ggml : synchronize using openmp barriers
This commit is contained in:
parent
91c188d6c2
commit
4886f5001d
1 changed files with 31 additions and 159 deletions
190
ggml.c
190
ggml.c
|
@ -1753,9 +1753,9 @@ struct ggml_compute_state_shared {
|
|||
int n_threads;
|
||||
|
||||
// synchronization primitives
|
||||
atomic_int n_active; // num active threads
|
||||
atomic_int node_n; // active graph node
|
||||
atomic_int node_task; // active graph node task phase
|
||||
//atomic_int n_active; // num active threads
|
||||
//atomic_int node_n; // active graph node
|
||||
//atomic_int node_task; // active graph node task phase
|
||||
|
||||
ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
|
||||
void* abort_callback_data;
|
||||
|
@ -18972,184 +18972,60 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
|
|||
return n_tasks;
|
||||
}
|
||||
|
||||
static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
|
||||
// wait for other threads to finish
|
||||
const int last_node_n = * node_n;
|
||||
|
||||
while (true) {
|
||||
if (do_yield) {
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
*node_n = atomic_load(&state->shared->node_n);
|
||||
if (*node_n != last_node_n) {
|
||||
break;
|
||||
}
|
||||
|
||||
#if defined(__SSE3__)
|
||||
// Tell the processor we're spinning. It's a processor hint for spinlocks.
|
||||
_mm_pause();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
|
||||
// wait for other threads to finish
|
||||
const int last_task_phase = *task_phase;
|
||||
|
||||
while (true) {
|
||||
if (do_yield) {
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
*task_phase = atomic_load(&state->shared->node_task);
|
||||
if (*task_phase != last_task_phase) {
|
||||
break;
|
||||
}
|
||||
|
||||
#if defined(__SSE3__)
|
||||
// Tell the processor we're spinning. It's a processor hint for spinlocks.
|
||||
_mm_pause();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
|
||||
|
||||
const struct ggml_cgraph * cgraph = state->shared->cgraph;
|
||||
const struct ggml_cplan * cplan = state->shared->cplan;
|
||||
|
||||
const int n_threads = state->shared->n_threads;
|
||||
const int ith = state->ith;
|
||||
const int n_threads = state->shared->n_threads;
|
||||
|
||||
set_numa_thread_affinity(state->ith);
|
||||
set_numa_thread_affinity(ith);
|
||||
|
||||
int node_n = -1;
|
||||
int task_phase = GGML_TASK_TYPE_FINALIZE;
|
||||
struct ggml_compute_params params = {
|
||||
/*.type =*/ GGML_TASK_TYPE_INIT,
|
||||
/*.ith =*/ ith,
|
||||
/*.nth =*/ state->shared->n_threads,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
};
|
||||
|
||||
while (true) {
|
||||
for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
|
||||
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
state->shared->node_n += 1;
|
||||
state->ec = GGML_STATUS_ABORTED;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
|
||||
// all other threads are finished and spinning
|
||||
// do finalize and init here so we don't have synchronize again
|
||||
struct ggml_compute_params params = {
|
||||
/*.type =*/ GGML_TASK_TYPE_FINALIZE,
|
||||
/*.ith =*/ 0,
|
||||
/*.nth =*/ 0,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
};
|
||||
|
||||
if (node_n != -1) {
|
||||
/* FINALIZE */
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
if (GGML_OP_HAS_FINALIZE[node->op]) {
|
||||
params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
ggml_graph_compute_perf_stats_node(node, state->shared);
|
||||
}
|
||||
|
||||
// distribute new work or execute it direct if 1T
|
||||
while (++node_n < cgraph->n_nodes) {
|
||||
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
|
||||
|
||||
state->shared->perf_node_start_cycles = ggml_perf_cycles();
|
||||
state->shared->perf_node_start_time_us = ggml_perf_time_us();
|
||||
|
||||
params.nth = n_tasks;
|
||||
|
||||
if (n_tasks == 1) {
|
||||
/* INIT */
|
||||
if (GGML_OP_HAS_INIT[node->op]) {
|
||||
params.type = GGML_TASK_TYPE_INIT;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
|
||||
// TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
|
||||
// they do something more efficient than spinning (?)
|
||||
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
|
||||
if (GGML_OP_HAS_FINALIZE[node->op]) {
|
||||
params.type = GGML_TASK_TYPE_FINALIZE;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
|
||||
ggml_graph_compute_perf_stats_node(node, state->shared);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
|
||||
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
task_phase = GGML_TASK_TYPE_INIT;
|
||||
atomic_store(&state->shared->n_active, n_threads);
|
||||
atomic_store(&state->shared->node_n, node_n);
|
||||
atomic_store(&state->shared->node_task, task_phase);
|
||||
} else {
|
||||
ggml_graph_compute_thread_sync_node(&node_n, state, false);
|
||||
ggml_graph_compute_thread_sync_task(&task_phase, state, false);
|
||||
}
|
||||
|
||||
// check if we should stop
|
||||
if (node_n >= cgraph->n_nodes) break;
|
||||
|
||||
/* INIT & COMPUTE */
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
|
||||
|
||||
struct ggml_compute_params params = {
|
||||
/*.type =*/ GGML_TASK_TYPE_INIT,
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ n_tasks,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
};
|
||||
params.nth = n_tasks;
|
||||
|
||||
if (state->ith < n_tasks) {
|
||||
if (GGML_OP_HAS_INIT[node->op]) {
|
||||
/* INIT */
|
||||
if (GGML_OP_HAS_INIT[node->op]) {
|
||||
if (ith < n_tasks) {
|
||||
params.type = GGML_TASK_TYPE_INIT;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
#pragma omp barrier
|
||||
}
|
||||
|
||||
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
|
||||
task_phase = GGML_TASK_TYPE_COMPUTE;
|
||||
atomic_store(&state->shared->n_active, n_threads);
|
||||
atomic_store(&state->shared->node_task, task_phase);
|
||||
}
|
||||
else {
|
||||
// TODO: this sched_yield can have significant impact on the performance - either positive or negative
|
||||
// depending on the workload and the operating system.
|
||||
// since it is not clear what is the best approach, it should potentially become user-configurable
|
||||
// ref: https://github.com/ggerganov/ggml/issues/291
|
||||
// UPD: adding the do_yield flag seems to resolve the issue universally
|
||||
const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
|
||||
ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
|
||||
}
|
||||
|
||||
if (state->ith < n_tasks) {
|
||||
/* COMPUTE */
|
||||
if (ith < n_tasks) {
|
||||
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
|
||||
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
|
||||
task_phase = GGML_TASK_TYPE_FINALIZE;
|
||||
atomic_store(&state->shared->n_active, n_threads);
|
||||
atomic_store(&state->shared->node_task, task_phase);
|
||||
}
|
||||
else {
|
||||
ggml_graph_compute_thread_sync_task(&task_phase, state, false);
|
||||
#pragma omp barrier
|
||||
|
||||
/* FINALIZE */
|
||||
if (GGML_OP_HAS_FINALIZE[node->op]) {
|
||||
if (params.ith == 0) {
|
||||
params.type = GGML_TASK_TYPE_FINALIZE;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
#pragma omp barrier
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -19336,7 +19212,6 @@ static enum ggml_status ggml_graph_compute_parallel(struct ggml_compute_state *
|
|||
// update the number of threads from the actual number of threads that we got from OpenMP
|
||||
n_threads = omp_get_num_threads();
|
||||
workers[0].shared->n_threads = n_threads;
|
||||
workers[0].shared->n_active = n_threads;
|
||||
}
|
||||
ggml_graph_compute_thread(&workers[omp_get_thread_num()]);
|
||||
}
|
||||
|
@ -19399,9 +19274,6 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
|||
/*.perf_node_start_cycles =*/ 0,
|
||||
/*.perf_node_start_time_us =*/ 0,
|
||||
/*.n_threads =*/ n_threads,
|
||||
/*.n_active =*/ n_threads,
|
||||
/*.node_n =*/ -1,
|
||||
/*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
|
||||
/*.abort_callback =*/ NULL,
|
||||
/*.abort_callback_data =*/ NULL,
|
||||
/*.current_chunk; =*/ 0,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue