Merge branch 'ggerganov:master' into refine-ggml-backend-subsystem
This commit is contained in:
commit
42cbf565f0
12 changed files with 142 additions and 97 deletions
|
@ -31,6 +31,6 @@ ENV LLAMA_CUDA=1
|
|||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make
|
||||
RUN make -j$(nproc)
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
|
|
|
@ -45,6 +45,6 @@ ENV LLAMA_CURL=1
|
|||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
RUN make
|
||||
RUN make -j$(nproc)
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
|
|
|
@ -18,7 +18,7 @@ COPY . .
|
|||
ENV LLAMA_CURL=1
|
||||
|
||||
|
||||
RUN make
|
||||
RUN make -j$(nproc)
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
|||
# Enable CUDA
|
||||
ENV LLAMA_CUDA=1
|
||||
|
||||
RUN make
|
||||
RUN make -j$(nproc)
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||
|
||||
|
|
|
@ -40,6 +40,6 @@ ENV LLAMA_HIPBLAS=1
|
|||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||
|
||||
RUN make
|
||||
RUN make -j$(nproc)
|
||||
|
||||
ENTRYPOINT [ "/app/main" ]
|
||||
|
|
|
@ -9,7 +9,7 @@ WORKDIR /app
|
|||
|
||||
COPY . .
|
||||
|
||||
RUN make
|
||||
RUN make -j$(nproc)
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
|
||||
|
|
|
@ -25,7 +25,7 @@ ENV LLAMA_CUDA=1
|
|||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make
|
||||
RUN make -j$(nproc)
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||
|
||||
|
|
|
@ -45,6 +45,6 @@ ENV LLAMA_CURL=1
|
|||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
RUN make
|
||||
RUN make -j$(nproc)
|
||||
|
||||
ENTRYPOINT [ "/app/server" ]
|
||||
|
|
|
@ -11,7 +11,7 @@ COPY . .
|
|||
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make
|
||||
RUN make -j$(nproc)
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
|
||||
|
|
18
README.md
18
README.md
|
@ -2,12 +2,12 @@
|
|||
|
||||

|
||||
|
||||
[](https://opensource.org/licenses/MIT) [](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||
[](https://conan.io/center/llama-cpp)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||
|
||||
[](https://conan.io/center/llama-cpp)
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
### Recent API changes
|
||||
|
@ -22,7 +22,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
|||
|
||||
### Hot topics
|
||||
|
||||
- **Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021**
|
||||
- **`convert.py` has been deprecated and moved to `examples/convert-legacy-llama.py`, please use `convert-hf-to-gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
|
||||
- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021
|
||||
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
|
||||
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
|
||||
|
@ -202,6 +203,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
|
||||
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
|
||||
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
|
||||
- [AIKit](https://github.com/sozercan/aikit) (MIT)
|
||||
|
||||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||||
|
||||
|
@ -388,6 +390,14 @@ In order to build llama.cpp you have four different options.
|
|||
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
|
||||
the instructions for use and activate this options in this document below.
|
||||
|
||||
### Homebrew
|
||||
|
||||
On Mac and Linux, the homebrew package manager can be used via
|
||||
```
|
||||
brew install llama.cpp
|
||||
```
|
||||
The formula is automatically updated with new `llama.cpp` releases.
|
||||
|
||||
### Metal Build
|
||||
|
||||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||
|
|
73
llama.cpp
73
llama.cpp
|
@ -1702,12 +1702,13 @@ struct llama_mlock {
|
|||
};
|
||||
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
|
||||
|
||||
static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
// NOTE: avoid ever using this except for building the token_to_piece caches
|
||||
static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
|
||||
const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
|
||||
int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
}
|
||||
else {
|
||||
|
@ -2162,7 +2163,9 @@ struct llama_vocab {
|
|||
std::unordered_map<token, id> token_to_id;
|
||||
std::vector<token_data> id_to_token;
|
||||
|
||||
std::vector<id> special_tokens_cache;
|
||||
std::vector<id> cache_special_tokens;
|
||||
std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = false);
|
||||
std::vector<token> cache_token_to_piece_special; // llama_token_to_piece(special = true);
|
||||
|
||||
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
|
||||
|
||||
|
@ -4592,20 +4595,14 @@ static void llm_load_vocab(
|
|||
vocab.special_cls_id = 101;
|
||||
vocab.special_mask_id = 103;
|
||||
vocab.add_space_prefix = false;
|
||||
} else {
|
||||
if (tokenizer_model == "gpt2") {
|
||||
} else if (tokenizer_model == "gpt2") {
|
||||
vocab.type = LLAMA_VOCAB_TYPE_BPE;
|
||||
|
||||
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
|
||||
if (add_space_prefix_keyidx != -1) {
|
||||
vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
||||
}
|
||||
} else {
|
||||
LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
|
||||
LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
|
||||
vocab.type = LLAMA_VOCAB_TYPE_SPM;
|
||||
return;
|
||||
}
|
||||
|
||||
// read bpe merges and populate bpe ranks
|
||||
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
|
||||
if (merges_keyidx == -1) {
|
||||
|
@ -4639,6 +4636,8 @@ static void llm_load_vocab(
|
|||
vocab.special_pad_id = -1;
|
||||
vocab.special_cls_id = -1;
|
||||
vocab.special_mask_id = -1;
|
||||
} else {
|
||||
throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
|
||||
}
|
||||
|
||||
// for now, only BPE models have pre-tokenizers
|
||||
|
@ -4833,17 +4832,38 @@ static void llm_load_vocab(
|
|||
{
|
||||
for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
|
||||
if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
|
||||
vocab.special_tokens_cache.push_back(id);
|
||||
vocab.cache_special_tokens.push_back(id);
|
||||
}
|
||||
}
|
||||
|
||||
std::sort( vocab.special_tokens_cache.begin(), vocab.special_tokens_cache.end(),
|
||||
std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
|
||||
[&] (const llama_vocab::id a, const llama_vocab::id b) {
|
||||
return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
|
||||
}
|
||||
);
|
||||
|
||||
LLAMA_LOG_INFO("%s: special tokens cache size = %u.\n", __func__, (uint32_t)vocab.special_tokens_cache.size());
|
||||
LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
|
||||
}
|
||||
|
||||
// build token to piece caches
|
||||
{
|
||||
size_t size_cache = 0;
|
||||
|
||||
std::vector<llama_vocab::token> cache_token_to_piece (n_vocab);
|
||||
std::vector<llama_vocab::token> cache_token_to_piece_special(n_vocab);
|
||||
|
||||
for (uint32_t id = 0; id < n_vocab; ++id) {
|
||||
cache_token_to_piece[id] = llama_token_to_piece(&model, id, false);
|
||||
cache_token_to_piece_special[id] = llama_token_to_piece(&model, id, true);
|
||||
|
||||
size_cache += cache_token_to_piece[id].size();
|
||||
size_cache += cache_token_to_piece_special[id].size();
|
||||
}
|
||||
|
||||
std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
|
||||
std::swap(vocab.cache_token_to_piece_special, cache_token_to_piece_special);
|
||||
|
||||
LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -13233,7 +13253,7 @@ struct fragment_buffer_variant {
|
|||
|
||||
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
|
||||
// for each special token
|
||||
for (const llama_vocab::id special_id : vocab.special_tokens_cache) {
|
||||
for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
|
||||
const auto & special_token = vocab.id_to_token[special_id].text;
|
||||
|
||||
// for each text fragment
|
||||
|
@ -14392,7 +14412,7 @@ void llama_sample_repetition_penalties(
|
|||
|
||||
void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
|
||||
GGML_ASSERT(ctx);
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
bool allow_eog = false;
|
||||
for (const auto & stack : grammar->stacks) {
|
||||
|
@ -14404,12 +14424,13 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
|
|||
|
||||
std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
|
||||
candidates_decoded.reserve(candidates->size);
|
||||
|
||||
std::vector<llama_grammar_candidate> candidates_grammar;
|
||||
candidates_grammar.reserve(candidates->size);
|
||||
|
||||
for (size_t i = 0; i < candidates->size; ++i) {
|
||||
const llama_token id = candidates->data[i].id;
|
||||
const std::string piece = llama_token_to_piece(ctx, id, false);
|
||||
const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
|
||||
|
||||
if (llama_token_is_eog(&ctx->model, id)) {
|
||||
if (!allow_eog) {
|
||||
|
@ -14609,7 +14630,7 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
|
|||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
const std::string piece = llama_token_to_piece(ctx, token, false);
|
||||
const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
|
||||
|
||||
// Note terminating 0 in decoded string
|
||||
const auto decoded = decode_utf8(piece, grammar->partial_utf8);
|
||||
|
@ -18292,6 +18313,20 @@ static std::string llama_decode_text(const std::string & text) {
|
|||
|
||||
// does not write null-terminator to buf
|
||||
int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
|
||||
// if we have a cache - use it
|
||||
{
|
||||
const auto & cache = special ? model->vocab.cache_token_to_piece_special : model->vocab.cache_token_to_piece;
|
||||
|
||||
if (!cache.empty()) {
|
||||
const auto & res = cache.at(token);
|
||||
if (length < (int) res.size()) {
|
||||
return -(int) res.size();
|
||||
}
|
||||
memcpy(buf, res.c_str(), res.size());
|
||||
return res.size();
|
||||
}
|
||||
}
|
||||
|
||||
if (0 <= token && token < llama_n_vocab(model)) {
|
||||
switch (llama_vocab_get_type(model->vocab)) {
|
||||
case LLAMA_VOCAB_TYPE_WPM:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue