth9ESbJGBCKh5pHuk8zrOAchFcTiAtBEsBjqJlPFJ2npYApTKBpCxqJzr756A89JvqCzLGLT/XCgLLgNILy41M7wCLiMDNvwUAuWiAJoEcPCXa/3dA3CuVm1gvofAp1yoM1SAtmCR6z2PoMV0G0qFbvWGjFUhi3YVJLYGwaM2MClSM/sj+dzj16WD9ITX6aJqzkMp5a2KLu7VTBdKBqABqga5cAjG0FqfADCyBIeLCCrBZzKnDt8XK6Pcwgf8Uqr4KsJITI+VXMxSXfDelh4S7aqWtVa55rBT6vghyuJC35GzC5pycDi1idUgA0FXKP30cj1Q15DiiqGnv6iC8QL9OAhwLe4Q5kodKR8wNVtL/d3JHtBWRJRx0LW7BTiiFfgzQQeEzgpgDgeiyBKMf1RqL3YOgrghCGKamTVB5688h83kHcpQt6lruqypw3AGZYVGCCz8QKJ2Bkj3FIgO276umYsEiE6hFFf3AUsJ2fGyBYEjlLAD4PGpRvq5C6BGbwH4ugLSNtNXdS/dBzqFCmQ2X50BDgaIJ5cAwq/D96UAanJiwBtB622w0UxpWqqj3AIZoBW0jtWBIK4DHWsTYHFdR7DugTm8B80ra5A2CKpqy68AR9br36R/G0GjSvfs0TW+2XDQ8/h16SA94RWtYnMeStkuQXwwi9UobUcaQR5Der6ogxbOuRq0ArJKQQNKYlfUAFVWUIPZAq6VGDADMz1Uqx3gCgHsUxvU1FehprMaoBtkxVfK0O5APczXvxFKD6uOjL1wR521LNWUbkFMe6AYns7UCO8A27QP/bYU9TqkFZeqoVrBIeuCLtwGeEamUFbJV+Ccemo2Bn3N/GVVXeObIwDIEjX0QO8v39b7cwo9ELZBgqHa1nmJa2pc43PNsKR9dpCqgb7j9PW6X0vQcnPA2VgW6mQedjXImQNPzmKq99hp6n4FvWlb7Os9hxngPaj6lUHAACXYOpBYBQ1goDflkSuhFfVGrnZi2FGH9+RU58/r6VzlAD1YAdVJAG2dK2iCcLu6jjLoZAiB2rzo6dqPeiAuOwZWbwCt5p4GET3Tfb2GNVSp6ry0Z7pv6sBhMIMsZAZdcd1Q7fZWovf3hqcVu1GFv+0t9H140aPPVgJWi65LB+kJr3QvfKSLrQnAviqkl/9/7V1pkJTV1T69vr13T890z8LADIiMiKQELBETMQaEGCtijKXlkqACmmhipRI1aIioSSRliGvQSqIOShJFfiQSJSiKKAGCSBhAQPYRBmaf6X1/+34//OjQcx50ZGAc8DxVVsKdt9/lnruce5bnJA18Ya9Ng8UZPNNQDQjMYoBPx8lZULPA0kTglOUHmTI5Px9UCaBI2Y3gtJ5H9ZR4BHApqN8wevh41nbmEL7gHtL59/pAll2rjb/zeaX8e6PAdH6gg/cfOlEFgI8/7ua/PeTlm501yheHADjJdYI6WD4QR2R08sXVqwOXLKjd5wekepkgd3nmADVBKWCAs4OadzHg8rCAoqC6zpWcEkSGCDKhwjEQwAuoLDQnV+qMDlRkg6gT1EjwAp4Xt5nfE3HxDAK1DmOAHdoELD4KuJczwFVjsHK5l6S4ctuV5Yq7VePza4iN93UCWF5tIB4lBNy8Xynj7jmXxr93eyc/0Fgb+eZbCbjRsjagkINU8zhQkEygaKwVxH8NKeW/rSBubXPV8LnpcPPrDECZJxdwC3bx9SQd4W37ARGa3etjbTFQUaG6mvdBhx/sIWmumFVpIPzCwmXuqeHf6wC7oRskRfkB54CjB6VMApEeA4iC1EeUBGrJeFSQc8bET4sWULE9GucCSpaFWJung2/cWSeYBCUg3b4TxAyV8ZNXHCglWjsfjBHgsvNU8wXXC3zPgOuNzD4fa3MBWl9/ltexaAYZSAmwWDcrsNDnuKtQdYKSH/kQa0vawYkUZaxk+MRVIN22EqSkp8OgNA2ILfIbgdsNrKMZB+98wwF+Ghvk4+/ssoPK52bezyYQCJrReVamEVhTXRlkYufP0BNclkbAj2oEh4AAYGYMARn5zNwdEQYZp0RENTpXFGNGfsgZFArx60C+c0uEj0GHgSuZGkgeSILsNEuYKwxnlvF5cxjIfZiTf5stBso/gOSLNOBkigCPrscCijKj9P3WvawtlOIKiBNYkLMgecUP6po1AZedzQgSAIAnKVLC11RnCZ9fuoXLLQ+IpEwmsD5led/HAE9bChxYE4r3aQmBd9b4GuOo5fdLZUGtTRD2YfPxA6YjWMvavF6+/5RnuNxK0iD2EZV0AhwhTUOKZZ4CyQoIoiD1EZo5R8ajuFN0jQeSZUG9LbeJ+1gTScB/UwV81IBp1QkY+PJ1wNWQB26tKL8uPJQvkN68j7e1c20dxcYY0MrSyTejWAWfVP9C1ca7QHxVdAdr8wFfewiQkPkdfLFO6nwSlYIMjo+ASycHgiXLwAkoaeAMi/ah/ERqioLisiA+xdLMlQiPGdA9gMxAdwhkTOpcQVdxlHrDA5Htfm45UVF+gNBB3F4yDszkFtDWDQJawXV6N3+XQBWfM8BrQeYQotfGC7G9mY+Pg6C7QoDQzw8oC7x2LvcsSH2yoBIYVXx5T3fyMTMixcdCxACsXll+vzaQDRkivrlVgkxPP5B7UxdXDprA+lQK4mpygBMhEhnG2jSNz+uAC8R16uDk4+R9X2biv00C62Q0y/eB7k6ebu9V/P3Sdj4P03beBykXH5ODuvg7Gyz8IFpq5Rb9TjD2A6XcS+IHsaNDBvH7GQZz61gOhA9YwOGDwmDcqxBrswGLrTdUvAZaE8eg7ugBUZD6iLTJScajXAQOnS/OCZBGb3LzE7Lbx8WRBxk0WeDzNgG2Xy3MF68uYMb3lHBlzdTNN2k/sIQZczzIeHfrQdaWKgWcHaAOQPZDkDLr4d/hA7xFCQ9XDjpB5o2xncsjHuGLjdnGF4L9HcDvD2Iz7CY+wdOHavh1bm6GzgNizAQ4MXvAqdwZ5haHlJVvHIkQ/63RAU7+IOYileQB8l4dZPIhJdZaC54B4rpA/AJiNciDU3kSBK8ac/y5mRAfpy2l/H7WBJcbEVG6i/eDBcSPmUGciRn0ayTAfxxxoAr1XPCeOKq9AbIwwbzpjvNDnQUcIvLAPeICGXBBYHXU3CBTMc/nHIHDRkUt+LYoVxjswG/pDnJFpRRUYO4G2VoOoCB5MmBuGvjhIBPka1sqxpUSI4hLSjr5c7NGPvhLW4G7LwU8E1YQuB3gls4IKBA4rBRYqTx8HARBtmsAJDE4dP6MWCu/nxGUQjFlwELr5AoXrC9j6jGurL2rdi4KUh+hHClS2lGDHMSAVIEg1KR3K2szAqbgfA4ExAHufcvHXGkKgdhmTwV/RkuODxaDiStISRBzAUIayIaUupgPtPEJXlrKF0ijG6Qmp/m7mBLgxAwy1kxBPiG7u/ipo0Tn/ZwFwX15UC8vD/iXXEEeRBqOcytGB2Dfc4JM/Q5AyJkDAe1RQDxZCsiRQsB3n8ryRd2WBKVfQKxMtgzQLhzmfeUA5ICdYKNMW/lccIFMuYQHbBI27qZVOld8ykBsQqQNL5NpkGhx0MI3skGovGAFqMUIvs/v5OtJBJRwiCISxySgDcjw59q8vP81M39GGpBbDjuTb1AlKf7bzv28X1qAAlICDIKxQyBmCGS7lfuAMglIA7MpPvZtoMqwDpigkyAzMA1qyeTC3DJk83ClLmjj8m0DmbIotT5lAW43UN0+kAUW/VaubFS6ACuszg9cZxI/FJcP5i5FLQr2gTAfB2UBrg3FgaXOeZi/s6MGhIIAS6LWI14zH8OJFz0hClIfEUwfJtNRPl6LgS9yiOsmHeJWm1Serw4BEB+QASbdtImfKt2DAJEdSHc2gxLwDlAp2gzInFPAzGu086A7B2D6NWa4Od0MrGg+K58YhghvO4Qq3rdxRSoLGK29Fq6BtAKF0A4K+3qd/DoDqKkRA7EoeQtvQ/w8aUAZ43Lz8dKY4uPPA+KrDiHySEAlkAsCGocyoOSAlcQOCOCSIL4qCuKDrICuIGfi49Rg50FI6SqQrtztY22aA5xIwZJYcibm0nW7z2JtZwCFErkzcmW1rC0OAuctNr6QlwCDWwrQE1AOBC2beFxYCsWUgQO26uCb+eEWPv+7QchWPgjcqIhcFFjWbCYfazOYUdFdbhGMgyC1FHE3rxlQsZCdWyI1xFcCvsMIYovCLXxMH7KD5AEF4kmjfGyAcDICRn6yOrnyYvGC+eXiikqVh1sXg+XcQmhRfBxoKX4AsZZwJdFi58H/ZAJUFkP5+qQD2oVaQNmQ7ZEkFAeHBwRRkPoIe95G5qPYd61Gbm7Ng5gNF+AK8fm50PKgZpYZ1OWyuIGiAugAIsCC5ADZVaj2T8zPJ70LkPdZ43wFzwDWbPIAvz8oixFLcLOsrZqfEuztvK9M4LSdBazZ0RRvs4KyAgQI4FoAS3AoxxdhYwgs/oARGCTPwfJn+m7+bYMquDKEKsdH0nzz7AYLfVkzf2cnqi3p5BtRO1AMfOB7/WA31qPAn+bnC/1Xz+Gn3hLPeaxtRyuXxw5wwq1OAbePG1XOJYrZ+MLucnHh2VDgsbmRPybKNQtLGiz2oH6XpnhfB/KAPwjUJjPFuGKRsfADnKeKrwm+Lj7/jVkuuxggCKyIAr4kE9+kfaCs0D6QTeoGZTscIOnDmOcbbTwJyhSl+PtlgLWNAH9QWgE+LSfgwwOuJAJZkxkQZhBz831F+UF1AqBw+UHZngmD+By2lXClWNNreRtxa7bu5+MgDciG0xbeCQ4CcX9A4R8EGMZjgFvKlip+l1xGgrT7BV2htiL3ZsDJd4AwSOHKAG4PlO1m8/BN2tXOF/YckKTDDIJugSVCbwJxOmVo5wYnmzifkCC2mbRqQMACqjdagXk0DhQQZyfg8QETzVbHF5buQyCgfR/fJMpMfIFsBzEmNpTkBPZ3RKFkAiz3IIwAJNsTgao2lAHrSghYi+wg3kjrnYgoBIiSzwBuizKnj7V1ARN71gay2ADxZBYELO9u4t8xrIK7N756WS1rq8nwE25syzLWNqocxyBV+/mGEk5zRWxViFttol18MOS8XLk1uPicc4DgfHcXX09SBq7A6Ypv0lYTyK5CtTIivF9NoHxGVuP94k4A13QZGHBggeoEiSWlYI4oH+C1AoVzE4CB2lrJx5YblO1pB0SnySiPRdN9PGHEbuQs3DUR/n6tUa6kZ4K8r+xt/P38aRDrVcHb6obwd/ECxnKTdRe/DiQJWKP8YJAFSpO5hL+LG5Qf8rTxfu4AcdVtoFZcTOP7qK9HIfM0PHJyiILUR6gY0dFZ8kZwYtFR4UdQXNYIgi9TbXxhSdm5Oyid5IuhBgKjrcCf73CAE9VBHi9DIT64PwaD0QFiFUzb+O1AYhY07WtgmEbASdgMFJo84FDxpvnEjaI4UGBNt4BuSYNsHBcIcnUEwOkd5OWfO4grG10pwEsFakUZfXwc2IHrBiQGkgW4I4LV/P3KrNz1MKZuOGurrOHP3bWJb8YfW7hikDbzgTCyCrAng022EgQT+w6AzSTHiUDbrXxuNbbiLLbQIT6oAxVcgz5f8/Hfgri6HOBQyyVBiR4wMNvSIOMSEEraQGwRZbm1yAcU3ggoNKqDArtGJ1dyUlneL50ocyzG+7rGAjT8Wr7u6Ck+9s0mPm+8gDMulUQbJn+XClDoOlMClD9AseI2ccVHB+ZiqxMocB2AZyjIvzcI/G4jXXxcmQFXmLON93MaWdE9IObKzcdVPAX4iEx8DidDfFFVQR7fp6f5OxtyG1mbNcFPcKEee0gClPVBEAWpj2gmKjKgoxM3Khaqt3IBuUEYAbAGU4uNDyi07nlAzJAZmfvBdagUVgLUmQOcixRHRQ9BkLEPtKX5YYzyqLosOEGCzHBKIlcN8N0T6HtUFgoWfgXK0DBQufvKq7/N2rKgJEHjx/zUVnEQVNqu48qf38XTmlft+y9r2x3hneUD7LqWHO/oMjtg/w3ycdWZ5u9XeTZXskdo3HUWyfCBYAfJDh3dgHyzmfPmpDVuITQBHp4M8U2n1AKsqUQUBa6ujzr44O8CltxAjt/TqvEjcqaDx3uE8nzigPq8BOiIKN0I2MiJPyMLSoiYAO9WtoXLM+NAVio+3sp2874CVWzICDL5EoDKwY1SnyyAud0KSn7k+LuYTSC7L9/I2uJ7QGIJeOdUmo8DHQT6O0DmSzXgXwsDYtfqbh5A7dXOZG1WkI0XT4CwAGDh7jgMssTMfDybXMBdDWhXDBGgUINAdRVCFRpAXT0QqE7eHsou4OpDMCiFqggKPguRSIS8Xi/RSAfRUaVG3Mh6AjJMskCGcUQ4COY8Ki8GqDOgIuACijNIwiJAyUIgI5VAUgdUXkDMMhlQICj6LUhnpxBoqwC0ykGgIHGDBYF9EX8vKuyO3hn8NljBFy/PCK6UeA6DQsFubrI3gGCgJMhwjOtcAza7QOIAUHyMwDJh6+RLhr+Em+xLQQ0tD8gW6gL3MxoACaY1xNpiKVCSABApWmy8LaEAIV8alEcwowFIFEX8UqAMuSXFB7oLKNDdLv6cQDcfcO5qPo4a45xP60ATn5wmI1c8o4D92wH2wBjgN8qG+eLhKeN9UJH2sbacgX/vIbBZEuBQcoEAaqOVT+wuJ7fUBTPgewHhZRQUxzSgCvU6H0euEr7ApxL8gKkjklQfayKHFVE78AXeVMXHuQZoDWqN/H7DQXyQbuPu5SSIwxqS4d9rAvFQncAiZQZWJc0JNLMQiLkCUzNZxTebZKT4t8lEhm6/cTGFw2HyeMCzjrzbMf8i6B2iiaINHNARUQZtqsjKAlw6SP8AxNeEjCwErDGg4kLvFR9goUGKlBFYhvLISoX6Bb0L2p9qQRuyFoF6uBDoXVCfImVyDNBEo7xjkh5usm/j2efkq+YnejvgHgkk+OLqa2xkbZoTmMdQUCpQ0N0Orrw4fLWsrd0IqCzS/LcGc4i1+fP8pH7YCII+Q/yEGwJWqjYPyIQEG0LCCjKcQHyPEU1WIsoBZulEhveDE/DBdILq52XEN6PyID8hrer4gLXFO8EJHig5CVDyp8PGN3g3N8IReYGynAdWxw4+3rLAFR+v5H1d7eOaI6p/mACLUR4sHjVRsCGDQ2I3yOCyx4AVQ+PxZDookqt38vmfBydWFKOthUGaPyAljQELjQlQJwyPcDej3+9jbSkNKHDdQOZgPW4BTN96B79Qr+Rz0xDjMvcrYDX0hVhbRQxkYO4B1tkhxXPYkhcepP6BlYo29Qyw3IFSU6QDi4oeAvdHEgLKBlRoUBIWslKh5yILErJSgcmS5/sYfD+wpxKolwoDnqEVCH2bD7QhJQfZUVEfAF4yigFz4HDeZgfksNEakJoc4Q/OgIBMAuUgkA47CJAulum8E7oAS3gamMQbu/lC6gGcR/vzvA8qrdzcHwHFOU1JQM8A6gOCxE+KprhCkwCulnAGkAOeBUrJfAzqmRCREeidFp1vlj7gbjGWcrci2LOoKdrAGwERpgUE77njfANt9vCxMAgsMtoZwJoIAoW9ICOUQOWAbg/va1s3XzxCWa6sRYB7yR/kv02H+GaZBItq3glihlL8ulbQp0YD+A5QziiDuIwy/DvMeb4RZEGqZxL49gMZUC4IZGZ2gUQfZ4jPER0cuNqB9a6kkbcpJwjw9oEyVDYffy5gcu8CcZNahP824gD9rPFxr5qK56BCoRIAoiD1FWkqVhKAggQ4vgiEAhGgjSGKgtB9kNUBrR3IcghiFUAZJwLzG48WtCMjFnfwfqCQPXZXof5DcUToO4AVDb4fuh9SMFGsUog3GRt4WzfgYTMaQX0rEIMADD4EPLc0yMYX8CbgIoqDhSoPFutwK0iZ9XMNvaUV0AaAyt3hFm6a8Ob5dUawWDuACzCQC7E2Myh7kOrkwqwGfZUCTORRt4+1ERHZcoCXxQTahvAT8jg732Te2Pkf1pZt4f1gN3CzqNcE4rjAJuNJ8b4JAa6rZCefiOWd/F0O5LiiHQR1+WzAwpADqeb2Uq5E5HRgjf0YpJ9n+YRoBuzanhA/hdlB8LVR4wsyKs6dBXXcFKieYE3w+mc5kBlMwAIfCHMlezDgvrOm+KHJkOU3jJaA9Pgy3veu8H7Wpp/Bn5vNgXqeZfxgkQBcWgY/sCrl+HxtMvO28iwoXQJqLFpUsdKeBNmcCKIg9RUOwm6ho5BHGzw6lAIXG4HFHlpAgDkdorfWJ/RNyEKDFLPeJQhg5QUpcOC5RjByYT8j9xxSpEDfA4JnsoC+z6CwCSCPNDeAkBEQwIEwGDIAIkuvn7vs8iAGyRUBVBEpUCQTZDh2D+YJASkT32BsLuAyAu4IO6iuHm7mG28gzxd6VEhWs/BOdQ7hJwNAnk6HzVxwFrCRVxp5ejsRUdYMFnsg5BpAkrp073rWFgPmUw+IxYqD2lWHTVxOdhCYmAV8IJZOECOF6ouBzDYjWJ+iiOEZZawC5nvVCVx2qB4dqKcWAW4ZLcXngw7coGkzcBE5uTUrD+LJPKBorBfUnOm28cVXMwCrUo5v+lYDV0AMYOFxa3zsl+n8JBrRed/nOoGbHBwc/V38GQ6QeZtrAe75Uj6vUQmRDCiI60nzdSKZ5GugBWTP9bT2GpW42PoHGSrehFFGMNr0kUsHcOxARQopKsjyglxEaFwgxQwpEQjI7dbLmKtejz5El4J+i8ymSFlD1jvkKgTfAbwHRCDgFoTGQBkhVzigXyGK8Q7MgXEQDfMBY03wF0yDk7WhnGsRBsB54vgIbNoOHjdF2/jHfVzDO9AC2mxAbrYQiCNKAloNkBHgBIzFQ+Lc3Ucgbb1iCC5secYwvvE0bOcbwOZ1/BR+QOepyHmgAObM/H5JQLqaioNEEFQ5AhScdSDSUGDFDGf5xDGBUhkWkJZvBmbWJCipo4GyOBEwvzIW/s6mEPBhAxLHshiaYHzA+bv4OEqV8v5zR/j9un2gQn2Uy8ji4s8YgyzXIDOQMoDwNs3j2OKg5L0hDGKLkMsZREnZfKAqwkG+4OkgRkp18uviwDKZAHFnJSAEIJTi94tZgEWvB9lwGgTlI4iC1Fe0UPGGiywWaFNFikUjaINRfKANTSpkaULKFVIikCKFFDiwJsG23gL1FVKu0PuhfkFAv/WBNmTh4p6MXmexaSC4Pg/61AM2hBgI0k6DjBqfFbgPAJeWAgG3iHQtt4UrSAkQFKaByFe9kr+zxg/lZG/nz424QB08QDZIoO5appMHwcWJp1PvoO2sbVQNt9QNrbqAP5eI/vkGtywd1gEFB0iZ91kaWVsuygdmEpDodZcAZQjw0IC4dJg5SjYuz26wM9SAtai9GTwXHOoyOX5KVC6+aCk7sGYBK1USBEHbwZqaBgpczMQVXmBkpTTxwQrCeShU7uO/BTcMg1i0IFDmD2jAygcqU+sgMN8GuF1KQBka4AkmYxvv+0Pt/PTsBWZ0j5mvRUkQF5AwAplrfI0xgDiIfaAcjBkQ3iIXaloV91U6LRak/kHP9Rn1KLLG9DJIDFqawCYDgSwlvVVekLKBlJcTDaQQ9k7Zh/Ff0FXIQwGw3FC2YC+VIaQoI04RkEhFgKaFgJuekkO4kEBICO0NA+tOKyjiiUrRG0EdsTDXHFULH+SonppLAxH3RvAdoGYbCEWhJNh4rRrXqH0653FwIgJSA3/uv95dxR9MRKEwn0zI9WsyA/4WoIySxhftPOB5sYQBOSsouaChomiArT8L2LqD4F0y4HY6WJ8SQMQGKwicD/MFKpvg/Y8KuvozvO8zWR9ry4NK9kiBq9LA4AJm4AgIWnaGeSeMBwVdcyBbxwIyHN2Ai0WFuevW5ADJDcAllgFxdc4IX8wzdj5OQV4EhYHFh8C8Nrr53DSAWpFRoKzYXWAxB3VE88DcnkU8V5bieLI0Ig4EEAXpRKN3imnvXVi9vR9Cbxmu0ChAikB/ALn7eukSg32KrkMWqV5SGMAgbaBXIK6y8iRfgIItfKJmgJUvBZRiLcQX/wRIoyewwWQrwS7WzHcOl4VvEglQGiQJYoZIA4Izcw0YxOpSvgyYzlP8nQ0eIMw414AHlYVYW0WeC/jwTmDN6kkydwQgngrFdqV03v8Z4OLM6WAggeDyvI9Pzi4QU6JZ+Hgz54ElEqwTAXA4iMZ4o8nEf2xK84mYcfCFDMQxUwWYdO1xYE108L43OgF3FqjP5kmC+oxNvE91LwiCtnAT8jB7iLXlQBWD6lZw+uvi15mS3KKSMvFxnikBbkbg7iMwNnSQoZfIItctt34OL+NKXUTj32bQAU8YiPWy2IGbHNRvsgP3cBKcmjJeEF+ZLV6fjMCVjiAK0nHitOLX7IsS1h+AlVp7+Vv0bSHQBsJMzKN5mxPs+chtkQD3M3bzhTkJFLM4MH+DotWUBWthphxk2aR5ZxlAMLLqAnXwDIB4zsnvl6oGm3s7qNkEFDgjCLRLgcw2u5l3qhOkilfp/Lk1dh9r27EDyMPLNXRTFjNpm8FG2+Tgu345SA1PA46AjIVrwZYcUEBA5GwWpGHaQEYG4OQjK2hrAwdst403WpBbCyg+KUD94de5PNtAhq6GMqRAvyTdgDixlG/cySRXNqwWMM6BxaLCyE20JjtXmrxZbqHtNHD5JkGpIQIFisuB2y3SwRcAd4b7591GPqbTSX6dArxUJaDiw0EwTk0xPg/zVh9rqwSn2LiFZwtGzHzApBwg2QSk/EVACEC2h5U6/f+W2c/ax4VJ+zjR1NREgwdzM6pAIBAIBIKBj4MHD1J1NYq5+ASiIB0n8vk8HT58mNxuNxkMyAd06iISidDgwYPp4MGDn0rDLugfiDwGFkQeAw8ik4GFgS4PpRRFo1GqqqoiI8pm+H+Ii+04YTQaP1XzPB3g8XgG5OD+skLkMbAg8hh4EJkMLAxkeXi9KKC0GMdWnQQCgUAgEAi+pBAFSSAQCAQCgaAHREESMGiaRnPnziUNcYMI+h0ij4EFkcfAg8hkYOF0kYcEaQsEAoFAIBD0gFiQBAKBQCAQCHpAFCSBQCAQCASCHhAFSSAQCAQCgaAHREESCAQCgUAg6AFRkE5BPPPMM/SVr3ylQMI1YcIE+te//lV0zbp16+gb3/gGOZ1O8ng8NHHiREomP6kKumrVKjIYDPC/DRs2sOft2bOH3G43+Xw+9rclS5bQWWedRTabjUaPHk3Lli0r+rtSiu6//36qrKwku91OkydPpt27d5+4zhgA6C95KKVo/vz5NGLECNI0jQYNGkS/+c1vip6zatUqGjt2LGmaRsOHD6eFCxey912wYAHV1taSzWaj8ePH0/vvv3/iO+ULRH/J44033qALLriA3G43BQIB+u53v0uNjY1FzxF59F0eRES7du2iadOmUVlZGXk8Hvra175G77zzTtE9Dhw4QJdffjk5HA4KBoN09913Uy5XXJtQ5PEJ+kMmmzdvpuuuu44GDx5MdrudRo4cSU888QR7lwEtEyU45bB06VL1+uuvq127dqmdO3eq++67T1ksFvXhhx8qpZRau3at8ng8at68eerDDz9UH330kVq8eLFKpVJKKaXS6bRqbm4u+m/mzJlq6NChKp/PFz0rk8mo8847T1122WXK6/UW/W3NmjXKZDKpRx55RG3fvl3NmTNHWSwWtXXr1sI1v/3tb5XX61X/+Mc/1ObNm9UVV1yhhg4dqpLJ5MntpH5Ef8njxz/+saqrq1Ovvvqq2rdvn/rggw/Um2++Wfj7vn37lMPhUD/96U/V9u3b1VNPPaVMJpNavnx54ZqXX35ZWa1W9fzzz6tt27apWbNmKZ/Pp1pbW/upt04++kMe+/btU5qmqXvvvVft2bNHbdy4UU2cOFGNGTOm8B4ij0/QV3kopdSZZ56pvvWtb6nNmzerXbt2qdtvv105HA7V3NyslFIql8upc845R02ePFlt2rRJLVu2TJWVlal77723cA+Rx//QHzJ57rnn1J133qlWrVql9u7dqxYtWqTsdrt66qmnCvcY6DIRBek0QUlJiXr22WeVUkqNHz9ezZkzp9e/zWQyKhAIqIceeoj97Z577lE33nijqq+vZwrSNddcoy6//PKitvHjx6vbbrtNKaVUPp9XFRUV6ne/+13h76FQSGmapl566aVev9+piBMtj+3btyuz2aw++uijY/7unnvuUaNGjSpqu/baa9XUqVML/z7//PPVHXfcUfi3ruuqqqpKzZs3r9fvdyriRMtjyZIlymw2K13XC21Lly5VBoNBZTIZpZTI49PweeTR3t6uiEi99957hbZIJKKISK1YsUIppdSyZcuU0WhULS0thWueeeYZ5fF4VDqdVkqJPD4LJ1omCLfffru65JJLCv8e6DIRF9spDl3X6eWXX6Z4PE4TJkygtrY2Wr9+PQWDQbrwwgupvLycLr74Yvr3v/99zHssXbqUOjs76eabby5qX7lyJS1ZsoQWLFgAf7du3TqaPHlyUdvUqVNp3bp1RES0f/9+amlpKbrG6/XS+PHjC9ecbjhZ8vjnP/9Jw4YNo9dee42GDh1KtbW1NHPmTOrq6ipc81nyyGQytHHjxqJrjEYjTZ48WeTxOeUxbtw4MhqNVF9fT7quUzgcpkWLFtHkyZPJYrEQkcgD4XjkUVpaSnV1dfTiiy9SPB6nXC5Hf/zjHykYDNK4ceOI6JO+Hj16NJWXlxd+N3XqVIpEIrRt27bCNSIPjpMlE4RwOEx+v7/w74EuE1GQTlFs3bqVXC4XaZpGP/jBD+jvf/87nX322bRv3z4iInrggQdo1qxZtHz5cho7dixNmjTpmLE/zz33HE2dOrWo+G5nZyfddNNNtHDhwmMWG2xpaSlakIiIysvLqaWlpfD3I23HuuZ0wcmWx759++jjjz+mJUuW0IsvvkgLFy6kjRs30tVXX1245ljyiEQilEwmqaOjg3RdF3lQ3+UxdOhQevPNN+m+++4jTdPI5/NRU1MTvfLKK4VrRB7/Q1/kYTAY6K233qJNmzaR2+0mm81Gjz76KC1fvpxKSkqI6Nh9feRvn3bNl1EeRCdfJj2xdu1aWrx4Md16662FtoEuE1GQTlHU1dVRQ0MDrV+/nn74wx/S9OnTafv27ZTP54mI6LbbbqObb76ZxowZQ4899hjV1dXR888/z+7T1NREb7zxBs2YMaOofdasWXT99dfTxIkT++V7TnWcbHnk83lKp9P04osv0kUXXURf//rX6bnnnqN33nmHdu7c2S/feCrhZMujpaWFZs2aRdOnT6cNGzbQu+++S1arla6++mpSUpyAoS/yUErRHXfcQcFgkFavXk3vv/8+XXnllfTtb3+bmpubv8jPOqXRnzL58MMPadq0aTR37lyaMmVKv35nX2D+ol9AcHywWq00fPhwIvrE3L9hwwZ64oknaPbs2UREdPbZZxddP3LkSDpw4AC7T319PZWWltIVV1xR1L5y5UpaunQpzZ8/n4g+mRD5fJ7MZjP96U9/oltuuYUqKiqotbW16Hetra1UUVFBRFT439bWVqqsrCy65txzz+3D1w88nGx5VFZWktlsphEjRhTdg+iT7J26urpjysPj8ZDdbieTyUQmk+lTZXa64GTLY8GCBeT1eumRRx4ptP3lL3+hwYMH0/r16+mCCy4QeRyFvshj5cqV9Nprr1F3d3fBmv3000/TihUr6IUXXqDZs2dTRUUFy2w60q9Hr0cij//hZMvkCLZv306TJk2iW2+9lebMmVN0z4EuE7EgnSY4YmGora2lqqoqZlXYtWsX1dTUFLUppai+vp6+//3vF+ImjmDdunXU0NBQ+O+hhx4it9tNDQ0N9J3vfIeIiCZMmEBvv/120e9WrFhBEyZMIKJP3BAVFRVF10QiEVq/fn3hmtMVJ1oeX/3qVymXy9HevXuL7kFEhft8ljysViuNGzeu6Jp8Pk9vv/22yONzyiORSJDRWLx8mkymwrOIRB6fhs8jj0QiQUTE+ttoNBb19datW6mtra3w9xUrVpDH4yls9CKPT8eJlgkR0bZt2+iSSy6h6dOnM0oSolNAJic9DFxwwjF79mz17rvvqv3796stW7ao2bNnK4PBUEj5fuyxx5TH41FLlixRu3fvVnPmzFE2m03t2bOn6D5vvfWWIiK1Y8eOz3wmymJbs2aNMpvNav78+WrHjh1q7ty5MM3f5/OpV199VW3ZskVNmzbttEvz7w956Lquxo4dqyZOnKj++9//qg8++ECNHz9eXXrppYVrjqTM3n333WrHjh1qwYIFMGVW0zS1cOFCtX37dnXrrbcqn89XlP1zqqM/5PH2228rg8GgHnzwQbVr1y61ceNGNXXqVFVTU6MSiYRSSuRxBH2VR3t7uyotLVVXXXWVamhoUDt37lR33XWXslgsqqGhQSn1vzT/KVOmqIaGBrV8+XIVCARgmv+XXR5K9Y9Mtm7dqgKBgLrxxhuLKDPa2toK7zHQZSIK0imIW265RdXU1Cir1aoCgYCaNGlSER+OUkrNmzdPVVdXK4fDoSZMmKBWr17N7nPdddepCy+8sFfPRAqSUkq98sorasSIEcpqtapRo0ap119/vejv+Xxe/fKXv1Tl5eVK0zQ1adIktXPnzt5/7CmA/pLHoUOH1FVXXaVcLpcqLy9XN910k+rs7Cy65p133lHnnnuuslqtatiwYaq+vp7d56mnnlJDhgxRVqtVnX/++eo///nP8X34AEV/yeOll15SY8aMUU6nUwUCAXXFFVcwZUrkcWLksWHDBjVlyhTl9/uV2+1WF1xwgVq2bFnRNY2Njeqyyy5TdrtdlZWVqZ/97Gcqm80WXSPy+AT9IZO5c+cqImL/1dTUFN1nIMvEoJREFAoEAoFAIBAcDYlBEggEAoFAIOgBUZAEAoFAIBAIekAUJIFAIBAIBIIeEAVJIBAIBAKBoAdEQRIIBAKBQCDoAVGQBAKBQCAQCHpAFCSBQCAQCASCHhAFSSAQnBZobGwkg8FABoPhlKz1d+TdfT7fF/0qAoGAREESCASnGd566y1W3+lk4KabbqIrr7zyhN2vubmZHn/88RN2P4FA0DeIgiQQCE4rlJaWUmlp6Rf9GgVks9leXVdRUUFer/ckv41AIOgtREESCAQDDu3t7VRRUUEPP/xwoW3t2rVktVo/t3XoiKXn4YcfpvLycvL5fPTQQw9RLpeju+++m/x+P1VXV1N9fX3R7w4ePEjXXHMN+Xw+8vv9NG3aNGpsbCQiogceeIBeeOEFevXVVwuusVWrVhXcfIsXL6aLL76YbDYb/fWvfyUiomeffZZGjhxJNpuNzjrrLHr66af71kkCgeCkwvxFv4BAIBD0RCAQoOeff56uvPJKmjJlCtXV1dH3vvc9+tGPfkSTJk363PdbuXIlVVdX03vvvUdr1qyhGTNm0Nq1a2nixIm0fv16Wrx4Md1222106aWXUnV1NWWzWZo6dSpNmDCBVq9eTWazmX7961/TN7/5TdqyZQvdddddtGPHDopEIgXFyu/30+HDh4mIaPbs2fT73/+exowZU1CS7r//fvrDH/5AY8aMoU2bNtGsWbPI6XTS9OnTT2jfCQSCE4R+KYkrEAgEx4Hbb79djRgxQl1//fVq9OjRKpVKHfPa/fv3KyJSmzZtKmqfPn26qqmpUbquF9rq6urURRddVPh3LpdTTqdTvfTSS0oppRYtWqTq6upUPp8vXJNOp5XdbldvvPFG4b7Tpk2D7/D4448XtZ9xxhnqb3/7W1Hbr371KzVhwoSitvr6euX1eo/5jQKBoP8gFiSBQDBgMX/+fDrnnHNoyZIltHHjRtI07bjuM2rUKDIa/xdRUF5eTuecc07h3yaTiUpLS6mtrY2IiDZv3kx79uwht9tddJ9UKkV79+79zOedd955hf8fj8dp7969NGPGDJo1a1ahPZfLScyRQDCAIQqSQCAYsNi7dy8dPnyY8vk8NTY20ujRo4/rPhaLpejfBoMBtuXzeSIiisViNG7cuEL80NEIBAKf+Tyn01n4/7FYjIiI/vznP9P48eOLrjOZTL37AIFA0O8QBUkgEAxIZDIZuvHGG+naa6+luro6mjlzJm3dupWCweBJf/bYsWNp8eLFFAwGyePxwGusVivpuv6Z9yovL6eqqirat28f3XDDDSf6VQUCwUmCZLEJBIIBiV/84hcUDofpySefpJ///Oc0YsQIuuWWW/rl2TfccAOVlZXRtGnTaPXq1bR//35atWoV3XnnndTU1ERERLW1tbRlyxbauXMndXR0fGo6/4MPPkjz5s2jJ598knbt2kVbt26l+vp6evTRR/vlewQCweeHKEgCgWDAYdWqVfT444/TokWLyOPxkNFopEWLFtHq1avpmWeeOenPdzgc9N5779GQIUPoqquuopEjR9KMGTMolUoVLEqzZs2iuro6Ou+88ygQCNCaNWuOeb+ZM2fSs88+S/X19TR69Gi6+OKLaeHChTR06NCT/i0CgeD4YFBKqS/6JQQCgaCvaGxspKFDh9KmTZtOyVIjREQLFy6kn/zkJxQKhb7oVxEIvvSQGCSBQHBa4cILL6Rzzz2X1q5d+0W/yueCy+WiXC5HNpvti34VgUBAoiAJBILTBNXV1bR7924iouOmA/gi0dDQQESS2SYQDBSIi00gEAgEAoGgByRIWyAQCAQCgaAHREESCAQCgUAg6AFRkAQCgUAgEAh6QBQkgUAgEAgEgh4QBUkgEAgEAoGgB0RBEggEAoFAIOgBUZAEAoFAIBAIekAUJIFAIBAIBIIeEAVJIBAIBAKBoAf+DwKghJ1mJDVCAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "client = Client.open(\"https://earth-search.aws.element84.com/v1\")\n", - "collection = \"sentinel-2-l2a\"\n", - "tas_bbox = [1.045, 52.5, 1.055, 52.6]\n", - "search = client.search(collections=[collection], bbox=tas_bbox, datetime=\"2023-10\")\n", - "\n", - "data = load(search.items(), bbox=tas_bbox, groupby=\"solar_day\", chunks={})\n", - "data[[\"red\", \"green\", \"blue\"]].isel(time=2).to_array().plot.imshow(robust=True)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.7" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/SciRAGQ5KM.py b/SciRAGQ5KM.py deleted file mode 100644 index b5ea00e10..000000000 --- a/SciRAGQ5KM.py +++ /dev/null @@ -1,58 +0,0 @@ -import os -from ctransformers import AutoModelForCausalLM -# Requires SCIPHI_API_KEY in the environment -from agent_search import SciPhi - -def initialise(): - SCIPHI_API_KEY = "528d08dc3ed417f32954509131952c5a" - sciphi_api_key = os.environ("SCI_PHI_API_KEY") - -'''def get_chat_completion( - self, conversation: list[dict], generation_config: GenerationConfig -) -> str: - self._check_stop_token(generation_config.stop_token) - prompt = "" - added_system_prompt = False - for message in conversation: - if message["role"] == "system": - prompt += f"### System:\n{SciPhiLLMInterface.ALPACA_CHAT_SYSTEM_PROMPT}. Further, the assistant is given the following additional instructions - {message['content']}\n\n" - added_system_prompt = True - elif message["role"] == "user": - last_user_message = message["content"] - prompt += f"### Instruction:\n{last_user_message}\n\n" - elif message["role"] == "assistant": - prompt += f"### Response:\n{message['content']}\n\n" - - if not added_system_prompt: - prompt = f"### System:\n{SciPhiLLMInterface.ALPACA_CHAT_SYSTEM_PROMPT}.\n\n{prompt}" - - context = self.rag_interface.get_contexts([last_user_message])[0] - prompt += f"### Response:\n{SciPhiFormatter.RETRIEVAL_TOKEN} {SciPhiFormatter.INIT_PARAGRAPH_TOKEN}{context}{SciPhiFormatter.END_PARAGRAPH_TOKEN}" - latest_completion = self.model.get_instruct_completion( - prompt, generation_config - ).strip() - - return SciPhiFormatter.remove_cruft(latest_completion) -''' -def perform_search(client): - # Perform a search - search_response = client.search(query='Quantum Field Theory', search_provider='agent-search') - print(search_response) - # example: [{ 'score': '.89', 'url': 'https://...', 'metadata': {...} } - - # Generate a RAG response - rag_response = client.get_search_rag_response(query='latest news', search_provider='bing', llm_model='SciPhi/Sensei-7B-V1') - print(rag_response) - # example: { 'response': '...', 'other_queries': '...', 'search_results': '...' } - - -if __name__ == "__main__": - - initialise() - - # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. - llm = AutoModelForCausalLM.from_pretrained("models/", model_file="sciphi-self-rag-mistral-7b-32k.Q5_K_M.gguf", model_type="mistral", gpu_layers=50) - - print(llm("In 2024 AI is going to")) - - perform_search(client) diff --git a/ServerTest2.py b/ServerTest2.py deleted file mode 100644 index d315ea500..000000000 --- a/ServerTest2.py +++ /dev/null @@ -1,58 +0,0 @@ -import threading -import queue -import requests - -def print_dict(data): - if isinstance(data, dict): - print_dict(data) - elif isinstance(data, list): - for entry in data: - print_dict(entry) - elif data == "content": - print(f"Key: {data:>30}: {data['content']}") - return - -def producer(list): - # Generate test requests and add them to the queue - for i in range(10): # Adjust for desired load - request_data = f"What is the capital of {list[i % len(list)]}?" - print(f"Request: {request_data}") - requests_queue.put(request_data) - -def consumer(): - while True: - try: - request_data = requests_queue.get() - print(f"Processing {request_data}") - response = requests.post("http://localhost:8080", data=request_data) - print_dict(response.text) - except Exception as e: - print(f"Exception {e}\n") - continue - finally: - requests_queue.task_done() - -# Define your test request data -requests_queue = queue.Queue() - -# number of threads -num_threads = 5 - -# some text data -country_list = ["France", "Germany", "China", "USA", "Italy", "India", - "Ukraine", "Japan", "Australia", "New Zealand", "Indonesia", "Nigeria", "Saudi Arabia", "Israel", "Egypt", "Kenya", "Chile", "Mexico", "Canada"] - -# Create producer and consumer threads -producer_thread = threading.Thread(target=producer, args = (country_list,)) -consumer_threads = [threading.Thread(target=consumer) for _ in range(num_threads)] # Adjust thread count - -# Start threads and monitor resources -producer_thread.start() -for thread in consumer_threads: - thread.start() - -producer_thread.join() -for thread in consumer_threads: - thread.join() - -print("Stress test completed!") diff --git a/StockMarketPred.py b/StockMarketPred.py deleted file mode 100644 index 126ed5e92..000000000 --- a/StockMarketPred.py +++ /dev/null @@ -1,40 +0,0 @@ -# stock market predictions - -import numpy as np -import pandas as pd -from sklearn import preprocessing -from sklearn.model_selection import train_test_split -from sklearn.linear_model import LinearRegression - -def prepare_data(df,forecast_col,forecast_out,test_size): - label = df[forecast_col].shift(-forecast_out) #creating new column called label with the last 5 rows are nan - X = np.array(df[[forecast_col]]) #creating the feature array - X = preprocessing.scale(X) #processing the feature array - X_lately = X[-forecast_out:] #creating the column i want to use later in the predicting method - X = X[:-forecast_out] # X that will contain the training and testing - label.dropna(inplace=True) #dropping na values - y = np.array(label) # assigning Y - X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=test_size, random_state=0) #cross validation - - response = [X_train,X_test , Y_train, Y_test , X_lately] - return response - -df = pd.read_csv("prices.csv") -df = df[df.symbol == "GOOG"] - -forecast_col = 'close' -forecast_out = 5 -test_size = 0.2 - -X_train, X_test, Y_train, Y_test , X_lately =prepare_data(df,forecast_col,forecast_out,test_size); #calling the method were the cross validation and data preperation is in -learner = LinearRegression() #initializing linear regression model - -learner.fit(X_train,Y_train) #training the linear regression model - -score=learner.score(X_test,Y_test)#testing the linear regression model -forecast= learner.predict(X_lately) #set that will contain the forecasted data -response={}#creting json object -response['test_score']=score -response['forecast_set']=forecast - -print(response) diff --git a/examples/cmap-example/KVcacheViz.py b/examples/cmap-example/KVcacheViz.py deleted file mode 100644 index dcfe0c0e5..000000000 --- a/examples/cmap-example/KVcacheViz.py +++ /dev/null @@ -1,29 +0,0 @@ -# A simple illustration of how to represent cache occupancy -# graphically using unicvode blocks -# which are generated using print("\u2588"), print("\u2591") - -from time import sleep -import random - -CACHE_SIZE = 50 -used_blocks = [5, 3, 2, 1, 10, 2, 6, 4, 7, 10] - -def visualize_kv_cache(used_blocks, total_size): - cache_viz = "[" - tot_used = 0 - for i in range(len(used_blocks)): - # cache_viz += "█" * used_blocks[i] - cache_viz += "\u2589" * used_blocks[i] - cache_viz += "░" * (total_size - used_blocks[i]) - cache_viz += f"{used_blocks[i]:3.0f}/{total_size}]\r[" - tot_used += used_blocks[i] - - #print(f"\r[{cache_viz}] {used_blocks[i]:2.0f}/{total_size}", end="") - - print(f"\r{cache_viz}] {tot_used}/{len(used_blocks) * total_size}", end="") - - -while True: - visualize_kv_cache(used_blocks, CACHE_SIZE) - sleep(0.5) - used_blocks = used_blocks[1:] + [random.randint(0,50)] # update used blocks diff --git a/examples/cmap-example/cursor.cpp b/examples/cmap-example/cursor.cpp deleted file mode 100644 index 92acb6b69..000000000 --- a/examples/cmap-example/cursor.cpp +++ /dev/null @@ -1,26 +0,0 @@ -// just trying to get the cursor position - -#include - -struct CursorPos { - int x; - int y; -}; - -static CursorPos getCursorPos() { - - // Get text cursor position - auto cursorPos = getCursorPos(); - - // Assign to struct - CursorPos pos; - pos.x = cursorPos.x; - pos.y = cursorPos.y; - - return pos; -} - -int main() { - CursorPos cursor = getCursorPos(); - printf("The x co-ordinate of the cursor is %zu\n; the y co-ordinate of the cursor is %zu\n", cursor.x, cursor.y); -} diff --git a/examples/cmap-example/kvcache2.cpp b/examples/cmap-example/kvcache2.cpp deleted file mode 100644 index 70052e712..000000000 --- a/examples/cmap-example/kvcache2.cpp +++ /dev/null @@ -1,76 +0,0 @@ -/* -A utility to represent the kv-cache occupancy graphically -Takes as parameters -- total cache size (-c) -- number of simultaneous accesses/slots (-np) -- a parameter related to the display context (max window width - data display requirements) -It then uses a trick borrowed from tqdm to display occupancy -TODO: Show contiguous space and block availability -*/ -#include -#include -#include -#include // for rand() - -// a custom function to display graphics of the kvcache status -static void show_kvcache(std::vector> used_blocks, int cache_size) { - - int max_length = 128; - int num_blocks = used_blocks.size(); - int slot_cache_size = cache_size / num_blocks; - bool cls_flag = true; - std::string slot_symbol1 = ""; - std::string slot_symbol2 = ""; - std::string slot_symbol3 = ""; - auto& p = used_blocks[0]; - llama_client_slot slot = p.second; - - return; // remove when not in debug mode - - if ((used_blocks.size() == 0) || (used_blocks[0].first == 0)) { - return; - } - - // Print visualization - // Always start at the top left of the window (H means 'move cursor to this position'; 2J = cls) - // Only clear the screen the first time round - if (cls_flag) { - printf("\033[2J"); - cls_flag = false; - } - printf("\033[1;0H\033[K**************************\n\033[KKVcache occupancy by slot:\n\033[K**************************\n"); - for(int i=0; i -#include -#include -#include // for rand() - -static void show_kvcache( - std::vector used_blocks, - int cache_size, - int max_length -) { - int num_blocks = used_blocks.size(); - int slot_cache_size = cache_size / num_blocks; - - while(true) { - - // Print visualization after erasing the current line - for(int i=0; i 7 * max_length / slot_cache_size + 0.5)) { - // std::cout << "\033[D\033[D\033[D\033[D" << std::setw(3) << used_blocks[i] << "\033[C"; - //} - else { - std::cout << "\033[91m█\033[0m"; - } - } - std::cout << " " << std::setw(5) << used_blocks[i] << "/" << std::setw(5) << slot_cache_size << std::endl; - } - std::cout << "{"; - std::string upcursor = "\033[K\033[A\033[K"; - - for(int i=0; i < num_blocks; i++){ - //std::cout << used_blocks[i] << " "; - upcursor += "\033[A\033[K"; - } - - // Remove first element - used_blocks.erase(used_blocks.begin()); - - // Add new random block at the end - u_int new_block = rand() % slot_cache_size; - used_blocks.push_back(new_block); - -// Adjust the cursor so that the display overwrites itself - upcursor += "\033[A\033[K"; - std::cout << "}" << std::endl; - std::cin.get(); - std::cout << upcursor; - } -} - -int main() { - std::vector used_blocks = {64, 64, 64, 64, 64, 64, 64, 64, 64, 46, 46, 46, 46, 46, 46, 46, 46, 46}; - int cache_size = 65536; - int max_length = 128; - show_kvcache(used_blocks, cache_size, max_length); - }