diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 1105670c1..46d5a4750 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -51,6 +51,7 @@ class Model: def set_vocab(self): self._set_vocab_gpt2() + @torch.no_grad() def get_tensors(self) -> Iterator[tuple[str, Tensor]]: for part_name in self.part_names: print(f"gguf: loading model part '{part_name}'") @@ -81,6 +82,7 @@ class Model: self.gguf_writer.add_head_count(n_head) self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True)) + @torch.no_grad() def write_tensors(self): block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) @@ -327,6 +329,7 @@ class BloomModel(Model): self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) + @torch.no_grad() def write_tensors(self): block_count = self.hparams["n_layer"] tensors = dict(self.get_tensors()) @@ -421,6 +424,7 @@ class MPTModel(Model): self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"]) self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"]) + @torch.no_grad() def write_tensors(self): block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers")) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) @@ -506,6 +510,7 @@ class BaichuanModel(Model): self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + @torch.no_grad() def write_tensors(self): # Collect tensors from generator object model_kv = dict(self.get_tensors()) @@ -608,6 +613,7 @@ class FalconModel(Model): self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) + @torch.no_grad() def write_tensors(self): block_count = self.hparams.get("num_hidden_layers") if block_count is None: @@ -713,6 +719,7 @@ class RefactModel(Model): self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) + @torch.no_grad() def write_tensors(self): hidden_dim = self.hparams["n_embd"] inner_dim = 4 * hidden_dim @@ -798,6 +805,7 @@ class PersimmonModel(Model): # self.gguf_writer.add_bos_token_id(71013) # self.gguf_writer.add_eos_token_id(71013) + @torch.no_grad() def write_tensors(self): block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers")) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)