llama : add grok-1 support (#6204)

* Add support for Grok model architecture

* Revert convert-hf-to-gguf to default options

* Fixed f_norm_rms_eps bug

* Fix whitespaces

* llama : fix grok rope type

* llama : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Julius Arkenberg 2024-03-23 17:41:53 +01:00 committed by GitHub
parent 21cad01b6e
commit 476b0251b2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 384 additions and 20 deletions

View file

@ -23,6 +23,7 @@ class TensorNameMap:
"model.embedding", # mamba-qbert
"backbone.embedding", # mamba
"backbone.embeddings", # mamba-hf
"transformer.in_out_embed", # Grok
),
# Token type embeddings
@ -66,6 +67,7 @@ class TensorNameMap:
"lm_head.ln", # phi2
"model.norm_f", # mamba-qbert
"backbone.norm_f", # mamba
"transformer.rms_norm", # Grok
),
# Rope frequencies
@ -93,6 +95,7 @@ class TensorNameMap:
"model.layers.{bid}.attention_norm", # internlm2
"model.layers.{bid}.norm", # mamba-qbert
"backbone.layers.{bid}.norm", # mamba
"transformer.decoder_layer.{bid}.rms_norm", # Grok
),
# Attention norm 2
@ -116,32 +119,35 @@ class TensorNameMap:
# Attention query
MODEL_TENSOR.ATTN_Q: (
"model.layers.{bid}.self_attn.q_proj", # llama-hf
"layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert
"transformer.h.{bid}.attn.q_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
"model.layers.{bid}.attention.wq" # internlm2
"model.layers.{bid}.self_attn.q_proj", # llama-hf
"layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert
"transformer.h.{bid}.attn.q_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
"model.layers.{bid}.attention.wq", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
),
# Attention key
MODEL_TENSOR.ATTN_K: (
"model.layers.{bid}.self_attn.k_proj", # llama-hf
"layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert
"transformer.h.{bid}.attn.k_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
"model.layers.{bid}.attention.wk" # internlm2
"model.layers.{bid}.self_attn.k_proj", # llama-hf
"layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert
"transformer.h.{bid}.attn.k_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
"model.layers.{bid}.attention.wk", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
),
# Attention value
MODEL_TENSOR.ATTN_V: (
"model.layers.{bid}.self_attn.v_proj", # llama-hf
"layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
"model.layers.{bid}.attention.wv" # internlm2
"model.layers.{bid}.self_attn.v_proj", # llama-hf
"layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
"model.layers.{bid}.attention.wv", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
),
# Attention output
@ -162,12 +168,14 @@ class TensorNameMap:
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
"model.layers.{bid}.attention.wo", # internlm2
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
"transformer.decoder_layer.{bid}.multi_head_attention.linear"# Grok
),
# Attention output norm
MODEL_TENSOR.ATTN_OUT_NORM: (
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
"encoder.layers.{bid}.norm1", # nomic-bert
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok
),
# Rotary embeddings
@ -190,11 +198,13 @@ class TensorNameMap:
"model.layers.{bid}.ln2", # yi
"h.{bid}.ln_2", # gpt2
"model.layers.{bid}.ffn_norm", # internlm2
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
),
MODEL_TENSOR.FFN_GATE_INP: (
"layers.{bid}.feed_forward.gate", # mixtral
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
"transformer.decoder_layer.{bid}.router" # Grok
),
# Feed-forward up
@ -223,6 +233,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_UP_EXP: (
"layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
"transformer.decoder_layer.{bid}.moe.{xid}.linear_v", # Grok
),
# AWQ-activation gate
@ -243,6 +254,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_GATE_EXP: (
"layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
"transformer.decoder_layer.{bid}.moe.{xid}.linear" # Grok
),
# Feed-forward down
@ -270,6 +282,8 @@ class TensorNameMap:
MODEL_TENSOR.FFN_DOWN_EXP: (
"layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
"transformer.decoder_layer.{bid}.moe.{xid}.linear_1", # Grok
),
MODEL_TENSOR.ATTN_Q_NORM: (
@ -287,8 +301,9 @@ class TensorNameMap:
),
MODEL_TENSOR.LAYER_OUT_NORM: (
"encoder.layer.{bid}.output.LayerNorm", # bert
"encoder.layers.{bid}.norm2", # nomic-bert
"encoder.layer.{bid}.output.LayerNorm", # bert
"encoder.layers.{bid}.norm2", # nomic-bert
"transformer.decoder_layer.{bid}.rms_norm_3", # Grok
),
MODEL_TENSOR.SSM_IN: (