llama : revert enum name changes from this PR

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-02-24 11:23:37 +02:00
parent 5f5b1b57ca
commit 42ddf4846c
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
6 changed files with 55 additions and 55 deletions

View file

@ -295,9 +295,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
else { invalid_param = true; break; }
} else if (arg == "--rope-scale") {
if (++i >= argc) {
@ -630,11 +630,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
}
std::string arg_next = argv[i];
if (arg_next == "none") {
params.split_mode = LLAMA_SPLIT_MODE_NONE;
params.split_mode = LLAMA_SPLIT_NONE;
} else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
params.split_mode = LLAMA_SPLIT_LAYER;
} else if (arg_next == "row") {
params.split_mode = LLAMA_SPLIT_MODE_ROW;
params.split_mode = LLAMA_SPLIT_ROW;
} else {
invalid_param = true;
break;

View file

@ -61,7 +61,7 @@ struct gpt_params {
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
@ -75,7 +75,7 @@ struct gpt_params {
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
// // sampling parameters

View file

@ -157,9 +157,9 @@ static const char * output_format_str(output_formats format) {
static const char * split_mode_str(llama_split_mode mode) {
switch (mode) {
case LLAMA_SPLIT_MODE_NONE: return "none";
case LLAMA_SPLIT_MODE_LAYER: return "layer";
case LLAMA_SPLIT_MODE_ROW: return "row";
case LLAMA_SPLIT_NONE: return "none";
case LLAMA_SPLIT_LAYER: return "layer";
case LLAMA_SPLIT_ROW: return "row";
default: GGML_ASSERT(!"invalid split mode");
}
}
@ -193,7 +193,7 @@ static const cmd_params cmd_params_defaults = {
/* type_v */ {GGML_TYPE_F16},
/* n_threads */ {get_num_physical_cores()},
/* n_gpu_layers */ {99},
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
/* split_mode */ {LLAMA_SPLIT_LAYER},
/* main_gpu */ {0},
/* no_kv_offload */ {false},
/* mul_mat_q */ {true},
@ -358,11 +358,11 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
for (const auto & m : p) {
llama_split_mode mode;
if (m == "none") {
mode = LLAMA_SPLIT_MODE_NONE;
mode = LLAMA_SPLIT_NONE;
} else if (m == "layer") {
mode = LLAMA_SPLIT_MODE_LAYER;
mode = LLAMA_SPLIT_LAYER;
} else if (m == "row") {
mode = LLAMA_SPLIT_MODE_ROW;
mode = LLAMA_SPLIT_ROW;
} else {
invalid_param = true;
break;

View file

@ -2082,9 +2082,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
else { invalid_param = true; break; }
}
else if (arg == "--rope-freq-base")
@ -2208,15 +2208,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
std::string arg_next = argv[i];
if (arg_next == "none")
{
params.split_mode = LLAMA_SPLIT_MODE_NONE;
params.split_mode = LLAMA_SPLIT_NONE;
}
else if (arg_next == "layer")
{
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
params.split_mode = LLAMA_SPLIT_LAYER;
}
else if (arg_next == "row")
{
params.split_mode = LLAMA_SPLIT_MODE_ROW;
params.split_mode = LLAMA_SPLIT_ROW;
}
else {
invalid_param = true;

View file

@ -850,9 +850,9 @@ struct LLM_TN {
//
static std::map<int32_t, const char *> LLAMA_ROPE_SCALING_TYPES = {
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
{ LLAMA_ROPE_SCALING_NONE, "none" },
{ LLAMA_ROPE_SCALING_LINEAR, "linear" },
{ LLAMA_ROPE_SCALING_YARN, "yarn" },
};
static int32_t llama_rope_scaling_type_from_string(const std::string & name) {
@ -862,7 +862,7 @@ static int32_t llama_rope_scaling_type_from_string(const std::string & name) {
}
}
return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
return LLAMA_ROPE_SCALING_UNSPECIFIED;
}
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
@ -1581,7 +1581,7 @@ struct llama_hparams {
bool causal_attn = true;
bool need_kq_pos = false;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
enum llama_pooling_type pooling_type = LLAMA_POOLING_NONE;
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
bool operator!=(const llama_hparams & other) const {
@ -3007,7 +3007,7 @@ static void llm_load_hparams(
std::string rope_scaling("linear");
ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_UNSPECIFIED);
// rope_freq_scale (inverse of the kv) is optional
float ropescale = 0.0f;
@ -3655,7 +3655,7 @@ static bool llm_load_tensors(
model.buft_layer[i] = llama_default_buffer_type_cpu(true);
}
if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
if (split_mode == LLAMA_SPLIT_LAYER) {
// calculate the split points
int device_count = llama_get_device_count();
bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
@ -3694,10 +3694,10 @@ static bool llm_load_tensors(
}
} else {
ggml_backend_buffer_type_t split_buft;
if (split_mode == LLAMA_SPLIT_MODE_ROW) {
if (split_mode == LLAMA_SPLIT_ROW) {
split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
} else {
// LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
// LLAMA_SPLIT_NONE or LLAMA_SPLIT_LAYER in backends where it is not supported
split_buft = llama_default_buffer_type_offload(main_gpu);
}
// assign the repeating layers
@ -5028,7 +5028,7 @@ struct llm_build_context {
n_kv (worst_case ? n_ctx : kv_self.n),
kv_head (worst_case ? n_ctx - n_tokens : kv_self.head),
n_orig_ctx (cparams.n_yarn_orig_ctx),
pooling_type (cparams.do_pooling ? hparams.pooling_type : LLAMA_POOLING_TYPE_NONE),
pooling_type (cparams.do_pooling ? hparams.pooling_type : LLAMA_POOLING_NONE),
rope_type (hparams.rope_type),
cb (cb),
buf_compute_meta (lctx.buf_compute_meta) {
@ -6011,12 +6011,12 @@ struct llm_build_context {
cur = inpL;
// pooling layer
if (pooling_type == LLAMA_POOLING_TYPE_MEAN) {
if (pooling_type == LLAMA_POOLING_MEAN) {
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
} else if (pooling_type == LLAMA_POOLING_TYPE_CLS) {
} else if (pooling_type == LLAMA_POOLING_CLS) {
cur = ggml_get_rows(ctx0, cur, inp_cls);
} else {
GGML_ASSERT(pooling_type == LLAMA_POOLING_TYPE_NONE && "Invalid pooling type");
GGML_ASSERT(pooling_type == LLAMA_POOLING_NONE && "Invalid pooling type");
}
cb(cur, "result_embd", -1);
@ -7684,7 +7684,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
}
}
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_MEAN) {
const int64_t n_tokens = batch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
@ -7712,7 +7712,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
}
}
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_CLS) {
const int64_t n_tokens = batch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
@ -11286,7 +11286,7 @@ static int llama_apply_lora_from_file_internal(
struct llama_model_params llama_model_default_params() {
struct llama_model_params result = {
/*.n_gpu_layers =*/ 0,
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
/*.split_mode =*/ LLAMA_SPLIT_LAYER,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ nullptr,
/*.progress_callback =*/ nullptr,
@ -11312,7 +11312,7 @@ struct llama_context_params llama_context_default_params() {
/*.n_batch =*/ 512,
/*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
/*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_UNSPECIFIED,
/*.rope_freq_base =*/ 0.0f,
/*.rope_freq_scale =*/ 0.0f,
/*.yarn_ext_factor =*/ -1.0f,
@ -11500,16 +11500,16 @@ struct llama_context * llama_new_context_with_model(
cparams.cb_eval_user_data = params.cb_eval_user_data;
auto rope_scaling_type = params.rope_scaling_type;
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) {
rope_scaling_type = hparams.rope_scaling_type_train;
}
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
if (rope_scaling_type == LLAMA_ROPE_SCALING_NONE) {
cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
}
if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_YARN ? 1.0f : 0.0f;
}
if (params.seed == LLAMA_DEFAULT_SEED) {
@ -11543,8 +11543,8 @@ struct llama_context * llama_new_context_with_model(
}
#elif defined(GGML_USE_CUBLAS)
if (model->n_gpu_layers > 0) {
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
// with split_mode LLAMA_SPLIT_NONE or LLAMA_SPLIT_ROW, only the main GPU backend is used
if (model->split_mode == LLAMA_SPLIT_NONE || model->split_mode == LLAMA_SPLIT_ROW) {
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
@ -11553,7 +11553,7 @@ struct llama_context * llama_new_context_with_model(
}
ctx->backends.push_back(backend);
} else {
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
// LLAMA_SPLIT_LAYER requires a backend for each GPU
for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
ggml_backend_t backend = ggml_backend_cuda_init(device);
if (backend == nullptr) {

22
llama.h
View file

@ -114,23 +114,23 @@ extern "C" {
};
enum llama_rope_scaling_type {
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
LLAMA_ROPE_SCALING_NONE = 0,
LLAMA_ROPE_SCALING_LINEAR = 1,
LLAMA_ROPE_SCALING_YARN = 2,
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
};
enum llama_pooling_type {
LLAMA_POOLING_TYPE_NONE = 0,
LLAMA_POOLING_TYPE_MEAN = 1,
LLAMA_POOLING_TYPE_CLS = 2,
LLAMA_POOLING_NONE = 0,
LLAMA_POOLING_MEAN = 1,
LLAMA_POOLING_CLS = 2,
};
enum llama_split_mode {
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
LLAMA_SPLIT_NONE = 0, // single GPU
LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
LLAMA_SPLIT_ROW = 2, // split rows across GPUs
};
typedef struct llama_token_data {