add multi prompts, multi-thread for PCA
This commit is contained in:
parent
dc46264ff0
commit
447023fc43
1 changed files with 157 additions and 91 deletions
|
@ -20,13 +20,23 @@ struct callback_data {
|
|||
std::vector<float *> v_neg; // vector of matrices of size [n_embd, n_tokens]
|
||||
std::vector<float *> v_diff; // vector of matrices of size [n_embd, n_tokens]
|
||||
std::vector<float *> v_final; // vector of finished vectors of size [n_embd]
|
||||
~callback_data() {
|
||||
for (auto ptr : v_pos) free(ptr);
|
||||
for (auto ptr : v_neg) free(ptr);
|
||||
for (auto ptr : v_diff) free(ptr);
|
||||
for (auto ptr : v_final) free(ptr);
|
||||
}
|
||||
};
|
||||
|
||||
struct ctrl_params {
|
||||
std::string outfile = "control_vector.gguf";
|
||||
std::string completions_file = "examples/control-vector-generator/completions.txt";
|
||||
std::string positive = "happy"; // TODO support multiple positive prompts
|
||||
std::string negative = "sad"; // TODO support multiple negative prompts
|
||||
/* pair of prompts to be used for generating the vectors */
|
||||
std::string positive_prompts_file = "positive.txt";
|
||||
std::string negative_prompts_file = "negative.txt";
|
||||
std::vector<std::string> positive_prompts;
|
||||
std::vector<std::string> negative_prompts;
|
||||
/* pair of prompts to be used for testing */
|
||||
std::vector<std::string> positive_entries;
|
||||
std::vector<std::string> negative_entries;
|
||||
};
|
||||
|
@ -38,11 +48,11 @@ static void print_usage(const char * executable) {
|
|||
printf("Creates a GGUF control vector for a given model.");
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" --outfile output file (default: 'control_vector.gguf')\n");
|
||||
printf(" --completions-file completions file (default: 'examples/control-vector-generator/completions.txt')\n");
|
||||
printf(" --positive positive prompt (default: 'happy')\n");
|
||||
printf(" --negative negative prompt (default: 'sad')\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" --outfile output file (default: 'control_vector.gguf')\n");
|
||||
printf(" --completions-file completions file (default: 'examples/control-vector-generator/completions.txt')\n");
|
||||
printf(" -pf, --positive-file positive prompts file, one prompt per line (default: 'positive.txt')\n");
|
||||
printf(" -nf, --negative-file negative prompts file, one prompt per line (default: 'negative.txt')\n");
|
||||
printf("\n");
|
||||
printf("gpt-opts: other options from main\n");
|
||||
printf("\n");
|
||||
|
@ -74,8 +84,7 @@ static int ctrlvec_params_parse_ex(int argc, char ** argv, ctrl_params & params)
|
|||
params.outfile = argv[arg_idx];
|
||||
// FIXME hack to skip these args in gpt_parse_params
|
||||
skipme += 2;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
throw std::invalid_argument("error: missing argument for " + arg);
|
||||
}
|
||||
}
|
||||
|
@ -84,28 +93,25 @@ static int ctrlvec_params_parse_ex(int argc, char ** argv, ctrl_params & params)
|
|||
params.completions_file = argv[arg_idx];
|
||||
// FIXME hack to skip these args in gpt_parse_params
|
||||
skipme += 2;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
throw std::invalid_argument("error: missing argument for " + arg);
|
||||
}
|
||||
}
|
||||
if (arg == "--positive") {
|
||||
if (arg == "--positive-file" || arg == "-pf") {
|
||||
if (++arg_idx < argc && strncmp(argv[arg_idx], arg_prefix.c_str(), 2) != 0) {
|
||||
params.positive = argv[arg_idx];
|
||||
params.positive_prompts_file = argv[arg_idx];
|
||||
// FIXME hack to skip these args in gpt_parse_params
|
||||
skipme += 2;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
throw std::invalid_argument("error: missing argument for " + arg);
|
||||
}
|
||||
}
|
||||
if (arg == "--negative") {
|
||||
if (arg == "--negative-file" || arg == "-nf") {
|
||||
if (++arg_idx < argc && strncmp(argv[arg_idx], arg_prefix.c_str(), 2) != 0) {
|
||||
params.negative = argv[arg_idx];
|
||||
params.negative_prompts_file = argv[arg_idx];
|
||||
// FIXME hack to skip these args in gpt_parse_params
|
||||
skipme += 2;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
throw std::invalid_argument("error: missing argument for " + arg);
|
||||
}
|
||||
}
|
||||
|
@ -128,6 +134,22 @@ static int ctrlvec_params_parse(int argc, char ** argv, ctrl_params & params) {
|
|||
return skipme;
|
||||
}
|
||||
|
||||
static std::vector<std::string> ctrlvec_load_prompt_file(std::string path) {
|
||||
std::vector<std::string> output;
|
||||
std::ifstream file(path);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("Unable to open file " + path);
|
||||
}
|
||||
std::string line;
|
||||
while (std::getline(file, line)) {
|
||||
if (!line.empty()) { // skip empty lines
|
||||
output.push_back(line);
|
||||
}
|
||||
}
|
||||
file.close();
|
||||
return output;
|
||||
}
|
||||
|
||||
static std::string format_template(std::string persona, std::string suffix) {
|
||||
const std::string user_tag = "[INST]";
|
||||
const std::string asst_tag = "[/INST]";
|
||||
|
@ -135,7 +157,7 @@ static std::string format_template(std::string persona, std::string suffix) {
|
|||
return user_tag + " Act as if you're extremely " + persona + ". " + asst_tag + " " + suffix;
|
||||
}
|
||||
|
||||
static void populate_entries(ctrl_params & cparams) {
|
||||
/*static void populate_entries(ctrl_params & cparams) {
|
||||
std::string line;
|
||||
std::ifstream completions_file(cparams.completions_file);
|
||||
if (completions_file.is_open()) {
|
||||
|
@ -145,11 +167,10 @@ static void populate_entries(ctrl_params & cparams) {
|
|||
cparams.negative_entries.push_back(format_template(cparams.negative, line));
|
||||
}
|
||||
completions_file.close();
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
throw std::invalid_argument("error: invalid completions file or file could not be opened");
|
||||
}
|
||||
} // TODO actually do something with this
|
||||
}*/ // TODO actually do something with this
|
||||
|
||||
static std::string ggml_ne_string(const ggml_tensor * t) {
|
||||
std::string str;
|
||||
|
@ -236,7 +257,7 @@ static void calc_diff(callback_data & cb_data) {
|
|||
for (size_t il = 0; il < cb_data.v_pos.size(); il++) {
|
||||
auto & inp_pos = cb_data.v_pos[il];
|
||||
auto & inp_neg = cb_data.v_neg[il];
|
||||
float * dest = (float *) malloc(n_elems * sizeof(float *));
|
||||
float * dest = (float *) malloc(n_elems * sizeof(float));
|
||||
for (size_t i = 0; i < n_elems; i++) {
|
||||
dest[i] = inp_pos[i] - inp_neg[i];
|
||||
}
|
||||
|
@ -323,13 +344,23 @@ static std::vector<float> power_iteration(callback_data & cb_data, const float *
|
|||
|
||||
// TODO translate to ggml
|
||||
static void pca(callback_data & cb_data) {
|
||||
for (int i = 0; i < cb_data.v_diff.size(); i++) {
|
||||
float* matrix = square_diff(cb_data, i);
|
||||
std::vector<float> eigenvector = power_iteration(cb_data, matrix);
|
||||
cb_data.v_final.push_back(&eigenvector[0]);
|
||||
delete[] matrix;
|
||||
printf("Done with layer %d\n", i);
|
||||
size_t n_threads = 8;
|
||||
int n_layers = cb_data.v_diff.size();
|
||||
std::vector<std::thread> threads;
|
||||
cb_data.v_final.reserve(n_layers);
|
||||
auto worker_function = [&](int worker_id) {
|
||||
for (int il = worker_id; il < n_layers; il += n_threads) {
|
||||
float * matrix = square_diff(cb_data, il);
|
||||
std::vector<float> eigenvector = power_iteration(cb_data, matrix);
|
||||
cb_data.v_final[il] = &eigenvector[0];
|
||||
delete[] matrix;
|
||||
printf("Done with layer %d\n", il);
|
||||
}
|
||||
};
|
||||
for (int i = 0; i < n_threads; ++i) {
|
||||
threads.emplace_back(worker_function, i);
|
||||
}
|
||||
for (auto & th : threads) th.join();
|
||||
printf("Done with PCA.");
|
||||
}
|
||||
|
||||
|
@ -340,32 +371,29 @@ static std::string to_string(const T & val) {
|
|||
return ss.str();
|
||||
}
|
||||
|
||||
static void export_gguf(callback_data & cb_data, const std::string fname, const std::string model_hint) {
|
||||
static void export_gguf(std::vector<float *> v_final, int n_embd, const std::string fname, const std::string model_hint) {
|
||||
struct gguf_context * ctx = gguf_init_empty();
|
||||
|
||||
const std::string arch = "controlvector";
|
||||
gguf_set_val_str(ctx, "general.architecture", arch.c_str());
|
||||
gguf_set_val_str(ctx, (arch + ".model_hint").c_str(), model_hint.c_str());
|
||||
gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), cb_data.v_final.size());
|
||||
|
||||
//size_t buf_size = 3u*cb_data.n_embd*sizeof(float); // TODO how much size do i need?
|
||||
size_t buf_size = 128u*1024u*4096u; // FIXME placehokder
|
||||
gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), v_final.size());
|
||||
|
||||
// TODO customize mem size - I have no idea what this is supposed to be
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_size =*/ ggml_tensor_overhead() * v_final.size(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx_data = ggml_init(params);
|
||||
|
||||
for (int i = 0; i < cb_data.v_final.size(); ++i) {
|
||||
for (size_t i = 0; i < v_final.size(); ++i) {
|
||||
// TODO this number is probably not right - figure out which layer is which
|
||||
// the python implementation uses a dict to handle this, we don't know if it's 1, 2, 3, 4... or other
|
||||
const std::string name = "direction." + to_string(i+1);
|
||||
|
||||
struct ggml_tensor * cur = ggml_new_tensor_1d(ctx_data, GGML_TYPE_F32, cb_data.n_embd);
|
||||
struct ggml_tensor * cur = ggml_new_tensor_1d(ctx_data, GGML_TYPE_F32, n_embd);
|
||||
|
||||
ggml_set_name(cur, name.c_str());
|
||||
|
||||
|
@ -374,7 +402,7 @@ static void export_gguf(callback_data & cb_data, const std::string fname, const
|
|||
{
|
||||
float * data = (float *) cur->data;
|
||||
for(int j = 0; j < ggml_nelements(cur); j++) {
|
||||
data[j] = cb_data.v_final[i][j];
|
||||
data[j] = v_final[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -403,78 +431,116 @@ int main(int argc, char ** argv) {
|
|||
argc -= skipme;
|
||||
argv += skipme;
|
||||
|
||||
callback_data cb_data;
|
||||
gpt_params params;
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// load prompts
|
||||
cparams.positive_prompts = ctrlvec_load_prompt_file(cparams.positive_prompts_file);
|
||||
cparams.negative_prompts = ctrlvec_load_prompt_file(cparams.negative_prompts_file);
|
||||
if (cparams.positive_prompts.size() != cparams.negative_prompts.size()) {
|
||||
fprintf(stderr, "number of positive and negative prompts must be equal");
|
||||
return 1;
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// pass the callback to the backend scheduler
|
||||
// it will be executed for each node during the graph computation
|
||||
params.cb_eval = cb_eval;
|
||||
params.cb_eval_user_data = &cb_data;
|
||||
params.warmup = false;
|
||||
|
||||
// init
|
||||
// load the model to get hparams
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == nullptr || ctx == nullptr) {
|
||||
fprintf(stderr, "%s : failed to init\n", __func__);
|
||||
return 1;
|
||||
int n_layers = llama_n_layer(model);
|
||||
int n_embd = llama_n_embd(model);
|
||||
int n_prompts = cparams.positive_prompts.size();
|
||||
// vector of finished vectors of size [n_embd], we have (n_layers - 1) vectors in total
|
||||
std::vector<float *> v_final(n_layers - 1, NULL);
|
||||
for (size_t i = 0; i < v_final.size(); ++i) {
|
||||
v_final[i] = (float *) calloc(n_embd, sizeof(float));
|
||||
}
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
for (size_t i = 0; i < n_prompts; ++i) {
|
||||
callback_data cb_data;
|
||||
|
||||
// pass the callback to the backend scheduler
|
||||
// it will be executed for each node during the graph computation
|
||||
params.cb_eval = cb_eval;
|
||||
params.cb_eval_user_data = &cb_data;
|
||||
params.warmup = false;
|
||||
|
||||
// load model
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == nullptr || ctx == nullptr) {
|
||||
fprintf(stderr, "%s : failed to init\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
/* TODO this just tokenizes the exact pos/neg strings, correct?
|
||||
* instead we want to create a bunch of starter prompts for it to work off
|
||||
* we need to run get_hidden_layers many many times and then figure out how to combine the resulting vectors
|
||||
* see the blogpost + python implementation for reference
|
||||
*
|
||||
* https://vgel.me/posts/representation-engineering/
|
||||
* https://github.com/vgel/repeng/blob/main/repeng/extract.py
|
||||
*/
|
||||
std::string positive_prompt = cparams.positive_prompts[i];
|
||||
std::string negative_prompt = cparams.negative_prompts[i];
|
||||
std::vector<llama_token> tokens_pos = ::llama_tokenize(ctx, positive_prompt, add_bos);
|
||||
std::vector<llama_token> tokens_neg = ::llama_tokenize(ctx, negative_prompt, add_bos);
|
||||
size_t max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
|
||||
padding_seq(ctx, tokens_pos, max_seq_len);
|
||||
padding_seq(ctx, tokens_neg, max_seq_len);
|
||||
cb_data.n_tokens = max_seq_len;
|
||||
cb_data.n_embd = n_embd;
|
||||
|
||||
printf("Evaluating prompt: \"%s\" - \"%s\" (%ld tokens)\n", positive_prompt.c_str(), negative_prompt.c_str(), max_seq_len);
|
||||
|
||||
cb_data.is_eval_pos = true;
|
||||
get_hidden_layers(ctx, tokens_pos);
|
||||
cb_data.is_eval_pos = false;
|
||||
get_hidden_layers(ctx, tokens_neg);
|
||||
|
||||
printf("%f %f \n", cb_data.v_pos[0][4096], cb_data.v_pos[0][4096]);
|
||||
printf("%f %f \n", cb_data.v_neg[0][4096], cb_data.v_neg[0][4096]);
|
||||
|
||||
calc_diff(cb_data);
|
||||
printf("%f %f \n", cb_data.v_diff[0][4096], cb_data.v_diff[0][4096]);
|
||||
|
||||
printf("Running PCA...\n");
|
||||
pca(cb_data);
|
||||
|
||||
// add the output vector to v_final
|
||||
for (size_t j = 0; j < cb_data.v_final.size(); ++j) {
|
||||
for (size_t k = 0; k < n_embd; ++k) {
|
||||
v_final[j][k] += cb_data.v_final[j][k];
|
||||
}
|
||||
}
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
// calculate the mean value of v_final
|
||||
// TODO: maybe using LERP here
|
||||
for (size_t j = 0; j < v_final.size(); ++j) {
|
||||
for (size_t k = 0; k < n_embd; ++k) {
|
||||
v_final[j][k] /= n_prompts;
|
||||
}
|
||||
}
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
/* TODO this just tokenizes the exact pos/neg strings, correct?
|
||||
* instead we want to create a bunch of starter prompts for it to work off
|
||||
* we need to run get_hidden_layers many many times and then figure out how to combine the resulting vectors
|
||||
* see the blogpost + python implementation for reference
|
||||
*
|
||||
* https://vgel.me/posts/representation-engineering/
|
||||
* https://github.com/vgel/repeng/blob/main/repeng/extract.py
|
||||
*/
|
||||
std::vector<llama_token> tokens_pos = ::llama_tokenize(ctx, cparams.positive, add_bos);
|
||||
std::vector<llama_token> tokens_neg = ::llama_tokenize(ctx, cparams.negative, add_bos);
|
||||
size_t max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
|
||||
padding_seq(ctx, tokens_pos, max_seq_len);
|
||||
padding_seq(ctx, tokens_neg, max_seq_len);
|
||||
cb_data.n_tokens = max_seq_len;
|
||||
cb_data.n_embd = llama_n_embd(model);
|
||||
|
||||
cb_data.is_eval_pos = true;
|
||||
get_hidden_layers(ctx, tokens_pos);
|
||||
cb_data.is_eval_pos = false;
|
||||
get_hidden_layers(ctx, tokens_neg);
|
||||
|
||||
printf("%f %f \n", cb_data.v_pos[0][4096], cb_data.v_pos[0][4096]);
|
||||
printf("%f %f \n", cb_data.v_neg[0][4096], cb_data.v_neg[0][4096]);
|
||||
|
||||
calc_diff(cb_data);
|
||||
printf("%f %f \n", cb_data.v_diff[0][4096], cb_data.v_diff[0][4096]);
|
||||
|
||||
pca(cb_data);
|
||||
|
||||
// TODO figure out how to extract this from model - there's no API exposed to get model arch string
|
||||
// we need get_arch_name() from llama.cpp
|
||||
// TODO also has support been implemeneted for arches other than llama yet? see #5970
|
||||
std::string model_hint = "llama";
|
||||
export_gguf(cb_data, cparams.outfile, model_hint);
|
||||
|
||||
//llama_print_timings(ctx);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
export_gguf(v_final, n_embd, cparams.outfile, model_hint);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue