Merge branch 'master' into add-code-coverage

This commit is contained in:
Alon 2023-09-03 11:38:16 +03:00 committed by GitHub
commit 457de66764
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
35 changed files with 1086 additions and 1027 deletions

View file

@ -7,15 +7,12 @@ arg1="$1"
# Shift the arguments to remove the first one
shift
# Join the remaining arguments into a single string
arg2="$@"
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
python3 ./convert.py "$arg2"
python3 ./convert.py "$@"
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./quantize "$arg2"
./quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
./main "$arg2"
./main "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do
@ -27,7 +24,7 @@ elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
fi
done
elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then
./server "$arg2"
./server "$@"
else
echo "Unknown command: $arg1"
echo "Available commands: "

View file

@ -403,6 +403,7 @@ if (LLAMA_ALL_WARNINGS)
-Wpointer-arith
-Wmissing-prototypes
-Werror=implicit-int
-Wno-unused-function
)
set(cxx_flags
-Wall
@ -412,6 +413,10 @@ if (LLAMA_ALL_WARNINGS)
-Wno-unused-function
-Wno-multichar
)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
# g++ only
set(cxx_flags ${cxx_flags} -Wno-format-truncation)
endif()
else()
# todo : msvc
endif()

185
Makefile
View file

@ -50,6 +50,11 @@ ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif
ifdef RISCV_CROSS_COMPILE
CC := riscv64-unknown-linux-gnu-gcc
CXX := riscv64-unknown-linux-gnu-g++
endif
CCV := $(shell $(CC) --version | head -n 1)
CXXV := $(shell $(CXX) --version | head -n 1)
@ -77,57 +82,48 @@ OPT = -Ofast
else
OPT = -O3
endif
CFLAGS = -I. $(OPT) -std=c11 -fPIC
CXXFLAGS = -I. -I./common $(OPT) -std=c++11 -fPIC
LDFLAGS =
MK_CPPFLAGS = -I. -Icommon
MK_CFLAGS = $(CPPFLAGS) $(OPT) -std=c11 -fPIC
MK_CXXFLAGS = $(CPPFLAGS) $(OPT) -std=c++11 -fPIC
MK_LDFLAGS =
ifdef LLAMA_DEBUG
CFLAGS += -O0 -g
CXXFLAGS += -O0 -g
LDFLAGS += -g
MK_CFLAGS += -O0 -g
MK_CXXFLAGS += -O0 -g
MK_LDFLAGS += -g
else
CFLAGS += -DNDEBUG
CXXFLAGS += -DNDEBUG
MK_CPPFLAGS += -DNDEBUG
endif
ifdef LLAMA_SERVER_VERBOSE
CXXFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
endif
ifdef LLAMA_CODE_COVERAGE
CXXFLAGS += -fprofile-arcs -ftest-coverage -dumpbase ''
endif
ifdef LLAMA_DISABLE_LOGS
CFLAGS += -DLOG_DISABLE_LOGS
CXXFLAGS += -DLOG_DISABLE_LOGS
endif # LLAMA_DISABLE_LOGS
# warnings
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
-Wmissing-prototypes -Werror=implicit-int
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
MK_CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
-Wmissing-prototypes -Werror=implicit-int -Wno-unused-function
MK_CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
ifeq '' '$(findstring clang++,$(CXX))'
# g++ only
CXXFLAGS += -Wno-format-truncation
endif
# OS specific
# TODO: support Windows
ifeq ($(UNAME_S),Linux)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),Darwin)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),FreeBSD)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),NetBSD)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),OpenBSD)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),Haiku)
CFLAGS += -pthread
CXXFLAGS += -pthread
ifneq '' '$(filter $(UNAME_S),Linux Darwin FreeBSD NetBSD OpenBSD Haiku)'
MK_CFLAGS += -pthread
MK_CXXFLAGS += -pthread
endif
# detect Windows
@ -153,72 +149,84 @@ ifeq ($(_WIN32),1)
endif
ifdef LLAMA_GPROF
CFLAGS += -pg
CXXFLAGS += -pg
MK_CFLAGS += -pg
MK_CXXFLAGS += -pg
endif
ifdef LLAMA_PERF
CFLAGS += -DGGML_PERF
CXXFLAGS += -DGGML_PERF
MK_CPPFLAGS += -DGGML_PERF
endif
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue
ifndef RISCV
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
# Use all CPU extensions that are available:
CFLAGS += -march=native -mtune=native
CXXFLAGS += -march=native -mtune=native
MK_CFLAGS += -march=native -mtune=native
MK_CXXFLAGS += -march=native -mtune=native
# Usage AVX-only
#CFLAGS += -mfma -mf16c -mavx
#CXXFLAGS += -mfma -mf16c -mavx
#MK_CFLAGS += -mfma -mf16c -mavx
#MK_CXXFLAGS += -mfma -mf16c -mavx
# Usage SSSE3-only (Not is SSE3!)
#CFLAGS += -mssse3
#CXXFLAGS += -mssse3
#MK_CFLAGS += -mssse3
#MK_CXXFLAGS += -mssse3
endif
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
# https://github.com/ggerganov/llama.cpp/issues/2922
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
CFLAGS += -Xassembler -muse-unaligned-vector-move
CXXFLAGS += -Xassembler -muse-unaligned-vector-move
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
# Apple M1, M2, etc.
# Raspberry Pi 3, 4, Zero 2 (64-bit)
CFLAGS += -mcpu=native
CXXFLAGS += -mcpu=native
MK_CFLAGS += -mcpu=native
MK_CXXFLAGS += -mcpu=native
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
# Raspberry Pi 1, Zero
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
MK_CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
MK_CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
endif
ifneq ($(filter armv7%,$(UNAME_M)),)
# Raspberry Pi 2
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
MK_CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
MK_CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
endif
ifneq ($(filter armv8%,$(UNAME_M)),)
# Raspberry Pi 3, 4, Zero 2 (32-bit)
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
MK_CFLAGS += -mfp16-format=ieee -mno-unaligned-access
MK_CXXFLAGS += -mfp16-format=ieee -mno-unaligned-access
endif
ifneq ($(filter ppc64%,$(UNAME_M)),)
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
ifneq (,$(findstring POWER9,$(POWER9_M)))
CFLAGS += -mcpu=power9
CXXFLAGS += -mcpu=power9
endif
# Require c++23's std::byteswap for big-endian support.
ifeq ($(UNAME_M),ppc64)
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
MK_CFLAGS += -mcpu=power9
MK_CXXFLAGS += -mcpu=power9
endif
endif
else
CFLAGS += -march=rv64gcv -mabi=lp64d
CXXFLAGS += -march=rv64gcv -mabi=lp64d
endif
ifndef LLAMA_NO_K_QUANTS
CFLAGS += -DGGML_USE_K_QUANTS
CXXFLAGS += -DGGML_USE_K_QUANTS
MK_CPPFLAGS += -DGGML_USE_K_QUANTS
OBJS += k_quants.o
ifdef LLAMA_QKK_64
CFLAGS += -DGGML_QKK_64
CXXFLAGS += -DGGML_QKK_64
MK_CPPFLAGS += -DGGML_QKK_64
endif
endif
@ -226,31 +234,32 @@ ifndef LLAMA_NO_ACCELERATE
# Mac M1 - include Accelerate framework.
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
ifeq ($(UNAME_S),Darwin)
CFLAGS += -DGGML_USE_ACCELERATE
LDFLAGS += -framework Accelerate
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
MK_LDFLAGS += -framework Accelerate
endif
endif # LLAMA_NO_ACCELERATE
ifdef LLAMA_MPI
CFLAGS += -DGGML_USE_MPI -Wno-cast-qual
CXXFLAGS += -DGGML_USE_MPI -Wno-cast-qual
MK_CPPFLAGS += -DGGML_USE_MPI
MK_CFLAGS += -Wno-cast-qual
MK_CXXFLAGS += -Wno-cast-qual
OBJS += ggml-mpi.o
endif # LLAMA_MPI
ifdef LLAMA_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags openblas)
LDFLAGS += $(shell pkg-config --libs openblas)
MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas)
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
MK_LDFLAGS += $(shell pkg-config --libs openblas)
endif # LLAMA_OPENBLAS
ifdef LLAMA_BLIS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
LDFLAGS += -lblis -L/usr/local/lib
MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
MK_LDFLAGS += -lblis -L/usr/local/lib
endif # LLAMA_BLIS
ifdef LLAMA_CUBLAS
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
OBJS += ggml-cuda.o
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
ifdef LLAMA_CUDA_NVCC
@ -301,14 +310,15 @@ endif # LLAMA_CUBLAS
ifdef LLAMA_CLBLAST
CFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags clblast OpenCL)
CXXFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags clblast OpenCL)
MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL)
MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
# Mac provides OpenCL as a framework
ifeq ($(UNAME_S),Darwin)
LDFLAGS += -lclblast -framework OpenCL
MK_LDFLAGS += -lclblast -framework OpenCL
else
LDFLAGS += $(shell pkg-config --libs clblast OpenCL)
MK_LDFLAGS += $(shell pkg-config --libs clblast OpenCL)
endif
OBJS += ggml-opencl.o
@ -323,10 +333,9 @@ ifdef LLAMA_HIPBLAS
LLAMA_CUDA_DMMV_X ?= 32
LLAMA_CUDA_MMV_Y ?= 1
LLAMA_CUDA_KQUANTS_ITER ?= 2
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
@ -341,10 +350,9 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
endif # LLAMA_HIPBLAS
ifdef LLAMA_METAL
CFLAGS += -DGGML_USE_METAL #-DGGML_METAL_NDEBUG
CXXFLAGS += -DGGML_USE_METAL
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
OBJS += ggml-metal.o
MK_CPPFLAGS += -DGGML_USE_METAL #-DGGML_METAL_NDEBUG
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
OBJS += ggml-metal.o
endif # LLAMA_METAL
ifdef LLAMA_METAL
@ -357,15 +365,16 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_MPI
ifdef LLAMA_NO_K_QUANTS
ifndef LLAMA_NO_K_QUANTS
k_quants.o: k_quants.c k_quants.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_NO_K_QUANTS
ifdef LLAMA_DISABLE_LOGS
CFLAGS += -DLOG_DISABLE_LOGS
CXXFLAGS += -DLOG_DISABLE_LOGS
endif # LLAMA_DISABLE_LOGS
# combine build flags with cmdline overrides
override CPPFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS)
override CFLAGS := $(MK_CFLAGS) $(CFLAGS)
override CXXFLAGS := $(MK_CXXFLAGS) $(CXXFLAGS)
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
#
# Print build information

View file

@ -12,9 +12,18 @@ let package = Package(
name: "llama",
path: ".",
exclude: ["ggml-metal.metal"],
sources: ["ggml.c", "llama.cpp"],
sources: [
"ggml.c",
"llama.cpp",
"ggml-alloc.c",
"k_quants.c"
],
publicHeadersPath: "spm-headers",
cSettings: [.unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_ACCELERATE")],
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32"]),
.define("GGML_USE_K_QUANTS"),
.define("GGML_USE_ACCELERATE")
],
linkerSettings: [
.linkedFramework("Accelerate")
]

View file

@ -114,11 +114,13 @@ as the main playground for developing new features for the [ggml](https://github
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
**UI:**
- [nat/openplayground](https://github.com/nat/openplayground)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
- [withcatai/catai](https://github.com/withcatai/catai)
---
@ -463,6 +465,8 @@ Building the program with BLAS support may lead to some performance improvements
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
- For Ubuntu or Debian, the packages `opencl-headers`, `ocl-icd` may be needed.
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
- <details>
<summary>Installing the OpenCL SDK from source</summary>
@ -480,10 +484,27 @@ Building the program with BLAS support may lead to some performance improvements
```
</details>
Installing CLBlast: it may be found in your operating system's packages.
##### Installing CLBlast
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
Alternatively, they may be built from source.
- <details>
<summary>If not, then installing from source:</summary>
<summary>Windows:</summary>
```cmd
set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64"
git clone https://github.com/CNugteren/CLBlast.git
mkdir CLBlast\build
cd CLBlast\build
cmake .. -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64
cmake --build . --config Release
cmake --install . --prefix C:/CLBlast
```
- <details>
<summary>Unix:</summary>
```sh
git clone https://github.com/CNugteren/CLBlast.git
@ -497,21 +518,32 @@ Building the program with BLAS support may lead to some performance improvements
Where `/some/path` is where the built library will be installed (default is `/usr/local`).
</details>
Building:
##### Building Llama with CLBlast
- Build with make:
```sh
make LLAMA_CLBLAST=1
```
- CMake:
- CMake (Unix):
```sh
mkdir build
cd build
cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_dir=/some/path
cmake --build . --config Release
```
- CMake (Windows):
```cmd
set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast"
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
mkdir build
cd build
cmake .. -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64
cmake --build . --config Release
cmake --install . --prefix C:/LlamaCPP
```
Running:
##### Running Llama with CLBlast
The CLBlast build supports `--gpu-layers|-ngl` like the CUDA version does.

View file

@ -24,7 +24,9 @@
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <codecvt>
#include <locale>
#include <windows.h>
@ -1027,7 +1029,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
fprintf(stream, "hellaswag_tasks: %ld # default: 400\n", params.hellaswag_tasks);
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx));
const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY;

View file

@ -235,6 +235,7 @@ namespace console {
int estimateWidth(char32_t codepoint) {
#if defined(_WIN32)
(void)codepoint;
return 1;
#else
return wcwidth(codepoint);

View file

@ -154,7 +154,7 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
// #include "log.h"
//
#ifndef LOG_NO_TIMESTAMPS
#ifndef _WIN32
#ifndef _MSC_VER
#define LOG_TIMESTAMP_FMT "[%" PRIu64 "] "
#define LOG_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
#else
@ -167,7 +167,7 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
#endif
#ifdef LOG_TEE_TIMESTAMPS
#ifndef _WIN32
#ifndef _MSC_VER
#define LOG_TEE_TIMESTAMP_FMT "[%" PRIu64 "] "
#define LOG_TEE_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
#else
@ -187,7 +187,7 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
// #include "log.h"
//
#ifndef LOG_NO_FILE_LINE_FUNCTION
#ifndef _WIN32
#ifndef _MSC_VER
#define LOG_FLF_FMT "[%24s:%5d][%24s] "
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
#else
@ -200,7 +200,7 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
#endif
#ifdef LOG_TEE_FILE_LINE_FUNCTION
#ifndef _WIN32
#ifndef _MSC_VER
#define LOG_TEE_FLF_FMT "[%24s:%5d][%24s] "
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
#else
@ -224,7 +224,7 @@ enum LogTriState
// INTERNAL, DO NOT USE
// USE LOG() INSTEAD
//
#ifndef _WIN32
#ifndef _MSC_VER
#define LOG_IMPL(str, ...) \
{ \
if (LOG_TARGET != nullptr) \
@ -247,7 +247,7 @@ enum LogTriState
// INTERNAL, DO NOT USE
// USE LOG_TEE() INSTEAD
//
#ifndef _WIN32
#ifndef _MSC_VER
#define LOG_TEE_IMPL(str, ...) \
{ \
if (LOG_TARGET != nullptr) \
@ -284,7 +284,7 @@ enum LogTriState
// Main LOG macro.
// behaves like printf, and supports arguments the exact same way.
//
#ifndef _WIN32
#ifndef _MSC_VER
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
#else
#define LOG(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "")
@ -298,14 +298,14 @@ enum LogTriState
// Secondary target can be changed just like LOG_TARGET
// by defining LOG_TEE_TARGET
//
#ifndef _WIN32
#ifndef _MSC_VER
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
#else
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "")
#endif
// LOG macro variants with auto endline.
#ifndef _WIN32
#ifndef _MSC_VER
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
#else
@ -341,14 +341,14 @@ inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTri
}
}
if (_disabled)
{
// Log is disabled
return nullptr;
}
if (_initialized)
{
if (_disabled)
{
// Log is disabled
return nullptr;
}
// with fallback in case something went wrong
return logfile ? logfile : stderr;
}
@ -461,7 +461,7 @@ inline void log_test()
LOG("13 Hello World this time in yet new file?\n")
log_set_target(log_filename_generator("llama_autonamed", "log"));
LOG("14 Hello World in log with generated filename!\n")
#ifdef _WIN32
#ifdef _MSC_VER
LOG_TEE("15 Hello msvc TEE without arguments\n")
LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test")
LOG_TEELN("17 Hello msvc TEELN without arguments\n")

View file

@ -1,18 +1,24 @@
#!/usr/bin/env python3
# HF falcon--> gguf conversion
import gguf
import os
import sys
import struct
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
import argparse
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
from typing import Any, List
from pathlib import Path
from transformers import AutoTokenizer
def bytes_to_unicode():
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
@ -114,9 +120,9 @@ gguf_writer.add_file_type(ftype)
print("gguf: get tokenizer metadata")
tokens: List[bytearray] = []
scores: List[float] = []
toktypes: List[int] = []
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
tokenizer_json_file = dir_model / 'tokenizer.json'
if not tokenizer_json_file.is_file():

View file

@ -1,18 +1,23 @@
#!/usr/bin/env python3
# HF gptneox--> gguf conversion
import gguf
import os
import sys
import struct
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
import argparse
from transformers import AutoTokenizer # type: ignore[import]
from typing import Any, List
from pathlib import Path
from transformers import AutoTokenizer
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
@ -112,7 +117,7 @@ gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
print("gguf: get tokenizer metadata")
tokens: List[bytearray] = []
tokens: list[bytearray] = []
tokenizer_json_file = dir_model / 'tokenizer.json'
if not tokenizer_json_file.is_file():

View file

@ -1,258 +0,0 @@
#!/usr/bin/env python3
# 7b pth llama --> gguf conversion
# Only models with a single datafile are supported, like 7B
# HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model
import gguf
import os
import sys
import struct
import json
import numpy as np
import torch
import argparse
from typing import Any, List, TypeAlias
from pathlib import Path
from sentencepiece import SentencePieceProcessor
#NDArray = np.ndarray[Any, Any]
# compatible with python < 3.9
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("consolidated."):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a PyTorch 7B LLaMA model to a GGML compatible file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "LlamaForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
if num_parts > 1:
print("gguf: Only models with a single datafile are supported.")
sys.exit()
ARCH=gguf.MODEL_ARCH.LLAMA
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
head_count = hparams["num_attention_heads"]
if "num_key_value_heads" in hparams:
head_count_kv = hparams["num_key_value_heads"]
else:
head_count_kv = head_count
if "_name_or_path" in hparams:
hf_repo = hparams["_name_or_path"]
else:
hf_repo = ""
if "max_sequence_length" in hparams:
ctx_length = hparams["max_sequence_length"]
elif "max_position_embeddings" in hparams:
ctx_length = hparams["max_position_embeddings"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
gguf_writer.add_name(dir_model.name)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
if "type" in hparams["rope_scaling"]:
if hparams["rope_scaling"]["type"] == "linear":
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: List[bytes] = []
scores: List[float] = []
toktypes: List[int] = []
tokenizer_model_file = dir_model / 'tokenizer.model'
if not tokenizer_model_file.is_file():
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
sys.exit(1)
# vocab type sentencepiece
print("gguf: get sentencepiece tokenizer vocab and scores")
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
for i in range(tokenizer.vocab_size()):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
# toktype = 4 is user-defined = tokens from added_tokens.json
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
added_tokens_file = dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
addtokens_json = json.load(f)
print("gguf: get added tokens")
for key in addtokens_json:
tokens.append( key.encode("utf-8") )
scores.append(-1000.0)
toktypes.append(4) # user-defined token type
gguf_writer.add_tokenizer_model("llama")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model)
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts))
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name == "rope.freqs":
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View file

@ -1,9 +1,17 @@
#!/usr/bin/env python3
import sys, struct, math, argparse
from __future__ import annotations
import argparse
import math
import struct
import sys
from pathlib import Path
import numpy as np
import os
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
# Note: Does not support GGML_QKK_64
@ -72,7 +80,7 @@ class Vocab:
class Tensor:
def __init__(self):
self.name = None
self.dims = ()
self.dims: tuple[int, ...] = ()
self.dtype = None
self.start_offset = 0
self.len_bytes = np.int64(0)
@ -119,7 +127,7 @@ class GGMLV3Model:
offset += hp.load(data, offset)
vocab = Vocab()
offset += vocab.load(data, offset, hp.n_vocab)
tensors = []
tensors: list[Tensor] = []
tensor_map = {}
while offset < len(data):
tensor = Tensor()
@ -305,8 +313,8 @@ def handle_metadata(cfg, hp):
def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF')
parser.add_argument('--input', '-i', type = Path, help = 'Input GGMLv3 filename')
parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename')
parser.add_argument('--input', '-i', type = Path, required = True, help = 'Input GGMLv3 filename')
parser.add_argument('--output', '-o', type = Path, required = True, help ='Output GGUF filename')
parser.add_argument('--name', help = 'Set model name')
parser.add_argument('--desc', help = 'Set model description')
parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')

View file

@ -1,277 +0,0 @@
#!/usr/bin/env python3
# HF llama --> gguf conversion
import gguf
import os
import sys
import struct
import json
import numpy as np
import torch
import argparse
from typing import Any, List, Optional, TypeAlias
from pathlib import Path
from sentencepiece import SentencePieceProcessor
#NDArray = np.ndarray[Any, Any]
# compatible with python < 3.9
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
# reverse HF permute back to original pth layout
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "LlamaForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.LLAMA
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
head_count = hparams["num_attention_heads"]
if "num_key_value_heads" in hparams:
head_count_kv = hparams["num_key_value_heads"]
else:
head_count_kv = head_count
if "_name_or_path" in hparams:
hf_repo = hparams["_name_or_path"]
else:
hf_repo = ""
if "max_sequence_length" in hparams:
ctx_length = hparams["max_sequence_length"]
elif "max_position_embeddings" in hparams:
ctx_length = hparams["max_position_embeddings"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
gguf_writer.add_name(dir_model.name)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
if "type" in hparams["rope_scaling"]:
if hparams["rope_scaling"]["type"] == "linear":
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: List[bytes] = []
scores: List[float] = []
toktypes: List[int] = []
tokenizer_model_file = dir_model / 'tokenizer.model'
if not tokenizer_model_file.is_file():
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
sys.exit(1)
# vocab type sentencepiece
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
for i in range(tokenizer.vocab_size()):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
# toktype = 4 is user-defined = tokens from added_tokens.json
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
added_tokens_file = dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
addtokens_json = json.load(f)
print("gguf: get added tokens")
for key in addtokens_json:
tokens.append( key.encode("utf-8") )
scores.append(-1000.0)
toktypes.append(4) # user-defined token type
gguf_writer.add_tokenizer_model("llama")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model)
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# reverse permute these
if name.endswith(".q_proj.weight"):
data = reverse_hf_permute(data, head_count)
if name.endswith(".k_proj.weight"):
data = reverse_hf_permute(data, head_count, head_count_kv)
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View file

@ -1,15 +1,17 @@
#!/usr/bin/env python3
from __future__ import annotations
import json
import os
import re
import struct
import sys
from typing import Any, Dict, Sequence, BinaryIO
from typing import Any, BinaryIO, Sequence
import numpy as np
import torch
NUMPY_TYPE_TO_FTYPE: Dict[str, int] = {"float32": 0, "float16": 1}
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
HF_SUBLAYER_TO_GGML = {
@ -46,7 +48,7 @@ def translate_tensor_name(t: str) -> str:
sys.exit(1)
def write_file_header(fout: BinaryIO, params: Dict[str, Any]) -> None:
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
fout.write(b"ggla"[::-1]) # magic (ggml lora)
fout.write(struct.pack("i", 1)) # file version
fout.write(struct.pack("i", params["r"]))

View file

@ -1,9 +1,8 @@
#!/usr/bin/env python3
from __future__ import annotations
import gguf
import argparse
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import copy
import enum
import faulthandler
@ -20,21 +19,27 @@ import struct
import sys
import time
import zipfile
import numpy as np
from abc import ABCMeta, abstractmethod
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Generator, Iterable, List, Literal, Optional, Sequence, Set, Tuple, Type, TypeVar, Union)
from sentencepiece import SentencePieceProcessor # type: ignore
from typing import IO, TYPE_CHECKING, Any, Callable, Generator, Iterable, Literal, Sequence, TypeVar
import numpy as np
from sentencepiece import SentencePieceProcessor # type: ignore[import]
import os
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
if TYPE_CHECKING:
from typing_extensions import TypeAlias
from typing import TypeAlias
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
faulthandler.register(signal.SIGUSR1)
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
ARCH=gguf.MODEL_ARCH.LLAMA
NAMES=gguf.MODEL_TENSOR_NAMES[ARCH]
@ -47,8 +52,8 @@ DEFAULT_CONCURRENCY = 8
@dataclass(frozen=True)
class DataType:
name: str
dtype: 'np.dtype[Any]'
valid_conversions: List[str]
dtype: np.dtype[Any]
valid_conversions: list[str]
def elements_to_bytes(self, n_elements: int) -> int:
return n_elements * self.dtype.itemsize
@ -65,7 +70,7 @@ DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_convers
@dataclass(frozen=True)
class QuantizedDataType(DataType):
block_size: int
quantized_dtype: 'np.dtype[Any]'
quantized_dtype: np.dtype[Any]
ggml_type: gguf.GGMLQuantizationType
def quantize(self, arr: NDArray) -> NDArray:
@ -84,7 +89,7 @@ class Q8_0QuantizedDataType(QuantizedDataType):
n_blocks = arr.size // self.block_size
blocks = arr.reshape((n_blocks, self.block_size))
# Much faster implementation of block quantization contributed by @Cebtenzzre
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[Tuple[Any, Any]]:
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
d = abs(blocks).max(axis = 1) / np.float32(127)
with np.errstate(divide = 'ignore'):
qs = (blocks / d[:, None]).round()
@ -98,13 +103,13 @@ DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
# Quantized types skipped here because they may also map to np.float32
NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = {}
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
raise ValueError(f'Invalid duplicate data type {dt}')
NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
SAFETENSORS_DATA_TYPES: Dict[str, DataType] = {
SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
'BF16': DT_BF16,
'F16': DT_F16,
'F32': DT_F32,
@ -119,14 +124,14 @@ class GGMLFileType(enum.IntEnum):
MostlyF16 = 1 # except 1d tensors
MostlyQ8_0 = 7 # except 1d tensors
def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType:
def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
if dt is None:
raise ValueError(self)
# 1D tensors are always F32.
return dt if len(tensor.shape) > 1 else DT_F32
GGML_FILE_TYPE_TO_DATA_TYPE: Dict[GGMLFileType, DataType] = {
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
GGMLFileType.AllF32 : DT_F32,
GGMLFileType.MostlyF16 : DT_F16,
GGMLFileType.MostlyQ8_0: DT_Q8_0,
@ -148,13 +153,13 @@ class Params:
n_head_kv: int
f_norm_eps: float
f_rope_freq_base: Optional[float] = None
f_rope_scale: Optional[float] = None
f_rope_freq_base: float | None = None
f_rope_scale: float | None = None
ftype: Optional[GGMLFileType] = None
ftype: GGMLFileType | None = None
# path to the directory containing the model files
path_model: Optional['Path'] = None
path_model: Path | None = None
@staticmethod
def find_n_mult(n_ff: int, n_embd: int) -> int:
@ -166,7 +171,7 @@ class Params:
raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
@staticmethod
def guessed(model: 'LazyModel') -> 'Params':
def guessed(model: LazyModel) -> Params:
# try transformer naming first
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
@ -202,7 +207,7 @@ class Params:
)
@staticmethod
def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
n_vocab = config["vocab_size"]
@ -247,7 +252,7 @@ class Params:
# LLaMA v2 70B params.json
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
@staticmethod
def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
n_vocab = config["vocab_size"] if "vocab_size" in config else -1
@ -291,7 +296,7 @@ class Params:
)
@staticmethod
def load(model_plus: 'ModelPlus') -> 'Params':
def load(model_plus: ModelPlus) -> Params:
hf_config_path = model_plus.paths[0].parent / "config.json"
orig_config_path = model_plus.paths[0].parent / "params.json"
@ -314,19 +319,31 @@ class Params:
#
class BpeVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
added_tokens: Dict[str, int]
added_tokens: dict[str, int]
if fname_added_tokens is not None:
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
else:
added_tokens = {}
# Fall back to trying to find the added tokens in tokenizer.json
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
if not tokenizer_json_file.is_file():
added_tokens = {}
else:
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
added_tokens = dict(
(item['content'], item['id'])
for item in tokenizer_json.get('added_tokens', [])
# Added tokens here can be duplicates of the main vocabulary.
if item['content'] not in self.bpe_tokenizer )
vocab_size: int = len(self.bpe_tokenizer)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
expected_end_id = vocab_size + len(actual_ids) - 1
raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_list = [text for (text, idx) in items]
@ -335,22 +352,34 @@ class BpeVocab:
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def bpe_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.bpe_tokenizer
from transformers.models.gpt2 import tokenization_gpt2
from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
byte_encoder = tokenization_gpt2.bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
score = 0.0
for i, item in enumerate(tokenizer):
text: bytes = item.encode("utf-8")
score: float = -i
yield text, score, gguf.TokenType.USER_DEFINED
# FIXME: These shouldn't be hardcoded, but it's probably better than the current behavior?
if i <= 258 and text.startswith(b'<') and text.endswith(b'>'):
if i == 0 and text == b'<unk>':
toktype = gguf.TokenType.UNKNOWN
elif i == 1 or i == 2:
toktype = gguf.TokenType.CONTROL
elif i >= 3 and text.startswith(b'<0x'):
toktype = gguf.TokenType.BYTE
else:
toktype = gguf.TokenType.NORMAL
else:
toktype = gguf.TokenType.NORMAL
yield text, score, toktype
def added_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
def all_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.bpe_tokens()
yield from self.added_tokens()
@ -359,9 +388,9 @@ class BpeVocab:
class SentencePieceVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
added_tokens: Dict[str, int]
added_tokens: dict[str, int]
if fname_added_tokens is not None:
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
else:
@ -380,7 +409,7 @@ class SentencePieceVocab:
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
piece = tokenizer.id_to_piece(i)
@ -404,19 +433,19 @@ class SentencePieceVocab:
yield text, score, toktype
def added_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
def all_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.sentencepiece_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
Vocab = Union[BpeVocab, SentencePieceVocab]
Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
#
# data loading
@ -436,15 +465,15 @@ class Tensor(metaclass=ABCMeta):
data_type: DataType
@abstractmethod
def astype(self, data_type: DataType) -> 'Tensor': ...
def astype(self, data_type: DataType) -> Tensor: ...
@abstractmethod
def permute(self, n_head: int, n_head_kv: int) -> 'Tensor': ...
def permute(self, n_head: int, n_head_kv: int) -> Tensor: ...
@abstractmethod
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> 'UnquantizedTensor': ...
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ...
@abstractmethod
def part(self, n_part: int) -> 'UnquantizedTensor': ...
def part(self, n_part: int) -> UnquantizedTensor: ...
@abstractmethod
def to_ggml(self) -> 'GGMLCompatibleTensor': ...
def to_ggml(self) -> GGMLCompatibleTensor: ...
def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
@ -465,22 +494,22 @@ class UnquantizedTensor(Tensor):
self.ndarray = bf16_to_fp32(self.ndarray)
return UnquantizedTensor(self.ndarray.astype(dtype))
def to_ggml(self) -> 'UnquantizedTensor':
def to_ggml(self) -> UnquantizedTensor:
return self
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> 'UnquantizedTensor':
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
r = self.ndarray.shape[0] // 3
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
def part(self, n_part: int) -> 'UnquantizedTensor':
def part(self, n_part: int) -> UnquantizedTensor:
r = self.ndarray.shape[0] // 3
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
def permute(self, n_head: int, n_head_kv: int) -> 'UnquantizedTensor':
def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray:
def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
tensor = lazy_tensor.load()
assert isinstance(tensor, UnquantizedTensor)
@ -496,13 +525,13 @@ def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, conv
return tensor.ndarray
GGMLCompatibleTensor = Union[UnquantizedTensor]
GGMLCompatibleTensor = UnquantizedTensor
@dataclass
class LazyTensor:
_load: Callable[[], Tensor]
shape: List[int]
shape: list[int]
data_type: DataType
description: str
@ -513,7 +542,7 @@ class LazyTensor:
(self.data_type, ret.data_type, self.description)
return ret
def astype(self, data_type: DataType) -> 'LazyTensor':
def astype(self, data_type: DataType) -> LazyTensor:
self.validate_conversion_to(data_type)
def load() -> Tensor:
@ -525,24 +554,24 @@ class LazyTensor:
raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
LazyModel = Dict[str, LazyTensor]
LazyModel: TypeAlias = 'dict[str, LazyTensor]'
@dataclass
class ModelPlus:
model: LazyModel
paths: List[Path] # Where this was read from.
paths: list[Path] # Where this was read from.
format: Literal['ggml', 'torch', 'safetensors', 'none']
vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab.
vocab: Vocab | None # For GGML models (which have vocab built in), the vocab.
def merge_sharded(models: List[LazyModel]) -> LazyModel:
def merge_sharded(models: list[LazyModel]) -> LazyModel:
# Original LLaMA models have each file contain one part of each tensor.
# Use a dict instead of a set to preserve order.
names = {name: None for model in models for name in model}
def convert(name: str) -> LazyTensor:
lazy_tensors: List[LazyTensor] = [model[name] for model in models]
lazy_tensors: list[LazyTensor] = [model[name] for model in models]
if len(lazy_tensors) == 1:
# only one file; don't go through this procedure since there might
# be quantized tensors
@ -570,7 +599,7 @@ def merge_sharded(models: List[LazyModel]) -> LazyModel:
return {name: convert(name) for name in names}
def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
formats = set(mp.format for mp in models_plus)
assert len(formats) == 1, "different formats?"
format = formats.pop()
@ -674,7 +703,7 @@ class LazyUnpickler(pickle.Unpickler):
def rebuild_from_type_v2(func, new_type, args, state):
return func(*args)
CLASSES: Dict[Tuple[str, str], Any] = {
CLASSES: dict[tuple[str, str], Any] = {
# getattr used here as a workaround for mypy not being smart enough to detrmine
# the staticmethods have a __func__ attribute.
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
@ -707,15 +736,15 @@ def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
header_size, = struct.unpack('<Q', fp.read(8))
header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size))
header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
# Use mmap for the actual data to avoid race conditions with the file offset.
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
byte_buf = mapped[8 + header_size:]
def convert(info: Dict[str, Any]) -> LazyTensor:
def convert(info: dict[str, Any]) -> LazyTensor:
data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
numpy_dtype = data_type.dtype
shape: List[int] = info['shape']
shape: list[int] = info['shape']
begin, end = info['data_offsets']
assert 0 <= begin <= end <= len(byte_buf)
assert end - begin == math.prod(shape) * numpy_dtype.itemsize
@ -754,7 +783,7 @@ def lazy_load_file(path: Path) -> ModelPlus:
In = TypeVar('In')
Out = TypeVar('Out')
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: Optional[int] = None, use_processpool_executor: bool = False) -> Iterable[Out]:
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
'''Parallel map, but with backpressure. If the caller doesn't call `next`
fast enough, this will stop calling `func` at some point rather than
letting results pile up in memory. Specifically, there is a max of one
@ -763,13 +792,13 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
yield from map(func, iterable)
# Not reached.
iterable = iter(iterable)
executor_class: Union[Type[ThreadPoolExecutor], Type[ProcessPoolExecutor]]
executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
if use_processpool_executor:
executor_class = ProcessPoolExecutor
else:
executor_class = ThreadPoolExecutor
with executor_class(max_workers = max_workers) as executor:
futures: List[concurrent.futures.Future[Out]] = []
futures: list[concurrent.futures.Future[Out]] = []
done = False
for _ in range(concurrency):
try:
@ -893,13 +922,13 @@ class OutputFile:
of.close()
@staticmethod
def do_item(item: Tuple[str, LazyTensor]) -> Tuple[DataType, NDArray]:
def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
name, lazy_tensor = item
tensor = lazy_tensor.load().to_ggml()
return (lazy_tensor.data_type, tensor.ndarray)
@staticmethod
def maybe_do_quantize(item: Tuple[DataType, NDArray]) -> NDArray:
def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
dt, arr = item
if not isinstance(dt, QuantizedDataType):
return arr
@ -940,7 +969,7 @@ class OutputFile:
of.close()
def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
wq_type = model[NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
@ -960,7 +989,7 @@ def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyM
def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
tmap = gguf.TensorNameMap(ARCH, params.n_layer)
should_skip: Set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
tmp = model
@ -995,12 +1024,12 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
return out
def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
def nth_multifile_path(path: Path, n: int) -> Path | None:
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
the nth path in the model.
'''
# Support the following patterns:
patterns: List[Tuple[str, str]] = [
patterns: list[tuple[str, str]] = [
# - x.00.pth, x.01.pth, etc.
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
@ -1016,11 +1045,11 @@ def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
return None
def find_multifile_paths(path: Path) -> List[Path]:
def find_multifile_paths(path: Path) -> list[Path]:
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
the whole list of paths in the model.
'''
ret: List[Path] = []
ret: list[Path] = []
for i in itertools.count():
nth_path = nth_multifile_path(path, i)
if nth_path is None:
@ -1051,7 +1080,7 @@ def load_some_model(path: Path) -> ModelPlus:
path = files[0]
paths = find_multifile_paths(path)
models_plus: List[ModelPlus] = []
models_plus: list[ModelPlus] = []
for path in paths:
print(f"Loading model file {path}")
models_plus.append(lazy_load_file(path))
@ -1060,7 +1089,7 @@ def load_some_model(path: Path) -> ModelPlus:
return model_plus
def load_vocab(path: Path, vocabtype: Optional[str]) -> Union[BpeVocab, SentencePieceVocab]:
def load_vocab(path: Path, vocabtype: str | None) -> Vocab:
# Be extra-friendly and accept either a file or a directory. Also, if it's
# a directory, it might be the model directory, and tokenizer.model might
# be in the parent of that.
@ -1091,7 +1120,7 @@ def load_vocab(path: Path, vocabtype: Optional[str]) -> Union[BpeVocab, Sentence
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
namestr = {
GGMLFileType.AllF32: "f32",
GGMLFileType.MostlyF16: "f16",
@ -1114,7 +1143,7 @@ def do_dump_model(model_plus: ModelPlus) -> None:
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
def main(args_in: Optional[List[str]] = None) -> None:
def main(args_in: list[str] | None = None) -> None:
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")

View file

@ -1617,15 +1617,10 @@ int main(int argc, char ** argv) {
float error_before_opt = ggml_get_f32_1d(e, 0);
struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
opt_params_adam.print_forward_graph = false;
opt_params_adam.print_backward_graph = false;
opt_params_lbfgs.print_forward_graph = false;
opt_params_lbfgs.print_backward_graph = false;
opt_params_adam.adam.n_iter = 16;
opt_params_lbfgs.lbfgs.n_iter = 16;
// ggml_opt(ctx0, opt_params_adam, e);
ggml_opt(ctx0, opt_params_lbfgs, e);
//
ggml_build_forward_expand(&gf, e);

View file

@ -22,7 +22,9 @@
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
@ -73,7 +75,7 @@ void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_stat
assert(0u < beams_state.n_beams);
const llama_token * tokens = beams_state.beam_views[0].tokens;
std::copy(tokens, tokens + n, callback_data.response.end() - n);
printf("%lu", n);
printf("%zu", n);
}
fflush(stdout);
#if 1 // DEBUG: print current beams for this iteration
@ -145,7 +147,7 @@ int main(int argc, char ** argv)
if (tokens_list.size() > max_tokens_list_size)
{
fprintf( stderr , "%s: error: prompt too long (%lu tokens, max %lu)\n" ,
fprintf( stderr , "%s: error: prompt too long (%zu tokens, max %zu)\n" ,
__func__ , tokens_list.size() , max_tokens_list_size );
return 1;
}

View file

@ -75,7 +75,7 @@ typedef struct {
int seq_len; // max sequence length
} Config;
typedef struct {
struct TransformerWeights {
// token embedding table
float* token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
@ -97,7 +97,22 @@ typedef struct {
// float* freq_cis_imag; // (seq_len, dim/2)
// (optional) classifier weights for the logits, on the last layer
float* wcls;
} TransformerWeights;
~TransformerWeights() {
delete[] token_embedding_table;
delete[] rms_att_weight;
delete[] rms_ffn_weight;
delete[] wq;
delete[] wk;
delete[] wv;
delete[] wo;
delete[] w1;
delete[] w2;
delete[] w3;
delete[] rms_final_weight;
delete[] wcls;
}
};
void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
// we calloc instead of malloc to keep valgrind happy
@ -173,21 +188,6 @@ int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shar
return 0;
}
void free_weights(TransformerWeights* w) {
delete w->token_embedding_table;
delete w->rms_att_weight;
delete w->rms_ffn_weight;
delete w->wq;
delete w->wk;
delete w->wv;
delete w->wo;
delete w->w1;
delete w->w2;
delete w->w3;
delete w->rms_final_weight;
if (w->wcls) delete w->wcls;
}
void print_sample_weights(TransformerWeights *w){
printf("----- Quick print of first of the weight vales of all the variables\n");
printf("%f\n", w->token_embedding_table[0]);
@ -596,6 +596,10 @@ void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab)
// assume llama2.c vocabulary
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
llama_file file(filename, "rb");
if (!file.fp) {
fprintf(stderr, "error: %s: %s\n", strerror(errno), filename);
exit(1);
}
const int n_vocab = config->vocab_size;
/* uint32_t max_token_length = */ file.read_u32(); // unused
vocab->id_to_token.resize(n_vocab);
@ -633,7 +637,7 @@ void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab)
}
}
void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){
void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
int ct;
switch (gg_weights->n_dims){
case 1:
@ -670,13 +674,13 @@ void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * kar
}
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
// stuff AK weights into GG weights one by one.
// convert AK weights into GG weights one by one.
// w->token_embedding_table -> model->tok_embeddings
// float* -> struct ggml_tensor
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
stuff_karpathy_weights_into_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
//print_row(model->norm, 0);
// for rms-att-weight
@ -686,18 +690,18 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
auto & layer = model->layers[i];
// 1d
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
}
struct gguf_context * ctx = gguf_init_empty();
@ -898,7 +902,7 @@ bool params_parse(int argc, char ** argv, struct train_params * params) {
}
std::string basename(const std::string &path) {
size_t pos = path.find_last_of("/");
size_t pos = path.find_last_of("/\\");
if (pos == std::string::npos) {
return path;
}
@ -911,7 +915,7 @@ int main(int argc, char ** argv) {
return 1;
}
Config config;
TransformerWeights weights;
TransformerWeights weights = {};
{
FILE *file = fopen(params.fn_llama2c_model, "rb");
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
@ -953,6 +957,5 @@ int main(int argc, char ** argv) {
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
ggml_free(model.ctx);
free_weights(&weights);
return 0;
}

View file

@ -660,9 +660,10 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2
ggml_tensor * gpt_neox_ff(
const gpt_neox_block &block,
ggml_context * ctx0,
ggml_tensor * inp) {
ggml_tensor * inp,
const gpt_neox_hparams &hparams) {
ggml_tensor * cur = ggml_norm(ctx0, inp);
ggml_tensor * cur = ggml_norm(ctx0, inp, hparams.norm_eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, block.ln_2_g, cur), cur), ggml_repeat(ctx0, block.ln_2_b, cur));
cur = ggml_mul_mat(ctx0, block.c_mlp_fc_w, cur);
@ -753,7 +754,7 @@ bool gpt_neox_eval(
// self-attention
{
{
cur = ggml_norm(ctx0, inpL);
cur = ggml_norm(ctx0, inpL, hparams.norm_eps);
cur = ggml_add(ctx0,
ggml_mul(ctx0, ggml_repeat(ctx0, model.blocks[il].ln_1_g, cur), cur),
@ -844,7 +845,7 @@ bool gpt_neox_eval(
if (hparams.par_res == 0) {
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL);
cur = gpt_neox_ff(model.blocks[il], ctx0, inpFF);
cur = gpt_neox_ff(model.blocks[il], ctx0, inpFF, hparams);
// input for next layer
inpL = ggml_add(ctx0, cur, inpFF);
@ -853,7 +854,7 @@ bool gpt_neox_eval(
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
// note here we pass inpL instead of cur
cur = gpt_neox_ff(model.blocks[il], ctx0, inpL);
cur = gpt_neox_ff(model.blocks[il], ctx0, inpL, hparams);
// layer input + FF
cur = ggml_add(ctx0, cur, inpFF);
@ -867,7 +868,7 @@ bool gpt_neox_eval(
// norm
{
inpL = ggml_norm(ctx0, inpL);
inpL = ggml_norm(ctx0, inpL, hparams.norm_eps);
// inpL = ln_f_g*inpL + ln_f_b
inpL = ggml_add(ctx0,

View file

@ -34,7 +34,7 @@ For an interactive experience, try this command:
#### Unix-based systems (Linux, macOS, etc.):
```bash
./main -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " \
./main -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -p \
'User: Hi
AI: Hello. I am an AI chatbot. Would you like to talk?
User: Sure!
@ -45,7 +45,7 @@ User:'
#### Windows:
```powershell
main.exe -m models\7B\ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -e --prompt "User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:"
main.exe -m models\7B\ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -e -p "User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:"
```
The following command generates "infinite" text from a starting prompt (you can use `Ctrl-C` to stop it):

View file

@ -35,6 +35,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
};
@ -71,12 +73,17 @@ bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std:
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
//
void usage(const char * executable) {
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
fprintf(stderr, "\nAllowed quantization types:\n");
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf("\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) {
printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str());
if (it.name != "COPY") {
printf(" %2d or ", it.ftype);
} else {
printf(" ");
}
printf("%-6s : %s\n", it.name.c_str(), it.desc.c_str());
}
exit(1);
}
@ -121,6 +128,9 @@ int main(int argc, char ** argv) {
// export as [inp path]/ggml-model-[ftype].gguf
fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
arg_idx++;
if (ftype_str == "COPY") {
params.only_copy = true;
}
}
else {
fname_out = argv[arg_idx];
@ -133,6 +143,10 @@ int main(int argc, char ** argv) {
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
return 1;
} else {
if (ftype_str == "COPY") {
params.only_copy = true;
}
}
arg_idx++;
}

View file

@ -17,6 +17,8 @@
#include "completion.js.hpp"
#include "json-schema-to-grammar.mjs.hpp"
#include <cstddef>
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
#endif
@ -1038,7 +1040,7 @@ static json format_timings(llama_server_context &llama)
{
const auto timings = llama_get_timings(llama.ctx);
assert(timings.n_eval == llama.num_tokens_predicted);
assert(timings.n_eval == ptrdiff_t(llama.num_tokens_predicted));
return json{
{"prompt_n", timings.n_p_eval},
@ -1239,7 +1241,7 @@ void beam_search_callback(void * callback_data, llama_beams_state beams_state) {
const llama_token * tokens = beams_state.beam_views[0].tokens;
const auto map = [](llama_token tok) { return completion_token_output{{},tok}; };
std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map);
printf("%lu", n);
printf("%zu", n);
}
fflush(stdout);
#if 0 // DEBUG: print current beams for this iteration
@ -1377,7 +1379,13 @@ int main(int argc, char **argv)
}
}
const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
auto probs = llama.generated_token_probs;
if (llama.params.n_probs > 0 && llama.stopped_word) {
const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
}
const json data = format_final_response(llama, llama.generated_text, probs);
llama_print_timings(llama.ctx);
@ -1454,7 +1462,11 @@ int main(int argc, char **argv)
if (!llama.has_next_token) {
// Generation is done, send extra information.
const json data = format_final_response(llama, "", llama.generated_token_probs);
const json data = format_final_response(
llama,
"",
std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
);
const std::string str =
"data: " +
@ -1548,7 +1560,7 @@ int main(int argc, char **argv)
svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep)
{
const auto * fmt = "500 Internal Server Error\n%s";
const char fmt[] = "500 Internal Server Error\n%s";
char buf[BUFSIZ];
try {
std::rethrow_exception(std::move(ep));

View file

@ -2,13 +2,16 @@
# train-text-from-scratch checkpoint --> gguf conversion
import argparse
import gguf
import os
import struct
import sys
import numpy as np
from pathlib import Path
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py' / 'gguf'))
import gguf
# gguf constants
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"

View file

@ -284,7 +284,14 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
// address and size of the buffer when measuring
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
#if defined(__ARM_NEON) && !defined(__aarch64__)
// 32-bit
// TODO: Use for 32-bit x86 as well
static const size_t MEASURE_MAX_SIZE = (1ULL<<32) - 1; // 4 GB
#else
// 64-bit
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
#endif
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);

View file

@ -81,12 +81,29 @@
#if defined(GGML_USE_HIPBLAS)
#define __CUDA_ARCH__ 1300
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
#if __has_builtin(__builtin_elementwise_sub_sat)
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
return reinterpret_cast<const int&>(c);
#else
int8x4_t c;
int16_t tmp;
#pragma unroll
for (int i = 0; i < 4; i++) {
tmp = va[i] - vb[i];
if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
c[i] = tmp;
}
return reinterpret_cast<int&>(c);
#endif // __has_builtin(__builtin_elementwise_sub_sat)
}
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {

View file

@ -76,6 +76,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
@ -116,10 +117,24 @@ static NSString * const msl_library_source = @"see metal.metal";
struct ggml_metal_context * ggml_metal_init(int n_cb) {
metal_printf("%s: allocating\n", __func__);
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
// Show all the Metal device instances in the system
NSArray * devices = MTLCopyAllDevices();
id <MTLDevice> device;
NSString * s;
for (device in devices) {
s = [device name];
metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
}
// Pick and show default Metal device
device = MTLCreateSystemDefaultDevice();
s = [device name];
metal_printf("%s: picking default device: %s\n", __func__, [s UTF8String]);
// Configure context
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
ctx->device = device;
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
ctx->device = MTLCreateSystemDefaultDevice();
ctx->queue = [ctx->device newCommandQueue];
ctx->n_buffers = 0;
ctx->concur_list_len = 0;
@ -205,6 +220,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
@ -270,6 +286,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(rms_norm);
GGML_METAL_DEL_KERNEL(norm);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
@ -680,6 +697,12 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_ADD:
{
GGML_ASSERT(ggml_is_contiguous(src0));
// utilize float4
GGML_ASSERT(ne00 % 4 == 0);
const int64_t nb = ne00/4;
if (ggml_nelements(src1) == ne10) {
// src1 is a row
[encoder setComputePipelineState:ctx->pipeline_add_row];
@ -689,14 +712,20 @@ void ggml_metal_graph_compute(
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&nb length:sizeof(nb) atIndex:3];
const int64_t n = ggml_nelements(dst);
const int64_t n = ggml_nelements(dst)/4;
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_MUL:
{
GGML_ASSERT(ggml_is_contiguous(src0));
// utilize float4
GGML_ASSERT(ne00 % 4 == 0);
const int64_t nb = ne00/4;
if (ggml_nelements(src1) == ne10) {
// src1 is a row
[encoder setComputePipelineState:ctx->pipeline_mul_row];
@ -706,9 +735,9 @@ void ggml_metal_graph_compute(
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&nb length:sizeof(nb) atIndex:3];
const int64_t n = ggml_nelements(dst);
const int64_t n = ggml_nelements(dst)/4;
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
@ -840,9 +869,13 @@ void ggml_metal_graph_compute(
switch (src0t) {
case GGML_TYPE_F16:
{
nth0 = 64;
nth0 = 32;
nth1 = 1;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
if (ne11 * ne12 < 4) {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
} else {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
}
} break;
case GGML_TYPE_Q4_0:
{
@ -894,8 +927,8 @@ void ggml_metal_graph_compute(
GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1);
nth0 = 2;
nth1 = 32;
nth0 = 4; //1;
nth1 = 8; //32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
} break;
case GGML_TYPE_Q5_K:
@ -943,9 +976,12 @@ void ggml_metal_graph_compute(
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
src0t == GGML_TYPE_Q2_K) {// || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
@ -959,8 +995,8 @@ void ggml_metal_graph_compute(
else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
int64_t ny = (ne11 + 3)/4;
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
}
} break;

View file

@ -25,9 +25,9 @@ typedef struct {
} block_q8_0;
kernel void kernel_add(
device const float * src0,
device const float * src1,
device float * dst,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] + src1[tpig];
}
@ -35,18 +35,18 @@ kernel void kernel_add(
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_add_row(
device const float * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
constant int64_t & nb,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] + src1[tpig % ne00];
dst[tpig] = src0[tpig] + src1[tpig % nb];
}
kernel void kernel_mul(
device const float * src0,
device const float * src1,
device float * dst,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src1[tpig];
}
@ -54,12 +54,12 @@ kernel void kernel_mul(
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_mul_row(
device const float * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
constant int64_t & nb,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src1[tpig % ne00];
dst[tpig] = src0[tpig] * src1[tpig % nb];
}
kernel void kernel_scale(
@ -133,19 +133,24 @@ kernel void kernel_soft_max(
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg[0] == 0) {
buf[0] = buf[0];
}
//// broadcast - not needed. There is a threadgroup barrier above in the last iteration of
// the loop, and when that is done, buf[0] has the correct (synchronized) value
//if (tpitg[0] == 0) {
// buf[0] = buf[0];
//}
threadgroup_barrier(mem_flags::mem_threadgroup);
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float max = buf[0];
// parallel sum
buf[tpitg[0]] = 0.0f;
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
buf[tpitg[0]] += exp(psrc0[i00] - max);
const float exp_psrc0 = exp(psrc0[i00] - max);
buf[tpitg[0]] += exp_psrc0;
// Remember the result of exp here. exp is expensive, so we really do not
// whish to compute it twice.
pdst[i00] = exp_psrc0;
}
// reduce
@ -157,17 +162,18 @@ kernel void kernel_soft_max(
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg[0] == 0) {
buf[0] = buf[0];
}
// broadcast - not needed, see above
//// broadcast
//if (tpitg[0] == 0) {
// buf[0] = buf[0];
//}
threadgroup_barrier(mem_flags::mem_threadgroup);
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float sum = buf[0];
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
pdst[i00] = exp(psrc0[i00] - max) / sum;
pdst[i00] /= sum;
}
}
@ -214,25 +220,27 @@ kernel void kernel_norm(
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg == 0) {
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
//// broadcast
//if (tpitg == 0) {
// sum[0] /= ne00;
//}
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float mean = sum[0];
// recenter
// recenter and VARIANCE
device float * y = dst + tgpig*ne00;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = x[i00] - mean;
}
// VARIANCE
// parallel sum
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = x[i00] - mean;
sum[tpitg] += y[i00] * y[i00];
}
//// VARIANCE
//// parallel sum
//sum[tpitg] = 0.0f;
//for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
// sum[tpitg] += y[i00] * y[i00];
//}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
@ -241,11 +249,11 @@ kernel void kernel_norm(
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg == 0) {
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
//// broadcast
//if (tpitg == 0) {
// sum[0] /= ne00;
//}
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float variance = sum[0];
const float scale = 1.0f/sqrt(variance + eps);
@ -435,6 +443,8 @@ kernel void kernel_mul_mat_q4_1_f32(
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
}
#define NB_Q8_0 8
kernel void kernel_mul_mat_q8_0_f32(
device const void * src0,
device const float * src1,
@ -463,30 +473,30 @@ kernel void kernel_mul_mat_q8_0_f32(
device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[16];
float yl[NB_Q8_0];
float sumf[nr]={0.f};
const int ix = tiisg/2;
const int il = tiisg%2;
const int ix = tiisg/4;
const int il = tiisg%4;
device const float * yb = y + ix * QK8_0 + 16*il;
device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
// each thread in a SIMD group deals with half a block.
for (int ib = ix; ib < nb; ib += nw/2) {
for (int i = 0; i < 16; ++i) {
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
for (int ib = ix; ib < nb; ib += nw/4) {
for (int i = 0; i < NB_Q8_0; ++i) {
yl[i] = yb[i];
}
for (int row = 0; row < nr; row++) {
device const int8_t * qs = x[ib+row*nb].qs + 16*il;
device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
float sumq = 0.f;
for (int iq = 0; iq < 16; ++iq) {
for (int iq = 0; iq < NB_Q8_0; ++iq) {
sumq += qs[iq] * yl[iq];
}
sumf[row] += sumq*x[ib+row*nb].d;
}
yb += QK8_0 * 16;
yb += NB_Q8_0 * nw;
}
for (int row = 0; row < nr; ++row) {
@ -497,6 +507,60 @@ kernel void kernel_mul_mat_q8_0_f32(
}
}
kernel void kernel_mul_mat_f16_f32_1row(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int64_t im = tgpig.z;
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
float sumf = 0;
if (ne00 < 128) {
for (int i = tiisg; i < ne00; i += 32) {
sumf += (float) x[i] * (float) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
} else {
device const half4 * x4 = (device const half4 *) x;
device const float4 * y4 = (device const float4 *) y;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) sumf += (float) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
#define N_F16_F32 4
kernel void kernel_mul_mat_f16_f32(
device const char * src0,
device const char * src1,
@ -515,37 +579,58 @@ kernel void kernel_mul_mat_f16_f32(
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpig[[thread_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]]) {
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int64_t rb = N_F16_F32*tgpig.y;
const int64_t im = tgpig.z;
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
sum[tpitg.x] = 0.0f;
if (ne00 < 128) {
for (int row = 0; row < N_F16_F32; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
for (int i = tpitg.x; i < ne00; i += tptg.x) {
sum[tpitg.x] += (float) x[i] * (float) y[i];
}
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
// accumulate the sum from all threads in the threadgroup
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = tptg.x/2; i > 0; i /= 2) {
if (tpitg.x < i) {
sum[tpitg.x] += sum[tpitg.x + i];
float sumf = 0;
for (int i = tiisg; i < ne00; i += 32) {
sumf += (float) x[i] * (float) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
} else {
device const half4 * x4 = (device const half4 *)x;
for (int row = 0; row < N_F16_F32; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
device const float4 * y4 = (device const float4 *) y;
float sumf = 0;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) sumf += (float) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
if (tpitg.x == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
}
}
kernel void kernel_alibi_f32(
@ -1244,7 +1329,8 @@ kernel void kernel_mul_mat_q4_K_f32(
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int r2 = tgpig.z;
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
//const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
const int first_row = r0 * N_DST;
const int ib_row = first_row * nb;
const uint offset0 = r2/gqa*(nb*ne0);
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;

273
ggml.c
View file

@ -301,6 +301,10 @@ typedef double ggml_float;
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#ifdef __F16C__
#ifdef _MSC_VER
@ -813,46 +817,6 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
#if !defined(__aarch64__)
inline static uint16_t vaddvq_u8(uint8x16_t v) {
return
(uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
(uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
(uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
(uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
(uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
(uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
(uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
(uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
}
inline static int16_t vaddvq_s8(int8x16_t v) {
return
(int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
(int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
(int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
(int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
(int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
(int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
(int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
(int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
}
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static uint32_t vaddvq_u16(uint16x8_t v) {
return
(uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
(uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
(uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
(uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
@ -861,12 +825,6 @@ inline static float vaddvq_f32(float32x4_t v) {
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
}
inline static float vminvq_f32(float32x4_t v) {
return
MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
}
inline static float vmaxvq_f32(float32x4_t v) {
return
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
@ -2677,6 +2635,41 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
}
*s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
#elif defined(__riscv_v_intrinsic)
float sumf = 0.0;
size_t vl = __riscv_vsetvl_e8m1(qk/2);
for (int i = 0; i < nb; i++) {
vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
}
*s = sumf;
#else
// scalar
float sumf = 0.0;
@ -2803,6 +2796,38 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void *
}
*s = hsum_float_8(acc) + summs;
#elif defined(__riscv_v_intrinsic)
float sumf = 0.0;
size_t vl = __riscv_vsetvl_e8m1(qk/2);
for (int i = 0; i < nb; i++) {
vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
}
*s = sumf;
#else
// scalar
float sumf = 0.0;
@ -3037,6 +3062,76 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void *
}
*s = hsum_float_8(acc);
#elif defined(__riscv_v_intrinsic)
float sumf = 0.0;
uint32_t qh;
// These temp values are for masking and shift operations
uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
size_t vl = __riscv_vsetvl_e8m1(qk/2);
for (int i = 0; i < nb; i++) {
memcpy(&qh, x[i].qh, sizeof(uint32_t));
// temporary registers
vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
// ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
// ((qh & (1u << (j + 16))) >> (j + 12));
vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
// narrowing
vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
// load
vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
}
*s = sumf;
#else
// scalar
float sumf = 0.0;
@ -3293,6 +3388,72 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
}
*s = hsum_float_8(acc) + summs;
#elif defined(__riscv_v_intrinsic)
float sumf = 0.0;
uint32_t qh;
// These temp values are for shift operations
uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
size_t vl = __riscv_vsetvl_e8m1(qk/2);
for (int i = 0; i < nb; i++) {
memcpy(&qh, x[i].qh, sizeof(uint32_t));
// temporary registers
vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
// load qh
vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
// ((qh >> (j + 0)) << 4) & 0x10;
vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
// ((qh >> (j + 12)) ) & 0x10;
vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
// narrowing
vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
// load
vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
}
*s = sumf;
#else
// scalar
float sumf = 0.0;
@ -3404,6 +3565,26 @@ static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void *
}
*s = hsum_float_8(acc);
#elif defined(__riscv_v_intrinsic)
float sumf = 0.0;
size_t vl = __riscv_vsetvl_e8m1(qk);
for (int i = 0; i < nb; i++) {
// load elements
vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
}
*s = sumf;
#else
// scalar
float sumf = 0.0;

View file

@ -1,16 +1,18 @@
#!/usr/bin/env python3
import shutil
import sys
import struct
import tempfile
import numpy as np
from __future__ import annotations
import json
import os
from pathlib import Path
import shutil
import struct
import sys
import tempfile
from enum import IntEnum, auto
from io import BufferedWriter
from typing import Any, BinaryIO, Callable, IO, Dict, List, Optional, Sequence, Tuple, Union
from pathlib import Path
from typing import IO, Any, BinaryIO, Callable, Sequence
import numpy as np
#
# constants
@ -103,7 +105,7 @@ class MODEL_TENSOR(IntEnum):
FFN_NORM : int = auto()
MODEL_ARCH_NAMES: Dict[MODEL_ARCH, str] = {
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.GPT2: "gpt2",
@ -112,7 +114,7 @@ MODEL_ARCH_NAMES: Dict[MODEL_ARCH, str] = {
MODEL_ARCH.MPT: "mpt",
}
MODEL_TENSOR_NAMES: Dict[MODEL_ARCH, Dict[MODEL_TENSOR, str]] = {
MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
MODEL_ARCH.LLAMA: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
@ -158,7 +160,7 @@ MODEL_TENSOR_NAMES: Dict[MODEL_ARCH, Dict[MODEL_TENSOR, str]] = {
}
# tensors that will not be serialized
MODEL_TENSOR_SKIP: Dict[MODEL_ARCH, List[MODEL_TENSOR]] = {
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
@ -167,7 +169,7 @@ MODEL_TENSOR_SKIP: Dict[MODEL_ARCH, List[MODEL_TENSOR]] = {
class TensorNameMap:
mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = {
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
# Token embeddings
MODEL_TENSOR.TOKEN_EMBD: (
"gpt_neox.embed_in", # gptneox
@ -203,7 +205,7 @@ class TensorNameMap:
),
}
block_mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = {
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
# Attention norm
MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
@ -298,9 +300,9 @@ class TensorNameMap:
),
}
mapping: Dict[str, Tuple[MODEL_TENSOR, str]]
mapping: dict[str, tuple[MODEL_TENSOR, str]]
tensor_names: Dict[MODEL_TENSOR, str]
tensor_names: dict[MODEL_TENSOR, str]
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
mapping = self.mapping = {}
@ -321,7 +323,7 @@ class TensorNameMap:
key = key.format(bid = bid)
mapping[key] = (tensor, tensor_name)
def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[Tuple[MODEL_TENSOR, str]]:
def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> tuple[MODEL_TENSOR, str] | None:
result = self.mapping.get(key)
if result is not None:
return result
@ -332,13 +334,13 @@ class TensorNameMap:
return (result[0], result[1] + suffix)
return None
def get_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[str]:
def get_name(self, key: str, try_suffixes: Sequence[str]) -> str | None:
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
if result is None:
return None
return result[1]
def get_type(self, key: str, try_suffixes: Sequence[str]) -> Optional[MODEL_TENSOR]:
def get_type(self, key: str, try_suffixes: Sequence[str]) -> MODEL_TENSOR | None:
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
if result is None:
return None
@ -432,10 +434,10 @@ class GGUFWriter:
ti_data = b""
ti_data_count = 0
use_temp_file: bool
temp_file: Optional[tempfile.SpooledTemporaryFile[bytes]] = None
tensors: List[Tuple[np.ndarray[Any, Any], int]]
temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None
tensors: list[tuple[np.ndarray[Any, Any], int]]
def __init__(self, path: Union[os.PathLike[str], str], arch: str, use_temp_file = True):
def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True):
self.fout = open(path, "wb")
self.arch = arch
self.add_architecture()
@ -531,7 +533,7 @@ class GGUFWriter:
GGUFValueType.FLOAT64: "<d",
GGUFValueType.BOOL: "?" ,
}
def add_val(self, val: Any, vtype: Optional[GGUFValueType] = None, add_vtype: bool = True):
def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True):
if vtype is None:
vtype = GGUFValueType.get_type(val)
@ -561,7 +563,7 @@ class GGUFWriter:
def ggml_pad(x: int, n: int) -> int:
return ((x + n - 1) // n) * n
def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: Union[np.dtype[np.float16], np.dtype[np.float32]], tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32], tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None):
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
encoded_name = name.encode("utf8")
@ -580,7 +582,7 @@ class GGUFWriter:
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
self.ti_data_count += 1
def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Optional[Sequence[int]] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None):
if self.use_temp_file and self.temp_file is None:
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
fp.seek(0)
@ -600,7 +602,7 @@ class GGUFWriter:
if pad != 0:
self.temp_file.write(bytes([0] * pad))
def write_padding(self, fp: BinaryIO, n: int, align: Optional[int] = None):
def write_padding(self, fp: BinaryIO, n: int, align: int | None = None):
pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
if pad != 0:
fp.write(bytes([0] * pad))
@ -726,13 +728,13 @@ class GGUFWriter:
def add_tokenizer_model(self, model: str):
self.add_string(KEY_TOKENIZER_MODEL, model)
def add_token_list(self, tokens: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]):
def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]):
self.add_array(KEY_TOKENIZER_LIST, tokens)
def add_token_merges(self, merges: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]):
def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]):
self.add_array(KEY_TOKENIZER_MERGES, merges)
def add_token_types(self, types: Union[Sequence[TokenType], Sequence[int]]):
def add_token_types(self, types: Sequence[TokenType] | Sequence[int]):
self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
def add_token_scores(self, scores: Sequence[float]):
@ -756,11 +758,11 @@ class GGUFWriter:
class SpecialVocab:
load_merges: bool = False
merges: List[str] = []
special_token_types: Tuple[str, ...] = tuple(('bos', 'eos', 'unk', 'sep', 'pad'))
special_token_ids: Dict[str, int] = {}
merges: list[str] = []
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
special_token_ids: dict[str, int] = {}
def __init__(self, path: Path, load_merges: bool = False, special_token_types: Optional[Tuple[str, ...]] = None):
def __init__(self, path: Path, load_merges: bool = False, special_token_types: tuple[str, ...] | None = None):
self.special_token_ids = {}
self.load_merges = load_merges
if special_token_types is not None:
@ -821,7 +823,7 @@ class SpecialVocab:
print(f'gguf: Adding {len(self.merges)} merge(s).')
gw.add_token_merges(self.merges)
for typ, tokid in self.special_token_ids.items():
handler: Optional[Callable[[int], None]] = getattr(gw, f'add_{typ}_token_id', None)
handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
if handler is None:
print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping')
continue

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "gguf"
version = "0.2.1"
version = "0.3.1"
description = "Write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [

42
grammars/c.gbnf Normal file
View file

@ -0,0 +1,42 @@
root ::= (declaration)*
declaration ::= dataType identifier "(" parameter? ")" "{" statement* "}"
dataType ::= "int" ws | "float" ws | "char" ws
identifier ::= [a-zA-Z_] [a-zA-Z_0-9]*
parameter ::= dataType identifier
statement ::=
( dataType identifier ws "=" ws expression ";" ) |
( identifier ws "=" ws expression ";" ) |
( identifier ws "(" argList? ")" ";" ) |
( "return" ws expression ";" ) |
( "while" "(" condition ")" "{" statement* "}" ) |
( "for" "(" forInit ";" ws condition ";" ws forUpdate ")" "{" statement* "}" ) |
( "if" "(" condition ")" "{" statement* "}" ("else" "{" statement* "}")? ) |
( singleLineComment ) |
( multiLineComment )
forInit ::= dataType identifier ws "=" ws expression | identifier ws "=" ws expression
forUpdate ::= identifier ws "=" ws expression
condition ::= expression relationOperator expression
relationOperator ::= ("<=" | "<" | "==" | "!=" | ">=" | ">")
expression ::= term (("+" | "-") term)*
term ::= factor(("*" | "/") factor)*
factor ::= identifier | number | unaryTerm | funcCall | parenExpression
unaryTerm ::= "-" factor
funcCall ::= identifier "(" argList? ")"
parenExpression ::= "(" ws expression ws ")"
argList ::= expression ("," ws expression)*
number ::= [0-9]+
singleLineComment ::= "//" [^\n]* "\n"
multiLineComment ::= "/*" ( [^*] | ("*" [^/]) )* "*/"
ws ::= ([ \t\n]+)

View file

@ -13,6 +13,26 @@
//
#include <arm_neon.h>
#if !defined(__aarch64__)
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
return vcombine_s16(a0, b0);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
#endif
#else
#ifdef __wasm_simd128__
@ -183,13 +203,9 @@ static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t
int ntry, float alpha) {
float min = x[0];
float max = x[0];
float sum_x = 0;
float sum_x2 = 0;
for (int i = 1; i < n; ++i) {
if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i];
sum_x += x[i];
sum_x2 += x[i]*x[i];
}
if (max == min) {
for (int i = 0; i < n; ++i) L[i] = 0;
@ -1306,7 +1322,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t m3 = vdupq_n_u8(0x3);
const uint8x16_t m4 = vdupq_n_u8(0xF);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t vzero = vdupq_n_s32(0);
#endif
int8x16x2_t q2bytes;
uint8_t aux[16];
@ -1612,7 +1630,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
#ifdef __ARM_NEON
const uint8x16_t m3 = vdupq_n_u8(0x3);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t vzero = vdupq_n_s32(0);
#endif
int8x16x4_t q2bytes;
@ -2060,7 +2080,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
__m256 acc = _mm256_setzero_ps();
uint32_t *aux;
const uint32_t *aux;
for (int i = 0; i < nb; ++i) {
@ -2070,7 +2090,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const int8_t * restrict q8 = y[i].qs;
// Set up scales
aux = (uint32_t *)x[i].scales;
aux = (const uint32_t *)x[i].scales;
__m128i scales128 = _mm_set_epi32(
((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
@ -2596,8 +2616,6 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
//int32x4_t isum = mzero;
int32_t sumi1 = 0;
int32_t sumi2 = 0;
@ -3096,9 +3114,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
#ifdef __ARM_NEON
const uint8x16_t m4b = vdupq_n_u8(0xf);
const int32x4_t mzero = vdupq_n_s32(0);
const uint8x16_t mone = vdupq_n_u8(1);
const uint8x16_t mtwo = vdupq_n_u8(2);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t mzero = vdupq_n_s32(0);
#endif
int8x16x4_t q5bytes;
@ -3441,8 +3461,10 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
#ifdef __ARM_NEON
const uint8x16_t m4b = vdupq_n_u8(0xf);
const int32x4_t mzero = vdupq_n_s32(0);
const uint8x16_t mh = vdupq_n_u8(16);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t mzero = vdupq_n_s32(0);
#endif
int8x16x4_t q5bytes;
uint8x16x4_t q5h;
@ -3660,7 +3682,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
float sum = 0;
const uint8x16_t m4b = vdupq_n_u8(0xF);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t vzero = vdupq_n_s32(0);
#endif
//const int8x16_t m32s = vdupq_n_s8(32);
const uint8x16_t mone = vdupq_n_u8(3);
@ -4049,8 +4073,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
float sum = 0;
const uint8x16_t m4b = vdupq_n_u8(0xF);
const int32x4_t vzero = vdupq_n_s32(0);
const int8x16_t m32s = vdupq_n_s8(32);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t vzero = vdupq_n_s32(0);
#endif
const uint8x16_t mone = vdupq_n_u8(3);

106
llama.cpp
View file

@ -325,6 +325,44 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_GPT2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
},
},
{
LLM_ARCH_GPTJ,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
},
},
{
LLM_ARCH_GPTNEOX,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_MPT,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
},
},
{
LLM_ARCH_UNKNOWN,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
},
},
};
static llm_arch llm_arch_from_string(const std::string & name) {
@ -611,20 +649,25 @@ struct llama_mmap {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
if (prefetch) {
// Advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
// PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
// may fail on pre-Windows 8 systems
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
if (pPrefetchVirtualMemory) {
// advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
}
#else
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
}
~llama_mmap() {
@ -1600,9 +1643,13 @@ static void llm_load_hparams(
GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
}
}
// gpt-neox n_rot = rotary_pct * (n_embd / n_head)
// gpt-j n_rot = rotary_dim
}
// arch-specific KVs
@ -3595,7 +3642,7 @@ static void llama_grammar_advance_stack(
std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
if (stack.empty()) {
new_stacks.push_back(stack);
new_stacks.emplace_back(stack);
return;
}
@ -3632,7 +3679,7 @@ static void llama_grammar_advance_stack(
}
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
new_stacks.push_back(stack);
new_stacks.emplace_back(stack);
break;
default:
// end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
@ -4388,7 +4435,7 @@ struct llama_logit_info {
}
return min_heap;
}
float probability_from_logit(float logit) {
float probability_from_logit(float logit) const {
return normalizer * std::exp(logit - max_l);
}
};
@ -4678,6 +4725,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
llm_load_arch(*ml, model);
llm_load_hparams(*ml, model, 0, 0, 0);
if (params->only_copy) {
ftype = model.ftype;
}
const size_t align = GGUF_DEFAULT_ALIGNMENT;
struct gguf_context * ctx_out = gguf_init_empty();
@ -4764,18 +4815,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// quantize only 2D tensors
quantize &= (tensor->n_dims == 2);
quantize &= params->quantize_output_tensor || name != "output.weight";
quantize &= quantized_type != tensor->type;
quantize &= !params->only_copy;
enum ggml_type new_type;
void * new_data;
size_t new_size;
if (!quantize) {
new_type = tensor->type;
new_data = tensor->data;
new_size = ggml_nbytes(tensor);
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
} else {
if (quantize) {
new_type = quantized_type;
#ifdef GGML_USE_K_QUANTS
// TODO: avoid hardcoded tensor names - use the TN_* constants
@ -4874,7 +4920,16 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
}
}
#endif
// If we've decided to quantize to the same type the tensor is already
// in then there's nothing to do.
quantize = tensor->type != new_type;
}
if (!quantize) {
new_type = tensor->type;
new_data = tensor->data;
new_size = ggml_nbytes(tensor);
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
} else {
const size_t nelements = ggml_nelements(tensor);
float * f32_data;
@ -5287,7 +5342,7 @@ struct llama_context_params llama_context_default_params() {
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
/*.low_vram =*/ false,
/*.mul_mat_q =*/ false,
/*.mul_mat_q =*/ true,
/*.f16_kv =*/ true,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
@ -5305,6 +5360,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
/*.allow_requantize =*/ false,
/*.quantize_output_tensor =*/ true,
/*.only_copy =*/ false,
};
return result;

View file

@ -164,6 +164,7 @@ extern "C" {
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
} llama_model_quantize_params;
// grammar types

5
mypy.ini Normal file
View file

@ -0,0 +1,5 @@
[mypy]
strict = true
allow_untyped_calls = true
allow_untyped_defs = true
allow_incomplete_defs = true