diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index f8ffedddc..8a431694f 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -212,7 +212,6 @@ class Model(ABC): try: return cls._model_classes[arch] except KeyError: - print(f"{cls._model_classes}") raise NotImplementedError(f'Architecture {arch!r} not supported!') from None def _is_model_safetensors(self) -> bool: diff --git a/llama.cpp b/llama.cpp index 4b4a05dd0..e6025431b 100644 --- a/llama.cpp +++ b/llama.cpp @@ -4375,7 +4375,6 @@ static bool llm_load_tensors( LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0); - bool init_mapping_prefetch = true; // create tensors for the weights { const int64_t n_embd = hparams.n_embd; @@ -5230,7 +5229,6 @@ static bool llm_load_tensors( } break; case LLM_ARCH_XVERSE: { - init_mapping_prefetch = false; model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); @@ -5289,7 +5287,7 @@ static bool llm_load_tensors( ml.done_getting_tensors(); - ml.init_mappings(init_mapping_prefetch, use_mlock ? &model.mlock_mmaps : nullptr); + ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr); model.mappings.reserve(ml.mappings.size()); // create the backend buffers