WIP: Initial setup for GGUF writer configuration
- Created the `initialize_writer` function to set up GGUF writer with model metadata - Included validation for file type and architecture - Default hyperparameter values sourced from MixFormerSequentialConfig - Function annotations and documentation added for clarity - Prepared groundwork for MixFormer architecture integration
This commit is contained in:
parent
629f917cd6
commit
41a98c618e
2 changed files with 305 additions and 0 deletions
300
convert-phi-1-to-gguf.py
Executable file
300
convert-phi-1-to-gguf.py
Executable file
|
@ -0,0 +1,300 @@
|
|||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from json import JSONDecodeError
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
if "NO_LOCAL_GGUF" not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
|
||||
import gguf
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
|
||||
|
||||
|
||||
def check_required_files(directory: Path, required_files: List[str]) -> None:
|
||||
missing_files = [
|
||||
file_name
|
||||
for file_name in required_files
|
||||
if not (directory / file_name).exists()
|
||||
]
|
||||
if missing_files:
|
||||
raise FileNotFoundError(f"Missing required files: {', '.join(missing_files)}")
|
||||
|
||||
|
||||
def get_json_map(file_path: Path) -> dict[str, Any]:
|
||||
with open(file_path, "r") as source_file:
|
||||
try:
|
||||
return json.load(source_file)
|
||||
except JSONDecodeError:
|
||||
raise ValueError(f"Failed to decode {file_path}")
|
||||
|
||||
|
||||
def load_hyper_params(directory: Path, architecture: str) -> dict:
|
||||
config_path = directory / "config.json"
|
||||
hparams = get_json_map(config_path)
|
||||
|
||||
# Ensure the expected architecture is present
|
||||
expected_architecture = architecture
|
||||
if hparams["architectures"][0] != expected_architecture:
|
||||
raise ValueError(
|
||||
f"Model architecture not supported: {hparams['architectures'][0]}"
|
||||
)
|
||||
|
||||
return hparams
|
||||
|
||||
|
||||
def initialize_writer(
|
||||
fname_out: str, architecture: str, ftype: str, hparams: Dict[str, Any]
|
||||
) -> gguf.GGUFWriter:
|
||||
"""
|
||||
Initializes the GGUF writer with the model metadata.
|
||||
|
||||
:param fname_out: The filename for the output model.
|
||||
:param architecture: The model architecture enum name.
|
||||
:param ftype: The data type for the model file (e.g., 'F32', 'F16').
|
||||
:param hparams: The hyperparameters loaded from the model's config file.
|
||||
:return: An initialized GGUF writer object.
|
||||
"""
|
||||
# Validate the architecture name
|
||||
if not hasattr(gguf.MODEL_ARCH, architecture):
|
||||
raise ValueError(f"Unsupported architecture: {architecture}")
|
||||
ARCH = getattr(gguf.MODEL_ARCH, architecture)
|
||||
|
||||
# Validate the file type
|
||||
if ftype not in ['F32', 'F16']:
|
||||
raise ValueError(f"Unsupported file type: {ftype}")
|
||||
|
||||
# Initialize the GGUF writer
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
# Set the writer with the hyperparameters from MixFormerSequentialConfig
|
||||
gguf_writer.add_name(gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
gguf_writer.add_context_length(hparams.get("n_positions", 2048))
|
||||
gguf_writer.add_embedding_length(hparams.get("n_embd", 1024))
|
||||
n_inner = hparams.get("n_inner", 4 * hparams.get("n_embd", 1024))
|
||||
gguf_writer.add_feed_forward_length(n_inner)
|
||||
gguf_writer.add_block_count(hparams.get("n_layer", 20))
|
||||
gguf_writer.add_head_count(hparams.get("n_head", 16))
|
||||
n_head_kv = hparams.get("n_head_kv", hparams.get("n_head", 16))
|
||||
gguf_writer.add_head_count_kv(n_head_kv) # NOTE: arxiv:2203.11082
|
||||
gguf_writer.add_layer_norm_eps(hparams.get("layer_norm_epsilon", 1e-5))
|
||||
|
||||
# Add the file type
|
||||
gguf_writer.add_file_type(ftype)
|
||||
|
||||
return gguf_writer
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert a Phi-1 model to a GGML compatible file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocab-only", action="store_true", help="extract only the vocab"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path, help="path to write to; default: based on input"
|
||||
)
|
||||
parser.add_argument(
|
||||
"model",
|
||||
type=Path,
|
||||
help="directory containing model file, or model file itself (*.bin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ftype",
|
||||
type=str,
|
||||
choices=["f32", "f16"],
|
||||
default="f16", # NOTE: Phi-1 is dtype float16.
|
||||
help="output format - use 'float32' for 32-bit tensors, 'float16' for 16-bit tensors",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
try:
|
||||
args = parse_args()
|
||||
|
||||
ftype = args.ftype
|
||||
directory = args.model # Renamed for clarity
|
||||
|
||||
if not directory.is_dir():
|
||||
raise NotADirectoryError(f"{directory} is not a directory.")
|
||||
|
||||
required_files = ["pytorch_model.bin", "config.json", "tokenizer.json"]
|
||||
check_required_files(directory, required_files)
|
||||
|
||||
# Reference the actual model file
|
||||
model = directory / "pytorch_model.bin"
|
||||
if not model.exists():
|
||||
raise FileNotFoundError(f"Model file {model} does not exist.")
|
||||
|
||||
hparams = load_hyper_params(directory, "MixFormerSequentialForCausalLM")
|
||||
architecture = hparams["architectures"][0]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
fname_out = directory / f"ggml-model-{ftype}.gguf"
|
||||
|
||||
if not fname_out.parent.exists():
|
||||
logging.warning(f"Output directory {fname_out.parent} does not exist.")
|
||||
|
||||
gguf_writer = initialize_writer(fname_out, architecture, ftype, hparams)
|
||||
|
||||
# Proceed with the model processing using the 'model' path
|
||||
# ... [rest of your existing code] ...
|
||||
|
||||
except Exception as e:
|
||||
logging.error(e)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
||||
# # TOKENIZATION
|
||||
|
||||
# print("gguf: get tokenizer metadata")
|
||||
|
||||
# tokens: list[bytearray] = []
|
||||
# scores: list[float] = []
|
||||
# toktypes: list[int] = []
|
||||
|
||||
# # gpt2 tokenizer
|
||||
# gguf_writer.add_tokenizer_model("gpt2")
|
||||
|
||||
# print("gguf: get gpt2 tokenizer vocab")
|
||||
|
||||
# # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||
# tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
|
||||
# # The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||
# # This causes downstream issues with mismatched tensor sizes when running the inference
|
||||
# vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
# assert max(tokenizer.vocab.values()) < vocab_size
|
||||
|
||||
# added_vocab = tokenizer.get_added_vocab()
|
||||
# reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
|
||||
# for i in range(vocab_size):
|
||||
# if i not in reverse_vocab:
|
||||
# tokens.append(f"[PAD{i}]")
|
||||
# toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
# elif reverse_vocab[i] in added_vocab:
|
||||
# tokens.append(reverse_vocab[i])
|
||||
# if tokenizer.added_tokens_decoder[i].special:
|
||||
# toktypes.append(gguf.TokenType.CONTROL)
|
||||
# else:
|
||||
# toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
# else:
|
||||
# tokens.append(reverse_vocab[i])
|
||||
# toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
# gguf_writer.add_token_list(tokens)
|
||||
# gguf_writer.add_token_types(toktypes)
|
||||
# special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab=len(tokens))
|
||||
# special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# # TENSORS
|
||||
|
||||
# tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
||||
|
||||
# # params for qkv transform
|
||||
# n_head = hparams["n_head"]
|
||||
# n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
|
||||
|
||||
# head_dim = hparams["n_embd"] // n_head
|
||||
|
||||
# # tensor info
|
||||
# print("gguf: get tensor metadata")
|
||||
|
||||
# if num_parts == 0:
|
||||
# part_names = iter(("pytorch_model.bin",))
|
||||
# else:
|
||||
# part_names = (
|
||||
# f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
# )
|
||||
|
||||
# for part_name in part_names:
|
||||
# if args.vocab_only:
|
||||
# break
|
||||
# print("gguf: loading model part '" + part_name + "'")
|
||||
# model_part = torch.load(dir_model / part_name, map_location="cpu")
|
||||
|
||||
# for name in model_part.keys():
|
||||
# data = model_part[name]
|
||||
|
||||
# old_dtype = data.dtype
|
||||
|
||||
# # convert any unsupported data types to float32
|
||||
# if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
# data = data.to(torch.float32)
|
||||
|
||||
# data = data.squeeze().numpy()
|
||||
|
||||
# # map tensor names
|
||||
# new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
# if new_name is None:
|
||||
# print("Can not map tensor '" + name + "'")
|
||||
# sys.exit()
|
||||
|
||||
# n_dims = len(data.shape)
|
||||
# data_dtype = data.dtype
|
||||
|
||||
# # if f32 desired, convert any float16 to float32
|
||||
# if ftype == 0 and data_dtype == np.float16:
|
||||
# data = data.astype(np.float32)
|
||||
|
||||
# # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
# if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
# data = data.astype(np.float32)
|
||||
|
||||
# # if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
# if (
|
||||
# ftype == 1
|
||||
# and data_dtype == np.float32
|
||||
# and name.endswith(".weight")
|
||||
# and n_dims == 2
|
||||
# ):
|
||||
# data = data.astype(np.float16)
|
||||
|
||||
# print(
|
||||
# name,
|
||||
# "=>",
|
||||
# new_name
|
||||
# + ", shape = "
|
||||
# + str(data.shape)
|
||||
# + ", "
|
||||
# + str(old_dtype)
|
||||
# + " --> "
|
||||
# + str(data.dtype),
|
||||
# )
|
||||
|
||||
# gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
# print("gguf: write header")
|
||||
# gguf_writer.write_header_to_file()
|
||||
# print("gguf: write metadata")
|
||||
# gguf_writer.write_kv_data_to_file()
|
||||
# if not args.vocab_only:
|
||||
# print("gguf: write tensors")
|
||||
# gguf_writer.write_tensors_to_file()
|
||||
|
||||
# gguf_writer.close()
|
||||
|
||||
# print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
# print("")
|
|
@ -93,6 +93,7 @@ class MODEL_ARCH(IntEnum):
|
|||
REFACT : int = auto()
|
||||
BERT : int = auto()
|
||||
BLOOM : int = auto()
|
||||
PHI_1 : int = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
|
@ -132,6 +133,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.REFACT: "refact",
|
||||
MODEL_ARCH.BERT: "bert",
|
||||
MODEL_ARCH.BLOOM: "bloom",
|
||||
MODEL_ARCH.PHI_1: "phi-1",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
|
@ -302,6 +304,9 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.PHI_1: [
|
||||
# TODO
|
||||
],
|
||||
MODEL_ARCH.GPT2: [
|
||||
# TODO
|
||||
],
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue