iq1_m: adapt to CUDA refactoring
This commit is contained in:
parent
3d9c21f61a
commit
480d6d6c36
3 changed files with 105 additions and 0 deletions
|
@ -501,6 +501,42 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
|
|||
|
||||
}
|
||||
|
||||
typedef union {
|
||||
half f16;
|
||||
uint16_t u16;
|
||||
} iq1m_scale_t;
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const block_iq1_m * x = (const block_iq1_m *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||
iq1m_scale_t scale;
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
|
||||
const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
|
||||
const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
|
||||
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
|
||||
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||
grid32[0] &= 0x0f0f0f0f;
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = d * (q[j] + delta);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
|
@ -658,6 +694,12 @@ static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k,
|
|||
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq1_m<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
|
@ -724,6 +766,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
|||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_cuda;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return dequantize_row_iq1_m_cuda;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_cuda;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
|
@ -769,6 +813,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
|||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_cuda;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return dequantize_row_iq1_m_cuda;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_cuda;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
|
|
|
@ -282,6 +282,14 @@ static void mul_mat_vec_iq1_s_q8_1_cuda(
|
|||
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||
}
|
||||
|
||||
static void mul_mat_vec_iq1_m_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst,
|
||||
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_m, 1, vec_dot_iq1_m_q8_1>
|
||||
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||
}
|
||||
|
||||
static void mul_mat_vec_iq4_nl_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst,
|
||||
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
@ -373,6 +381,9 @@ void ggml_cuda_op_mul_mat_vec_q(
|
|||
case GGML_TYPE_IQ1_S:
|
||||
mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
|
|
|
@ -1164,6 +1164,54 @@ static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
|
|||
#endif
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if QK_K == 256
|
||||
const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
|
||||
|
||||
const int ib32 = iqs;
|
||||
int sumi[2] = {0, 0};
|
||||
float sumf[2] = {0.f, 0.f};
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
const int * q8 = (const int *)bq8_1[ib32].qs;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8)));
|
||||
int grid0 = grid[0] & 0x0f0f0f0f;
|
||||
int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
|
||||
sumi[l/2] = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi[l/2]));
|
||||
const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
|
||||
const int sumy = __dp4a(q8[2*l+1], 0x01010101, __dp4a(q8[2*l+0], 0x01010101, 0));
|
||||
sumf[l/2] += delta*sumy;
|
||||
}
|
||||
#else
|
||||
const int8_t * q8 = bq8_1[ib32].qs;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
|
||||
int sumy = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi[l/2] += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
|
||||
sumy += q8[j] + q8[j+4];
|
||||
}
|
||||
const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
|
||||
sumf[l/2] += delta*sumy;
|
||||
q8 += 8;
|
||||
}
|
||||
#endif
|
||||
typedef union {
|
||||
half f16;
|
||||
uint16_t u16;
|
||||
} iq1m_scale_t;
|
||||
iq1m_scale_t scale;
|
||||
const uint16_t * sc = (const uint16_t *)bq1->scales;
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds);
|
||||
return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
|
||||
#else
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
}
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
|
||||
int & val1, int & val2) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue