server: tests: adding OAI compatible embedding concurrent endpoint

This commit is contained in:
Pierrick HYMBERT 2024-02-24 18:06:32 +01:00
parent 09b77b4c9e
commit 466987eb7b
2 changed files with 104 additions and 43 deletions

View file

@ -98,3 +98,26 @@ Feature: Parallel
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: Multi users OAI compatibility embeddings
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
And a prompt:
"""
What is the biggest US city ?
"""
And a prompt:
"""
What is the capital of Bulgaria ?
"""
And a model tinyllama-2
Given concurrent OAI embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated

View file

@ -261,35 +261,35 @@ def step_a_prompt_prompt(context, prompt):
@step(u'concurrent completion requests')
@async_run_until_complete()
async def step_concurrent_completion_requests(context):
await concurrent_completion_requests(context,
request_completion,
# prompt is inserted automatically
context.base_url,
debug=context.debug,
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
server_seed=context.server_seed if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key if hasattr(context,
'user_api_key') else None)
await concurrent_requests(context,
request_completion,
# prompt is inserted automatically
context.base_url,
debug=context.debug,
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
server_seed=context.server_seed if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key if hasattr(context,
'user_api_key') else None)
@step(u'concurrent OAI completions requests')
@async_run_until_complete
async def step_oai_chat_completions(context):
await concurrent_completion_requests(context, oai_chat_completions,
# user_prompt is inserted automatically
context.system_prompt,
context.base_url,
True, # async_client
model=context.model
if hasattr(context, 'model') else None,
n_predict=context.n_predict
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
server_seed=context.server_seed
if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None)
await concurrent_requests(context, oai_chat_completions,
# user_prompt is inserted automatically
context.system_prompt,
context.base_url,
True, # async_client
model=context.model
if hasattr(context, 'model') else None,
n_predict=context.n_predict
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
server_seed=context.server_seed
if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None)
@step(u'all prompts are predicted')
@ -316,9 +316,7 @@ async def all_prompts_are_predicted(context, expected_predicted_n=None):
@step(u'embeddings are computed for')
@async_run_until_complete
async def step_compute_embedding(context):
content = context.text
base_url = context.base_url
context.embeddings = await request_embedding(content, base_url)
context.embeddings = await request_embedding(context.text, base_url=context.base_url)
@step(u'embeddings are generated')
@ -327,25 +325,32 @@ def step_assert_embeddings(context):
@step(u'an OAI compatible embeddings computation request for')
def step_oai_compute_embedding(context):
openai.api_key = 'nope' # openai client always expects an api_keu
if context.user_api_key is not None:
openai.api_key = context.user_api_key
openai.api_base = f'{context.base_url}/v1'
embeddings = openai.Embedding.create(
model=context.model,
input=context.text,
)
context.embeddings = embeddings
@async_run_until_complete
async def step_oai_compute_embeddings(context):
context.embeddings = await request_oai_embeddings(context.text,
base_url=context.base_url,
user_api_key=context.user_api_key,
model=context.model)
@step(u'concurrent embedding requests')
@async_run_until_complete()
async def step_concurrent_embedding_requests(context):
await concurrent_completion_requests(context,
request_embedding,
# prompt is inserted automatically
context.base_url)
await concurrent_requests(context,
request_embedding,
# prompt is inserted automatically
base_url=context.base_url)
@step(u'concurrent OAI embedding requests')
@async_run_until_complete()
async def step_concurrent_oai_embedding_requests(context):
await concurrent_requests(context,
request_oai_embeddings,
# prompt is inserted automatically
base_url=context.base_url,
async_client=True,
model=context.model)
@step(u'all embeddings are generated')
@ -401,7 +406,7 @@ def step_check_options_header_value(context, cors_header, cors_header_value):
assert context.options_response.headers[cors_header] == cors_header_value
async def concurrent_completion_requests(context, f_completion, *args, **kwargs):
async def concurrent_requests(context, f_completion, *args, **kwargs):
n_prompts = len(context.prompts)
if context.debug:
print(f"starting {n_prompts} concurrent completion requests...")
@ -565,7 +570,7 @@ async def oai_chat_completions(user_prompt,
return completion_response
async def request_embedding(content, base_url):
async def request_embedding(content, base_url=None):
async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/embedding',
json={
@ -576,6 +581,39 @@ async def request_embedding(content, base_url):
return response_json['embedding']
async def request_oai_embeddings(input,
base_url=None, user_api_key=None,
model=None, async_client=False):
# openai client always expects an api_key
user_api_key = user_api_key if user_api_key is not None else 'nope'
if async_client:
origin = 'llama.cpp'
if user_api_key is not None:
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/v1/embeddings',
json={
"input": input,
"model": model,
},
headers=headers) as response:
assert response.status == 200, f"received status code not expected: {response.status}"
assert response.headers['Access-Control-Allow-Origin'] == origin
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
response_json = await response.json()
assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
assert response_json['object'] == 'list'
return response_json['data']
else:
openai.api_key = user_api_key
openai.api_base = f'{base_url}/v1'
embeddings = openai.Embedding.create(
model=model,
input=input,
)
return embeddings
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
content = completion_response['content']
n_predicted = completion_response['timings']['predicted_n']