ggml/examples: add backend support for numerical optimization (ggml/949)
* CUDA eval works * stochastic gradient descent op * Adam except decay * CUDA CROSS_ENTROPY_LOSS_BACK * CUDA mnist-fc training works * backend CLI arg * refactor gguf load * remove sched from opt_step_adam * implement l1 regularization (weight decay) * extra call to add optimizer * initialize gradients with ggml_graph_reset * gradient accumulation * increment iter per eval instead of epoch * adjust backend interfaces * fix ggml_graph_reset without backend * fix ggml graph export/import * fixup * rename * revert ggml_opt changes * more general CUDA repeat_back * update documentation, fix CNN * validation split * add clarifying comment * optimize PyTorch training * adjust buffer size, thread count * fix 0.0f validation split * Update examples/mnist/mnist-common.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * fix gradient accumulation * tensor flag for accumulators -> tensor hash set * Update include/ggml.h Co-authored-by: slaren <slarengh@gmail.com> * Update tests/test-backend-ops.cpp Co-authored-by: slaren <slarengh@gmail.com> * Update tests/test-backend-ops.cpp Co-authored-by: slaren <slarengh@gmail.com> * fix test prints * Update src/ggml-backend.c Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * better CUDA support for noncontiguous out_prod * add comment --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
a6809c6a2e
commit
424c5d00a9
24 changed files with 883 additions and 129 deletions
|
@ -1,4 +1,5 @@
|
|||
#include "binbcast.cuh"
|
||||
#include <cstdint>
|
||||
|
||||
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
|
||||
return b;
|
||||
|
@ -90,6 +91,30 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
|
|||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __global__ void k_repeat_back(
|
||||
const T * __restrict__ src, T * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2) {
|
||||
|
||||
const int64_t tid0 = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int64_t tid1 = (int64_t) blockIdx.y*blockDim.y + threadIdx.y;
|
||||
const int64_t tid2 = (int64_t) blockIdx.z*blockDim.z + threadIdx.z;
|
||||
|
||||
if (tid0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
T sum = 0;
|
||||
for (int64_t i2 = tid2; i2 < ne02; i2 += ne2) {
|
||||
for (int64_t i1 = tid1; i1 < ne01; i1 += ne1) {
|
||||
for (int64_t i0 = tid0; i0 < ne00; i0 += ne0) {
|
||||
sum += src[i2*ne01*ne00 + i1*ne00 + i0];
|
||||
}
|
||||
}
|
||||
}
|
||||
dst[tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float)>
|
||||
struct bin_bcast_cuda {
|
||||
template<typename src0_t, typename src1_t, typename dst_t>
|
||||
|
@ -247,6 +272,16 @@ struct bin_bcast_cuda {
|
|||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
static void repeat_back_cuda(
|
||||
const T * src, T * dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, cudaStream_t stream) {
|
||||
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dim3 block_nums((ne0 + WARP_SIZE - 1) / WARP_SIZE, ne1, ne2);
|
||||
k_repeat_back<T><<<block_nums, block_dims, 0, stream>>>(src, dst, ne00, ne01, ne02, ne0, ne1, ne2);
|
||||
}
|
||||
|
||||
template<class op>
|
||||
static void ggml_cuda_op_bin_bcast(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
|
@ -286,3 +321,35 @@ void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_can_repeat(dst, src0));
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
GGML_ASSERT(src0->ne[3] == 1);
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
const int64_t ne2 = dst->ne[2];
|
||||
GGML_ASSERT(dst->ne[3] == 1);
|
||||
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
repeat_back_cuda<float>(src0_d, dst_d, ne00, ne01, ne02, ne0, ne1, ne2, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -5,3 +5,5 @@ void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
|||
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
|
@ -71,6 +71,32 @@ static __global__ void cross_entropy_loss_f32(const float * logits, const float
|
|||
dst[blockIdx.x] = loss;
|
||||
}
|
||||
|
||||
static __global__ void cross_entropy_loss_back_f32(const float * logits, const float * labels, const float * loss, float * dst, const int nclasses) {
|
||||
extern __shared__ float tmp[];
|
||||
|
||||
float maxval = -INFINITY;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
const float val = logits[blockIdx.x*nclasses + i];
|
||||
maxval = fmaxf(maxval, val);
|
||||
tmp[i] = val;
|
||||
}
|
||||
maxval = warp_reduce_max(maxval);
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
const float val = expf(tmp[i] - maxval);
|
||||
sum += val;
|
||||
tmp[i] = val;
|
||||
}
|
||||
sum = warp_reduce_sum(sum);
|
||||
const float sm_scale = 1.0f/sum;
|
||||
|
||||
const float d_by_nrows = *loss/gridDim.x;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
dst[blockIdx.x*nclasses + i] = (tmp[i]*sm_scale - labels[blockIdx.x*nclasses + i])*d_by_nrows;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
@ -104,3 +130,37 @@ void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||
// Combine results from individual blocks:
|
||||
sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const ggml_tensor * opt0 = dst->src[2];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(opt0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(ggml_is_contiguous(opt0));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
const float * opt0_d = (const float *) opt0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const dim3 blocks_dim(WARP_SIZE, 1, 1);
|
||||
const dim3 blocks_num(nrows, 1, 1);
|
||||
const int shmem = ne00*sizeof(float);
|
||||
|
||||
cross_entropy_loss_back_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, opt0_d, dst_d, ne00);
|
||||
}
|
||||
|
|
|
@ -3,3 +3,5 @@
|
|||
#define CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
80
ggml/src/ggml-cuda/opt-step-adamw.cu
Normal file
80
ggml/src/ggml-cuda/opt-step-adamw.cu
Normal file
|
@ -0,0 +1,80 @@
|
|||
#include "opt-step-adamw.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
static __global__ void opt_step_adamw_f32(
|
||||
float * __restrict__ x, const float * __restrict__ g, float * __restrict__ g_m, float * __restrict__ g_v, const int64_t k,
|
||||
const float alpha, const float beta1, const float beta2, const float eps, const float wd,
|
||||
const float beta1h, const float beta2h) {
|
||||
|
||||
const int64_t i = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float gi = g[i];
|
||||
const float gmi = g_m[i]*beta1 + gi*(1.0f - beta1);
|
||||
const float gvi = g_v[i]*beta2 + gi*gi*(1.0f - beta2);
|
||||
|
||||
g_m[i] = gmi;
|
||||
g_v[i] = gvi;
|
||||
|
||||
const float mh = gmi*beta1h;
|
||||
const float vh = sqrtf(gvi*beta2h) + eps;
|
||||
|
||||
x[i] = x[i]*(1.0f - alpha*wd) - mh/vh;
|
||||
}
|
||||
|
||||
static void opt_step_adamw_f32_cuda(
|
||||
float * x, const float * g, float * g_m, float * g_v, const int64_t k,
|
||||
const float alpha, const float beta1, const float beta2, const float eps, const float wd,
|
||||
const float beta1h, const float beta2h, cudaStream_t stream) {
|
||||
|
||||
const dim3 block_dims(CUDA_OPT_STEP_ADAMW_BLOCK_SIZE, 1, 1);
|
||||
const dim3 block_nums((k + CUDA_OPT_STEP_ADAMW_BLOCK_SIZE - 1) / CUDA_OPT_STEP_ADAMW_BLOCK_SIZE, 1, 1);
|
||||
opt_step_adamw_f32<<<block_nums, block_dims, 0, stream>>>(x, g, g_m, g_v, k, alpha, beta1, beta2, eps, wd, beta1h, beta2h);
|
||||
}
|
||||
|
||||
void ggml_cuda_opt_step_adamw(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src0_grad = dst->src[1];
|
||||
const ggml_tensor * src0_grad_m = dst->src[2];
|
||||
const ggml_tensor * src0_grad_v = dst->src[3];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0_grad->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0_grad_m->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0_grad_v->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0_grad));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0_grad_m));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0_grad_v));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
|
||||
|
||||
float * src0_d = (float *) src0->data;
|
||||
const float * src0_grad_d = (const float *) src0_grad->data;
|
||||
float * src0_grad_m_d = (float *) src0_grad_m->data;
|
||||
float * src0_grad_v_d = (float *) src0_grad_v->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t ne = ggml_nelements(src0);
|
||||
|
||||
int64_t iter; memcpy(&iter, &dst->op_params[0], sizeof(int64_t));
|
||||
float alpha; memcpy(&alpha, &dst->op_params[2], sizeof(float));
|
||||
float beta1; memcpy(&beta1, &dst->op_params[3], sizeof(float));
|
||||
float beta2; memcpy(&beta2, &dst->op_params[4], sizeof(float));
|
||||
float eps; memcpy(&eps, &dst->op_params[5], sizeof(float));
|
||||
float wd; memcpy(&wd, &dst->op_params[6], sizeof(float));
|
||||
|
||||
const float beta1h = alpha/(1.0f - powf(beta1, iter));
|
||||
const float beta2h = 1.0f/(1.0f - powf(beta2, iter));
|
||||
|
||||
opt_step_adamw_f32_cuda(src0_d, src0_grad_d, src0_grad_m_d, src0_grad_v_d, ne, alpha, beta1, beta2, eps, wd, beta1h, beta2h, stream);
|
||||
|
||||
iter++;
|
||||
memcpy(&dst->op_params[0], &iter, sizeof(int64_t));
|
||||
}
|
5
ggml/src/ggml-cuda/opt-step-adamw.cuh
Normal file
5
ggml/src/ggml-cuda/opt-step-adamw.cuh
Normal file
|
@ -0,0 +1,5 @@
|
|||
#include "common.cuh"
|
||||
|
||||
#define CUDA_OPT_STEP_ADAMW_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_opt_step_adamw(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
52
ggml/src/ggml-cuda/out-prod.cu
Normal file
52
ggml/src/ggml-cuda/out-prod.cu
Normal file
|
@ -0,0 +1,52 @@
|
|||
#include "out-prod.cuh"
|
||||
#include "vendors/cuda.h"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
|
||||
GGML_ASSERT(ne01 == ne11);
|
||||
GGML_ASSERT(ne0 == ne00);
|
||||
GGML_ASSERT(ne1 == ne10);
|
||||
|
||||
GGML_ASSERT(ne2 == src0->ne[2]);
|
||||
GGML_ASSERT(ne2 == src1->ne[2]);
|
||||
GGML_ASSERT(ne3 == src0->ne[3]);
|
||||
GGML_ASSERT(ne3 == src1->ne[3]);
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
cublasHandle_t handle = ctx.cublas_handle();
|
||||
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
|
||||
GGML_ASSERT(ne2 == 1);
|
||||
GGML_ASSERT(ne3 == 1);
|
||||
CUBLAS_CHECK(cublasSetStream(handle, stream));
|
||||
|
||||
const bool src1_T = ggml_is_transposed(src1);
|
||||
const cublasOperation_t src1_cublas_op = src1_T ? CUBLAS_OP_N : CUBLAS_OP_T;
|
||||
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
|
||||
GGML_ASSERT( (src1_T ? nb11 : nb10) == sizeof(float));
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasSgemm(handle, CUBLAS_OP_N, src1_cublas_op,
|
||||
ne0, ne1, ne01,
|
||||
&alpha, src0_d, ne00,
|
||||
src1_d, ldb,
|
||||
&beta, dst_d, ne0));
|
||||
}
|
3
ggml/src/ggml-cuda/out-prod.cuh
Normal file
3
ggml/src/ggml-cuda/out-prod.cuh
Normal file
|
@ -0,0 +1,3 @@
|
|||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
|
@ -10,6 +10,16 @@ static __global__ void neg_f32(const float * x, float * dst, const int k) {
|
|||
dst[i] = -x[i];
|
||||
}
|
||||
|
||||
static __global__ void step_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[i] = x[i] > 0.0f;
|
||||
}
|
||||
|
||||
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
|
||||
const float GELU_COEF_A = 0.044715f;
|
||||
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
|
@ -134,6 +144,11 @@ static void neg_f32_cuda(const float * x, float * dst, const int k, cudaStream_t
|
|||
neg_f32<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void step_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_STEP_BLOCK_SIZE - 1) / CUDA_STEP_BLOCK_SIZE;
|
||||
step_f32<<<num_blocks, CUDA_STEP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
||||
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
|
@ -213,6 +228,20 @@ void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
neg_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
step_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#include "common.cuh"
|
||||
|
||||
#define CUDA_NEG_BLOCK_SIZE 256
|
||||
#define CUDA_STEP_BLOCK_SIZE 256
|
||||
#define CUDA_GELU_BLOCK_SIZE 256
|
||||
#define CUDA_SILU_BLOCK_SIZE 256
|
||||
#define CUDA_TANH_BLOCK_SIZE 256
|
||||
|
@ -15,6 +16,8 @@
|
|||
|
||||
void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue