llama : add inference support and model types for T5 and FLAN-T5 model families

llama : add new API functions to support encoder-decoder models: llama_encode(), llama_model_has_encoder(), llama_model_decoder_start_token()

common, llama-cli : use new API functions to support encoder-decoder models

convert-hf : handle shared token embeddings tensors in T5Model

convert-hf : handle SentencePiece BPE tokenizer in T5Model (for Pile-T5 models)

convert-hf : add MT5ForConditionalGeneration and UMT5ForConditionalGeneration to architectures supported by T5Model
This commit is contained in:
Stanisław Szymczyk 2024-06-26 15:03:01 +02:00
parent 6fcbf68235
commit 45681a57dd
5 changed files with 892 additions and 15 deletions

View file

@ -2061,7 +2061,24 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
if (params.warmup) {
LOG("warming up the model with an empty run\n");
std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
std::vector<llama_token> tmp;
llama_token bos = llama_token_bos(model);
llama_token eos = llama_token_eos(model);
// some models (e.g. T5) don't have a BOS token
if (bos != -1) {
tmp.push_back(bos);
}
tmp.push_back(eos);
if (llama_model_has_encoder(model)) {
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0));
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
decoder_start_token_id = bos;
}
tmp.clear();
tmp.push_back(decoder_start_token_id);
}
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
llama_kv_cache_clear(lctx);
llama_synchronize(lctx);