ggml/examples: add backend support for numerical optimization (ggml/949)
* CUDA eval works * stochastic gradient descent op * Adam except decay * CUDA CROSS_ENTROPY_LOSS_BACK * CUDA mnist-fc training works * backend CLI arg * refactor gguf load * remove sched from opt_step_adam * implement l1 regularization (weight decay) * extra call to add optimizer * initialize gradients with ggml_graph_reset * gradient accumulation * increment iter per eval instead of epoch * adjust backend interfaces * fix ggml_graph_reset without backend * fix ggml graph export/import * fixup * rename * revert ggml_opt changes * more general CUDA repeat_back * update documentation, fix CNN * validation split * add clarifying comment * optimize PyTorch training * adjust buffer size, thread count * fix 0.0f validation split * Update examples/mnist/mnist-common.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * fix gradient accumulation * tensor flag for accumulators -> tensor hash set * Update include/ggml.h Co-authored-by: slaren <slarengh@gmail.com> * Update tests/test-backend-ops.cpp Co-authored-by: slaren <slarengh@gmail.com> * Update tests/test-backend-ops.cpp Co-authored-by: slaren <slarengh@gmail.com> * fix test prints * Update src/ggml-backend.c Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * better CUDA support for noncontiguous out_prod * add comment --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
a6809c6a2e
commit
424c5d00a9
24 changed files with 883 additions and 129 deletions
80
ggml/src/ggml-cuda/opt-step-adamw.cu
Normal file
80
ggml/src/ggml-cuda/opt-step-adamw.cu
Normal file
|
@ -0,0 +1,80 @@
|
|||
#include "opt-step-adamw.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
static __global__ void opt_step_adamw_f32(
|
||||
float * __restrict__ x, const float * __restrict__ g, float * __restrict__ g_m, float * __restrict__ g_v, const int64_t k,
|
||||
const float alpha, const float beta1, const float beta2, const float eps, const float wd,
|
||||
const float beta1h, const float beta2h) {
|
||||
|
||||
const int64_t i = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float gi = g[i];
|
||||
const float gmi = g_m[i]*beta1 + gi*(1.0f - beta1);
|
||||
const float gvi = g_v[i]*beta2 + gi*gi*(1.0f - beta2);
|
||||
|
||||
g_m[i] = gmi;
|
||||
g_v[i] = gvi;
|
||||
|
||||
const float mh = gmi*beta1h;
|
||||
const float vh = sqrtf(gvi*beta2h) + eps;
|
||||
|
||||
x[i] = x[i]*(1.0f - alpha*wd) - mh/vh;
|
||||
}
|
||||
|
||||
static void opt_step_adamw_f32_cuda(
|
||||
float * x, const float * g, float * g_m, float * g_v, const int64_t k,
|
||||
const float alpha, const float beta1, const float beta2, const float eps, const float wd,
|
||||
const float beta1h, const float beta2h, cudaStream_t stream) {
|
||||
|
||||
const dim3 block_dims(CUDA_OPT_STEP_ADAMW_BLOCK_SIZE, 1, 1);
|
||||
const dim3 block_nums((k + CUDA_OPT_STEP_ADAMW_BLOCK_SIZE - 1) / CUDA_OPT_STEP_ADAMW_BLOCK_SIZE, 1, 1);
|
||||
opt_step_adamw_f32<<<block_nums, block_dims, 0, stream>>>(x, g, g_m, g_v, k, alpha, beta1, beta2, eps, wd, beta1h, beta2h);
|
||||
}
|
||||
|
||||
void ggml_cuda_opt_step_adamw(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src0_grad = dst->src[1];
|
||||
const ggml_tensor * src0_grad_m = dst->src[2];
|
||||
const ggml_tensor * src0_grad_v = dst->src[3];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0_grad->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0_grad_m->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0_grad_v->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0_grad));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0_grad_m));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0_grad_v));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
|
||||
|
||||
float * src0_d = (float *) src0->data;
|
||||
const float * src0_grad_d = (const float *) src0_grad->data;
|
||||
float * src0_grad_m_d = (float *) src0_grad_m->data;
|
||||
float * src0_grad_v_d = (float *) src0_grad_v->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t ne = ggml_nelements(src0);
|
||||
|
||||
int64_t iter; memcpy(&iter, &dst->op_params[0], sizeof(int64_t));
|
||||
float alpha; memcpy(&alpha, &dst->op_params[2], sizeof(float));
|
||||
float beta1; memcpy(&beta1, &dst->op_params[3], sizeof(float));
|
||||
float beta2; memcpy(&beta2, &dst->op_params[4], sizeof(float));
|
||||
float eps; memcpy(&eps, &dst->op_params[5], sizeof(float));
|
||||
float wd; memcpy(&wd, &dst->op_params[6], sizeof(float));
|
||||
|
||||
const float beta1h = alpha/(1.0f - powf(beta1, iter));
|
||||
const float beta2h = 1.0f/(1.0f - powf(beta2, iter));
|
||||
|
||||
opt_step_adamw_f32_cuda(src0_d, src0_grad_d, src0_grad_m_d, src0_grad_v_d, ne, alpha, beta1, beta2, eps, wd, beta1h, beta2h, stream);
|
||||
|
||||
iter++;
|
||||
memcpy(&dst->op_params[0], &iter, sizeof(int64_t));
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue