Merge branch 'master' of github.com:ggerganov/llama.cpp into mfalcon_mamba_cuda

This commit is contained in:
pidack 2024-08-27 17:08:23 +08:00
commit 40f47872b3
11 changed files with 5695 additions and 6059 deletions

View file

@ -24,6 +24,8 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
ENV GGML_CUDA=1 ENV GGML_CUDA=1
# Enable cURL # Enable cURL
ENV LLAMA_CURL=1 ENV LLAMA_CURL=1
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
RUN make -j$(nproc) llama-server RUN make -j$(nproc) llama-server

View file

@ -26,6 +26,8 @@ RUN apt-get update && \
COPY --from=build /app/build/bin/llama-server /llama-server COPY --from=build /app/build/bin/llama-server /llama-server
ENV LC_ALL=C.utf8 ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]

View file

@ -39,6 +39,8 @@ ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
ENV GGML_HIPBLAS=1 ENV GGML_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++ ENV CXX=/opt/rocm/llvm/bin/clang++
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
# Enable cURL # Enable cURL
ENV LLAMA_CURL=1 ENV LLAMA_CURL=1

View file

@ -23,6 +23,8 @@ RUN cp /app/build/bin/llama-server /llama-server && \
rm -rf /app rm -rf /app
ENV LC_ALL=C.utf8 ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]

View file

@ -21,6 +21,8 @@ RUN apt-get update && \
COPY --from=build /app/llama-server /llama-server COPY --from=build /app/llama-server /llama-server
ENV LC_ALL=C.utf8 ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]

2
.ecrc
View file

@ -1,5 +1,5 @@
{ {
"Exclude": ["^\\.gitmodules$"], "Exclude": ["^\\.gitmodules$", "stb_image\\.h"],
"Disable": { "Disable": {
"IndentSize": true "IndentSize": true
} }

View file

@ -327,6 +327,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
void gpt_params_parse_from_env(gpt_params & params) { void gpt_params_parse_from_env(gpt_params & params) {
// we only care about server-related params for now // we only care about server-related params for now
get_env("LLAMA_ARG_MODEL", params.model); get_env("LLAMA_ARG_MODEL", params.model);
get_env("LLAMA_ARG_MODEL_URL", params.model_url);
get_env("LLAMA_ARG_MODEL_ALIAS", params.model_alias);
get_env("LLAMA_ARG_HF_REPO", params.hf_repo);
get_env("LLAMA_ARG_HF_FILE", params.hf_file);
get_env("LLAMA_ARG_THREADS", params.n_threads); get_env("LLAMA_ARG_THREADS", params.n_threads);
get_env("LLAMA_ARG_CTX_SIZE", params.n_ctx); get_env("LLAMA_ARG_CTX_SIZE", params.n_ctx);
get_env("LLAMA_ARG_N_PARALLEL", params.n_parallel); get_env("LLAMA_ARG_N_PARALLEL", params.n_parallel);
@ -341,6 +345,9 @@ void gpt_params_parse_from_env(gpt_params & params) {
get_env("LLAMA_ARG_EMBEDDINGS", params.embedding); get_env("LLAMA_ARG_EMBEDDINGS", params.embedding);
get_env("LLAMA_ARG_FLASH_ATTN", params.flash_attn); get_env("LLAMA_ARG_FLASH_ATTN", params.flash_attn);
get_env("LLAMA_ARG_DEFRAG_THOLD", params.defrag_thold); get_env("LLAMA_ARG_DEFRAG_THOLD", params.defrag_thold);
get_env("LLAMA_ARG_CONT_BATCHING", params.cont_batching);
get_env("LLAMA_ARG_HOST", params.hostname);
get_env("LLAMA_ARG_PORT", params.port);
} }
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {

File diff suppressed because it is too large Load diff

View file

@ -1572,7 +1572,7 @@ class LlamaModel(Model):
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3": if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0) base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0) factor = rope_scaling.get("factor", 8.0)
@ -3820,7 +3820,7 @@ class ExaoneModel(Model):
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3": if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0) base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0) factor = rope_scaling.get("factor", 8.0)

View file

@ -249,23 +249,49 @@ logging:
Available environment variables (if specified, these variables will override parameters specified in arguments): Available environment variables (if specified, these variables will override parameters specified in arguments):
- `LLAMA_CACHE` (cache directory, used by `--hf-repo`) - `LLAMA_CACHE`: cache directory, used by `--hf-repo`
- `HF_TOKEN` (Hugging Face access token, used when accessing a gated model with `--hf-repo`) - `HF_TOKEN`: Hugging Face access token, used when accessing a gated model with `--hf-repo`
- `LLAMA_ARG_MODEL` - `LLAMA_ARG_MODEL`: equivalent to `-m`
- `LLAMA_ARG_THREADS` - `LLAMA_ARG_MODEL_URL`: equivalent to `-mu`
- `LLAMA_ARG_CTX_SIZE` - `LLAMA_ARG_MODEL_ALIAS`: equivalent to `-a`
- `LLAMA_ARG_N_PARALLEL` - `LLAMA_ARG_HF_REPO`: equivalent to `--hf-repo`
- `LLAMA_ARG_BATCH` - `LLAMA_ARG_HF_FILE`: equivalent to `--hf-file`
- `LLAMA_ARG_UBATCH` - `LLAMA_ARG_THREADS`: equivalent to `-t`
- `LLAMA_ARG_N_GPU_LAYERS` - `LLAMA_ARG_CTX_SIZE`: equivalent to `-c`
- `LLAMA_ARG_THREADS_HTTP` - `LLAMA_ARG_N_PARALLEL`: equivalent to `-np`
- `LLAMA_ARG_CHAT_TEMPLATE` - `LLAMA_ARG_BATCH`: equivalent to `-b`
- `LLAMA_ARG_N_PREDICT` - `LLAMA_ARG_UBATCH`: equivalent to `-ub`
- `LLAMA_ARG_ENDPOINT_METRICS` - `LLAMA_ARG_N_GPU_LAYERS`: equivalent to `-ngl`
- `LLAMA_ARG_ENDPOINT_SLOTS` - `LLAMA_ARG_THREADS_HTTP`: equivalent to `--threads-http`
- `LLAMA_ARG_EMBEDDINGS` - `LLAMA_ARG_CHAT_TEMPLATE`: equivalent to `--chat-template`
- `LLAMA_ARG_FLASH_ATTN` - `LLAMA_ARG_N_PREDICT`: equivalent to `-n`
- `LLAMA_ARG_DEFRAG_THOLD` - `LLAMA_ARG_ENDPOINT_METRICS`: if set to `1`, it will enable metrics endpoint (equivalent to `--metrics`)
- `LLAMA_ARG_ENDPOINT_SLOTS`: if set to `0`, it will **disable** slots endpoint (equivalent to `--no-slots`). This feature is enabled by default.
- `LLAMA_ARG_EMBEDDINGS`: if set to `1`, it will enable embeddings endpoint (equivalent to `--embeddings`)
- `LLAMA_ARG_FLASH_ATTN`: if set to `1`, it will enable flash attention (equivalent to `-fa`)
- `LLAMA_ARG_CONT_BATCHING`: if set to `0`, it will **disable** continuous batching (equivalent to `--no-cont-batching`). This feature is enabled by default.
- `LLAMA_ARG_DEFRAG_THOLD`: equivalent to `-dt`
- `LLAMA_ARG_HOST`: equivalent to `--host`
- `LLAMA_ARG_PORT`: equivalent to `--port`
Example usage of docker compose with environment variables:
```yml
services:
llamacpp-server:
image: ghcr.io/ggerganov/llama.cpp:server
ports:
- 8080:8080
volumes:
- ./models:/models
environment:
# alternatively, you can use "LLAMA_ARG_MODEL_URL" to download the model
LLAMA_ARG_MODEL: /models/my_model.gguf
LLAMA_ARG_CTX_SIZE: 4096
LLAMA_ARG_N_PARALLEL: 2
LLAMA_ARG_ENDPOINT_METRICS: 1 # to disable, either remove or set to 0
LLAMA_ARG_PORT: 8080
```
## Build ## Build

View file

@ -6605,6 +6605,7 @@ static bool llm_load_tensors(
const int64_t n_embd_gqa = n_embd_v_gqa; const int64_t n_embd_gqa = n_embd_v_gqa;
const int64_t n_vocab = hparams.n_vocab; const int64_t n_vocab = hparams.n_vocab;
const int64_t n_vocab_type = hparams.n_vocab_type; const int64_t n_vocab_type = hparams.n_vocab_type;
const int64_t n_rot = hparams.n_rot;
const int64_t n_expert = hparams.n_expert; const int64_t n_expert = hparams.n_expert;
const int64_t n_expert_used = hparams.n_expert_used; const int64_t n_expert_used = hparams.n_expert_used;
const int64_t n_ctx_train = hparams.n_ctx_train; const int64_t n_ctx_train = hparams.n_ctx_train;
@ -6662,7 +6663,7 @@ static bool llm_load_tensors(
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_embd/n_head/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
if (n_expert == 0) { if (n_expert == 0) {
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
@ -8115,8 +8116,8 @@ static bool llm_load_tensors(
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + (hparams.n_embd_head_k << 2)}); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + (hparams.n_embd_head_k << 2)}); layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
@ -8193,7 +8194,7 @@ static bool llm_load_tensors(
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_embd/n_head/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});