metal : add Q4_K implementation (#1733)
* Metal implementation for Q4_K Very slow for now: 42 ms / token, Q4_0 runs in 28 ms/token on my 30-core M2 Max GPU. * Optimizing Q4_K on metal The first token always takes longer, I guess because the metal kernel is being jit-compiled. So, using n = 128 to measure time. At this point Q4_K takes 29.5 ms / token compared to 27.2 ms / token for Q4_0. Quite a bit better than the initial attempt, but still not good enough. * Optimizing q4_K metal dot some more For n = 256 it is now 28.1 ms/token compared to 27 ms/token for q4_0. * Fix after merge with master --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
0035858273
commit
4161bdc04d
3 changed files with 184 additions and 19 deletions
23
ggml-metal.m
23
ggml-metal.m
|
@ -49,9 +49,11 @@ struct ggml_metal_context {
|
|||
GGML_METAL_DECL_KERNEL(diag_mask_inf);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_k);
|
||||
GGML_METAL_DECL_KERNEL(rms_norm);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
|
||||
GGML_METAL_DECL_KERNEL(rope);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
||||
|
@ -133,9 +135,11 @@ struct ggml_metal_context * ggml_metal_init(void) {
|
|||
GGML_METAL_ADD_KERNEL(diag_mask_inf);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_k);
|
||||
GGML_METAL_ADD_KERNEL(rms_norm);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
|
||||
GGML_METAL_ADD_KERNEL(rope);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
||||
|
@ -517,7 +521,20 @@ void ggml_metal_graph_compute(
|
|||
nth1 = 4;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
|
||||
} break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
case GGML_TYPE_Q4_K:
|
||||
{
|
||||
GGML_ASSERT(ne02 == 1);
|
||||
GGML_ASSERT(ne12 == 1);
|
||||
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
fprintf(stderr, "Asserting on type %d\n",(int)src0t);
|
||||
GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
@ -540,6 +557,9 @@ void ggml_metal_graph_compute(
|
|||
if (src0t == GGML_TYPE_Q4_0) {
|
||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else if (src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
|
@ -555,6 +575,7 @@ void ggml_metal_graph_compute(
|
|||
switch (src0->type) {
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
||||
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue