cuda : support non-pow-2 number of experts

This commit is contained in:
slaren 2024-04-02 01:11:59 +02:00
parent 8c2f7b8169
commit 4531b029ee

View file

@ -8,32 +8,41 @@ static inline __device__ void ggml_cuda_swap(T & a, T & b) {
}
template<ggml_sort_order order>
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
static __global__ void k_argsort_f32_i32(const float * x, int * dst, int * dst_pad, const int ncols, int ncols_pad) {
// bitonic sort
int col = threadIdx.x;
int row = blockIdx.y;
if (col >= ncols) return;
if (col >= ncols_pad) {
return;
}
const float * x_row = x + row * ncols;
int * dst_row = dst + row * ncols;
int * dst_row = dst_pad + row * ncols_pad;
// initialize indices
if (col < ncols) {
dst_row[col] = col;
}
dst_row[col] = col;
__syncthreads();
for (int k = 2; k <= ncols; k *= 2) {
for (int k = 2; k <= ncols_pad; k *= 2) {
for (int j = k / 2; j > 0; j /= 2) {
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
if (dst_row[col] >= ncols ||
(dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
) {
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
}
} else {
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
if (dst_row[ixj] >= ncols ||
(dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
) {
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
}
}
@ -41,18 +50,37 @@ static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int n
__syncthreads();
}
}
// copy the result to dst without the padding
if (col < ncols) {
dst[row * ncols + col] = dst_row[col];
}
}
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
// bitonic sort requires ncols to be power of 2
GGML_ASSERT((ncols & (ncols - 1)) == 0);
static int next_power_of_2(int x) {
int n = 1;
while (n < x) {
n *= 2;
}
return n;
}
const dim3 block_dims(ncols, 1, 1);
static void argsort_f32_i32_cuda(ggml_backend_cuda_context & ctx, const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
// bitonic sort requires ncols to be power of 2
const int ncols_pad = next_power_of_2(ncols);
ggml_cuda_pool_alloc<int> dst_padded_alloc;
int * dst_padded = dst;
if (ncols_pad > ncols) {
dst_padded = dst_padded_alloc.alloc(ctx.pool(), nrows * ncols_pad);
}
const dim3 block_dims(ncols_pad, 1, 1);
const dim3 block_nums(1, nrows, 1);
if (order == GGML_SORT_ORDER_ASC) {
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, dst_padded, ncols, ncols_pad);
} else if (order == GGML_SORT_ORDER_DESC) {
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, dst_padded, ncols, ncols_pad);
} else {
GGML_ASSERT(false);
}
@ -73,5 +101,5 @@ void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
argsort_f32_i32_cuda(ctx, src0_d, (int *)dst_d, ncols, nrows, order, stream);
}