llama : add grok-1 support (#6204)
* Add support for Grok model architecture * Revert convert-hf-to-gguf to default options * Fixed f_norm_rms_eps bug * Fix whitespaces * llama : fix grok rope type * llama : minor --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
21cad01b6e
commit
476b0251b2
4 changed files with 384 additions and 20 deletions
|
@ -100,6 +100,7 @@ class MODEL_ARCH(IntEnum):
|
|||
LLAMA = auto()
|
||||
FALCON = auto()
|
||||
BAICHUAN = auto()
|
||||
GROK = auto()
|
||||
GPT2 = auto()
|
||||
GPTJ = auto()
|
||||
GPTNEOX = auto()
|
||||
|
@ -167,6 +168,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.LLAMA: "llama",
|
||||
MODEL_ARCH.FALCON: "falcon",
|
||||
MODEL_ARCH.BAICHUAN: "baichuan",
|
||||
MODEL_ARCH.GROK: "grok",
|
||||
MODEL_ARCH.GPT2: "gpt2",
|
||||
MODEL_ARCH.GPTJ: "gptj",
|
||||
MODEL_ARCH.GPTNEOX: "gptneox",
|
||||
|
@ -251,6 +253,28 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.GROK: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.ATTN_OUT_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.LAYER_OUT_NORM,
|
||||
],
|
||||
MODEL_ARCH.GPTNEOX: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
|
|
@ -23,6 +23,7 @@ class TensorNameMap:
|
|||
"model.embedding", # mamba-qbert
|
||||
"backbone.embedding", # mamba
|
||||
"backbone.embeddings", # mamba-hf
|
||||
"transformer.in_out_embed", # Grok
|
||||
),
|
||||
|
||||
# Token type embeddings
|
||||
|
@ -66,6 +67,7 @@ class TensorNameMap:
|
|||
"lm_head.ln", # phi2
|
||||
"model.norm_f", # mamba-qbert
|
||||
"backbone.norm_f", # mamba
|
||||
"transformer.rms_norm", # Grok
|
||||
),
|
||||
|
||||
# Rope frequencies
|
||||
|
@ -93,6 +95,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.attention_norm", # internlm2
|
||||
"model.layers.{bid}.norm", # mamba-qbert
|
||||
"backbone.layers.{bid}.norm", # mamba
|
||||
"transformer.decoder_layer.{bid}.rms_norm", # Grok
|
||||
),
|
||||
|
||||
# Attention norm 2
|
||||
|
@ -116,32 +119,35 @@ class TensorNameMap:
|
|||
|
||||
# Attention query
|
||||
MODEL_TENSOR.ATTN_Q: (
|
||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
||||
"layers.{bid}.attention.wq", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.query", # bert
|
||||
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
||||
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
|
||||
"model.layers.{bid}.attention.wq" # internlm2
|
||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
||||
"layers.{bid}.attention.wq", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.query", # bert
|
||||
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
||||
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
|
||||
"model.layers.{bid}.attention.wq", # internlm2
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
|
||||
),
|
||||
|
||||
# Attention key
|
||||
MODEL_TENSOR.ATTN_K: (
|
||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
||||
"layers.{bid}.attention.wk", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.key", # bert
|
||||
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
||||
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
|
||||
"model.layers.{bid}.attention.wk" # internlm2
|
||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
||||
"layers.{bid}.attention.wk", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.key", # bert
|
||||
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
||||
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
|
||||
"model.layers.{bid}.attention.wk", # internlm2
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
|
||||
),
|
||||
|
||||
# Attention value
|
||||
MODEL_TENSOR.ATTN_V: (
|
||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
||||
"layers.{bid}.attention.wv", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.value", # bert
|
||||
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
||||
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
|
||||
"model.layers.{bid}.attention.wv" # internlm2
|
||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
||||
"layers.{bid}.attention.wv", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.value", # bert
|
||||
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
||||
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
|
||||
"model.layers.{bid}.attention.wv", # internlm2
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
|
||||
),
|
||||
|
||||
# Attention output
|
||||
|
@ -162,12 +168,14 @@ class TensorNameMap:
|
|||
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
|
||||
"model.layers.{bid}.attention.wo", # internlm2
|
||||
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.linear"# Grok
|
||||
),
|
||||
|
||||
# Attention output norm
|
||||
MODEL_TENSOR.ATTN_OUT_NORM: (
|
||||
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
|
||||
"encoder.layers.{bid}.norm1", # nomic-bert
|
||||
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok
|
||||
),
|
||||
|
||||
# Rotary embeddings
|
||||
|
@ -190,11 +198,13 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.ln2", # yi
|
||||
"h.{bid}.ln_2", # gpt2
|
||||
"model.layers.{bid}.ffn_norm", # internlm2
|
||||
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
"transformer.decoder_layer.{bid}.router" # Grok
|
||||
),
|
||||
|
||||
# Feed-forward up
|
||||
|
@ -223,6 +233,7 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
|
||||
"transformer.decoder_layer.{bid}.moe.{xid}.linear_v", # Grok
|
||||
),
|
||||
|
||||
# AWQ-activation gate
|
||||
|
@ -243,6 +254,7 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
|
||||
"transformer.decoder_layer.{bid}.moe.{xid}.linear" # Grok
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
|
@ -270,6 +282,8 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
|
||||
"transformer.decoder_layer.{bid}.moe.{xid}.linear_1", # Grok
|
||||
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
|
@ -287,8 +301,9 @@ class TensorNameMap:
|
|||
),
|
||||
|
||||
MODEL_TENSOR.LAYER_OUT_NORM: (
|
||||
"encoder.layer.{bid}.output.LayerNorm", # bert
|
||||
"encoder.layers.{bid}.norm2", # nomic-bert
|
||||
"encoder.layer.{bid}.output.LayerNorm", # bert
|
||||
"encoder.layers.{bid}.norm2", # nomic-bert
|
||||
"transformer.decoder_layer.{bid}.rms_norm_3", # Grok
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_IN: (
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue