From 43523220a4d0718adc406b3845d54b28d96bd120 Mon Sep 17 00:00:00 2001 From: Gary Linscott Date: Sat, 25 Mar 2023 13:33:42 -0700 Subject: [PATCH] Remove perplexity from main --- examples/main/main.cpp | 80 ------------------------------------------ 1 file changed, 80 deletions(-) diff --git a/examples/main/main.cpp b/examples/main/main.cpp index d4cd3fbad..7bb2b6bc4 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -74,86 +74,6 @@ void set_console_state(console_state new_st) { } } -std::vector softmax(const std::vector& logits) { - std::vector probs(logits.size()); - float max_logit = logits[0]; - for (float v : logits) max_logit = std::max(max_logit, v); - double sum_exp = 0.0; - for (size_t i = 0; i < logits.size(); i++) { - // Subtract the maximum logit value from the current logit value for numerical stability - float logit = logits[i] - max_logit; - double exp_logit = std::exp(logit); - sum_exp += exp_logit; - probs[i] = exp_logit; - } - for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp; - return probs; -} - -void perplexity(llama_context * ctx, const gpt_params & params) { - // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research - // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` - // Output: `perplexity: 13.5106 [114/114]` - auto tokens = ::llama_tokenize(ctx, params.prompt, true); - - int count = 0; - double nll = 0.0; - int seq_count = tokens.size() / params.n_ctx; - int n_vocab = llama_n_vocab(ctx); - - fprintf(stderr, "%s : calculating perplexity over %d chunks, batch_size=%d\n", __func__, seq_count, params.n_batch); - - for (int i = 0; i < seq_count; ++i) { - int start = i * params.n_ctx; - int end = start + params.n_ctx - 1; - - std::vector logits; - int num_batches = (params.n_ctx + params.n_batch - 1) / params.n_batch; - auto start_t = std::chrono::high_resolution_clock::now(); - for (int j = 0; j < num_batches; ++j) { - int batch_start = start + j * params.n_batch; - int batch_size = std::min(end - batch_start, params.n_batch); - if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * params.n_batch, params.n_threads)) { - fprintf(stderr, "%s : failed to eval\n", __func__); - return; - } - auto batch_logits = llama_get_logits(ctx); - logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); - } - auto end_t = std::chrono::high_resolution_clock::now(); - if (i == 0) { - double seconds = std::chrono::duration(end_t - start_t).count(); - printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0)); - } - // We get the logits for all the tokens in the context window (params.n_ctx) - // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, - // calculate the perplexity over the last half the window (so the model always has - // some context to predict the token). - // - // We rely on the fact that attention in the forward pass only looks at previous - // tokens here, so the logits returned for each token are an accurate representation - // of what the model would have predicted at that point. - // - // Example, we have a context window of 512, we will compute perplexity for each of the - // last 256 tokens. Then, we split the input up into context window size chunks to - // process the entire prompt. - - for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) { - // Calculate probability of next token, given the previous ones. - std::vector tok_logits( - logits.begin() + j * n_vocab, - logits.begin() + (j + 1) * n_vocab); - double prob = softmax(tok_logits)[tokens[start + j + 1]]; - nll += -std::log(prob); - ++count; - } - // perplexity is e^(average negative log-likelihood) - printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); - fflush(stdout); - } - printf("\n"); -} - static bool is_interacting = false; #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)